EP3057109A1 - Überspannungsableiter - Google Patents

Überspannungsableiter Download PDF

Info

Publication number
EP3057109A1
EP3057109A1 EP15154862.5A EP15154862A EP3057109A1 EP 3057109 A1 EP3057109 A1 EP 3057109A1 EP 15154862 A EP15154862 A EP 15154862A EP 3057109 A1 EP3057109 A1 EP 3057109A1
Authority
EP
European Patent Office
Prior art keywords
contact
electrical connection
column
contact surface
resistance elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP15154862.5A
Other languages
English (en)
French (fr)
Inventor
Daniel Flohe
Andre Fricke
Erhard Pippert
Dirk Sagasser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP15154862.5A priority Critical patent/EP3057109A1/de
Priority to CN201610083050.XA priority patent/CN105895282A/zh
Priority to US15/042,373 priority patent/US20160240289A1/en
Publication of EP3057109A1 publication Critical patent/EP3057109A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • H01C7/12Overvoltage protection resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors

Definitions

  • the invention relates to a surge arrester according to the preamble of patent claim 1.
  • Surge arresters are protective systems, for example for power transmission networks, which in case of overvoltages caused by lightning strikes or malfunctions of other subsystems dissipate these overvoltages to ground and thus protect other components of the power transmission system.
  • Such a surge arrester comprises one or more cylindrical discharge columns of resistive elements, which are often constructed of individual, likewise cylindrical varistor elements.
  • Varistors are characterized by a voltage-dependent resistor. At low voltages these act as insulators. From a certain threshold voltage, which is material-dependent, they show a good conductivity. Frequently, varistors are made from metal oxides such as zinc oxide.
  • the discharge column is connected at both ends with end fittings, which establish the electrical connection to the power line and to ground. In order to ensure good electrical contact even under mechanical stress, the delivery column must be held together under pressure.
  • tension members such as ropes or rods are preferably made of glass fiber reinforced plastic, clamped in the end fittings or arranged at the ends of the Ableit yarn pressure plates under train.
  • the tension elements surround the Ableit yarn and thus form a cage around this.
  • the dissipation column is arranged in a mechanically stable tubular housing made of an insulating material, for example made of porcelain or glass fiber reinforced plastic.
  • the end fittings can then simultaneously serve as closures for this case.
  • Such surge often have a pressure relief device.
  • FIG. 1 such a surge arrester shown.
  • a column of resistance elements is arranged in a tubular housing.
  • the resistive elements consist of individual cylindrical varistor elements which are stacked to the column. As a result, the individual resistance elements are electrically connected in series.
  • WO 94/14171 A1 such a surge arrester.
  • the resistance elements of each column are also connected electrically in series here. However, the columns are electrically connected in parallel with each other. As a result, an increased energy absorption capacity or a reduction of the residual stress is achieved.
  • Object of the present invention is to provide a compact surge arrester with a high energy absorption capacity.
  • a surge arrester in which a column of stacked resistance elements extends between a first and a second electrical connection.
  • the resistance elements are generally cylindrical, often circular cylindrical, blocks of a material with a voltage-dependent resistor, so-called varistor elements.
  • varistor elements As a material often comes a metal oxide, such as zinc oxide, for use.
  • a resistance element has at least one varistor element and, in addition to this, may contain further elements, such as, for example, spacer elements made of a material with good electrical conductivity, such as steel or aluminum. Only one, some or all of the resistance elements of the column can have such spacers.
  • the resistance elements are stacked along a column longitudinal axis with their end faces to each other to the column.
  • the end faces serve as opposing first and second contact surfaces of the resistance element.
  • the resistance elements are stacked in the column such that the first contact surface of each resistance element faces the first electrical connection and the second contact surface with the second electrical connection.
  • the first contact surface of a resistive element adjoins the second contact surface of a resistor element adjacent to the latter in the pillar. This may mean that the first contact surface of the one resistance element is applied to the second of the adjacent resistance element, but also that between the two contact surfaces, a connecting element made of a highly electrically conductive material is arranged.
  • the first contact surface of the one resistive element and the second contact surface of the adjacent resistive element are in direct electrical contact with each other, so are directly connected to each other or at best via a good electrical conductor, but not via active or passive electrical components such as resistors, coils, Semiconductor devices or the like.
  • a contact surface of the two lying in the column at the outer ends of the resistance elements form the outer end faces of the column. Between these two outer faces of the column there is an electrical connection through the column.
  • end fittings can be arranged, which serve as electrical connections.
  • tension elements can be clamped in the end fittings, which hold the column together.
  • the end fittings are usually made of a highly electrically conductive material.
  • the tension elements however, made of an electrically insulating material such as glass fiber reinforced plastic.
  • the column has at least two groups of resistance elements.
  • the resistance elements of the first group are each directly connected to the first electrical connection with their first contact surface and with their second contact surface to the second electrical connection.
  • the resistance elements of the second group are each directly connected to their first contact surface with the second electrical connection and with their second contact surface with the first electrical connection.
  • Directly connected to the connection here means that the connection is made via a good electrical conductor, for example made of copper, steel or aluminum, and in the current path between the respective contact surface and the relevant electrical connection no active or passive electrical components such as resistors, Coils, semiconductor devices or the like are connected.
  • the electrical connection can be made for example by means of cables.
  • the electrical connection can be carried out either outside the column by the contact of two adjacent contact surfaces out of the column by means of a connecting element between two resistor elements. Outside the column, the connecting elements can be connected by common means such as cables. The electrical connection can also take place within the column. This would require a through hole going through each resistive element. Within the bore then run the respective contact surfaces interconnecting conductors.
  • the individual resistance elements are connected in parallel between the first and the second electrical connection. If the column consists of n resistive elements, then the equivalent circuit is a parallel circuit of n resistive elements. The current flowing through this circuit is thus, if component tolerances are disregarded, n times a single column.
  • resistance elements of the first group and resistance elements of the second group alternate in the column.
  • each contact surface of the first and second groups of resistance elements connected to the first electrical connection adjoins one another.
  • the contact surfaces connected to the second electrical connection If, for example, one picks out any resistance element of the first group within the column, then this is in the preferred alternating arrangement between two resistance elements of the second group.
  • the first contact surface of the resistance elements of the first group adjoins a second contact surface of a resistance element of the second group.
  • both contact surfaces can be connected to the first electrical connection in a particularly simple manner. For example, by a connecting element arranged between the two contact surfaces leads the electrical connection to the outside of the column and is connected there to the first electrical connection.
  • this resistance element of the first group adjoins a first contact surface of a resistance element of the second group.
  • the connection of these two contact surfaces to the second electrical connection can be produced equivalently as above.
  • first and second contact disks are arranged in the column between adjacent resistance elements. Between two together adjacent contact surfaces of two resistive elements is thus arranged in each case a contact disc, which is either a first or a second contact disc.
  • a first contact disk is arranged between a first contact surface of a resistive element of the first group and the second contact surface of a resistive element of the second group and a second contact disk between the second contact surface of a resistive element of the first group and the first contact surface of a resistive element of the second group.
  • Both first and second contact discs are thus between each two resistance elements and electrically connect the two adjacent contact surfaces.
  • the contact discs are good electrical conductors and preferably made of aluminum or steel.
  • an electrical connection extending through the pillar exists from the first contact surface of the first resistive element to the second contact surface of the last resistive element of the pillar.
  • All contact discs have a contact lug lying outside the pillar.
  • the contact lugs of the first contact discs are electrically connected to each other, the contact lugs of the second contact discs are also electrically connected to each other.
  • the electrical connection to two contact surfaces lead to the outside of the column and connect there in a particularly simple manner.
  • the contact lugs of the first contact discs and the contact lugs of the second contact discs are aligned with each other.
  • the contact lugs of the first contact discs are characterized on a first contact axis parallel to the arrester longitudinal axis of the surge arrester.
  • the contact lugs of the second contact discs are also on a second contact axis parallel to the Ableiterlteilsachse.
  • the first and second contact axes have a minimum distance, so they are not congruent.
  • the contact lugs of the first group are connected to each other by means of a connecting conductor.
  • the contact lugs of the second contact discs are interconnected by means of another connecting conductor. This makes it possible to achieve a particularly simple and space-saving connection of the resistance elements.
  • connection conductor can be, for example, each a cable that is connected to the contact lugs with commercially available cable clamps.
  • a further exemplary embodiment of a connecting conductor is in each case a threaded rod made of metal, which is passed through holes in the contact lugs and connected by means of nuts with the contact lugs.
  • a threaded rod would connect all the contact lugs of the first contact discs together, and a second threaded rod all contact lugs of the second contact discs.
  • first and the second contact disc are congruent to each other.
  • the first and second contact discs are then arranged rotated against each other in the column, so that the contact lugs of the first and second contact discs are superimposed on different axes.
  • the same parts can be used for first and second contact discs, which is logistically advantageous.
  • At least two mutually parallel columns extend between the first electrical connection and the second electrical connection.
  • a contact disk extending over all the columns and electrically connecting them to one another is arranged between each resistance element. If a large number of resistance elements is needed, they can be distributed over several columns and thus arranged in a particularly space-saving manner.
  • the column more preferably but several columns, arranged in a tubular fluid-tight sealed housing with a first and second fitting body.
  • the first fitting body is connected to the first electrical connection and the second fitting body is connected to the second electrical connection.
  • the housing may have a tubular jacket made of a non-conductive material such as porcelain or glass fiber reinforced plastic.
  • the fitting body made of metal can serve as flanges, which close the housing and the electrical connection to the resistor elements on the one hand and a component to be protected on the other hand, produce.
  • the housing can also be a pressure-resistant metal housing.
  • the fitting bodies would be bushings which lead an electrical connection of the resistance elements electrically insulated from the housing to the outside.
  • the column or in the case of several columns each of the columns, has an odd number of resistance elements.
  • This allows a particularly simple electrical connection of the fitting body, since then one of the outermost contact surfaces with the first electrical connection, the other is connected to the second electrical connection.
  • FIGS. 1 to 3 different embodiments of a surge arrester 1 according to the invention are shown schematically. These figures are intended to explain mainly the electrical interconnection of the individual elements. The physical arrangement of the individual elements is shown only schematically.
  • the FIG. 1 shows a surge arrester 1. Between a first electrical connection 2 and a second electrical connection 3 extends a column 4 of seven resistive elements 20. The number seven is chosen arbitrarily.
  • the invention relates to surge arresters 1 having at least two resistive elements 20. A preferred embodiment is a column with an odd number of resistive elements, but the invention is not limited to these.
  • the resistance elements 20 are cylindrical, preferably circular cylindrical. The end faces of a resistance element 20 form a first and second contact surface 7, 8.
  • the resistance elements 20 are arranged in the column, that the first contact surfaces 7 of all resistance elements 20 to the first electrical connection 2 and the second contact surfaces 8 of all resistance elements 20 to the second electrical Connection 3. At each point, where two resistance elements adjoin one another, borders a first contact surface 7 of a resistance element 20 to a second contact surface 8 of an adjacent resistance element 20.
  • the first and second electrical connection 2, 3 may be, for example, end fittings that define the column 4 on both sides.
  • the resistance elements 20 are arranged in two groups, a first group 5 and a second group 6.
  • the resistance elements 20 designated I belong to the first group 5, those designated II to the second group 6. Also in the following figures This is so, even if the reference numerals 5 and 6 have been omitted for reasons of clarity.
  • the resistance elements 20 of the first group 5 are all directly connected with their first contact surfaces 7 with the first electrical connection 2 and with their second contact surfaces 8 with the second electrical connection 3.
  • the direct connection is an electrical connection that consists of a good electrical conductor such as copper, steel, aluminum or other electrically conductive metals or carbon fibers.
  • FIG. 2 shows a surge arrester 1, in which two columns 4, each with seven resistance elements 20 between the first and second electrical connection 2, 3 are arranged. At each point, at the two resistance elements 20 adjoin each other, the columns 4 are interconnected.
  • FIG. 3 shows a surge arrester 1 with four columns 4, each with seven resistor elements 20. Here are all columns 4 at each point, at the two resistor elements 20 adjacent to each other, connected together.
  • FIG. 4 shows a general equivalent circuit diagram with n resistive elements 20, which are all connected in parallel between the first electrical terminal 2 and the second electrical terminal 3.
  • n 7
  • All versions have in common is that all resistance elements 20 of the respective Surge arrester 1 are connected in parallel between the first electrical connection 2 and the second electrical connection 3.
  • each of the n resistive elements 20 provides its own independent current path, the current through which it passes is multiplied by n resistor elements connected in parallel, neglecting component tolerances, then exactly n times the resistive elements interconnected by a column of n in series , so that the energy absorption capacity increases accordingly.
  • FIG. 5 shows a surge arrester 1 with seven resistance elements, which are arranged between the first electrical connection 2 and the second electrical connection 3 in a column 4.
  • the resistance elements 20 are aligned so that all the first contact surfaces 7 point to the first electrical connection 2 and all the second contact surfaces to the second electrical connection 3.
  • FIG. 6 shows the same surge arrester 1, in which case the column 4 between two resistance elements 20 is shown exploded. In both cases, seven resistive elements 20 are stacked in a column.
  • the resistance elements 20 of the first group 5 are again denoted by I here, those of the second group by II. In the illustrated embodiment, resistance elements 20 of the first group 5 and those of the second group 6 alternate. Since the column 4 is constructed here from an odd number of resistance elements 20, the column 4 is delimited at both ends by resistance elements 20 of the first group 5.
  • end fittings 26 are arranged, which simultaneously serve as electrical connections 2, 3.
  • the end fittings may have connecting elements, not shown here, by means of which they can be connected to an electrical system. For example, in the FIGS.
  • upper end fitting 26 with a high voltage terminal and the lower end fitting 26 are connected to the ground terminal of an electrical system.
  • the first electric Terminal 2 is then connected to high voltage, the second electrical connection 3 to the earth.
  • the end fittings 26 are made of a good electrically conductive material such as a metal and make the electrical connection between the column 4 and the electrical system ago.
  • first and second contact disks 9, 10 are alternately arranged between each two resistance elements 20.
  • a contact disc 9 visible visible.
  • the contact discs 10 look similar, but are arranged rotated by 180 ° about the column longitudinal axis 30 of the column 4.
  • the contact discs 9, 10 are here circular discs. The shape substantially corresponds to the cross section of the resistance elements 20.
  • a contact lug 11, 12 is arranged. This protrudes from the lateral surface of the column 4.
  • Each contact disk 9, 10 is arranged between a first and a second contact surface 7, 8, two resistance elements 20 and establishes the electrical contact between these two contact surfaces 7, 8.
  • the first contact discs 9 are arranged so that their contact lugs 11 are aligned with each other, so are on a first alignment axis 31 parallel to the column longitudinal axis 30.
  • the second contact discs 10 are arranged so that their contact lugs 12 are aligned with each other on a second alignment axis 32.
  • the first and second alignment axis 31, 32 are in the present example on opposite sides, based on the column longitudinal axis 30. This is not absolutely necessary. Instead, the axes of flight 31, 32 can also be next to each other, provided that the necessary isolation distance is maintained.
  • the respective aligned contact lugs 11, 12 are electrically connected to each other outside the column 4. All the contact lugs 11 of the first contact discs 9 are connected to each other and to the first electrical connection 2.
  • All contact lugs 12 of the second contact discs 10 are connected to each other and to the second electrical connection 3.
  • the in the FIGS. 5 and 6 illustrated surge arrester 1 can be arranged in a housing which is not shown here.
  • FIG. 7 shows a surge arrester 1 with two parallel columns 4, each with seven resistance elements 20.
  • the column longitudinal axes 30 are parallel to each other and the arrester longitudinal axis 33.
  • Each column 4 is arranged between two end fittings 26.
  • the two end fittings lying at the upper end of the columns 4 together form the first electrical connection 2, the two end fittings 26 located at the lower end of the columns 4 the second electrical connection 3.
  • the arrangement and alignment of the resistance elements 20 of both columns 4 is the same as in FIGS FIGS. 5 and 6 .
  • first and second contact discs 9, 10 are also arranged here. These each extend over both columns 4 and electrically connect them to one another. Unlike the FIGS.
  • FIG. 8 Such a contact disk 9 is shown.
  • the contact disk 10 is congruent with this.
  • the contact discs 9, 10 consist of two circular discs, which are interconnected by a connecting web 28.
  • a contact lug 11, 12 is arranged, which protrudes from the lateral surface of the column 4.
  • FIG. 8 Several possible positions and shapes of contact lugs 11, 12 are shown.
  • a particularly space-saving variant is a contact lug 11 in the vicinity of the connecting web 28, ie in the gusset between the two columns 4.
  • the contact lugs 11, 12 may have holes 29 or slots 27, into which a connecting conductor 13, 14th for introducing the electrical connection is introduced.
  • This connecting conductor 13, 14 may be, for example, a cable or a rod made of metal.
  • FIG. 9 shows a sectional view of a surge arrester 1, in which four columns 4, each with seven resistor elements between the first electrical terminal 2 and the second electrical terminal 3 are arranged.
  • the columns 4 are arranged in a housing 19.
  • the housing 19 may, as shown here, be made of a housing tube 21 made of an electrically insulating material such as glass-fiber reinforced plastic or porcelain and have an outer shell, for example silicone, for protection from weather conditions on the outside. Often, the outer shell screens 22 to Kriechwegverinrung on.
  • the housing 19 is closed fluid-tight by means of a first and second fitting body 15, 16 at its ends.
  • the fitting body 15, 16 are made of an electrically conductive material such as metal and offer on the one hand within the housing 19 a connection to the columns 4 and on the other hand outside of the housing 19 a connection to an electrical system.
  • the columns 4 are arranged between a tension plate 24 and an end fitting 26, which simultaneously serves as a second electrical connection 3. Between the tension plate 24 and the end fitting 26 tensioned tension elements 23 hold the columns 4 together.
  • the tension plate 24 may be made of an electrically insulating material such as glass fiber reinforced plastic or of an electrically conductive material such as metal. In the first case, the tension plate has holes through which the electrical connection to the columns 4 is made.
  • Each column 4 has seven resistance elements 20, which are each composed here of a varistor element 35 and a spacer element 36.
  • the spacers 36 are electrically good conductive body made of metal and serve on the one hand the easier assembly of the connecting conductors 13, 14 and on the other hand, the adaptation of the column length to the housing size. In addition, the spacers 36 increase the surface area of the resistive elements 20, thereby better cooling them.
  • Each resistance element 20 has at least one varistor element 35, some or all of the resistance elements 20 may have spacer elements 36.
  • At the end of each column patches 17 are arranged, which serve the length compensation. They are also made of metal and connect the resistance elements with the first and second electrical connection 2, 3.
  • first electrical connection 2 are here metal cylinder, which are arranged between the first fitting body 15 and the columns 4 and the electrical connection between these, optionally through pull plate 24 through.
  • the second electrical connection 3 is provided by the end fitting 26 which is electrically connected and fixed to the second fitting body 16 as a cross-shaped plate made of metal.
  • FIG. 10 shows a further illustration of the surge arrester 1 from FIG. 9 ,
  • the inner structure of the columns 4 is shown by an additional section.
  • a first or second contact disc 9, 10 is arranged between each resistance element 20, between each resistance element 20, a first or second contact disc 9, 10 is arranged.
  • Each of the contact discs 9, 10 consists of four, for each column 4, a circular discs, which are connected to each other with connecting webs 28 in a square.
  • the contact discs 9, 10 thus connect the columns 4 electrically to each other.
  • the contact discs 9, 10 have contact lugs 11, 12 in the form of tongues.
  • An additional contact disc 9, 10, is disposed between the outermost resistance element 20 and a filler 17.
  • All contact lugs 11 of the first contact discs 9 are aligned with each other and are connected to each other by means of a connecting conductor 13, which is shown here in the form of a threaded rod.
  • all the contact lugs 12 of the second contact discs 10 are aligned with each other and are connected to each other by means of a connecting conductor 14, also in the form of a threaded rod.
  • the connecting conductors 13, 14 are guided through holes 29 of the contact lugs 11, 12 and secured by nuts 25 thereto.

Abstract

Die Erfindung betrifft einen Überspannungsableiter (1) mit einer sich zwischen einem ersten und einem zweiten elektrischen Anschluss (2, 3) erstreckenden Säule (4) aus aufeinander gestapelten Widerstandselementen (20) mit jeweils einer ersten Kontaktfläche (7) und einer dieser gegenüberliegenden zweiten Kontaktfläche (8), wobei die Widerstandselemente (20) derart gestapelt sind, dass die erste Kontaktfläche (7) eines Widerstandselements (20) an die zweite Kontaktfläche (8) eines zu diesem in der Säule (4) benachbarten Widerstandselements (20) angrenzt. Erfindungsgemäß weist die Säule eine erste Gruppe (5) Widerstandselemente (20), die jeweils mit ihrer ersten Kontaktfläche (7) mit dem ersten elektrischen Anschluss (2) und mit der zweiten Kontaktfläche (8) mit dem zweiten elektrischen Anschluss (3) direkt verbunden sind, und eine zweite Gruppe (6) Widerstandselemente (20), die jeweils mit ihrer ersten Kontaktfläche (7) mit dem zweiten elektrischen Anschluss (3) und der zweiten Kontaktfläche (8) mit dem ersten elektrischen Anschluss (2) direkt verbunden sind, auf. Durch diese Anordnung und Verschaltung der Widerstandselemente (20) lässt sich ein kompakter Überspannungsableiter (1) herstellen, bei dem alle Widerstandselemente (20) elektrisch parallel zueinander geschaltet sind. Ein solcher Überspannungsableiter (1) weist ein besonders hohes Energieaufnahmevermögen auf.

Description

  • Die Erfindung betrifft einen Überspannungsableiter gemäß dem Oberbegriff des Patentanspruchs 1.
  • Überspannungsableiter sind Schutzsysteme, beispielsweise für Stromübertragungsnetze, die bei auftretenden Überspannungen durch Blitzeinschlag oder Fehlfunktionen anderer Teilsysteme diese Überspannungen zur Masse hin ableiten und so andere Bauteile des Stromübertragungsnetzes schützen.
  • Ein derartiger Überspannungsableiter umfasst ein oder mehrere zylindrische Ableitsäulen aus Widerstandselementen, die häufig aus einzelnen ebenfalls zylindrischen Varistorelementen aufgebaut sind. Varistoren zeichnen sich durch einen spannungsabhängigen Widerstand aus. Bei niedrigen Spannungen wirken diese als Isolatoren. Ab einer bestimmten Schwellenspannung, die materialabhängig ist, zeigen sie eine gute Leitfähigkeit. Häufig werden Varistoren aus Metalloxiden wie Zinkoxid hergestellt. Die Ableitsäule ist an beiden Enden mit Endarmaturen verbunden, die dem elektrischen Anschluss an die Stromleitung und zur Masse herstellen. Um einen guten elektrischen Kontakt auch unter mechanischer Belastung zu gewährleisten, muss die Ableitsäule unter Druck zusammengehalten werden. Dies kann erfolgen, indem Zugelemente, beispielsweise Seile oder Stäbe vorzugsweise aus glasfaserverstärktem Kunststoff, in den Endarmaturen oder in an den Enden der Ableitsäule angeordneten Druckplatten unter Zug eingespannt werden. Die Zugelemente umgeben dabei die Ableitsäule und bilden so einen Käfig um diese. Ab einer gewissen Größe oder, wenn der Überspannungsableiter in einem erdbebengefährdeten Gebiet aufgestellt werden soll, ist die Ableitsäule in einem mechanisch stabilen rohrartigen Gehäuse aus einem Isoliermaterial, beispielsweise aus Porzellan oder glasfaserverstärktem Kunststoff, angeordnet. Die Endarmaturen können dann gleichzeitig als Verschlüsse für dieses Gehäuse dienen. Um die in einem Überlastfall entstehenden Gase aus diesem Gehäuse abzuführen, weisen solche Überspannungsableiter häufig eine Druckentlastungsvorrichtung auf.
  • In der EP 2 757 565 A1 ist in der Figur 1 ein solcher Überspannungsableiter dargestellt. Dort ist in einem rohrförmigen Gehäuse eine Säule aus Widerstandselementen angeordnet. Die Widerstandselemente bestehen aus einzelnen zylindrischen Varistorelementen, die zu der Säule gestapelt sind. Dadurch sind die einzelnen Widerstandselemente elektrisch in Reihe zueinander geschaltet.
  • In der WO 94/14171 A1 ist ebenfalls ein solcher Überspannungsableiter beschrieben. Hier sind mehrere Säulen aus Widerstandselementen in einem Gehäuse angeordnet. Die Widerstandselemente jeder Säule sind auch hier elektrisch in Reihe zueinander geschaltet. Die Säulen sind jedoch zueinander elektrisch parallel geschaltet. Hierdurch wird ein erhöhtes Energieaufnahmevermögen beziehungsweise eine Reduzierung der Restspannung erreicht.
  • Für besondere Anwendungsfälle, wie den Schutz von Kondensatoren, die in Hoch- oder Mittelspannungsnetzen zur Blindleistungskompensation oder als Filter eingesetzt werden, werden Überspannungsableiter mit noch deutlich höherem Energieaufnahmevermögen und gleichzeitig einer niedrigen Restspannung benötigt. Die in der vorgenannten Veröffentlichungsschrift beschriebene Technik mit parallel geschalteten Säulen aus Widerstandselementen gelangt hier an ihre Grenzen, da die benötigten Gehäuseabmessungen mit der Zahl der benötigten Säulen wächst.
  • Aufgabe der vorliegenden Erfindung ist es einen kompakten Überspannungsableiter mit einem hohen Energieaufnahmevermögen anzugeben.
  • Erfindungsgemäß ist dazu ein Überspannungsableiter vorgesehen, bei dem sich eine Säule aus aufeinander gestapelten Widerstandselementen zwischen einem ersten und einem zweiten elektrischen Anschluss erstreckt. Die Widerstandselemente sind in der Regel zylindrische, oft kreiszylindrische, Blöcke aus einem Material mit einem spannungsabhängigen Widerstand, sogenannten Varistorelementen. Als Material kommt dabei häufig ein Metalloxid, beispielsweise Zinkoxid, zur Verwendung. Ein Widerstandselement weist zumindest ein Varistorelement auf und kann neben diesem noch weitere Elemente, wie beispielsweise Distanzelemente aus einem elektrisch gut leitenden Material wie Stahl oder Aluminium enthalten. Dabei kann nur eines, einige oder alle der Widerstandselemente der Säule solche Distanzelemente aufweisen. Die Widerstandselemente sind entlang einer Säulenlängsachse mit ihren Stirnseiten aufeinander zu der Säule gestapelt. Die Stirnseiten dienen dabei als einander gegenüberliegende erste und zweite Kontaktflächen des Widerstandselements. Die Widerstandselemente sind so in der Säule gestapelt, dass die erste Kontaktfläche jedes Widerstandselements zum ersten elektrischen Anschluss weist und die zweite Kontaktfläche zum zweiten elektrischen Anschluss. Dabei grenzt die erste Kontaktfläche eines Widerstandselements an die zweite Kontaktfläche eines zu diesem in der Säule benachbarten Widerstandselements. Dies kann heißen, dass die erste Kontaktfläche des einen Widerstandselements an der zweiten des benachbarten Widerstandselements anliegt, aber auch, dass zwischen den beiden Kontaktflächen ein Verbindungselement aus einem elektrisch gut leitenden Material angeordnet ist. In jedem Fall stehen die erste Kontaktfläche des einen Widerstandselements und die zweite Kontaktfläche des benachbarten Widerstandselements in direktem elektrischen Kontakt miteinander, sind also direkt miteinander oder allenfalls über einen guten elektrischen Leiter miteinander verbunden, nicht jedoch über aktive oder passive elektrische Bauteile wie Widerstände, Spulen, Halbleiterbauelemente oder Ähnliches. Jeweils eine Kontaktfläche der beiden in der Säule an den äußeren Enden liegenden Widerstandselemente bilden die äußeren Stirnflächen der Säule. Zwischen diesen beiden äußeren Stirnflächen der Säule besteht eine durch die Säule verlaufende elektrische Verbindung.
  • An den Enden der Säule können Endarmaturen angeordnet sein, die als elektrische Anschlüsse dienen. Außerdem können in den Endarmaturen Zugelemente verspannt sein, die die Säule zusammenhalten. Die Endarmaturen werden in der Regel aus einem elektrisch gut leitenden Material gefertigt. Die Zugelemente dagegen aus einem elektrisch isolierenden Material wie beispielsweise glasfaserverstärktem Kunststoff.
  • Erfindungsgemäß weist die Säule zumindest zwei Gruppen von Widerstandselementen auf. Die Widerstandselemente der ersten Gruppe sind jeweils mit ihrer ersten Kontaktfläche mit dem ersten elektrischen Anschluss und mit ihrer zweiten Kontaktfläche mit dem zweiten elektrischen Anschluss direkt verbunden. Die Widerstandselemente der zweiten Gruppe sind jeweils mit ihrer ersten Kontaktfläche mit dem zweiten elektrischen Anschluss und mit ihrer zweiten Kontaktfläche mit dem ersten elektrischen Anschluss direkt verbunden. Direkt mit dem Anschluss verbunden bedeutet hier, dass die Verbindung über einen guten elektrischen Leiter, beispielsweise aus Kupfer, Stahl oder Aluminium, hergestellt wird, und in den Strompfad zwischen der jeweiligen Kontaktfläche und den betreffenden elektrischen Anschluss keine aktiven oder passiven elektrische Bauteile wie Widerstände, Spulen, Halbleiterbauelemente oder Ähnliches geschaltet sind. Die elektrische Verbindung kann beispielsweise mit Hilfe von Kabeln hergestellt werden. Die elektrische Verbindung kann entweder außerhalb der Säule erfolgen, indem mittels eines Verbindungselementes zwischen jeweils zwei Widerstandselementen der Kontakt zweier aneinandergrenzender Kontaktflächen aus der Säule heraus geführt wird. Außerhalb der Säule können die Verbindungselemente durch gängige Mittel wie Kabel verbunden werden. Die elektrische Verbindung kann auch innerhalb der Säule erfolgen. Dazu wäre eine durchgehende Bohrung, die durch jedes Widerstandselement geht, erforderlich. Innerhalb der Bohrung verlaufen dann die die jeweiligen Kontaktflächen miteinander verbindenden Leiter.
  • Durch diese elektrischen Verbindungen sind die einzelnen Widerstandselemente zwischen dem ersten und dem zweiten elektrischen Anschluss parallel geschaltet. Besteht die Säule aus n Widerstandselementen, so ist die Ersatzschaltung eine Parallelschaltung aus n Widerstandselementen. Der durch diese Schaltung fließende Strom beträgt damit, sofern Bauteiltoleranzen unberücksichtigt bleiben, das n-fache einer einzelnen Säule.
  • Vorzugsweise wechseln in der Säule Widerstandselemente der ersten Gruppe und Widerstandselemente der zweiten Gruppe einander ab. Dadurch grenzt innerhalb der Säule jede mit dem ersten elektrischen Anschluss verbundene Kontaktfläche der ersten und zweiten Gruppe von Widerstandselementen aneinander. Gleiches gilt für die mit dem zweiten elektrischen Anschluss verbundenen Kontaktflächen. Greift man beispielsweise ein beliebiges Widerstandselement der ersten Gruppe innerhalb der Säule heraus, so liegt dieses bei der bevorzugten abwechselnden Anordnung zwischen zwei Widerstandselementen der zweiten Gruppe. Dabei grenzt jeweils die erste Kontaktfläche der Widerstandselemente der ersten Gruppe an eine zweite Kontaktfläche eines Widerstandselements der zweiten Gruppe. Hierdurch lassen sich auf besonders einfache Weise beide Kontaktflächen mit dem ersten elektrischen Anschluss verbinden. Beispielsweise indem ein zwischen den beiden Kontaktflächen angeordnetes Verbindungselement die elektrische Verbindung nach außerhalb der Säule führt und dort mit dem ersten elektrischen Anschluss verbunden wird.
  • Mit seiner zweiten Kontaktfläche grenzt dieses Widerstandselement der ersten Gruppe an eine erste Kontaktfläche eines Widerstandselements der zweiten Gruppe. Die Verbindung dieser beiden Kontaktflächen zum zweiten elektrischen Anschluss lässt sich äquivalent wie oben herstellen.
  • In einer bevorzugten Ausgestaltung der Erfindung sind in der Säule zwischen benachbarten Widerstandselementen erste und zweite Kontaktscheiben angeordnet. Zwischen zwei aneinander grenzende Kontaktflächen zweier Widerstandselemente ist also jeweils eine Kontaktscheibe angeordnet, die entweder eine erste oder eine zweite Kontaktscheibe ist. So ist zwischen einer ersten Kontaktfläche eines Widerstandselements der ersten Gruppe und der zweiten Kontaktfläche eines Widerstandselements der zweiten Gruppe jeweils eine erste Kontaktscheibe und zwischen der zweiten Kontaktfläche eines Widerstandselements der ersten Gruppe und der ersten Kontaktfläche eines Widerstandselements der zweiten Gruppe jeweils eine zweite Kontaktscheibe angeordnet. Sowohl erste als auch zweite Kontaktscheiben liegen somit zwischen jeweils zwei Widerstandselementen und verbinden die beiden angrenzenden Kontaktflächen elektrisch miteinander. Die Kontaktscheiben sind gute elektrische Leiter und bevorzugt aus Aluminium oder Stahl hergestellt.
  • Somit existiert eine durch die Säule verlaufende elektrische Verbindung von der ersten Kontaktfläche des ersten Widerstandselements zur zweiten Kontaktfläche des letzten Widerstandselements der Säule.
  • Alle Kontaktscheiben weisen eine außerhalb der Säule liegende Kontaktfahne auf. Die Kontaktfahnen der ersten Kontaktscheiben sind dabei miteinander elektrisch verbunden, die Kontaktfahnen der zweiten Kontaktscheiben sind ebenfalls elektrisch miteinander verbunden. So lässt sich auf besonders einfache Weise die elektrische Verbindung zu zwei Kontaktflächen nach außerhalb der Säule führen und dort miteinander verbinden.
  • Besonders bevorzugt fluchten die Kontaktfahnen der ersten Kontaktscheiben und die Kontaktfahnen der zweiten Kontaktscheiben jeweils miteinander. Die Kontaktfahnen der ersten Kontaktscheiben liegen dadurch auf einer ersten Kontaktachse parallel zur Ableiterlängsachse des Überspannungsableiters. Die Kontaktfahnen der zweiten Kontaktscheiben liegen auf einer zweiten Kontaktachse ebenfalls parallel zur Ableiterlängsachse. Die erste und zweite Kontaktachse haben dabei einen Mindestabstand, sind also nicht deckungsgleich. Bevorzugt liegen erste und zweite Kontaktachse bezogen auf die Ableiterlängsachse einander gegenüber. Die Kontaktfahnen der ersten Gruppe sind dabei mittels eines Verbindungsleiters miteinander verbunden. Ebenso sind die Kontaktfahnen der zweiten Kontaktscheiben mittels eines weiteren Verbindungsleiters miteinander verbunden. Hierdurch lässt sich eine besonders einfache und platzsparende Verbindung der Widerstandselemente erreichen.
  • Der Verbindungsleiter kann beispielsweise jeweils ein Kabel sein, das an die Kontaktfahnen mit handelsüblichen Kabelklemmen angeschlossen wird. Eine weitere beispielhafte Ausführungsform eines Verbindungsleiters ist jeweils eine Gewindestange aus Metall, die durch Löcher in den Kontaktfahnen hindurchgeführt und mittels Muttern mit den Kontaktfahnen verbunden wird. So würde eine Gewindestange alle Kontaktfahnen der ersten Kontaktscheiben miteinander verbinden, und eine zweite Gewindestange alle Kontaktfahnen der zweiten Kontaktscheiben.
  • Besonders bevorzugt sind die erste und die zweite Kontaktscheibe zueinander kongruent. Die ersten und zweiten Kontaktscheiben sind dann gegeneinander verdreht in der Säule angeordnet, so dass die Kontaktfahnen der ersten und zweiten Kontaktscheiben auf unterschiedlichen Achsen übereinander liegen. Hierdurch können für erste und zweite Kontaktscheiben gleiche Teile verwendet werden, was logistisch vorteilhaft ist.
  • In einer vorteilhaften Ausgestaltung der Erfindung erstrecken sich zwischen dem ersten elektrischen Anschluss und dem zweiten elektrischen Anschluss zumindest zwei zueinander parallele Säulen. Zwischen jedem Widerstandselement ist dabei eine sich über alle Säulen erstreckende und diese elektrisch miteinander verbindende Kontaktscheibe angeordnet. Falls eine große Anzahl von Widerstandselementen benötigt wird, lassen diese sich hierdurch auf mehrere Säulen verteilt und damit besonders platzsparend anordnen.
  • In einer weiteren vorteilhaften Ausgestaltung der Erfindung ist die Säule, besonders bevorzugt aber mehrere Säulen, in einem rohrförmigen fluiddicht abgeschlossenen Gehäuse mit einem ersten und zweiten Armaturkörper angeordnet. Dabei ist der erste Armaturkörper mit dem ersten elektrischen Anschluss und der zweite Armaturkörper mit dem zweiten elektrischen Anschluss verbunden. Durch das Gehäuse sind die Widerstandselemente vor Witterungseinflüssen geschützt. Das Gehäuse kann dabei einen rohrförmigen Mantel aus einem nichtleitenden Material wie Porzellan oder glasfaserverstärktem Kunststoff aufweisen. Die Armaturkörper aus Metall können dabei als Flansche dienen, die das Gehäuse verschließen und den elektrischen Anschluss an die Widerstandselemente einerseits und ein zu schützendes Bauteil andererseits, herstellen. Für den Einsatz in einer gasisolierten Schaltanlage kann das Gehäuse aber auch ein druckfestes Gehäuse aus Metall sein. Dabei wären die Armaturkörper Durchführungen, die eine elektrische Verbindung der Widerstandselemente elektrisch isoliert vom Gehäuse nach außen führen.
  • Bevorzugt weist dabei die Säule, beziehungsweise bei mehreren Säulen jede der Säulen, eine ungerade Anzahl von Widerstandselementen auf. Dies erlaubt einen besonders einfachen elektrischen Anschluss der Armaturkörper, da dann eine der ganz außen liegenden Kontaktflächen mit dem ersten elektrischen Anschluss, die andere mit dem zweiten elektrischen Anschluss verbunden ist.
  • Im Folgenden wird die Erfindung anhand der Zeichnungen näher erläutert. Dabei zeigen:
  • Figuren 1 bis 3
    schematische Darstellungen unterschiedlicher Ausführungen eines erfindungsgemäßen Überspannungsableiters,
    Figur 4
    eine Ersatzschaltung eines erfindungsgemäßen Überspannungsableiters,
    Figur 5
    ein Beispiel eines erfindungsgemäßen Überspannungsableiters mit einer Säule,
    Figur 6
    eine Explosionsdarstellung des Überspannungsableiters aus Fig. 5,
    Figur 7
    ein Beispiel eines erfindungsgemäßen Überspannungsableiters mit zwei Säulen,
    Figur 8
    eine Kontaktscheibe des Überspannungsableiters aus Fig. 7,
    Figur 9
    eine Schnittdarstellung eines Überspannungsableiters mit vier Säulen,
    Figur 10
    eine weitere Schnittdarstellung des Überspannungsableiters aus Fig. 9,
  • Einander entsprechende Teile sind in allen Figuren mit den gleichen Bezugszeichen versehen.
  • In den Figuren 1 bis 3 sind unterschiedliche Ausführungen eines erfindungsgemäßen Überspannungsableiters 1 schematisch dargestellt. Diese Figuren sollen hauptsächlich die elektrische Verschaltung der einzelnen Elemente erläutern. Die körperliche Anordnung der einzelnen Elemente ist nur schematisch dargestellt. Die Figur 1 zeigt einen Überspannungsableiter 1. Zwischen einem ersten elektrischen Anschluss 2 und einem zweiten elektrischen Anschluss 3 erstreckt sich eine Säule 4 aus sieben Widerstandselementen 20. Die Zahl sieben ist dabei willkürlich gewählt. Die Erfindung bezieht sich auf Überspannungsableiter 1 mit zumindest zwei Widerstandselementen 20. Eine bevorzugte Ausführung ist dabei eine Säule mit einer ungeraden Anzahl an Widerstandselementen, die Erfindung ist jedoch nicht beschränkt auf diese. Die Widerstandselemente 20 sind zylindrisch, bevorzugt kreiszylindrisch. Die Stirnseiten eines Widerstandselements 20 bilden eine erste und zweite Kontaktfläche 7, 8. Die Widerstandselemente 20 sind so in der Säule angeordnet, dass die ersten Kontaktflächen 7 aller Widerstandselemente 20 zum ersten elektrischen Anschluss 2 weisen und die zweiten Kontaktflächen 8 aller Widerstandselemente 20 zum zweiten elektrischen Anschluss 3. An jeder Stelle, an der zwei Widerstandselemente aneinander grenzen, grenzt so eine erste Kontaktfläche 7 eines Widerstandselements 20 an eine zweite Kontaktfläche 8 eines benachbarten Widerstandselements 20. Der erste und zweite elektrische Anschluss 2, 3 können beispielsweise Endarmaturen sein, die die Säule 4 an beiden Seiten begrenzen. Innerhalb der Säule 4 sind die Widerstandselemente 20 in zwei Gruppen angeordnet, einer ersten Gruppe 5 und einer zweiten Gruppe 6. Die mit I bezeichneten Widerstandselemente 20 gehören zur ersten Gruppe 5, die mit II bezeichneten zur zweiten Gruppe 6. Auch in den folgenden Figuren ist dies so, auch wenn die Bezugszeichen 5 und 6 aus Gründen der Übersichtlichkeit weggelassen wurden. Die Widerstandselemente 20 der ersten Gruppe 5 sind alle mit ihren ersten Kontaktflächen 7 mit dem ersten elektrischen Anschluss 2 und mit ihren zweiten Kontaktflächen 8 mit dem zweiten elektrischen Anschluss 3 direkt verbunden. Die direkte Verbindung ist eine elektrische Verbindung, die aus einem guten elektrischen Leiter wie Kupfer, Stahl, Aluminium oder anderen elektrisch leitenden Metallen oder auch aus Kohlenstofffasern besteht.
  • Die Figur 2 zeigt einen Überspannungsableiter 1, bei dem zwei Säulen 4 mit jeweils sieben Widerstandselementen 20 zwischen dem ersten und zweiten elektrischen Anschluss 2, 3 angeordnet sind. An jeder Stelle, an der zwei Widerstandselemente 20 aneinander grenzen, sind die Säulen 4 untereinander verbunden.
  • Die Figur 3 zeigt einen Überspannungsableiter 1 mit vier Säulen 4 mit jeweils sieben Widerstandselementen 20. Hier sind alle Säulen 4 an jeder Stelle, an der zwei Widerstandselemente 20 aneinander grenzen, miteinander verbunden.
  • Die Figur 4 zeigt ein allgemeines Ersatzschaltbild mit n Widerstandselementen 20, die alle parallel zueinander zwischen dem ersten elektrischen Anschluss 2 und dem zweiten elektrischen Anschluss 3 geschaltet sind. Für die Schaltung gemäß Figur 1 gilt n=7, für die aus Figur 2 gilt n=2•7=14 und schließlich gilt für Figur 4 n=4•7=28. Allen Ausführungen gemeinsam ist, dass alle Widerstandselemente 20 des jeweiligen Überspannungsableiters 1 parallel zueinander zwischen dem ersten elektrischen Anschluss 2 und dem zweiten elektrischen Anschluss 3 geschaltet sind. Da somit jedes der n Widerstandselemente 20 einen eigenen von den anderen unabhängigen Strompfad bietet, ist der durchleitbare Strom bei n parallel geschalteten Widerstandselementen ein Vielfaches, vernachlässigt man Bauteiltoleranzen, dann genau das n-fache, des durch eine Säule aus n in Reihe miteinander verschalteten Widerstandselementen, damit steigt auch das Energieaufnahmevermögen entsprechend.
  • Die Figur 5 zeigt einen Überspannungsableiter 1 mit sieben Widerstandselementen, die zwischen dem ersten elektrischen Anschluss 2 und dem zweiten elektrischen Anschluss 3 in einer Säule 4 angeordnet sind. Die Widerstandselemente 20 sind so ausgerichtet, dass alle ersten Kontaktflächen 7 zum ersten elektrischen Anschluss 2 weisen und alle zweiten Kontaktflächen zum zweiten elektrischen Anschluss 3.
  • Die Figur 6 zeigt denselben Überspannungsableiter 1, wobei hier die Säule 4 zwischen zwei Widerstandselementen 20 auseinandergezogen dargestellt ist. In beiden Fällen sind sieben Widerstandselemente 20 zu einer Säule gestapelt. Die Widerstandselemente 20 der ersten Gruppe 5 sind hier wieder mit I bezeichnet, die der zweiten Gruppe mit II. In der dargestellten Ausführung wechseln sich Widerstandselemente 20 der ersten Gruppe 5 und solche der zweiten Gruppe 6 ab. Da hier die Säule 4 aus einer ungeraden Anzahl an Widerstandselementen 20 aufgebaut ist, wird die Säule 4 an beiden Enden von Widerstandselementen 20 der ersten Gruppe 5 begrenzt. An beiden Enden der Säule 4 sind Endarmaturen 26 angeordnet, die gleichzeitig als elektrische Anschlüsse 2, 3 dienen. Die Endarmaturen können hier nicht dargestellte Anschlusselemente aufweisen, mittels derer sie mit einer elektrischen Anlage verbunden werden können. Beispielsweise kann die in den Figuren 5 und 6 obere Endarmatur 26 mit einem Hochspannungsanschluss und die untere Endarmatur 26 mit dem Erdanschluss einer elektrischen Anlage verbunden werden. Der erste elektrische Anschluss 2 ist dann mit Hochspannung verbunden, der zweite elektrische Anschluss 3 mit der Erde. Die Endarmaturen 26 sind aus einem gut elektrisch leitenden Material wie einem Metall und stellen die elektrische Verbindung zwischen der Säule 4 und der elektrischen Anlage her.
  • In der Säule 4 sind zwischen jeweils zwei Widerstandselementen 20 erste und zweite Kontaktscheiben 9, 10 im Wechsel angeordnet. In der Figur 6 ist eine Kontaktscheibe 9 sichtbar dargestellt. Die Kontaktscheiben 10 sehen gleichartig aus, sind aber um 180° um die Säulenlängsachse 30 der Säule 4 gedreht angeordnet. Die Kontaktscheiben 9, 10 sind hier kreisförmige Scheiben. Die Form entspricht im Wesentlichen dem Querschnitt der Widerstandselemente 20. An der Kante jeder Kontaktscheibe 9, 10 ist eine Kontaktfahne 11, 12 angeordnet. Diese ragt aus der Mantelfläche der Säule 4 heraus. Jede Kontaktscheibe 9, 10 ist zwischen einer ersten und einer zweiten Kontaktfläche 7, 8, zweier Widerstandselemente 20 angeordnet und stellt den elektrischen Kontakt zwischen diesen beiden Kontaktflächen 7, 8 her. Die ersten Kontaktscheiben 9 sind so angeordnet, dass ihre Kontaktfahnen 11 miteinander fluchten, also auf einer ersten Fluchtachse 31 parallel zur Säulenlängsachse 30 liegen. Die zweiten Kontaktscheiben 10 sind so angeordnet, dass ihre Kontaktfahnen 12 auf einer zweiten Fluchtachse 32 miteinander fluchten. Die erste und zweite Fluchtachse 31, 32 liegen im vorliegenden Beispiel auf gegenüberliegenden Seiten, bezogen auf die Säulenlängsachse 30. Dies ist nicht zwingend erforderlich. Stattdessen können die Fluchtachsen 31, 32 auch nebeneinander liegen, sofern der notwendige Isolationsabstand eingehalten ist. Die jeweils miteinander fluchtenden Kontaktfahnen 11, 12 sind außerhalb der Säule 4 elektrisch miteinander verbunden. Alle Kontaktfahnen 11 der ersten Kontaktscheiben 9 sind so miteinander und mit dem ersten elektrischen Anschluss 2 verbunden. Alle Kontaktfahnen 12 der zweiten Kontaktscheiben 10 sind miteinander und mit dem zweiten elektrischen Anschluss 3 verbunden. Die Verbindung der Kontaktfahnen 11, 12 untereinander und mit dem jeweiligen elektrischen Anschluss 2, 3 kann beispielsweise mittels Kabeln erfolgen. Diese Verbindungen sind hier nur schematisch dargestellt. Der in den Figuren 5 und 6 dargestellte Überspannungsableiter 1 kann in einem Gehäuse angeordnet sein, das hier nicht dargestellt ist.
  • Die Figur 7 zeigt einen Überspannungsableiter 1 mit zwei parallelen Säulen 4 mit jeweils sieben Widerstandselementen 20. Die Säulenlängsachsen 30 sind parallel zueinander und zur Ableiterlängsachse 33. Jede Säule 4 ist zwischen zwei Endarmaturen 26 angeordnet. Die beiden am oberen Ende der Säulen 4 liegenden Endarmaturen bilden zusammen den ersten elektrischen Anschluss 2, die beiden am unteren Ende der Säulen 4 liegenden Endarmaturen 26 den zweiten elektrischen Anschluss 3. Die Anordnung und Ausrichtung der Widerstandselemente 20 beider Säulen 4 ist wie in den Figuren 5 und 6. Zwischen jeweils zwei Widerstandselementen 20 sind auch hier erste und zweite Kontaktscheiben 9, 10 angeordnet. Diese erstrecken sich jeweils über beide Säulen 4 und verbinden diese elektrisch miteinander. Im Unterschied zu den Figuren 5 und 6 sind hier auch zwischen den die Säule 4 begrenzenden Widerstandselementen 20 und der anschließenden Endarmatur 26 Kontaktscheiben 9, 10 angeordnet. Dies kann die elektrische Verbindung der beiden zueinander parallelen Endarmaturen 26 erleichtern. Die elektrische Verbindung könnte aber auch alternativ auf der Außenseite der beiden Endarmaturen 26 erfolgen.
  • In der Figur 8 ist eine solche Kontaktscheibe 9 dargestellt. Die Kontaktscheibe 10 ist kongruent zu dieser. Die Kontaktscheiben 9, 10 bestehen aus zwei kreisförmigen Scheiben, die durch einen Verbindungssteg 28 miteinander verbunden sind. An der Kante jeder Kontaktscheibe 9, 10 ist eine Kontaktfahne 11, 12 angeordnet, die aus der Mantelfläche der Säule 4 heraussteht. In der Figur 8 sind mehrere mögliche Positionen und Formen von Kontaktfahnen 11, 12 dargestellt. Eine besonders platzsparende Variante, ist eine Kontaktfahne 11 in der Nähe des Verbindungsstegs 28, also im Zwickel zwischen den beiden Säulen 4. Die Kontaktfahnen 11, 12 können Bohrungen 29 oder Langlöcher 27 aufweisen, in die ein Verbindungsleiter 13 ,14 zur Herstellung der elektrischen Verbindung eingeführt ist. Dieser Verbindungsleiter 13, 14 kann beispielsweise ein Kabel oder eine Stange aus Metall sein.
  • Die Figur 9 zeigt eine Schnittdarstellung eines Überspannungsableiters 1, bei dem vier Säulen 4 mit jeweils sieben Widerstandselementen zwischen dem ersten elektrischen Anschluss 2 und dem zweiten elektrischen Anschluss 3 angeordnet sind. Die Säulen 4 sind in einem Gehäuse 19 angeordnet. Das Gehäuse 19 kann wie hier dargestellt aus einem Gehäuserohr 21 aus einem elektrisch isolierenden Material wie glasfaserverstärktem Kunststoff oder Porzellan sein und zum Schutz vor Witterungsbedingungen auf der Außenseite eine Außenhülle beispielsweise Silikon aufweisen. Häufig weist die Außenhülle Schirme 22 zur Kriechwegverlängerung auf. Das Gehäuse 19 ist mittels eines ersten und zweiten Armaturkörpers 15, 16 an seinen Enden fluiddicht verschlossen. Die Armaturkörper 15, 16 sind aus einem elektrisch leitfähigen Material wie Metall und bieten einerseits innerhalb des Gehäuses 19 einen Anschluss an die Säulen 4 und andererseits außerhalb des Gehäuses 19 einen Anschluss an eine elektrische Anlage.
  • Die Säulen 4 sind zwischen einer Zugplatte 24 und einer Endarmatur 26, die gleichzeitig als zweiter elektrischer Anschluss 3 dient, angeordnet. Zwischen der Zugplatte 24 und der Endarmatur 26 verspannte Zugelemente 23 halten die Säulen 4 zusammen. Die Zugplatte 24 kann aus einem elektrisch isolierenden Material wie glasfaserverstärktem Kunststoff oder aus einem elektrisch leitfähigen Material wie Metall hergestellt sein. Im ersten Fall weist die Zugplatte Löcher auf, durch die die elektrische Verbindung zu den Säulen 4 hergestellt wird.
  • Jede Säule 4 weist sieben Widerstandselemente 20 auf, die hier jeweils aus einem Varistorelement 35 und einem Distanzelement 36 zusammengesetzt sind. Die Distanzelemente 36 sind elektrisch gut leitende Körper aus Metall und dienen einerseits der leichteren Montage der Verbindungsleiter 13, 14 und andererseits der Anpassung der Säulenlänge an die Gehäusegröße. Außerdem vergrößern die Distanzelemente 36 die Oberfläche der Widerstandselemente 20, wodurch diese besser gekühlt werden. Jedes Widerstandselement 20 weist zumindest ein Varistorelement 35 auf, einige oder alle der Widerstandselemente 20 können Distanzelemente 36 aufweisen. An den Säulenenden sind jeweils noch Füllstücke 17 angeordnet, die dem Längenausgleich dienen. Sie sind ebenfalls aus Metall und verbinden die Widerstandselemente mit dem ersten und zweiten elektrischen Anschluss 2, 3. Als erster elektrischer Anschluss 2 dienen hier Metallzylinder, die zwischen dem ersten Armaturkörper 15 und den Säulen 4 angeordnet sind und die elektrische Verbindung zwischen diesen, gegebenenfalls durch die Zugplatte 24 hindurch, herstellen. Der zweite elektrische Anschluss 3 wird durch die Endarmatur 26 bereitgestellt, die als kreuzförmige Platte aus Metall mit dem zweiten Armaturkörper 16 elektrisch verbunden und an diesem befestigt ist.
  • Die Figur 10 zeigt eine weitere Darstellung des Überspannungsableiters 1 aus Figur 9. Hier ist durch einen zusätzlichen Schnitt der Innenaufbau der Säulen 4 dargestellt. Zwischen jedem Widerstandselement 20 ist eine erste oder zweite Kontaktscheibe 9, 10 angeordnet. Jede der Kontaktscheiben 9, 10 besteht aus vier, für jede Säule 4 eine, kreisförmigen Scheiben, die mit Verbindungsstegen 28 in einem Quadrat miteinander verbunden sind. Die Kontaktscheiben 9, 10 verbinden so die Säulen 4 elektrisch miteinander. Die Kontaktscheiben 9, 10 weisen Kontaktfahnen 11, 12 in Form von Zungen auf. Eine zusätzliche Kontaktscheibe 9, 10, ist zwischen dem jeweils äußersten Widerstandselement 20 und einem Füllstück 17 angeordnet. Alle Kontaktfahnen 11 der ersten Kontaktscheiben 9 fluchten miteinander und sind mittels eines Verbindungsleiters 13, der hier in Form einer Gewindestange dargestellt ist, miteinander verbunden. Ebenso fluchten alle Kontaktfahnen 12 der zweiten Kontaktscheiben 10 miteinander und sind mittels eines Verbindungsleiters 14, ebenfalls in Form einer Gewindestange, miteinander verbunden. Über die Füllstücke 17 wird die elektrische Verbindung zum ersten beziehungsweise zweiten elektrischen Anschluss 2, 3 hergestellt. Die Verbindungsleiter 13, 14 sind durch Bohrungen 29 der Kontaktfahnen 11, 12 geführt und mittels Muttern 25 an diesen befestigt.

Claims (7)

  1. Überspannungsableiter (1) mit einer sich zwischen einem ersten und einem zweiten elektrischen Anschluss (2, 3) erstreckenden Säule (4) aus aufeinander gestapelten Widerstandselementen (20) mit jeweils einer ersten Kontaktfläche (7) und einer dieser gegenüberliegenden zweiten Kontaktfläche (8), wobei die Widerstandselemente (20) derart gestapelt sind, dass die erste Kontaktfläche (7) eines Widerstandselements (20) an die zweite Kontaktfläche (8) eines zu diesem in der Säule (4) benachbarten Widerstandselements (20) angrenzt,
    dadurch gekennzeichnet, dass
    dass die Säule eine erste Gruppe (5) Widerstandselemente (20), die jeweils mit ihrer ersten Kontaktfläche (7) mit dem ersten elektrischen Anschluss (2) und mit der zweiten Kontaktfläche (8) mit dem zweiten elektrischen Anschluss (3) direkt verbunden sind,
    und eine zweite Gruppe (6) Widerstandselemente (20), die jeweils mit ihrer ersten Kontaktfläche (7) mit dem zweiten elektrischen Anschluss (3) und der zweiten Kontaktfläche (8) mit dem ersten elektrischen Anschluss (2) direkt verbunden sind, aufweist.
  2. Überspannungsableiter (1) nach Anspruch 1,
    dadurch gekennzeichnet, dass
    sich in der Säule (4) Widerstandselemente (20) der ersten Gruppe (5) und Widerstandselemente (20) der zweiten Gruppe (6) einander abwechseln.
  3. Überspannungsableiter (1) nach einem der Ansprüche 1 oder 2,
    dadurch gekennzeichnet, dass
    in der Säule (4) zwischen benachbarten Widerstandselementen (20) erste und zweite Kontaktscheiben (9, 10) angeordnet sind, wobei jede Kontaktscheibe (9, 10) eine außerhalb der Säule (4) liegende Kontaktfahne (11, 12) aufweist, wobei die Kontaktfahnen (11) der zwischen der ersten Kontaktfläche (7) der ersten Gruppe (5) und der zweiten Kontaktfläche (8) der zweiten Gruppe (6) von Widerstandselementen (20) angeordneten ersten Kontaktscheiben (9) und die Kontaktfahnen (12) der zwischen der zweiten Kontaktfläche (8) der ersten Gruppe (5) und der ersten Kontaktfläche (7) der zweiten Gruppe (6) von Widerstandselementen (20) angeordneten zweiten Kontaktscheiben (10) jeweils miteinander verbunden sind.
  4. Überspannungsableiter (1) nach Anspruch 3,
    dadurch gekennzeichnet, dass
    die erste und zweite Kontaktscheibe (9, 10) kongruent zueinander sind.
  5. Überspannungsableiter (1) nach einem der Ansprüche 3 bis 4,
    dadurch gekennzeichnet, dass
    die Kontaktfahnen (11) der ersten Kontaktscheiben (9) und die Kontaktfahnen (12) der zweiten Kontaktscheiben (10) jeweils miteinander fluchten und durch einen Verbindungsleiter (13, 14) aus elektrisch leitfähigem Material miteinander verbunden sind.
  6. Überspannungsableiter (1) nach einem der Ansprüche 3 bis 5,
    dadurch gekennzeichnet, dass
    sich zwischen dem ersten elektrischen Anschluss (2) und dem zweiten elektrischen Anschluss (3) zumindest zwei zueinander parallele Säulen (4) erstrecken, wobei zwischen jedem Widerstandselement (20) eine sich über alle Säulen (4) erstreckende und diese elektrisch miteinander verbindende Kontaktscheibe (9, 10) angeordnet ist.
  7. Überspannungsableiter (1) nach einem der Ansprüche 3 bis 6,
    dadurch gekennzeichnet, dass
    die Säule (4) in einem rohrförmigen fluiddicht abgeschlossenen Gehäuse (19) mit einem ersten und zweiten Armaturkörper (15, 16) angeordnet ist, wobei der erste Armaturkörper (15) mit dem ersten elektrischen Anschluss (2) und der zweite Armaturkörper (16) mit dem zweiten elektrischen Anschluss (3) verbunden ist.
EP15154862.5A 2015-02-12 2015-02-12 Überspannungsableiter Withdrawn EP3057109A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15154862.5A EP3057109A1 (de) 2015-02-12 2015-02-12 Überspannungsableiter
CN201610083050.XA CN105895282A (zh) 2015-02-12 2016-02-06 避雷器
US15/042,373 US20160240289A1 (en) 2015-02-12 2016-02-12 Overvoltage arrester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP15154862.5A EP3057109A1 (de) 2015-02-12 2015-02-12 Überspannungsableiter

Publications (1)

Publication Number Publication Date
EP3057109A1 true EP3057109A1 (de) 2016-08-17

Family

ID=52692356

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15154862.5A Withdrawn EP3057109A1 (de) 2015-02-12 2015-02-12 Überspannungsableiter

Country Status (3)

Country Link
US (1) US20160240289A1 (de)
EP (1) EP3057109A1 (de)
CN (1) CN105895282A (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD811333S1 (en) * 2016-01-12 2018-02-27 M & I Materials Limited Varistor unit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6464301A (en) * 1987-09-04 1989-03-10 Hitachi Ltd Overvoltage suppressor
WO1994014171A1 (de) 1992-12-08 1994-06-23 Siemens Aktiengesellschaft Überspannungsableiter mit einem metalloxid-widerstand
JP2005294459A (ja) * 2004-03-31 2005-10-20 Otowa Denki Kogyo Kk アレスタ装置
JP2009164361A (ja) * 2008-01-08 2009-07-23 Japan Ae Power Systems Corp 避雷器
EP2757565A1 (de) 2013-01-18 2014-07-23 Siemens Aktiengesellschaft Flansch für starre Gehäuse zur elektrischen Isolierung einer elektrischen Komponente

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6115705U (ja) * 1984-07-02 1986-01-29 株式会社明電舎 避雷器
CA1334990C (en) * 1988-03-31 1995-03-28 John D. Sakich Modular electrical assemblies with pressure relief
JPH0236245A (ja) * 1988-07-27 1990-02-06 Hiroyoshi Hata ノリとチョークの粉を混ぜて練ったゴム状物質
US5043838A (en) * 1989-03-31 1991-08-27 Hubbell Incorporated Modular electrical assemblies with pressure relief
CN2199581Y (zh) * 1994-04-20 1995-05-31 卡斯柯信号有限公司 过压保护器及装有它的电源防雷组合
CN2575816Y (zh) * 2002-10-10 2003-09-24 中国电力科学研究院 用于实现降低避雷器高度的串接电阻片单元结构
CN204332571U (zh) * 2014-12-27 2015-05-13 陕西鑫盾科技有限公司 光伏发电专用无间隙金属氧化物避雷器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6464301A (en) * 1987-09-04 1989-03-10 Hitachi Ltd Overvoltage suppressor
WO1994014171A1 (de) 1992-12-08 1994-06-23 Siemens Aktiengesellschaft Überspannungsableiter mit einem metalloxid-widerstand
JP2005294459A (ja) * 2004-03-31 2005-10-20 Otowa Denki Kogyo Kk アレスタ装置
JP2009164361A (ja) * 2008-01-08 2009-07-23 Japan Ae Power Systems Corp 避雷器
EP2757565A1 (de) 2013-01-18 2014-07-23 Siemens Aktiengesellschaft Flansch für starre Gehäuse zur elektrischen Isolierung einer elektrischen Komponente

Also Published As

Publication number Publication date
US20160240289A1 (en) 2016-08-18
CN105895282A (zh) 2016-08-24

Similar Documents

Publication Publication Date Title
WO2000077904A1 (de) Hochspannungs-durchführung
CH656972A5 (de) Ueberspannungsableiter.
EP2702597A1 (de) Überspannungsableiter
EP2044603B1 (de) Schalter für eine schaltanlage der energieversorgung und -verteilung
WO2016150709A1 (de) Isolatoranordnung für eine freileitung
DE102006052021A1 (de) Varistor mit drei parallelen Keramikschichten
EP1603141B1 (de) Gasisolierter Überspannungsableiter
EP2976773A1 (de) Gekapselter überspannungsableiter
EP2927923B1 (de) Trockentransformatorlastschalter
EP3057109A1 (de) Überspannungsableiter
EP0037363B1 (de) Überspannungsableiter
EP3332464A1 (de) Vorrichtung zur herstellung einer mehrphasigen elektrischen verbindung sowie eine anordnung mit entsprechenden vorrichtungen
WO2015032671A1 (de) Gasisolierter überspannungsableiter
DE3012741C2 (de) Überspannungsableiter mit einer Säule von Ableiterelementen und Abschirmkörpern
WO2019063421A1 (de) Anordnung mit einer gasisolierten schaltanlage
CH645482A5 (de) Gekapselte ueberspannungsableitungsvorrichtung fuer eine hochspannungsanlage.
EP3131098B1 (de) Gekapselter überspannungsableiter
DE102016207292B4 (de) Elektrische Schutzvorrichtung und Transformator mit einer solchen
DE3417648A1 (de) Ueberspannungsableiter
EP2979278B1 (de) Gekapselter überspannungsableiter
DE4042237A1 (de) Steckbarer ueberspannungsableiter fuer elektrische anlagen
WO2016070907A1 (de) Impedanzanordnung
DE2348136B2 (de) Elektrisches geraet fuer hochspannung mit einer ein isoliergas enthaltenden kapselung aus metall
WO2014016042A1 (de) Überspannungsableiter mit durch schlingen gehaltenen zugelementen
DD208891A1 (de) Einrichtung zum ueberspannungsschutz von niederspannungsanlagen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20161206

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20170601

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20171012