EP3055914A1 - Dispositif electrique ou electronique a deux tensions d'alimentation - Google Patents

Dispositif electrique ou electronique a deux tensions d'alimentation

Info

Publication number
EP3055914A1
EP3055914A1 EP14780882.8A EP14780882A EP3055914A1 EP 3055914 A1 EP3055914 A1 EP 3055914A1 EP 14780882 A EP14780882 A EP 14780882A EP 3055914 A1 EP3055914 A1 EP 3055914A1
Authority
EP
European Patent Office
Prior art keywords
ground
volts
switch module
voltage
interface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14780882.8A
Other languages
German (de)
English (en)
Inventor
Thierry Elbhar
Jonathan FOURNIER
Bertrand Puzenat
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Systemes Thermiques SAS
Original Assignee
Valeo Systemes Thermiques SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes Thermiques SAS filed Critical Valeo Systemes Thermiques SAS
Priority to EP19198747.8A priority Critical patent/EP3614514A1/fr
Publication of EP3055914A1 publication Critical patent/EP3055914A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/16Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to fault current to earth, frame or mass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0069Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/11Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines using DC generators and DC motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/24Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to undervoltage or no-voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H5/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection
    • H02H5/10Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection responsive to mechanical injury, e.g. rupture of line, breakage of earth connection
    • H02H5/105Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection responsive to mechanical injury, e.g. rupture of line, breakage of earth connection responsive to deterioration or interruption of earth connection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/08Three-wire systems; Systems having more than three wires
    • H02J1/082Plural DC voltage, e.g. DC supply voltage with at least two different DC voltage levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/108Parallel operation of dc sources using diodes blocking reverse current flow
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/46The network being an on-board power network, i.e. within a vehicle for ICE-powered road vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to electrical or electronic devices requiring two separate supply voltages.
  • the invention relates in particular, although not exclusively, to the field of motorized vehicles where certain equipment must be designed to operate with two supply voltages of different values, typically a low voltage of the order of 12 volts, and a mean voltage of the order of 48 volts.
  • FIG. 1 schematically illustrates the assembly made for the validation test relating to the leakage currents of an electrical or electronic device 1 comprising a first connector interface 10 for the 12 Volts, and a second connector interface 11 for the 48 Volts.
  • This test consists of connecting all the inputs / outputs of the first connector interface 10 to a first terminal of a DC voltage generator, to connect the inputs of the second connector interface 11 to the second terminal of the DC voltage generator, to apply a voltage of 70 volts by means of the DC voltage generator, and to measure the current by a conventional ammeter.
  • the electrical or electronic device 1 is validated if, during this test, the measured current remains less than or equal to 1 microamp (in absolute value).
  • the second mass loss test consists in connecting the electrical or electronic device between two 12-volt and 48-volt power supplies, simulating the loss of the 48-volt side earth cable and detecting any damage to the ground cable on the other side. 12 Volts.
  • the electrical or electronic device 1 is validated if, during this test, no damage is found after a period of about 30 minutes.
  • FIG. 2 schematically illustrates, in particular, an additional heating module 2 which uses two 12 volts voltages for its power supply, one of which is of low power, represented by the voltage generator 3, the other at a higher power, typically of the order of 1000 to 1200 Watts, represented by the voltage generator 4.
  • additional heater is used to start a motor vehicle to warm up the cabin more quickly.
  • the low power supply 3 is used for the management and the interface of the module 2 while the higher power supply 4 is used to supply the heating resistors (not shown) contained in the module.
  • the higher power supply 4 is used to supply the heating resistors (not shown) contained in the module.
  • only the ground of the voltage generator 4 is connected to the module.
  • the LIN data input of the module is supplied by the voltage generator 3 and the generator 4 ground.
  • Such an architecture could therefore not be used for a 12 Volts / 48 Volts device conforming to the specification mentioned above. above which imposes two separate masses for each supply network.
  • the loss of the ground cable of the generator 4 implies that the module 2 can no longer communicate on its LIN data input.
  • FIG. 3 schematically represents another known architecture of electrical or electronic device 5 used in vehicles electric cars.
  • the device 5 is powered, through two interfaces of connectors 50 and 51, with two very different voltages, a first low voltage of the order of 12 volts, represented by the voltage generator 3, and a second voltage very high, of the order of 400 volts, represented by the voltage generator 6.
  • this type of device 5 must necessarily include an isolation transformer 52 to create a galvanic isolation between the power supply 12 Volts and power at 400 Volts.
  • the object of the invention is to overcome the above disadvantages by proposing a simple architecture of an electrical or electronic device with two supply voltages, for example 12 volts / 48 volts, which meets the requirements of the specification relating to the presence of two terminals. mass, and which makes it possible to satisfy at least one of the two tests mentioned above.
  • the present invention satisfies this objective by proposing an electric or electronic device able to be powered in operation by a first voltage value generated by a first electrical network and by a second voltage value greater than the first voltage value and generated by a first voltage value.
  • second electrical network the device comprising:
  • a first connector interface capable of being connected, under normal connection conditions to a ground conductor and a voltage conductor of the first electrical network
  • each connector interface comprising a ground connection and the ground connections of the two connector interfaces being connected together to form a common ground; and - At least one switch module interposed in series on the common ground, the switch module being adapted to switch to an open position following a change in the connection conditions of the first or the second interface.
  • connection conditions are meant the links necessary for the normal operation of the device, that is to say the usual connections of the connectors interfaces to the two electrical networks.
  • the switch module can be adapted to switch to an open position in case of loss of the ground conductor of the second power grid
  • the switch module can in this case include a positive coefficient of resistance in series on the common ground;
  • the switch module comprises a transistor controlled by a current measuring circuit capable of measuring the current flowing on the common ground;
  • the switch module can be adapted to switch to an open position as soon as all the inputs / outputs of the first connector interface are connected together;
  • the switch module may comprise in this case a MOSFET transistor supplied with voltage by the first electrical network;
  • the switch module is associated with a non-return diode capable of preventing any current flow to the first connector interface when the switch module is in the open position.
  • FIG. 1 already described above, schematically represents the equivalent electric circuit for a leakage current measurement test of a 12 Volts / 48 Volts device prescribed by the aforementioned specification 148;
  • FIG. 2 already described above, schematically illustrates a known architecture for a device using two 12 volt supply voltages;
  • FIG. 3 already described above, schematically illustrates a known architecture for a device using a supply voltage of
  • FIG. 4 schematically illustrates an exemplary architecture of an electrical or electronic device with two supply voltages, for example 12 volts / 48 volts, in accordance with the present invention.
  • FIG. 4 represents an electrical or electronic device 7 according to a possible embodiment of the invention, in the non-limiting context of a dual 12 volts / 48 volts supply.
  • This device 7 is represented in its conditions of use, that is to say receiving a first supply voltage of 12 volts of a first network at 12 volts (represented by a voltage generator 3), and a second higher supply voltage, typically of the order of 48 volts, a second network at 48 volts (represented by a voltage generator 8).
  • the device 7 comprises:
  • a first connector interface 70 capable of being connected to the two terminals of the voltage generator 3, that is to say in practice to the ground conductor GND_12 and to the 12 Volt voltage conductor of the first 12 Volt network;
  • a second interface connector 71 adapted to be connected to the two terminals of the voltage generator 8, that is to say in practice to the ground conductor GND_48 and the voltage conductor 48 Volts of the second network to 48 Volts.
  • the ground connections of the two connector interfaces 70 and 71 are connected together to form a common ground.
  • the device 7 preferably comprises an EMC filtering module 72 (Anglo-Saxon initials set for Electro Magnetic Compatibility) to suppress possible voltage variations, and a module 73 of 12 Volt / 48 Volt interface which integrates the features specific to the device.
  • EMC filtering module 72 Anglo-Saxon initials set for Electro Magnetic Compatibility
  • module 73 12 Volt / 48 Volt interface which integrates the features specific to the device.
  • the module 73 will include the management components and the interface as well as the heating resistors.
  • the device 7 further comprises a first switch module 74 interposed in series on the common ground connecting the two ground connections of the connection interfaces 70 and 71, this first switch module 74 being able to be controlled in a closed position as long as the current the through is less than a threshold value of the order of 200 mA approximately, and to switch to the open position if the current passing through it passes above the threshold value.
  • This first switch module 74 can be made by the combination of a current measuring circuit, typically composed of an amplifier and a comparator, and a MOSFET transistor controlled to open the ground circuit as soon as the current measurement circuit detects a current greater than the threshold value.
  • this switch module 74 will be composed of a resettable fuse, for example a positive temperature coefficient resistor or PTC resistor, of infinite value if the current flowing through the resistor is much greater than the threshold value.
  • the device 7 further comprises a second switch module 75 also in series on the common ground, associated with a non-return diode 76.
  • the second switch module is for example a MOSFET transistor powered by the 12-volt network, it is that is to say, the source S and the drain D are respectively connected to the ground connection of the connection module 70 and to the ground connection of the connection module 71, and whose gate G receives the voltage 12 volts. In normal operation, this MOSFET transistor is typically in the closed position and its voltage VGS between the gate and the source is then equal to 12 volts.
  • the diode 76 will do as for it pass the current in the direction 12 Volts to the module 73 interface 12V / 48 V.
  • this second switch module 75 allows the device 7 to meet the leakage current measurement test. Indeed, by carrying out this test (in accordance with the electrical diagram of FIG. 1), all the inputs / outputs of the first connector interface 70 are connected together, so that the voltage VGS becomes zero, even by applying the voltage of 70 volts imposed by the test, and switches the transistor in its open position.
  • the non-return diode 76 guarantees that no current can flow in the other direction, that is to say from the second connector interface 71 to the first connector interface 70.
  • each of the two switch modules 74 and 75 described above is able to switch to an open position following a modification of the connection conditions of the first interface or the second interface: in particular, for the measurement test leakage currents, the connections of the connector interface 70 are modified compared to normal operation, hence the closure of the switch module 75.
  • the loss (disconnection or damaged cable) of the ground cable GN D_48 constitutes a modification of the normal connection conditions of the second interface 71 of connectors, resulting in the closure of the switch module 74.
  • the device 7 may of course comprise only one of these switch modules, without departing from the scope of the invention.
  • the device obtained meets various points required by the specification 148, while having a simple structure, inexpensive and compact.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Protection Of Static Devices (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

Un dispositif électrique ou électronique (7) apte à être alimenté deux valeurs de tensions différentes provenant respectivement d'un premier réseau électrique (3) d'un deuxième réseau électrique (8), comporte : une première interface (70) de connectique apte à être reliée, dans des conditions de liaison normales, à un conducteur de masse (GND_12) et un conducteur de tension du premier réseau électrique (3); une deuxième interface (71) de connectique apte à être reliée, dans les conditions de liaison normales, à un conducteur de masse (GND_48) et un conducteur de tension du deuxième réseau électrique (8); les connexions de masse des deux interfaces (70, 71) de connectique étant reliées ensemble pour former une masse commune; et au moins un module interrupteur (74; 75) interposé en série sur la masse commune, le module interrupteur étant apte à basculer dans une position ouverte suite à une modification des conditions de liaison de la première ou de la deuxième interface.

Description

DISPOSITIF ELECTRIQUE OU ELECTRONIQUE A DEUX TENSIONS
D'ALIMENTATION
La présente invention concerne les dispositifs électriques ou électroniques nécessitant deux tensions d'alimentation distinctes.
L'invention concerne notamment, bien que non exclusivement, le domaine des véhicules motorisés où certains équipements doivent être conçus pour fonctionner avec deux tensions d'alimentation de valeurs distinctes, typiquement une tension basse de l'ordre de 12 Volts, et une tension moyenne de l'ordre de 48 Volts.
Pour ce type d'équipements, une spécification définissant notamment certaines règles d'architecture et des tests de validation est actuellement en cours de développement par un Consortium de constructeurs automobiles. Cette spécification (« Electrical and Electronic components in the vehicle 48 V - vehicle electrical System, Requirement and tests », spécification 148 du 29/08/2011) requiert en particulier :
- que tout équipement 12 Volts/48 Volts possède une masse commune, et inclue une interface de connectique 12 Volts pour permettre sa connexion au réseau véhicule de 12 Volts, et une interface de connectique 48 Volts pour permettre sa connexion au réseau véhicule de 48 Volts, chaque interface de connectique ayant sa propre connexion de masse ;
- que tout équipement 12 Volts/48 Volts satisfasse à un test de mesure des courants de fuite, de manière à garantir que les alimentations de 48 Volts et de 12 Volts sont bien protégées contre ces courants de fuite ;
- que tout équipement 12 Volts/48 Volts satisfasse à un test de perte du câble de masse du réseau 48 Volts, de manière à garantir que le câble de masse du réseau 12 Volts ne risque pas d'être endommagé suite à un défaut dans le câble de masse du réseau 48 Volts.
La figure 1 illustre schématiquement le montage réalisé pour le test de validation relatif aux courants de fuite d'un dispositif électrique ou électronique 1 comprenant une première interface connectique 10 pour le 12 Volts, et une seconde interface connectique 11 pour le 48 Volts. Ce test consiste à relier toutes les entrées/sorties de la première interface de connectique 10 à une première borne d'un générateur de tension continue, à relier les entrées de la seconde interface de connectique 11 à la deuxième borne du générateur de tension continue, à appliquer une tension de 70 Volts au moyen du générateur de tension continue, et à mesurer le courant par un ampèremètre classique. Le dispositif électrique ou électronique 1 est validé si, lors de ce test, le courant mesuré reste inférieur ou égal à 1 microampère (en valeur absolue).
Le deuxième test de perte de masse consiste à connecter le dispositif électrique ou électronique entre deux alimentations 12 Volts et 48 Volts, à simuler la perte du câble de masse du côté 48 Volts et à constater d'éventuels dommages sur le câble de masse du côté 12 Volts. Le dispositif électrique ou électronique 1 est validé si, lors de ce test, aucun dommage n'est constaté au bout d'une durée d'environ 30 minutes.
On connaît déjà des architectures de dispositifs électriques ou électroniques susceptibles de fonctionner avec deux tensions d'alimentation. La figure 2 illustre en particulier de façon schématique un module réchauffeur additionnel 2 qui utilise pour son alimentation deux tensions de 12 Volts, l'une à faible puissance, représentée par le générateur de tension 3, l'autre à une puissance plus forte, typiquement de l'ordre de 1000 à 1200 Watts, représentée par le générateur de tension 4. Un tel réchauffeur additionnel est utilisé au démarrage d'un véhicule automobile pour réchauffer plus rapidement l'habitacle. L'alimentation à faible puissance 3 est utilisée pour la gestion et l'interface du module 2 alors que l'alimentation à plus forte puissance 4 est utilisée pour alimenter les résistances chauffantes (non représentées) contenues dans le module. Comme on le voit sur l'architecture de la figure 2, seule la masse du générateur de tension 4 est connectée au module. De plus, l'entrée de données LIN du module est alimentée par le générateur de tension 3 et la masse du générateur 4. Une telle architecture ne pourrait donc pas être utilisée pour un dispositif 12 Volts/48 Volts conforme à la spécification citée ci- dessus qui impose deux masses distinctes pour chaque réseau d'alimentation. En outre, la perte du câble de masse du générateur 4 implique que le module 2 ne peut plus communiquer sur son entrée de données LIN .
La figure 3 représente schématiquement une autre architecture connue de dispositif électrique ou électronique 5 utilisée dans les véhicules automobiles électriques. Ici, le dispositif 5 est alimenté, au travers de deux interfaces de connectique 50 et 51, avec deux tensions très différentes, une première tension faible de l'ordre de 12 Volts, représentée par le générateur de tension 3, et une deuxième tension très haute, de l'ordre de 400 Volts, représentée par le générateur de tension 6. Pour des questions de sécurité, ce type de dispositif 5 doit comporter obligatoirement un transformateur d'isolement 52 afin de créer une isolation galvanique entre l'alimentation à 12 Volts et l'alimentation à 400 Volts.
Une architecture similaire pourrait être utilisée pour réaliser un dispositif électrique ou électronique 12 Volts/48 Volts compatible avec la spécification citée ci-avant. Néanmoins, cette solution est coûteuse et encombrante, du fait de l'utilisation d'un transformateur d'isolement, et reste complexe à mettre en œuvre.
L'invention a pour objectif de pallier les inconvénients précédents en proposant une architecture simple de dispositif électrique ou électronique à deux tensions d'alimentation, par exemple 12 Volts/48 Volts, qui réponde aux exigences de la spécification relatives à la présence de deux bornes de masse, et qui permette de satisfaire à au moins l'un des deux tests précités.
La présente invention répond à cet objectif en proposant un dispositif électrique ou électronique apte à être alimenté en fonctionnement par une première valeur de tension générée par un premier réseau électrique et par une deuxième valeur de tension supérieure à la première valeur de tension et générée par un deuxième réseau électrique, le dispositif comportant :
- une première interface de connectique apte à être reliée, dans des conditions de liaison normales à un conducteur de masse et un conducteur de tension du premier réseau électrique ;
- une deuxième interface de connectique apte à être reliée, dans lesdites conditions de liaison normales, à un conducteur de masse et un conducteur de tension du deuxième réseau électrique ;
chaque interface de connectique comportant une connexion de masse et les connexions de masse des deux interfaces de connectique étant reliées ensemble pour former une masse commune ; et - au moins un module interrupteur interposé en série sur la masse commune, le module interrupteur étant apte à basculer dans une position ouverte suite à une modification des conditions de liaison de la première ou de la deuxième interface.
Par conditions de liaison normales, on entend les liaisons nécessaires au fonctionnement normal du dispositif, c'est-à-dire les connexions habituelles des interfaces de connectique aux deux réseaux électriques.
Selon d'autres caractéristiques possibles particulièrement avantageuses :
- le module interrupteur peut être apte à basculer dans une position ouverte en cas de perte du conducteur de masse du deuxième réseau électrique ;
- le module interrupteur peut dans ce cas comprendre une résistance à coefficient positif en série sur la masse commune ;
- En variante, le module interrupteur comprend un transistor commandé par un circuit de mesure de courant apte à mesurer le courant circulant sur la masse commune ;
- le module interrupteur peut être apte à basculer dans une position ouverte dès lors que toutes les entrées/sorties de la première interface de connectique sont reliées ensemble ;
- le module interrupteur peut comporter dans ce cas un transistor MOSFET alimenté en tension par le premier réseau électrique ;
- le module interrupteur est associé à une diode anti-retour apte à empêcher tout courant de circuler vers la première interface de connectique lorsque le module interrupteur est en position ouverte.
L'invention et les avantages qu'elle procure seront mieux compris au vu de la description suivante d'un exemple non limitatif de mise en œuvre de l'invention, faite en référence aux figures annexées, dans lesquelles :
- la figure 1, déjà décrite ci-avant, représente schématiquement le circuit électrique équivalent pour un test de mesure de courant de fuite d'un dispositif 12 Volts/ 48 Volts prescrit par la spécification 148 précitée ; - la figure 2, déjà décrite ci-avant, illustre schématiquement une architecture connue pour un dispositif utilisant deux tensions d'alimentation de 12 Volts ;
- la figure 3, déjà décrite ci-avant, illustre schématiquement une architecture connue pour un dispositif utilisant une tension d'alimentation de
12 Volts et une tension d'alimentation de 400 Volts ;
- la figure 4 illustre schématiquement un exemple d'architecture d'un dispositif électrique ou électronique à deux tensions d'alimentation, par exemple 12 Volts/48 Volts, conforme à la présente invention.
La figure 4 représente un dispositif électrique ou électronique 7 selon un mode de réalisation possible de l'invention, dans le cadre non limitatif d'une double alimentation 12 Volts/ 48 Volts. Ce dispositif 7 est représenté dans ses conditions d'utilisation, c'est-à-dire recevant une première tension d'alimentation de 12 Volts d'un premier réseau à 12 Volts (représenté par un générateur de tension 3), et une deuxième tension d'alimentation plus élevée, typiquement de l'ordre de 48 Volts, d'un second réseau à 48 Volts (représenté par un générateur de tension 8). Pour ce faire, le dispositif 7 comporte :
- une première interface de connectique 70 apte à être reliée aux deux bornes du générateur de tension 3, c'est-à-dire en pratique au conducteur de masse GND_12 et au conducteur de tension 12 Volts du premier réseau à 12 Volts ;
- une deuxième interface de connectique 71 apte à être reliée aux deux bornes du générateur de tension 8, c'est-à-dire en pratique au conducteur de masse GND_48 et au conducteur de tension 48 Volts du second réseau à 48 Volts.
A l'intérieur du dispositif 7, les connexions de masse des deux interfaces de connectique 70 et 71 sont reliées ensemble pour former une masse commune.
Entre les deux interfaces de connectiques 70 et 71, le dispositif 7 comporte, de manière préférentielle, un module 72 de filtrage EMC (initiales anglo-saxonnes mises pour Electro Magnetic Compatibility) pour supprimer de possibles variations de tensions, et un module 73 d'interface 12 Volts/ 48 Volts qui intègre les fonctionnalités propres au dispositif. Par exemple, si le dispositif 7 est un réchauffeur additionnel, le module 73 comportera les composants de gestion et l'interface ainsi que les résistances chauffantes.
Le dispositif 7 comporte en outre un premier module interrupteur 74 interposé en série sur la masse commune reliant les deux connexions de masse des interfaces de connectique 70 et 71, ce premier module interrupteur 74 étant apte à être commandé dans une position fermée tant que le courant le traversant est inférieur à une valeur seuil de l'ordre de 200 mA approximativement, et à basculer en position ouverte si le courant le traversant passe au-dessus de la valeur seuil .
Ce premier module interrupteur 74 peut être réalisé par l'association d'un circuit de mesure de courant, composé typiquement d'un amplificateur et d'un comparateur, et d'un transistor de type MOSFET commandé pour ouvrir le circuit de masse dès que le circuit de mesure de courant détecte un courant supérieur à la valeur seuil .
En variante et de manière préférentielle, ce module interrupteur 74 sera composé d'un fusible réarmable, par exemple une résistance à coefficient de température positif ou résistance CTP, de valeur infinie si le courant traversant la résistance est très supérieur à la valeur seuil .
La présence de ce premier module interrupteur 74 permet au dispositif
7 de satisfaire au test de la perte du câble de masse GND_48. En effet, si le câble de masse GN D_48 est sectionné, un courant important va passer au travers de la masse commune et provoquer l'ouverture de l'interrupteur 74.
Le dispositif 7 comporte en outre un deuxième module interrupteur 75 également en série sur la masse commune, associé à une diode anti-retour 76. Le deuxième module interrupteur est par exemple un transistor de type MOSFET alimenté par le réseau 12 Volts, c'est-à-dire dont la source S et le drain D sont reliés respectivement à la connexion de masse du module de connectique 70 et à la connexion de masse du module de connectique 71, et dont la grille G reçoit la tension 12 Volts. En fonctionnement normal, ce transistor MOSFET se trouve classiquement en position fermée puis sa tension VGS entre la Grille et la source est alors égale à 12 Volts. La diode 76 va faire quant à elle passer le courant dans le sens 12 Volts vers le module 73 d'interface 12V/48 V.
L'intérêt de ce deuxième module interrupteur 75 est de permettre au dispositif 7 de satisfaire au test de mesure des courants de fuite. En effet, en réalisant ce test (conformément au schéma électrique de la figure 1), toutes les entrées/sorties de la première interface de connectique 70 sont reliées entre elles, de sorte que la tension VGS devient nulle, même en appliquant la tension de 70 Volts imposée par le test, et fait basculer le transistor dans sa position ouverte. La diode anti-retour 76 garantit quant à elle qu'aucun courant ne pourra circuler dans l'autre sens, c'est-à-dire depuis la deuxième interface de connectique 71 vers la première interface de connectique 70.
Au vu de ce qui précède, chacun des deux modules interrupteurs 74 et 75 décrits précédemment est apte à basculer dans une position ouverte suite à une modification des conditions de liaison de la première ou de la deuxième interface : en particulier, pour le test de mesure des courants de fuite, les liaisons de l'interface de connectique 70 sont modifiées par rapport au fonctionnement normal, d'où la fermeture du module interrupteur 75. De manière similaire, la perte (déconnexion ou câble endommagé) du câble de masse GN D_48 constitue une modification des conditions de liaison normale de la deuxième interface 71 de connectique, ayant pour conséquence la fermeture du module interrupteur 74.
Le dispositif 7 peut bien entendu comporter un seul des ces modules interrupteurs, sans départir du cadre de l'invention .
Dans tous les cas, le dispositif obtenu répond à divers points requis par la spécification 148, tout en ayant une structure simple, peu coûteuse et à faible encombrement.
Bien que l'invention ait été décrite dans le cadre de l'application 12 Volts/48 Volts du domaine automobile, elle peut trouver un intérêt dans tous les cas où un dispositif requiert une double alimentation à des valeurs de tension dites sécuritaires.

Claims

REVENDICATIONS
Dispositif électrique ou électronique (7) apte à être alimenté en fonctionnement par une première valeur de tension générée par un premier réseau électrique (3) et par une deuxième valeur de tension supérieure à la première valeur de tension et générée par un deuxième réseau électrique (8), le dispositif comportant :
- une première interface (70) de connectique apte à être reliée, dans des conditions de liaison normales, à un conducteur de masse (GND_12) et un conducteur de tension du premier réseau électrique (3) ;
- une deuxième interface (71) de connectique apte à être reliée, dans lesdites conditions de liaison normales, à un conducteur de masse (GND_48) et un conducteur de tension du deuxième réseau électrique (8) ;
chaque interface de connectique comportant une connexion de masse et les connexions de masse des deux interfaces (70, 71) de connectique étant reliées ensemble pour former une masse commune ; et
- au moins un module interrupteur (74 ; 75) interposé en série sur la masse commune, le module interrupteur étant apte à basculer dans une position ouverte suite à une modification des conditions de liaison de la première ou de la deuxième interface.
Dispositif selon la revendication 1, caractérisé en ce que ledit module interrupteur (74) est apte à basculer dans une position ouverte en cas de perte du conducteur de masse (GND_48) du deuxième réseau électrique (8).
Dispositif selon la revendication 2, caractérisé en ce que ledit module interrupteur (74) comprend une résistance à coefficient positif en série sur la masse commune.
Dispositif selon la revendication 2, caractérisé en ce que ledit module interrupteur (74) comprend un transistor commandé par un circuit de mesure de courant apte à mesurer le courant circulant sur la masse commune.
Dispositif selon la revendication 1, caractérisé en ce que ledit module interrupteur (75) est apte à basculer dans une position ouverte dès lors que toutes les entrées/sorties de la première interface de connectique sont reliées ensemble.
Dispositif selon la revendication 5, caractérisé en ce que ledit module interrupteur (75) comporte un transistor MOSFET alimenté en tension par le premier réseau électrique (3).
Dispositif selon l'une quelconque des revendications 5 ou 6, caractérisé en ce que le module interrupteur (75) est associé à une diode antiretour (76) apte à empêcher tout courant de circuler vers la première interface de connectique (70) lorsque le module interrupteur (75) est en position ouverte.
Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que la première valeur de tension est de 12 Volts, et la deuxième valeur de tension est de 48 Volts.
EP14780882.8A 2013-10-10 2014-10-06 Dispositif electrique ou electronique a deux tensions d'alimentation Withdrawn EP3055914A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19198747.8A EP3614514A1 (fr) 2013-10-10 2014-10-06 Dispositif électrique ou électronique à deux tensions d'alimentation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1359828A FR3011989B1 (fr) 2013-10-10 2013-10-10 Dispositif electrique ou electronique a deux tensions d'alimentation
PCT/EP2014/071351 WO2015052137A1 (fr) 2013-10-10 2014-10-06 Dispositif electrique ou electronique a deux tensions d'alimentation

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP19198747.8A Division EP3614514A1 (fr) 2013-10-10 2014-10-06 Dispositif électrique ou électronique à deux tensions d'alimentation

Publications (1)

Publication Number Publication Date
EP3055914A1 true EP3055914A1 (fr) 2016-08-17

Family

ID=50069057

Family Applications (2)

Application Number Title Priority Date Filing Date
EP14780882.8A Withdrawn EP3055914A1 (fr) 2013-10-10 2014-10-06 Dispositif electrique ou electronique a deux tensions d'alimentation
EP19198747.8A Pending EP3614514A1 (fr) 2013-10-10 2014-10-06 Dispositif électrique ou électronique à deux tensions d'alimentation

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP19198747.8A Pending EP3614514A1 (fr) 2013-10-10 2014-10-06 Dispositif électrique ou électronique à deux tensions d'alimentation

Country Status (7)

Country Link
US (1) US10106041B2 (fr)
EP (2) EP3055914A1 (fr)
JP (1) JP6250801B2 (fr)
KR (1) KR101873130B1 (fr)
CN (1) CN105830300B (fr)
FR (1) FR3011989B1 (fr)
WO (1) WO2015052137A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3043960B1 (fr) * 2015-11-25 2019-04-05 Valeo Systemes Thermiques Dispositif electronique pour vehicule automobile alimente par deux reseaux d'alimentation electriques
FR3056709B1 (fr) * 2016-09-23 2020-01-17 Valeo Systemes Thermiques Pulseur d'air pour vehicule automobile alimente par deux reseaux d'alimentation electriques
FR3056876B1 (fr) * 2016-09-23 2020-10-23 Valeo Systemes Thermiques Dispositif de chauffage electrique pour vehicule automobile alimente par deux reseaux d'alimentation electiques
FR3056875A1 (fr) * 2016-09-23 2018-03-30 Valeo Systemes Thermiques Dispositif de chauffage electrique pour vehicule automobile alimente par deux reseaux d'alimentation electriques
EP3623825B1 (fr) * 2017-05-11 2023-03-22 Mitsubishi Electric Corporation Dispositif électronique de commande
DE102019214824A1 (de) 2019-09-27 2021-04-01 Robert Bosch Gmbh Elektrische Schaltungsanordnung für ein Energiespeichersystem und Verfahren zum Betreiben der elektrischen Schaltungsanordnung

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3259803A (en) * 1962-11-29 1966-07-05 Itt Electronic circuit breakers
JP2001352690A (ja) * 2000-06-08 2001-12-21 Auto Network Gijutsu Kenkyusho:Kk 車両の電力供給回路および車両に用いられるdc−dcコンバータ回路
DE10232941B4 (de) * 2002-07-19 2017-07-27 Continental Automotive Gmbh KFZ-Bordnetz mit einer Sensor-Schutzschaltung
JP3884386B2 (ja) * 2003-01-07 2007-02-21 シャープ株式会社 系統連系インバータ装置
US6781502B1 (en) * 2003-05-06 2004-08-24 Semiconductor Components Industries, L.L.C. Method of forming a protection circuit and structure therefor
JP4305462B2 (ja) * 2006-03-09 2009-07-29 トヨタ自動車株式会社 車両駆動用電源システム
US8134820B1 (en) * 2007-09-10 2012-03-13 Technology Reasearch Corporation Contactor control circuit
JP2011148390A (ja) * 2010-01-21 2011-08-04 Toyota Motor Corp 車両
FR2973297B1 (fr) * 2011-03-28 2014-07-04 Valeo Equip Electr Moteur Procede et systeme d'alimentation electrique redondante d'un vehicule automobile hybride
CN102222904B (zh) * 2011-05-31 2014-07-09 北京交通大学 一种直流双路供电电源
DE102012215542A1 (de) * 2011-10-07 2013-04-11 Robert Bosch Gmbh Schutz- und/oder Diagnoseeinrichtung für Mehrspannungsbordnetz, Mehrspannungsbordnetz und Verfahren zum Betrieb eines Mehrspannungsbordnetzes
US9046559B2 (en) * 2012-05-09 2015-06-02 Curtis Instruments, Inc. Isolation monitor
KR102007397B1 (ko) * 2012-06-19 2019-08-05 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. 과전류 및 과전압 보호 장치를 포함하는 인터페이스 유닛

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2015052137A1 *

Also Published As

Publication number Publication date
EP3614514A1 (fr) 2020-02-26
FR3011989B1 (fr) 2019-04-05
KR101873130B1 (ko) 2018-06-29
CN105830300B (zh) 2018-07-24
JP2016536958A (ja) 2016-11-24
US10106041B2 (en) 2018-10-23
US20160264004A1 (en) 2016-09-15
JP6250801B2 (ja) 2017-12-20
CN105830300A (zh) 2016-08-03
WO2015052137A1 (fr) 2015-04-16
KR20160065974A (ko) 2016-06-09
FR3011989A1 (fr) 2015-04-17

Similar Documents

Publication Publication Date Title
EP3055914A1 (fr) Dispositif electrique ou electronique a deux tensions d'alimentation
EP2457105B1 (fr) Procédé de diagnostic du fonctionnement d'un dispositif de coupure et de raccordement d'une batterie a un réseau de bord de véhicule automobile
EP2890990B1 (fr) Dispositf de détéction et de mesure d'un défaut d'isolement
WO2015067730A2 (fr) Commande sécurisée d'un réchauffeur électrique
EP2950412A1 (fr) Dispositif électrique ou électronique a deux tensions d'alimentation
FR3006462A1 (fr) Procede et dispositif de lecture de l'etat de variables de contact d'un vehicule automobile
EP1034592B1 (fr) Reseau electrique de puissance comprenant un dispositif de precharge et une charge capacitive
WO2021209207A1 (fr) Procede de detection d'un defaut d'isolation electrique entre une source d'energie electrique et une masse electrique
FR3011638A1 (fr) Dispositif de diagnostic de la perte d'une connexion entre un module de controle electronique et une masse
EP3413419B1 (fr) Liaison électrique comprenant un dispositif de protection électrique - test d'intégrité
FR2978879A1 (fr) Procede de diagnostic d'un court-circuit dans un ensemble electrique d'un vehicule automobile comprenant une composante capacitive et dispositif de diagnostic
FR3092434A1 (fr) Procédé de diagnostic et de décollage d’un relais de puissance
EP1764892A1 (fr) Dispositif pour surveiller l'apparition d'un courant de défaut à la sortie d'une source d'énergie d'un véhicule
EP3446390B1 (fr) Protection de l'alimentation electrique d'un vehicule
FR2976083A1 (fr) Dispositif de detection d'un defaut d'isolement
FR2870996A1 (fr) Protection de circuit electrique en mode veille pour vehicule
EP2372913A1 (fr) Protection d'un équipement électronique
WO2018055259A1 (fr) Dispositif de chauffage electrique pour vehicule automobile alimente par deux reseaux d'alimentation electriques
FR2986383A1 (fr) Equilibrage d'une batterie de stockage d'energie electrique a au moins deux branches paralleles
FR3130727A1 (fr) Unité de contrôle électronique pour véhicule à coupure intégrée
FR3056709A1 (fr) Pulseur d'air pour vehicule automobile alimente par deux reseaux d'alimentation electriques
FR3122362A1 (fr) Ensemble et procédé de gestion d'un réseau électrique d'un véhicule automobile
WO2018055251A1 (fr) Pulseur d'air pour vehicule automobile alimente par deux tensions
WO2014183864A1 (fr) Procede et dispositif de lecture de l'etat de variables de contact d'un vehicule automobile
FR3060885A1 (fr) Dispositif de protection d'un reseau de bord de vehicule automobile en cas d'inversion de polarite

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160415

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20190513

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20191126