EP3052953A1 - Procede et appareil d'evaluation de l'etat de sante d'une batterie lithium - Google Patents

Procede et appareil d'evaluation de l'etat de sante d'une batterie lithium

Info

Publication number
EP3052953A1
EP3052953A1 EP14780469.4A EP14780469A EP3052953A1 EP 3052953 A1 EP3052953 A1 EP 3052953A1 EP 14780469 A EP14780469 A EP 14780469A EP 3052953 A1 EP3052953 A1 EP 3052953A1
Authority
EP
European Patent Office
Prior art keywords
battery
health
state
charging
constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP14780469.4A
Other languages
German (de)
English (en)
French (fr)
Inventor
Jean-Michel VINASSA
Akram EDDAHECH
Olivier BRIAT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Universite de Bordeaux
Institut Polytechnique de Bordeaux
Original Assignee
Centre National de la Recherche Scientifique CNRS
Universite de Bordeaux
Institut Polytechnique de Bordeaux
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Universite de Bordeaux, Institut Polytechnique de Bordeaux filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP3052953A1 publication Critical patent/EP3052953A1/fr
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/378Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] specially adapted for the type of battery or accumulator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/005Detection of state of health [SOH]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0069Charging or discharging for charge maintenance, battery initiation or rejuvenation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the invention relates to a method for assessing the "state of health" of a lithium battery, and in particular the loss of capacity caused by the aging of such a battery.
  • the invention also relates to an apparatus for implementing such a method and to a battery management system incorporating such an apparatus.
  • the invention applies in particular, but not exclusively, to the field of batteries for powering electric or hybrid land vehicles.
  • - are batteries with the highest energy density and the highest specific energy. It is therefore the technology of choice for powering electric or hybrid vehicles, but also many portable devices.
  • these batteries have a deterioration of their performance - and in particular their capacity - over time, even during periods of non-use (so-called “calendar aging”). Therefore, the State of Health (or SOH) estimate of these batteries - quantified for example by the current reported capacity is either its displayed value ("commercial”) or its measured value. in new condition - is one of the most important tasks of battery management systems ("Battery Management
  • Electrochemical impedance spectroscopy is a very useful technique for studying battery aging by monitoring the parameters of an impedance model. But it is complex to implement, expensive and does not allow access to capacity. Moreover, it can not be embedded in a BMS. See about it:
  • Kalman filtering Other techniques are based on the identification of the parameters of a model, for example by Kalman filtering. See, for example:
  • Document FR 2 977 678 discloses a similar method, in which the state of health is estimated from the time required for the current to cross two thresholds - arbitrarily defined - during said constant voltage charging phase.
  • the invention aims to overcome the aforementioned drawbacks and to provide a method for evaluating the state of health of a lithium battery that is both simple to implement, reliable and accurate without lengthening the recharging phase nor cause additional aging.
  • this goal is achieved by estimating the state of health of a battery from the simple observation of the constant voltage step of its recharge.
  • Charging refers to the operation of charging in a complete or near-complete manner (for example, 95% or more of available capacity) after a period of use, as opposed to partial “charges” that may occur in use (for example, in the case of an electric vehicle, during regenerative braking).
  • An object of the invention is therefore a method for evaluating the state of health of a lithium battery comprising:
  • the method may comprise in particular the acquisition of a plurality of measurements of the charging current during said second constant voltage charging step.
  • said step c) may comprise the following substeps:
  • Said sub-step c2 may be implemented by means of a linear function connecting said decay constant B to a loss of capacity of said battery.
  • Said battery can be a lithium-ion battery.
  • said battery can be a lithium-ion battery nickel, manganese and cobalt (NMC).
  • NMC nickel, manganese and cobalt
  • the method may also include:
  • Another object of the invention is an apparatus for evaluating the state of health of a lithium battery comprising: a charger of constant current type - constant voltage, adapted to charge a said constant current battery until that the voltage at its terminals reaches a limit value, then at constant voltage and equal to said limit value until the charging current becomes lower than a threshold value; a device for monitoring the charging of said battery; and a treatment device data configured or programmed to cooperate with said charger and with said monitoring device to implement such a method.
  • Yet another object of the invention is a battery management system comprising such apparatus.
  • FIG. 2 the succession of steps of a method for evaluating the state of health of a battery according to one embodiment of the invention
  • FIGS. 3A, 3B and 3C the interpolation of the time evolution of the charging current during the constant voltage charging step by a negative exponential function for three battery technologies with different states of aging;
  • FIGS. 4A, 4B and 4C the correlation between the decay parameter of said negative exponential function and the loss of capacity for the said three aforementioned battery technologies
  • FIG. 6 a graph illustrating the correlation between the constant voltage recharging relative energy and the capacitance loss for an aging lithium battery
  • FIG. 7 is a block diagram of an apparatus for evaluating the state of health of a battery according to one embodiment of the invention, integrated in a battery management system;
  • FIG. 8 curves illustrating the temporal evolution of the charging current during the charging of NMC batteries at different stages of aging.
  • Lithium batteries are generally charged according to a so-called constant current mode - constant voltage (CC-CV, for the English expression "Constant Current - Constant Voltage”).
  • CC-CV constant current mode - constant voltage
  • step CV constant voltage charging
  • the inventors are able to propose a probable explanation of the fact - found experimentally - that the observation of the constant voltage charging step provides sufficient information to evaluate the state of health of a battery.
  • SEI Solid Electrolyte Interface
  • the major mechanisms responsible for the degradation of the capacity of a lithium battery over time is the formation of a solid electrolyte interface (SEI, for "Solid Electrolyte Interface" which is an obstacle to the intercalation of lithium ions in the material of the anode and the cathode.
  • SEI Solid Electrolyte Interface
  • this intercalation occurs essentially during the constant voltage step of the recharge.
  • FIG. 2 illustrates the succession of steps of a method according to the invention
  • the determination of at least one SOH indicative of the state of health of the battery (for example, its capacity related to the capacity of said battery in new condition, or its advertised capacity) from said or at least one said parameter.
  • This last step is made possible by a prior calibration step in which a relationship is established between said or each parameter and the state of health of the battery.
  • Calibration requires a reference method for determining the state of health of the battery. This method can be, for example, a capacity measurement performed during a complete discharge of the battery (measurement of "discharged capacity").
  • the recharging is carried out at a controlled temperature (for example 25 ° C) or at least known (in this latter case, the calibration must allow to take into account the effect of temperature on the relationship existing between the parameter characterizing the step of charging at constant voltage and the state of health).
  • a controlled temperature for example 25 ° C
  • the calibration must allow to take into account the effect of temperature on the relationship existing between the parameter characterizing the step of charging at constant voltage and the state of health).
  • the parameter characterizing the step of charging at constant voltage is the decay parameter B of a negative exponential function
  • FIGS. 3A-3C make it possible to check the quality of such an interpolation, the continuous curves representing the interpolation function being practically superimposed on the measurement points.
  • the three curves presented in these figures relate to three lithium-nickel cobalt aluminum battery technologies (NCA, Fig. 3A), nickel cobalt nickel (NMC, Fig. 3B), lithium manganese oxide (LMO, Fig. 3C) - each being in a distinct state of health.
  • the parameter B can be connected to the loss of capacity of the battery, expressing its state of health, by a linear function, as illustrated by FIGS.
  • the parameter B proves to be a much better indicator of the state of health of a battery than the time U / 2 necessary to divide the charging current by 2, used for example in the document US 2001/0022518 mentioned above. Indeed, as mentioned above, the relationship between U / 2 and the state of health of the battery is neither linear nor unambiguous (two different health states can be associated with the same value of ti / 2 ).
  • the relationship between the characteristic parameter of the step of charging at constant voltage need not necessarily be expressed by a linear or nonlinear mathematical function; it can also be, for example, a correspondence table.
  • the curve CUO corresponds to the new battery, the curve CU1 to the battery after a storage of 770 days at maximum load and at a temperature of 45 ° C, the curve CU2 to the battery after a storage of 920 days in the same conditions and the curve CU3 to the battery after a storage of 1060 days, always under the same conditions.
  • the curves have been temporally offset to facilitate their identification. Note that, in the case of the new battery (CUO curve), the decay of the charging current during the CV phase is well described by an exponential law characterized by a certain value of the decay parameter B.
  • an advanced state of aging can be identified by detecting the appearance of an inflection in the curve l (t) during the CV phase of the refill. This detection can be performed by simple observation of the curve or, preferably, automatically, by calculating a parameter representative of the deviation of said curve of a decreasing exponential and comparing the value of this parameter with a value of reference.
  • This parameter can be, for example, a quadratic difference between the measured current and its interpolation by an exponential function.
  • FIG. 7 illustrates the block diagram of an apparatus according to one embodiment of the invention, integrated in a BMS battery management system, for example in an electric or hybrid vehicle.
  • the device includes a conventional constant current type CHG charger - constant voltage, charging a BATT lithium battery; a DSC load monitoring device and a data processing device, or processor, PR.
  • the DSC monitoring device comprises, for example, a current sensor, for measuring the load current I, and a voltage sensor, for measuring the voltage U at the terminals of the battery BATT. This device can be integrated with the CHG charger or the BATT battery.
  • the data processing device PR (preferably a digital processor or an electronic card comprising such a processor) is programmed and / or configured to receive the measurements from the load monitoring device and use it to calculate a SOH indicator the state of health of the battery as described above.
  • the processor PR can also control the charger CHG, for example by controlling the transition between the first constant-current charging step and the second constant-voltage charging step, as well as stopping the charge when l (t) reaches its peak.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
EP14780469.4A 2013-10-01 2014-10-01 Procede et appareil d'evaluation de l'etat de sante d'une batterie lithium Pending EP3052953A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1359508A FR3011393B1 (fr) 2013-10-01 2013-10-01 Procede et appareil d'evaluation de l'etat de sante d'une batterie lithium
PCT/EP2014/071065 WO2015049300A1 (fr) 2013-10-01 2014-10-01 Procede et appareil d'evaluation de l'etat de sante d'une batterie lithium

Publications (1)

Publication Number Publication Date
EP3052953A1 true EP3052953A1 (fr) 2016-08-10

Family

ID=49667446

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14780469.4A Pending EP3052953A1 (fr) 2013-10-01 2014-10-01 Procede et appareil d'evaluation de l'etat de sante d'une batterie lithium

Country Status (5)

Country Link
US (1) US10036781B2 (ja)
EP (1) EP3052953A1 (ja)
JP (1) JP6502331B2 (ja)
FR (1) FR3011393B1 (ja)
WO (1) WO2015049300A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3127582A1 (fr) * 2021-09-30 2023-03-31 Saft Procédé d’estimation de l’état de santé d’un élément électrochimique

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101526414B1 (ko) * 2013-12-05 2015-06-05 현대자동차 주식회사 전기 자동차용 배터리의 열화도 판정 장치 및 방법
JP6128014B2 (ja) * 2014-02-27 2017-05-17 トヨタ自動車株式会社 車両用充電制御装置
JP6625345B2 (ja) * 2015-05-14 2019-12-25 日置電機株式会社 電気二重層キャパシタの電圧保持率特定装置および電気二重層キャパシタの電圧保持率特定方法
EP3327895B1 (en) * 2015-07-21 2022-03-30 Murata Manufacturing Co., Ltd. Charging method, battery device, charging device, degradation diagnosis method, battery pack, electric vehicle, and electricity storage device
FR3059106B1 (fr) * 2016-11-22 2018-12-07 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de determination de l'etat de sante d'une cellule de batterie
FR3060132B1 (fr) * 2016-12-14 2021-01-01 Commissariat Energie Atomique Procede de determination de l'etat de sante d'une batterie nickel chlorure de sodium
CN110709717B (zh) * 2017-04-17 2022-01-25 密歇根大学董事会 基于松弛电压估计移动设备的电池健康的方法
CN107803350B (zh) * 2017-10-31 2018-10-02 深圳市恒翼能科技有限公司 一种锂电池自动分选的方法、存储介质及电池分选装置
FR3074918B1 (fr) 2017-12-08 2020-10-16 Commissariat Energie Atomique Procede de determination de l'etat de sante d'une batterie et dispositif mettant en œuvre ledit procede
CN108196200B (zh) * 2018-01-28 2020-08-28 复旦大学 一种锂电池健康和荷电状态的联合模拟评估方法
JP6831807B2 (ja) * 2018-03-12 2021-02-17 古河電気工業株式会社 データ処理装置および診断方法
EP3591413B1 (en) * 2018-07-03 2023-08-30 Electricité de France Method for evaluating an electric battery state of health
FR3087392B1 (fr) 2018-10-23 2020-10-23 Psa Automobiles Sa Procede de determination de l’etat de charge et de l’etat de vieillissement d’une batterie electrochimique en fonction d’une cartographie de la tension a circuit ouvert
FR3087393B1 (fr) 2018-10-23 2020-10-23 Psa Automobiles Sa Procede de determination de l’etat de vieillissement d’une batterie electrochimique
KR102660502B1 (ko) * 2019-04-18 2024-04-24 현대모비스 주식회사 자동차용 배터리 관리 방법 및 장치
WO2021006860A1 (en) * 2019-07-05 2021-01-14 General Electric Company Method and apparatus for estimating a state of health of a battery
CN110703112A (zh) * 2019-10-14 2020-01-17 重庆大学 一种基于局部充电数据的电池组状态的在线估计方法
JP7191873B2 (ja) * 2020-01-17 2022-12-19 株式会社東芝 充放電制御装置、充放電システム、充放電制御方法及び充放電制御プログラム
FR3106415B1 (fr) 2020-01-21 2022-04-01 Ifp Energies Now Procédés de diagnostic rapide et hors ligne d’accumulateurs et dispositifs associés
CN113447827A (zh) * 2020-03-24 2021-09-28 新普科技股份有限公司 电池老化评估方法
CN111965559B (zh) * 2020-08-17 2023-06-16 西安理工大学 一种锂离子电池soh在线估计方法
CN111983477B (zh) * 2020-08-24 2022-09-02 哈尔滨理工大学 一种基于阻抗谱模型的锂离子电池安全度估算方法及估算装置
GB2600757A (en) * 2020-11-09 2022-05-11 Horiba Mira Ltd Battery performance optimisation
KR102632198B1 (ko) * 2020-11-30 2024-02-01 중앙대학교 산학협력단 배터리 팩의 압력 변이 예측 및 관리를 위한 장치 및 방법
US11656291B2 (en) * 2021-02-08 2023-05-23 Hong Kong Applied Science and Technology Research Institute Company Limited Fast screening method for used batteries using constant-current impulse ratio (CCIR) calibration
US20220252670A1 (en) * 2021-02-08 2022-08-11 Hong Kong Applied Science and Technology Research Institute Company Limited Fast Screening of Rechargeable Batteries Using Sectional Constant-Current Impulse Ratio (SCCIR) Calibration with Constant-Current Followed by Constant-Voltage Charging
CN114325445B (zh) * 2021-11-22 2023-12-22 天津赛德美新能源科技有限公司 一种基于区域频率的锂离子电池健康状态快速评估方法
KR102674052B1 (ko) * 2021-11-30 2024-06-11 주식회사 이쓰리 충전전압을 자동으로 선택하여 배터리를 충전할 수 있는 충전기
CN115060320B (zh) * 2022-06-20 2023-09-29 武汉涛初科技有限公司 一种基于机器视觉的动力锂电池生产质量在线监测分析系统
FR3144303A1 (fr) * 2022-12-21 2024-06-28 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procédé de détermination du type de chimie d’une batterie électrique rechargeable.

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3460567B2 (ja) * 1998-01-19 2003-10-27 松下電器産業株式会社 二次電池の劣化検出方法及び劣化検出機能を具備した充電器
JP3370047B2 (ja) * 2000-04-03 2003-01-27 日本電信電話株式会社 リチウムイオン電池の容量推定方法、劣化判定方法および劣化判定装置ならびにリチウムイオン電池パック
US6586940B2 (en) * 2000-03-13 2003-07-01 Nippon Telegraph And Telephone Corporation Capacity estimation method, degradation estimation method and degradation estimation apparatus for lithium-ion cells, and lithium-ion batteries
JP4564999B2 (ja) * 2007-11-21 2010-10-20 株式会社日本自動車部品総合研究所 車載二次電池の内部状態検出装置
KR100965743B1 (ko) * 2008-04-25 2010-06-24 삼성에스디아이 주식회사 이차전지 전류차단방법 및 이를 이용한 배터리 팩
JP5541112B2 (ja) * 2010-11-22 2014-07-09 ミツミ電機株式会社 電池監視装置、及び電池監視方法
JP5817157B2 (ja) * 2011-03-16 2015-11-18 株式会社Gsユアサ 二次電池の状態判定方法、二次電池システム
JP2012247339A (ja) * 2011-05-30 2012-12-13 Renesas Electronics Corp 半導体集積回路およびその動作方法
JP6044114B2 (ja) * 2011-06-03 2016-12-14 株式会社Gsユアサ 状態判定装置、蓄電装置、状態判定方法
FR2977678A1 (fr) * 2011-07-07 2013-01-11 Commissariat Energie Atomique Procede de diagnostic d'une batterie
TWI426288B (zh) * 2011-12-26 2014-02-11 Ind Tech Res Inst 電池老化估測方法
WO2013128635A1 (ja) * 2012-03-02 2013-09-06 株式会社 日立製作所 蓄電池分析システム、蓄電池分析方法、および蓄電池分析プログラム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3127582A1 (fr) * 2021-09-30 2023-03-31 Saft Procédé d’estimation de l’état de santé d’un élément électrochimique

Also Published As

Publication number Publication date
JP6502331B2 (ja) 2019-04-17
US10036781B2 (en) 2018-07-31
FR3011393B1 (fr) 2017-02-10
JP2016539320A (ja) 2016-12-15
WO2015049300A1 (fr) 2015-04-09
FR3011393A1 (fr) 2015-04-03
US20160245876A1 (en) 2016-08-25

Similar Documents

Publication Publication Date Title
WO2015049300A1 (fr) Procede et appareil d'evaluation de l'etat de sante d'une batterie lithium
EP2634591B1 (fr) Méthode et système d'estimation de l'état de charge d'un élément électrochimique au lithium comprenant une électrode positive de type phosphate lithié
EP3028054B1 (fr) Estimation de l'état de vieillissement d'une batterie électrique
EP2944970B1 (fr) Procédé d'estimation de l'état de santé d'une cellule de batterie
EP3044601B1 (fr) Procede, dispositif et systeme d'estimation de l'etat de charge d'une batterie
EP2397863B1 (fr) Systeme de surveillance de l'etat d'une batterie
EP3443370B1 (fr) Procede de determination de la valeur de parametres relatifs a l'etat d'un accumulateur d'une batterie, batterie et systeme de gestion electronique d'une batterie
EP3017497B1 (fr) Méthode et système de gestion de la charge d'une batterie rechargeable comprenant plusieurs branches d'éléments électrochimiques connectes en parallèle
EP3080625B1 (fr) Procede d'estimation de l'etat de sante d'une batterie
WO2020064959A1 (fr) Procede et dispositif de mesure en temps reel et in situ des donnees thermodynamiques d'une batterie (enthalpie et entropie)
WO2012114036A1 (fr) Dispositif embarque d'estimation du vieillissement d'une batterie d'alimentation de vehicule automobile et procede correspondant
EP4038399A1 (fr) Procédé de détermination de l'état de santé d'une batterie lithium-ion
FR3107597A1 (fr) Procédé d’estimation de l’état de santé énergétique d’une batterie
EP3072179B1 (fr) Procede de recalibration in-situ d'une electrode de comparaison integree au sein d'un systeme electrochimique
EP3678255B1 (fr) Procédé d'étalonnage d'une famille d'éléments de batterie lithium-ion, méthode de charge, produit programme d'ordinateur et dispositif de charge associés
FR3044424A1 (fr) Dispositif portatif de diagnostic d'une batterie de traction de type li-ion et methode mettant en œuvre un tel dispositif
FR3044773A1 (fr) Procede d'evaluation de l'etat de sante d'une batterie electrochimique
FR2965361A1 (fr) Procede d'estimation de l'etat de sante d'une batterie d'un vehicule et vehicule mettant en oeuvre un tel procede
FR2946150A1 (fr) Systeme et procede de determination de la perte de capacite d'une batterie.
WO2017108536A1 (fr) Procede d'evaluation de l'etat de charge d'une batterie
FR3045218A1 (fr) Determination de parametres d'un modele dynamique pour une cellule electrochimique de batterie
EP4127749A1 (fr) Procede de determination en temps reel de la duree de vie d'un element electrochimique d'une batterie
FR3021461A1 (fr) Procede et dispositif de diagnostic d'aptitude a la regeneration d'une batterie
FR3098921A1 (fr) Estimation du SoH d’un élément électrochimique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20160331

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210611

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: B60L 58/16 20190101ALI20231206BHEP

Ipc: G01R 31/392 20190101ALI20231206BHEP

Ipc: G01R 31/378 20190101ALI20231206BHEP

Ipc: G01R 31/367 20190101ALI20231206BHEP

Ipc: H02J 7/00 20060101ALI20231206BHEP

Ipc: G01R 31/36 20060101AFI20231206BHEP

INTG Intention to grant announced

Effective date: 20240110