EP3052953A1 - Method and apparatus for evaluating the state of health of a lithium battery - Google Patents

Method and apparatus for evaluating the state of health of a lithium battery

Info

Publication number
EP3052953A1
EP3052953A1 EP14780469.4A EP14780469A EP3052953A1 EP 3052953 A1 EP3052953 A1 EP 3052953A1 EP 14780469 A EP14780469 A EP 14780469A EP 3052953 A1 EP3052953 A1 EP 3052953A1
Authority
EP
European Patent Office
Prior art keywords
battery
health
state
charging
constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP14780469.4A
Other languages
German (de)
French (fr)
Inventor
Jean-Michel VINASSA
Akram EDDAHECH
Olivier BRIAT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Universite de Bordeaux
Institut Polytechnique de Bordeaux
Original Assignee
Centre National de la Recherche Scientifique CNRS
Universite de Bordeaux
Institut Polytechnique de Bordeaux
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Universite de Bordeaux, Institut Polytechnique de Bordeaux filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP3052953A1 publication Critical patent/EP3052953A1/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/378Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] specially adapted for the type of battery or accumulator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/005Detection of state of health [SOH]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0069Charging or discharging for charge maintenance, battery initiation or rejuvenation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the invention relates to a method for assessing the "state of health" of a lithium battery, and in particular the loss of capacity caused by the aging of such a battery.
  • the invention also relates to an apparatus for implementing such a method and to a battery management system incorporating such an apparatus.
  • the invention applies in particular, but not exclusively, to the field of batteries for powering electric or hybrid land vehicles.
  • - are batteries with the highest energy density and the highest specific energy. It is therefore the technology of choice for powering electric or hybrid vehicles, but also many portable devices.
  • these batteries have a deterioration of their performance - and in particular their capacity - over time, even during periods of non-use (so-called “calendar aging”). Therefore, the State of Health (or SOH) estimate of these batteries - quantified for example by the current reported capacity is either its displayed value ("commercial”) or its measured value. in new condition - is one of the most important tasks of battery management systems ("Battery Management
  • Electrochemical impedance spectroscopy is a very useful technique for studying battery aging by monitoring the parameters of an impedance model. But it is complex to implement, expensive and does not allow access to capacity. Moreover, it can not be embedded in a BMS. See about it:
  • Kalman filtering Other techniques are based on the identification of the parameters of a model, for example by Kalman filtering. See, for example:
  • Document FR 2 977 678 discloses a similar method, in which the state of health is estimated from the time required for the current to cross two thresholds - arbitrarily defined - during said constant voltage charging phase.
  • the invention aims to overcome the aforementioned drawbacks and to provide a method for evaluating the state of health of a lithium battery that is both simple to implement, reliable and accurate without lengthening the recharging phase nor cause additional aging.
  • this goal is achieved by estimating the state of health of a battery from the simple observation of the constant voltage step of its recharge.
  • Charging refers to the operation of charging in a complete or near-complete manner (for example, 95% or more of available capacity) after a period of use, as opposed to partial “charges” that may occur in use (for example, in the case of an electric vehicle, during regenerative braking).
  • An object of the invention is therefore a method for evaluating the state of health of a lithium battery comprising:
  • the method may comprise in particular the acquisition of a plurality of measurements of the charging current during said second constant voltage charging step.
  • said step c) may comprise the following substeps:
  • Said sub-step c2 may be implemented by means of a linear function connecting said decay constant B to a loss of capacity of said battery.
  • Said battery can be a lithium-ion battery.
  • said battery can be a lithium-ion battery nickel, manganese and cobalt (NMC).
  • NMC nickel, manganese and cobalt
  • the method may also include:
  • Another object of the invention is an apparatus for evaluating the state of health of a lithium battery comprising: a charger of constant current type - constant voltage, adapted to charge a said constant current battery until that the voltage at its terminals reaches a limit value, then at constant voltage and equal to said limit value until the charging current becomes lower than a threshold value; a device for monitoring the charging of said battery; and a treatment device data configured or programmed to cooperate with said charger and with said monitoring device to implement such a method.
  • Yet another object of the invention is a battery management system comprising such apparatus.
  • FIG. 2 the succession of steps of a method for evaluating the state of health of a battery according to one embodiment of the invention
  • FIGS. 3A, 3B and 3C the interpolation of the time evolution of the charging current during the constant voltage charging step by a negative exponential function for three battery technologies with different states of aging;
  • FIGS. 4A, 4B and 4C the correlation between the decay parameter of said negative exponential function and the loss of capacity for the said three aforementioned battery technologies
  • FIG. 6 a graph illustrating the correlation between the constant voltage recharging relative energy and the capacitance loss for an aging lithium battery
  • FIG. 7 is a block diagram of an apparatus for evaluating the state of health of a battery according to one embodiment of the invention, integrated in a battery management system;
  • FIG. 8 curves illustrating the temporal evolution of the charging current during the charging of NMC batteries at different stages of aging.
  • Lithium batteries are generally charged according to a so-called constant current mode - constant voltage (CC-CV, for the English expression "Constant Current - Constant Voltage”).
  • CC-CV constant current mode - constant voltage
  • step CV constant voltage charging
  • the inventors are able to propose a probable explanation of the fact - found experimentally - that the observation of the constant voltage charging step provides sufficient information to evaluate the state of health of a battery.
  • SEI Solid Electrolyte Interface
  • the major mechanisms responsible for the degradation of the capacity of a lithium battery over time is the formation of a solid electrolyte interface (SEI, for "Solid Electrolyte Interface" which is an obstacle to the intercalation of lithium ions in the material of the anode and the cathode.
  • SEI Solid Electrolyte Interface
  • this intercalation occurs essentially during the constant voltage step of the recharge.
  • FIG. 2 illustrates the succession of steps of a method according to the invention
  • the determination of at least one SOH indicative of the state of health of the battery (for example, its capacity related to the capacity of said battery in new condition, or its advertised capacity) from said or at least one said parameter.
  • This last step is made possible by a prior calibration step in which a relationship is established between said or each parameter and the state of health of the battery.
  • Calibration requires a reference method for determining the state of health of the battery. This method can be, for example, a capacity measurement performed during a complete discharge of the battery (measurement of "discharged capacity").
  • the recharging is carried out at a controlled temperature (for example 25 ° C) or at least known (in this latter case, the calibration must allow to take into account the effect of temperature on the relationship existing between the parameter characterizing the step of charging at constant voltage and the state of health).
  • a controlled temperature for example 25 ° C
  • the calibration must allow to take into account the effect of temperature on the relationship existing between the parameter characterizing the step of charging at constant voltage and the state of health).
  • the parameter characterizing the step of charging at constant voltage is the decay parameter B of a negative exponential function
  • FIGS. 3A-3C make it possible to check the quality of such an interpolation, the continuous curves representing the interpolation function being practically superimposed on the measurement points.
  • the three curves presented in these figures relate to three lithium-nickel cobalt aluminum battery technologies (NCA, Fig. 3A), nickel cobalt nickel (NMC, Fig. 3B), lithium manganese oxide (LMO, Fig. 3C) - each being in a distinct state of health.
  • the parameter B can be connected to the loss of capacity of the battery, expressing its state of health, by a linear function, as illustrated by FIGS.
  • the parameter B proves to be a much better indicator of the state of health of a battery than the time U / 2 necessary to divide the charging current by 2, used for example in the document US 2001/0022518 mentioned above. Indeed, as mentioned above, the relationship between U / 2 and the state of health of the battery is neither linear nor unambiguous (two different health states can be associated with the same value of ti / 2 ).
  • the relationship between the characteristic parameter of the step of charging at constant voltage need not necessarily be expressed by a linear or nonlinear mathematical function; it can also be, for example, a correspondence table.
  • the curve CUO corresponds to the new battery, the curve CU1 to the battery after a storage of 770 days at maximum load and at a temperature of 45 ° C, the curve CU2 to the battery after a storage of 920 days in the same conditions and the curve CU3 to the battery after a storage of 1060 days, always under the same conditions.
  • the curves have been temporally offset to facilitate their identification. Note that, in the case of the new battery (CUO curve), the decay of the charging current during the CV phase is well described by an exponential law characterized by a certain value of the decay parameter B.
  • an advanced state of aging can be identified by detecting the appearance of an inflection in the curve l (t) during the CV phase of the refill. This detection can be performed by simple observation of the curve or, preferably, automatically, by calculating a parameter representative of the deviation of said curve of a decreasing exponential and comparing the value of this parameter with a value of reference.
  • This parameter can be, for example, a quadratic difference between the measured current and its interpolation by an exponential function.
  • FIG. 7 illustrates the block diagram of an apparatus according to one embodiment of the invention, integrated in a BMS battery management system, for example in an electric or hybrid vehicle.
  • the device includes a conventional constant current type CHG charger - constant voltage, charging a BATT lithium battery; a DSC load monitoring device and a data processing device, or processor, PR.
  • the DSC monitoring device comprises, for example, a current sensor, for measuring the load current I, and a voltage sensor, for measuring the voltage U at the terminals of the battery BATT. This device can be integrated with the CHG charger or the BATT battery.
  • the data processing device PR (preferably a digital processor or an electronic card comprising such a processor) is programmed and / or configured to receive the measurements from the load monitoring device and use it to calculate a SOH indicator the state of health of the battery as described above.
  • the processor PR can also control the charger CHG, for example by controlling the transition between the first constant-current charging step and the second constant-voltage charging step, as well as stopping the charge when l (t) reaches its peak.

Abstract

Method for evaluation of the state of health of a lithium battery comprising: • a) a first step of recharging said battery at constant current, until the voltage (U) at its terminals reaches a limit value (Ucv); then • b) a second step of recharging said battery at constant voltage equal to said limit value, until the charging current (I) drops below a threshold value (I min), a plurality of charging current measurements being acquired during said second recharging step; and • c) a step of estimating the state of health of said battery using at least one characteristic parameter of said second step of recharging at constant voltage, such as the parameter describing the decrease of an exponential function interpolating the charging current measurements, the energy supplied to said battery during said second step of recharging at constant voltage or the duration of said charging step at constant voltage. The invention also relates to an apparatus for implementing such a method and a battery management system comprising such an apparatus.

Description

PROCEDE ET APPAREIL D'EVALUATION DE L'ETAT DE SANTE D'UNE  METHOD AND APPARATUS FOR ASSESSING THE HEALTH STATUS OF A
BATTERIE LITHIUM  LITHIUM BATTERY
L'invention porte sur un procédé pour l'évaluation de « état de santé » d'une batterie lithium, et notamment de la perte de capacité provoquée par le vieillissement d'une telle batterie.  The invention relates to a method for assessing the "state of health" of a lithium battery, and in particular the loss of capacity caused by the aging of such a battery.
L'invention porte également sur un appareil pour la mise en œuvre d'un tel procédé et sur un système de gestion de batterie intégrant un tel appareil.  The invention also relates to an apparatus for implementing such a method and to a battery management system incorporating such an apparatus.
L'invention s'applique notamment, mais pas exclusivement, au domaine des batteries pour l'alimentation de véhicules terrestres électriques ou hybrides.  The invention applies in particular, but not exclusively, to the field of batteries for powering electric or hybrid land vehicles.
Les batteries ou accumulateurs lithium - dans leurs différentes variantes telles que les batteries « lithium-ion », « lithium-ion- polymère », « lithium-métal-polymère » etc. - sont les batteries présentant la plus grande densité d'énergie et la plus grande énergie spécifique. Il s'agit donc de la technologie de choix pour l'alimentation des véhicules électriques ou hybrides, mais également de nombreux dispositifs portables. Cependant, il est connu que ces batteries présentent une dégradation de leurs performances - et notamment de leur capacité - au cours du temps, et cela même pendant les périodes de non utilisation (on parle alors de « vieillissement calendaire »). Par conséquent, l'estimation de l'état de santé (« State Of Health », ou SOH) de ces batteries - quantifié par exemple par la capacité actuelle rapportée soit à sa valeur affichée (« commerciale »), soit à sa valeur mesurée à l'état neuf - constitue une des tâches les plus importantes des systèmes de gestion des batteries (« Battery Management Lithium batteries or accumulators - in their different variants such as "lithium-ion", "lithium-ion-polymer", "lithium-metal-polymer" etc. batteries. - are batteries with the highest energy density and the highest specific energy. It is therefore the technology of choice for powering electric or hybrid vehicles, but also many portable devices. However, it is known that these batteries have a deterioration of their performance - and in particular their capacity - over time, even during periods of non-use (so-called "calendar aging"). Therefore, the State of Health (or SOH) estimate of these batteries - quantified for example by the current reported capacity is either its displayed value ("commercial") or its measured value. in new condition - is one of the most important tasks of battery management systems ("Battery Management
System », BMS) présents dans tous les véhicules électriques ou hybrides. System ", BMS) present in all electric or hybrid vehicles.
Cette tâche n'est pas aisée. Plusieurs techniques ont été développées pour l'accomplir, mais aucune ne donne pleine satisfaction.  This task is not easy. Several techniques have been developed to accomplish it, but none gives full satisfaction.
La spectroscopie d'impédance électrochimique est une technique très utile pour étudier le vieillissement des batteries au travers du suivi des paramètres d'un modèle d'impédance. Mais elle est complexe à mettre en œuvre, coûteuse et ne permet pas d'accéder à la capacité. De plus, elle ne peut pas être embarquée au sein d'un BMS. Voir à ce propos : Electrochemical impedance spectroscopy is a very useful technique for studying battery aging by monitoring the parameters of an impedance model. But it is complex to implement, expensive and does not allow access to capacity. Moreover, it can not be embedded in a BMS. See about it:
T. Hang, D. Mukoyama, H. Nara, N. Takami, T. Momma et T. Osaka, « Electrochemical impédance spectroscopy analysis for lithium-ion battery using Li4Ti5012 anode », Journal of Power Sources, vol. 222, pp. 442-447, 2013 ; et  T. Hang, D. Mukoyama, H. Nara, N. Takami, T. Momma and T. Osaka, "Electrochemical Impedance Spectroscopy Analysis for Lithium-ion Battery Using Li4Ti5012 Anode," Journal of Power Sources, vol. 222, pp. 442-447, 2013; and
- A. Eddahech, O. Briat, H. Henry, J.-Y. Delétage, E. Woirgard et J.-M. Vinassa, « Aging monitoring of lithium-ion cell during power cycling tests », Microelectronics Reliability Journal, vol. 51 , N ° 9-1 1 , pp. 1968- 1971 , 201 1 .  - A. Eddahech, O. Briat, H. Henry, Delétage, J.-Y., E. Woirgard and J.-M. Vinassa, "Aging monitoring of lithium-ion cell during power cycling tests", Microelectronics Reliability Journal, vol. . 51, No. 9-1, pp. 1968- 1971, 201 1.
D'autres méthodes, mieux adaptées à une utilisation en ligne, exploitent les techniques de l'intelligence artificielle, telles que les réseaux de neurones ou la logique floue. Voir par exemple W.X. Shen, C.C. Chan, E.W.C. Other methods, better adapted to online use, exploit the techniques of artificial intelligence, such as neural networks or fuzzy logic. See, for example, W.X. Shen, C.C. Chan, E.W.C.
Lo et K.T. Chau, « A new battery available capacity indicator for electric vehicles using neural network », Energy Conversion and Management, vol.Lo and K.T. Chau, "Energy Conversion and Management," vol.
43, no. 6, pp. 817-826, 2002. 43, no. 6, pp. 817-826, 2002.
Ces méthodes mettent en œuvre des algorithmes complexes, qui nécessitent une puissance de calcul importante. En outre, elles nécessitent une longue étape d'apprentissage.  These methods implement complex algorithms that require significant computing power. In addition, they require a long learning step.
D'autres techniques sont basées sur l'identification des paramètres d'un modèle, par exemple par filtrage de Kalman. Voir, par exemple :  Other techniques are based on the identification of the parameters of a model, for example by Kalman filtering. See, for example:
S. Wang, M. Verbrugge, J.S. Wang et P. Liu, « Multi- parameter battery state estimator based on the adaptive and direct solution of the governing differential équations », Journal of Power Sources, vol. 196, pp.8735-8741 , 201 1 ; et  S. Wang, M. Verbrugge, J. S. Wang and P. Liu, "Multi-parameter battery state estimator based on the adaptive and direct solution of the governing differential equations", Journal of Power Sources, vol. 196, pp. 875-8741, 2011; and
A. Eddahech, O. Briat et J.M. Vinassa, « Real-Time SOC and SOH Estimation for EV Li-lon Cell Using Online Parameters Identification », dans Proc. IEEE Energy Conversion Congress and Exposition conf., 2012, Raleigh, North Carolina, Etats-Unis. Ces techniques utilisent des algorithmes d'identification complexes, nécessitant un traitement numérique lourd. En outre, leur mise en œuvre présuppose qu'un modèle fin et précis de la batterie soit disponible. A. Eddahech, O. Briat and JM Vinassa, "Real-Time SOC and SOH Estimation for EV Li-ion Cell Using Online Parameters Identification," in Proc. IEEE Energy Conversion Congress and Exposition, 2012, Raleigh, North Carolina, USA. These techniques use complex identification algorithms, requiring heavy digital processing. In addition, their implementation presupposes that a fine and precise model of the battery is available.
Le document US 2001 /0022518 enseigne un procédé d'estimation de l'état de santé d'une batterie à partir du temps U/2 nécessaire pour que le courant de charge de ladite batterie soit divisé par deux au cours de la phase à tension constante d'une recharge du type « courant constant - tension constante ». Ce document montre, toutefois, que la relation entre U/2 et l'état de santé n'est pas univoque.  The document US 2001/0022518 teaches a method for estimating the state of health of a battery from the time U / 2 necessary for the charge current of said battery to be halved during the voltage phase. constant of a recharge of the type "constant current - constant voltage". This document shows, however, that the relationship between U / 2 and health status is not univocal.
Le document FR 2 977 678 divulgue un procédé similaire, dans lequel l'état de santé est estimé à partir du temps nécessaire pour que le courant franchisse deux seuils - définis de manière arbitraire - au cours de ladite phase de charge à tension constante.  Document FR 2 977 678 discloses a similar method, in which the state of health is estimated from the time required for the current to cross two thresholds - arbitrarily defined - during said constant voltage charging phase.
L'invention vise à surmonter les inconvénients précités et à procurer une méthode d'évaluation de l'état de santé d'une batterie lithium qui soit à la fois simple à mettre en œuvre, fiable et précise sans pour autant rallonger la phase de recharge ni provoquer de vieillissement supplémentaire.  The invention aims to overcome the aforementioned drawbacks and to provide a method for evaluating the state of health of a lithium battery that is both simple to implement, reliable and accurate without lengthening the recharging phase nor cause additional aging.
Conformément à l'invention, ce but est atteint en estimant l'état de santé d'une batterie à partir de la simple observation de l'étape à tension constante de sa recharge. On entend par « recharge » l'opération consistant à charger de manière complète ou quasi-complète (par exemple, 95% ou plus de la capacité disponible) après une période d'utilisation, par opposition à des « charges » partielles pouvant se produire en cours d'utilisation (par exemple, dans le cas d'un véhicule électrique, lors d'un freinage à récupération d'énergie).  According to the invention, this goal is achieved by estimating the state of health of a battery from the simple observation of the constant voltage step of its recharge. "Charging" refers to the operation of charging in a complete or near-complete manner (for example, 95% or more of available capacity) after a period of use, as opposed to partial "charges" that may occur in use (for example, in the case of an electric vehicle, during regenerative braking).
Un objet de l'invention est donc un procédé d'évaluation de l'état de santé d'une batterie lithium comprenant :  An object of the invention is therefore a method for evaluating the state of health of a lithium battery comprising:
a) une première étape de recharge de ladite batterie à courant constant, jusqu'à ce que la tension à ses bornes atteigne une valeur limite ; ensuite b) une deuxième étape de recharge de ladite batterie à tension constante et égale à ladite valeur limite, jusqu'à ce que le courant de charge devienne inférieur à une valeur de seuil ; et a) a first step of recharging said constant current battery, until the voltage at its terminals reaches a limit value; then b) a second charging step of said constant voltage battery and equal to said limit value, until the charging current becomes lower than a threshold value; and
c) une étape d'estimation de l'état de santé de ladite batterie à partir desdites mesures du courant de charge acquises au cours de ladite deuxième étape de recharge à tension constante.  c) a step of estimating the state of health of said battery from said load current measurements acquired during said second constant voltage charging step.
Le procédé peut comprendre en particulier l'acquisition d'une pluralité de mesures du courant de charge au cours de ladite deuxième étape de recharge à tension constante. En outre, ladite étape c) peut comprendre les sous-étapes suivantes :  The method may comprise in particular the acquisition of a plurality of measurements of the charging current during said second constant voltage charging step. In addition, said step c) may comprise the following substeps:
c1 ) estimer la constante de décroissance B d'une fonction exponentielle négative interpolant lesdites mesures du courant de charge ; et c2) estimer ledit état de santé à partir de ladite constante de décroissance B.  c1) estimating the decay constant B of a negative exponential function interpolating said load current measurements; and c2) estimating said state of health from said decay constant B.
Selon des modes de réalisation particuliers de l'invention :  According to particular embodiments of the invention:
Ladite sous-étape c2 peut être mise en œuvre au moyen d'une fonction linéaire reliant ladite constante de décroissance B à une perte de capacité de ladite batterie.  Said sub-step c2 may be implemented by means of a linear function connecting said decay constant B to a loss of capacity of said battery.
Ladite batterie peut être une batterie lithium-ion.  Said battery can be a lithium-ion battery.
- Plus particulièrement, ladite batterie peut être une batterie lithium-ion à nickel, manganèse et cobalt (NMC). Dans ce cas, le procédé peut comprendre également :  - More particularly, said battery can be a lithium-ion battery nickel, manganese and cobalt (NMC). In this case, the method may also include:
d) une étape de détection d'une inflexion dans une courbe représentant lesdites mesures du courant de charge acquises au cours de ladite deuxième étape de recharge à tension constante.  d) a step of detecting an inflection in a curve representing said load current measurements acquired during said second constant voltage charging step.
Un autre objet de l'invention est un appareil d'évaluation de l'état de santé d'une batterie lithium comprenant : un chargeur du type à courant constant - tension constante, adapté pour charger une dite batterie à courant constant jusqu'à ce que la tension à ses bornes atteigne une valeur limite, puis à tension constante et égale à ladite valeur limite jusqu'à ce que le courant de charge devienne inférieur à une valeur de seuil ; un dispositif de surveillance de la recharge de ladite batterie ; et un dispositif de traitement des données configuré ou programmé pour coopérer avec ledit chargeur et avec ledit dispositif de surveillance afin de mettre en œuvre un tel procédé. Another object of the invention is an apparatus for evaluating the state of health of a lithium battery comprising: a charger of constant current type - constant voltage, adapted to charge a said constant current battery until that the voltage at its terminals reaches a limit value, then at constant voltage and equal to said limit value until the charging current becomes lower than a threshold value; a device for monitoring the charging of said battery; and a treatment device data configured or programmed to cooperate with said charger and with said monitoring device to implement such a method.
Encore un autre objet de l'invention est un système de gestion de batterie comprenant un tel appareil.  Yet another object of the invention is a battery management system comprising such apparatus.
D'autres caractéristiques, détails et avantages de l'invention ressortiront à la lecture de la description faite en référence aux dessins annexés donnés à titre d'exemple et qui représentent, respectivement :  Other characteristics, details and advantages of the invention will emerge on reading the description given with reference to the accompanying drawings given by way of example and which represent, respectively:
La figure 1 , l'évolution temporelle de la tension et du courant de charge d'une batterie lithium au cours d'une recharge à courant constant - tension constante ;  Figure 1, the time evolution of the voltage and charging current of a lithium battery during a constant-current charging - constant voltage;
La figure 2, la succession d'étapes d'un procédé d'évaluation de l'état de santé d'une batterie selon un mode de réalisation de l'invention ;  FIG. 2, the succession of steps of a method for evaluating the state of health of a battery according to one embodiment of the invention;
Les figures 3A, 3B et 3C, l'interpolation de l'évolution temporelle du courant de charge au cours de l'étape de recharge à tension constante par une fonction exponentielle négative pour trois technologies de batteries à des états de vieillissement différents ;  FIGS. 3A, 3B and 3C, the interpolation of the time evolution of the charging current during the constant voltage charging step by a negative exponential function for three battery technologies with different states of aging;
Les figures 4A, 4B et 4C, la corrélation entre le paramètre de décroissance de ladite fonction exponentielle négative et la perte de capacité pour les trois dites technologies de batteries précédentes ;  FIGS. 4A, 4B and 4C, the correlation between the decay parameter of said negative exponential function and the loss of capacity for the said three aforementioned battery technologies;
La figure 5, la corrélation entre la capacité déchargée relative et la durée relative de la phase de recharge à tension constante.  Figure 5, the correlation between the relative discharged capacity and the relative duration of the constant voltage charging phase.
La figure 6, un graphique illustrant la corrélation entre l'énergie relative de recharge à tension constante et la perte de capacité pour une batterie lithium soumise à vieillissement ;  FIG. 6, a graph illustrating the correlation between the constant voltage recharging relative energy and the capacitance loss for an aging lithium battery;
La figure 7, un schéma fonctionnel d'un appareil d'évaluation de l'état de santé d'une batterie selon un mode de réalisation de l'invention, intégré à un système de gestion de batterie ; et  FIG. 7 is a block diagram of an apparatus for evaluating the state of health of a battery according to one embodiment of the invention, integrated in a battery management system; and
La figure 8, des courbes illustrant l'évolution temporelle du courant de charge au cours du chargement de batteries NMC à différents stades de vieillissement. Les batteries lithium sont très généralement chargées suivant une modalité dite à courant constant - tension constante (CC-CV, pour l'expression anglaise « Constant Current - Constant Voltage »). Cette modalité, illustrée sur la figure 1 , consiste à réaliser une première phase de recharge au cours de laquelle un courant de charge constant l=lcc est fourni à la batterie, dont la tension U augmente jusqu'à une valeur maximale UCv ; puis à réaliser une deuxième phase de recharge au cours de laquelle la tension U est maintenue constante et égale à Ucv, tandis que le courant I diminue. La recharge se termine lorsque le courant I décroit jusqu'à une valeur minimale lmin<lcc propre à la technologie de la batterie. Les inventeurs se sont rendu compte que l'état de santé d'une batterie peut être évalué de manière fiable à partir d'un ou plusieurs paramètres caractérisant cette deuxième étape de recharge à tension constante (« étape CV »). Ainsi, l'estimation de l'état de santé se fait au cours de la recharge de la batterie - nécessaire pour son utilisation normale - sans besoin d'opérations de mesure dédiées consommatrices en ressources et en temps. FIG. 8, curves illustrating the temporal evolution of the charging current during the charging of NMC batteries at different stages of aging. Lithium batteries are generally charged according to a so-called constant current mode - constant voltage (CC-CV, for the English expression "Constant Current - Constant Voltage"). This modality, illustrated in FIG. 1, consists in carrying out a first recharging phase during which a constant charging current l = 1cc is supplied to the battery, whose voltage U increases to a maximum value U C v; then to carry out a second recharging phase during which the voltage U is kept constant and equal to Ucv, while the current I decreases. The recharge ends when the current I decreases to a minimum value lmin <lcc specific to the technology of the battery. The inventors have realized that the state of health of a battery can be reliably evaluated from one or more parameters characterizing this second step of constant voltage charging ("step CV"). Thus, the estimation of the state of health is done during the recharge of the battery - necessary for its normal use - without the need for dedicated measuring operations consuming resources and time.
Les inventeurs sont en mesure de proposer une explication vraisemblable du fait - constaté expérimentalement - que l'observation de l'étape de recharge à tension constante fournit suffisamment d'information pour évaluer l'état de santé d'une batterie. En effet, un des mécanismes majeurs responsables de la dégradation de la capacité d'une batterie lithium au cours du temps est la formation d'une interface d'électrolyte solide (SEI, pour « Solid Electrolyte Interface ») qui fait obstacle à l'intercalation des ions lithium dans le matériau de l'anode et de la cathode. Or, cette intercalation se produit essentiellement au cours de l'étape à tension constante de la recharge.  The inventors are able to propose a probable explanation of the fact - found experimentally - that the observation of the constant voltage charging step provides sufficient information to evaluate the state of health of a battery. Indeed, one of the major mechanisms responsible for the degradation of the capacity of a lithium battery over time is the formation of a solid electrolyte interface (SEI, for "Solid Electrolyte Interface") which is an obstacle to the intercalation of lithium ions in the material of the anode and the cathode. However, this intercalation occurs essentially during the constant voltage step of the recharge.
La figure 2 illustre la succession d'étapes d'un procédé selon l'invention :  FIG. 2 illustrates the succession of steps of a method according to the invention:
La première étape de recharge à courant constant ;  The first step of constant current charging;
- La deuxième étape de recharge à tension constante ; La mesure, détermination ou estimation d'au moins un paramètre caractéristique de cette deuxième étape de recharge à tension constante ; - The second step of constant voltage charging; Measuring, determining or estimating at least one characteristic parameter of this second step of constant voltage charging;
La détermination d'au moins une grandeur SOH indicative de l'état de santé de la batterie (par exemple, sa capacité rapportée à la capacité de ladite batterie à l'état neuf, ou à sa capacité annoncée) à partir dudit ou d'au moins un dit paramètre. Cette dernière étape est rendue possible par une étape préalable d'étalonnage dans laquelle on établit une relation entre ledit ou chaque paramètre et l'état de santé de la batterie. L'étalonnage nécessite une méthode de référence de détermination de l'état de santé de la batterie. Cette méthode peut être, par exemple, une mesure de capacité réalisée lors d'une décharge complète de la batterie (mesure de « capacité déchargée »).  The determination of at least one SOH indicative of the state of health of the battery (for example, its capacity related to the capacity of said battery in new condition, or its advertised capacity) from said or at least one said parameter. This last step is made possible by a prior calibration step in which a relationship is established between said or each parameter and the state of health of the battery. Calibration requires a reference method for determining the state of health of the battery. This method can be, for example, a capacity measurement performed during a complete discharge of the battery (measurement of "discharged capacity").
Pour que la détermination de l'état de santé de la batterie soit fiable, on suppose que la recharge est effectuée à une température contrôlée (par exemple 25 ° C) ou au moins connue (dans ce derrier cas, l'étalonnage doit permettre de tenir compte de l'effet de la température sur la relation existante entre le paramètre caractérisant l'étape de recharge à tension constante et l'état de santé).  For the determination of the state of health of the battery is reliable, it is supposed that the recharging is carried out at a controlled temperature (for example 25 ° C) or at least known (in this latter case, the calibration must allow to take into account the effect of temperature on the relationship existing between the parameter characterizing the step of charging at constant voltage and the state of health).
Selon un mode de réalisation de l'invention, le paramètre caractérisant l'étape de recharge à tension constante est le paramètre de décroissance B d'une fonction exponentielle négative  According to one embodiment of the invention, the parameter characterizing the step of charging at constant voltage is the decay parameter B of a negative exponential function
l(t)=A-e"Bt+C l (t) = Ae "Bt + C
interpolant l'évolution du courant de charge mesuré I en fonction du temps t (t=0 correspondant au début de l'étape de recharge à tension constante). Les figures 3A - 3C permettent de vérifier la qualité d'une telle interpolation, les courbes continues représentant la fonction d'interpolation étant pratiquement superposées aux points de mesure. Les trois courbes présentées dans ces figures concernent trois technologies de batterie au Lithium - Nickel Cobalt Aluminium (NCA, fig. 3A), Nickel Manganèse Cobalt (NMC, fig. 3B), Lithium Oxyde de Manganèse (LMO, fig. 3C) - chacune étant dans un état de santé distinct. Le paramètre B peut être relié à la perte de capacité de la batterie, exprimant son état de santé, par une fonction linéaire, comme illustré par les figures 4A, 4B et 4C qui correspondent aux trois courbes des figures 3A, 3B et 3C, respectivement. Ces trois exemples ne sont pas limitatifs. Dans tous les cas, le critère de qualité R2 de l'identification par la méthode des moindres carrés est très proche de 1 , ce qui est très satisfaisant. interpolating the evolution of the load current measured I as a function of time t (t = 0 corresponding to the beginning of the step of charging at constant voltage). FIGS. 3A-3C make it possible to check the quality of such an interpolation, the continuous curves representing the interpolation function being practically superimposed on the measurement points. The three curves presented in these figures relate to three lithium-nickel cobalt aluminum battery technologies (NCA, Fig. 3A), nickel cobalt nickel (NMC, Fig. 3B), lithium manganese oxide (LMO, Fig. 3C) - each being in a distinct state of health. The parameter B can be connected to the loss of capacity of the battery, expressing its state of health, by a linear function, as illustrated by FIGS. 4A, 4B and 4C which correspond to the three curves of FIGS. 3A, 3B and 3C respectively . These three examples are not limiting. In any case, the quality criterion R 2 of the least squares identification is very close to 1, which is very satisfactory.
Le paramètre B se révèle être un bien meilleur indicateur de l'état de santé d'une batterie que le temps U/2 nécessaire à diviser le courant de charge par 2, utilisé par exemple dans le document US 2001 /0022518 précité. En effet, comme évoqué plus haut, la relation entre U/2 et l'état de santé de la batterie n'est ni linéaire, ni univoque (deux états de santé différents peuvent être associés à la même valeur de ti/2). The parameter B proves to be a much better indicator of the state of health of a battery than the time U / 2 necessary to divide the charging current by 2, used for example in the document US 2001/0022518 mentioned above. Indeed, as mentioned above, the relationship between U / 2 and the state of health of the battery is neither linear nor unambiguous (two different health states can be associated with the same value of ti / 2 ).
Dans le cas d'une batterie de type LFP (lithium - phosphate de fer), l'état de santé peut plus simplement être déterminé à partir de la durée mesurée de l'étape de recharge à tension constante. Plus précisément on trouve que cette durée mesurée, rapportée à sa durée lors de la recharge initiale, est proportionnelle à l'état de santé de la batterie. La figure 5, qui se rapporte au cas d'une batterie de technologie Lithium Phosphate de Fer (LFP), est un graphique montrant :  In the case of a battery type LFP (lithium iron phosphate), the state of health can more simply be determined from the measured duration of the step of charging constant voltage. More precisely, it is found that this measured duration, relative to its duration during the initial recharge, is proportional to the state of health of the battery. Figure 5, which relates to the case of a Lithium Iron Phosphate (LFP) technology battery, is a graph showing:
- une première courbe représentant l'évolution, au cours du vieillissement, de l'état de santé SOH d'une telle batterie - exprimé par la capacité déchargée de la batterie rapportée à sa valeur à l'état neuf ; et  a first curve representing the evolution, during aging, of the state of health SOH of such a battery - expressed by the discharged capacity of the battery compared to its value when new; and
une seconde courbe représentant l'évolution de la durée Tcv de la phase à tension constante de la recharge - également rapportée à sa valeur à l'état neuf.  a second curve representing the evolution of the duration Tcv of the constant voltage phase of the refill - also referred to its value when new.
On peut vérifier que les courbes sont très proches. Par conséquent, dans ce cas, une estimation de l'état de santé peut être déduite directement de la durée de la phase de recharge à tension constante relativement à sa valeur à l'état neuf.  We can verify that the curves are very close. Therefore, in this case, an estimate of the state of health can be deduced directly from the duration of the constant voltage charging phase relative to its value when new.
Quel que soit le mode de réalisation considéré, la relation entre le paramètre caractéristique de l'étape de recharge à tension constante (paramètre B ou durée de l'étape) ne doit pas nécessairement être exprimée par une fonction mathématique linéaire ou non linéaire ; il peut également s'agir, par exemple, d'un tableau de correspondance. Whatever the embodiment considered, the relationship between the characteristic parameter of the step of charging at constant voltage (parameter B or duration of the step) need not necessarily be expressed by a linear or nonlinear mathematical function; it can also be, for example, a correspondence table.
Dans le cas d'une batterie de type NMC (lithium-ion à nickel, manganèse et cobalt), en outre, un état de vieillissement avancé peut être identifié en détectant un écart de la courbe l(t) en phase CV par rapport à une exponentielle décroissante. Cet écart prend la forme d'une inflexion (changement de convexité) ou « bosse » qui se produit après une phase de décroissance rapide du courant. Cet effet est illustré sur la figure 8, où les courbes CUO, CU1 , CU2 et CU3 correspondent à différents états de vieillissement d'une batterie Li-ion NMC. Plus précisément, la courbe CUO correspond à la batterie neuve, la courbe CU1 à la batterie après un stockage de 770 jours à charge maximale et à une température de 45 °C, la courbe CU2 à la batterie après un stockage de 920 jours dans les mêmes conditions et la courbe CU3 à la batterie après un stockage de 1060 jours, toujours dans les mêmes conditions. Les courbes ont été décalées temporellement pour faciliter leur identification. On remarque que, dans le cas de la batterie neuve (courbe CUO), la décroissance du courant de charge au cours de la phase CV est bien décrite par une loi exponentielle caractérisée par une certaine valeur du paramètre de décroissance B. Au fur et à mesure que la batterie vieillit, le paramètre B diminue (la décroissance du courant se fait plus lente), mais surtout on remarque l'apparition d'une « bosse » de plus en plus prononcée, qui rend la loi exponentielle moins pertinente. On peut considérer que la courbe CU3 - pour laquelle ladite loi exponentielle n'est clairement pas une approximation satisfaisante - correspond à la fin de la vie utile de la batterie.  In the case of a battery NMC type (lithium-ion nickel, manganese and cobalt), in addition, an advanced state of aging can be identified by detecting a deviation of the curve l (t) in phase CV compared to a decreasing exponential. This difference takes the form of an inflection (change of convexity) or "hump" which occurs after a phase of rapid decay of the current. This effect is illustrated in FIG. 8, where the curves CUO, CU1, CU2 and CU3 correspond to different aging states of a Li-ion battery NMC. More precisely, the curve CUO corresponds to the new battery, the curve CU1 to the battery after a storage of 770 days at maximum load and at a temperature of 45 ° C, the curve CU2 to the battery after a storage of 920 days in the same conditions and the curve CU3 to the battery after a storage of 1060 days, always under the same conditions. The curves have been temporally offset to facilitate their identification. Note that, in the case of the new battery (CUO curve), the decay of the charging current during the CV phase is well described by an exponential law characterized by a certain value of the decay parameter B. As and when As the battery ages, the parameter B decreases (the decrease in current is slower), but especially we notice the appearance of a "bump" increasingly pronounced, which makes the exponential law less relevant. It can be considered that the curve CU3 - for which said exponential law is clearly not a satisfactory approximation - corresponds to the end of the useful life of the battery.
Ainsi - en complément ou en remplacement de l'estimation de l'état de santé de la batterie à partir du paramètre B - un état de vieillissement avancé peut être identifié en détectant l'apparition d'une inflexion dans la courbe l(t) au cours de la phase CV de la recharge. Cette détection peut être effectuée par simple observation de la courbe ou, de préférence, de manière automatique, par calcul d'un paramètre représentatif de la déviation de ladite courbe d'une exponentielle décroissante et comparaison de la valeur de ce paramètre à une valeur de référence. Ce paramètre peut être, par exemple, un écart quadratique entre le courant mesuré et son interpolation par une fonction exponentielle. Thus - in addition to or in replacement of the estimation of the state of health of the battery from the parameter B - an advanced state of aging can be identified by detecting the appearance of an inflection in the curve l (t) during the CV phase of the refill. This detection can be performed by simple observation of the curve or, preferably, automatically, by calculating a parameter representative of the deviation of said curve of a decreasing exponential and comparing the value of this parameter with a value of reference. This parameter can be, for example, a quadratic difference between the measured current and its interpolation by an exponential function.
On peut supposer que l'inflexion dans la décroissance du courant au cours de la phase CV de la recharge est due à un ralentissement de l'insertion des ions de lithium provoquée par la croissance d'une couche d'électrolyte solide au niveau de l'anode.  It can be assumed that the inflection in the decay of the current during the CV phase of the recharge is due to a slowdown in the insertion of lithium ions caused by the growth of a solid electrolyte layer at the level of the 'anode.
La figure 7 illustre le schéma fonctionnel d'un appareil selon un mode de réalisation de l'invention, intégré à un système de gestion de batterie BMS, par exemple dans un véhicule électrique ou hybride. Le dispositif comprend un chargeur conventionnel CHG du type à courant constant - tension constante, chargeant une batterie lithium BATT ; un dispositif de surveillance de charge DSC et un dispositif de traitement des données, ou processeur, PR. Le dispositif de surveillance DSC comprend par exemple un capteur de courant, pour mesurer le courant de charge I, et un capteur de tension, pour mesurer la tension U aux bornes de la batterie BATT. Ce dispositif peut être intégré au chargeur CHG ou à la batterie BATT. Le dispositif de traitement des données PR (de préférence, un processeur numérique ou une carte électronique comprenant un tel processeur) est programmé et/ou configuré pour recevoir les mesures issues du dispositif de surveillance de charge et s'en servir pour calculer un indicateur SOH de l'état de santé de la batterie comme cela a été décrit plus haut. Le processeur PR peut également piloter le chargeur CHG, par exemple en commandant la transition entre la première étape de charge à courant constant et la deuxième étape de charge à tension constante, ainsi que l'arrêt de la charge lorsque l(t) atteint sa valeur minimale Un-  FIG. 7 illustrates the block diagram of an apparatus according to one embodiment of the invention, integrated in a BMS battery management system, for example in an electric or hybrid vehicle. The device includes a conventional constant current type CHG charger - constant voltage, charging a BATT lithium battery; a DSC load monitoring device and a data processing device, or processor, PR. The DSC monitoring device comprises, for example, a current sensor, for measuring the load current I, and a voltage sensor, for measuring the voltage U at the terminals of the battery BATT. This device can be integrated with the CHG charger or the BATT battery. The data processing device PR (preferably a digital processor or an electronic card comprising such a processor) is programmed and / or configured to receive the measurements from the load monitoring device and use it to calculate a SOH indicator the state of health of the battery as described above. The processor PR can also control the charger CHG, for example by controlling the transition between the first constant-current charging step and the second constant-voltage charging step, as well as stopping the charge when l (t) reaches its peak. minimum value Un-

Claims

REVENDICATIONS
1 . Procédé d'évaluation de l'état de santé d'une batterie lithium (BATT) comprenant : 1. A method of assessing the health status of a lithium battery (BATT) comprising:
a) une première étape de recharge de ladite batterie à courant constant, jusqu'à ce que la tension (U) à ses bornes atteigne une valeur limite (UCv) ; ensuite a) a first charging step of said constant current battery, until the voltage (U) at its terminals reaches a limit value (U C v); then
b) une deuxième étape de recharge de ladite batterie à tension constante et égale à ladite valeur limite, jusqu'à ce que le courant de charge (I) devienne inférieur à une valeur de seuil (lmin), une pluralité de mesures du courant de charge étant acquises au cours de ladite deuxième étape de recharge ; et b) a second step of recharging said battery with constant voltage and equal to said limit value, until the charging current (I) becomes less than a threshold value (l min ), a plurality of measurements of the current charging being acquired during said second recharging step; and
c) une étape d'estimation de l'état de santé de ladite batterie à partir desdites mesures du courant de charge acquises au cours de ladite deuxième étape de recharge à tension constante ;  c) a step of estimating the state of health of said battery from said load current measurements acquired during said second constant voltage charging step;
caractérisé en ce que ladite étape c) d'estimation de l'état de santé de ladite batterie comprend les sous-étapes suivantes :  characterized in that said step c) of estimating the state of health of said battery comprises the following sub-steps:
c1 ) estimer la constante de décroissance B d'une fonction exponentielle négative interpolant lesdites mesures du courant de charge ; et c2) estimer ledit état de santé à partir de ladite constante de décroissance B.  c1) estimating the decay constant B of a negative exponential function interpolating said load current measurements; and c2) estimating said state of health from said decay constant B.
2. Procédé selon la revendication 1 dans lequel ladite sous- étape c2 est mise en œuvre au moyen d'une fonction linéaire reliant ladite constante de décroissance B à une perte de capacité de ladite batterie. 2. Method according to claim 1 wherein said substep c2 is implemented by means of a linear function connecting said decay constant B to a loss of capacity of said battery.
3. Procédé selon l'une des revendications précédentes comprenant également une étape préalable d'étalonnage, comportant la détermination d'une relation liant ledit ou chaque dit paramètre caractéristique de ladite deuxième étape de recharge à tension constante audit état de santé de la batterie. 3. Method according to one of the preceding claims also comprising a prior calibration step, comprising the determination of a relationship linking said or each said characteristic parameter of said second step of constant voltage charging to said state of health of the battery.
4. Procédé selon l'une des revendications précédentes, dans lequel ladite batterie est une batterie lithium-ion. 4. Method according to one of the preceding claims, wherein said battery is a lithium-ion battery.
5. Procédé selon la revendication 4 dans lequel ladite batterie est une batterie lithium-ion à nickel, manganèse et cobalt, le procédé comprenant également : 5. The method of claim 4 wherein said battery is a lithium-ion battery nickel, manganese and cobalt, the method further comprising:
d) une étape de détection d'une inflexion dans une courbe représentant lesdites mesures du courant de charge acquises au cours de ladite deuxième étape de recharge à tension constante.  d) a step of detecting an inflection in a curve representing said load current measurements acquired during said second constant voltage charging step.
6. Appareil d'évaluation de l'état de santé d'une batterie lithium comprenant : 6. Apparatus for evaluating the state of health of a lithium battery comprising:
un chargeur (CHG) du type à courant constant - tension constante, adapté pour charger une dite batterie (BATT) à courant constant jusqu'à ce que la tension à ses bornes atteigne une valeur limite, puis à tension constante et égale à ladite valeur limite jusqu'à ce que le courant de charge devienne inférieur à une valeur de seuil ;  a charger (CHG) of constant current type - constant voltage, adapted to charge a said constant current battery (BATT) until the voltage at its terminals reaches a limit value, then at constant voltage and equal to said value limit until the charging current becomes lower than a threshold value;
un dispositif de surveillance (DSC) de la recharge de ladite batterie ; et  a monitoring device (DSC) for recharging said battery; and
- un dispositif de traitement des données (PR) configuré ou programmé pour coopérer avec ledit chargeur et avec ledit dispositif de surveillance afin de mettre en œuvre un procédé selon l'une des revendications précédentes.  - A data processing device (PR) configured or programmed to cooperate with said charger and with said monitoring device to implement a method according to one of the preceding claims.
7. Système de gestion de batterie (BMS) comprenant un appareil selon la revendication 6. Battery management system (BMS) comprising an apparatus according to claim 6.
EP14780469.4A 2013-10-01 2014-10-01 Method and apparatus for evaluating the state of health of a lithium battery Pending EP3052953A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1359508A FR3011393B1 (en) 2013-10-01 2013-10-01 METHOD AND APPARATUS FOR EVALUATING THE HEALTH CONDITION OF A LITHIUM BATTERY
PCT/EP2014/071065 WO2015049300A1 (en) 2013-10-01 2014-10-01 Method and apparatus for evaluating the state of health of a lithium battery

Publications (1)

Publication Number Publication Date
EP3052953A1 true EP3052953A1 (en) 2016-08-10

Family

ID=49667446

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14780469.4A Pending EP3052953A1 (en) 2013-10-01 2014-10-01 Method and apparatus for evaluating the state of health of a lithium battery

Country Status (5)

Country Link
US (1) US10036781B2 (en)
EP (1) EP3052953A1 (en)
JP (1) JP6502331B2 (en)
FR (1) FR3011393B1 (en)
WO (1) WO2015049300A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3127582A1 (en) * 2021-09-30 2023-03-31 Saft Method for estimating the state of health of an electrochemical element

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101526414B1 (en) * 2013-12-05 2015-06-05 현대자동차 주식회사 Determining apparatus of battery deterioratiion for electric vehicle and method thereof
JP6128014B2 (en) * 2014-02-27 2017-05-17 トヨタ自動車株式会社 Vehicle charging control device
JP6625345B2 (en) * 2015-05-14 2019-12-25 日置電機株式会社 Apparatus for specifying voltage holding ratio of electric double layer capacitor and method for specifying voltage holding ratio of electric double layer capacitor
CN107852019B (en) * 2015-07-21 2021-04-27 株式会社村田制作所 Charging method, battery device, charging device, degradation diagnosis method, battery pack, electric vehicle, and power storage device
FR3059106B1 (en) * 2016-11-22 2018-12-07 Commissariat A L'energie Atomique Et Aux Energies Alternatives METHOD FOR DETERMINING THE HEALTH STATUS OF A BATTERY CELL
FR3060132B1 (en) * 2016-12-14 2021-01-01 Commissariat Energie Atomique METHOD FOR DETERMINING THE STATE OF HEALTH OF A NICKEL SODIUM CHLORIDE BATTERY
WO2018195049A1 (en) 2017-04-17 2018-10-25 The Regents Of The University Of Michigan Method to estimate battery health for mobile devices based on relaxing voltages
CN107803350B (en) * 2017-10-31 2018-10-02 深圳市恒翼能科技有限公司 A kind of method of lithium battery automatic sorting, storage medium and battery sorting device
FR3074918B1 (en) 2017-12-08 2020-10-16 Commissariat Energie Atomique PROCESS FOR DETERMINING THE STATE OF HEALTH OF A BATTERY AND DEVICE IMPLEMENTING THIS PROCEDURE
CN108196200B (en) * 2018-01-28 2020-08-28 复旦大学 Combined simulation evaluation method for health and state of charge of lithium battery
JP6831807B2 (en) * 2018-03-12 2021-02-17 古河電気工業株式会社 Data processing device and diagnostic method
EP3591413B1 (en) * 2018-07-03 2023-08-30 Electricité de France Method for evaluating an electric battery state of health
FR3087392B1 (en) 2018-10-23 2020-10-23 Psa Automobiles Sa PROCESS FOR DETERMINING THE STATE OF CHARGE AND STATE OF AGING OF AN ELECTROCHEMICAL BATTERY AS A FUNCTION OF AN OPEN CIRCUIT VOLTAGE MAPPING
FR3087393B1 (en) 2018-10-23 2020-10-23 Psa Automobiles Sa PROCESS FOR DETERMINING THE STATE OF AGING OF AN ELECTROCHEMICAL BATTERY
DE102020110365A1 (en) * 2019-04-18 2020-10-22 Hyundai Mobis Co., Ltd. DEVICE AND METHOD FOR REGULATING A BATTERY
WO2021006860A1 (en) * 2019-07-05 2021-01-14 General Electric Company Method and apparatus for estimating a state of health of a battery
CN110703112A (en) * 2019-10-14 2020-01-17 重庆大学 Online estimation method of battery pack state based on local charging data
JP7191873B2 (en) * 2020-01-17 2022-12-19 株式会社東芝 Charge/discharge control device, charge/discharge system, charge/discharge control method, and charge/discharge control program
FR3106415B1 (en) 2020-01-21 2022-04-01 Ifp Energies Now Methods for rapid and off-line diagnosis of accumulators and associated devices
CN113447827A (en) * 2020-03-24 2021-09-28 新普科技股份有限公司 Battery aging evaluation method
CN111965559B (en) * 2020-08-17 2023-06-16 西安理工大学 On-line estimation method for SOH of lithium ion battery
CN111983477B (en) * 2020-08-24 2022-09-02 哈尔滨理工大学 Lithium ion battery safety degree estimation method and estimation device based on impedance spectrum model
GB2600757A (en) * 2020-11-09 2022-05-11 Horiba Mira Ltd Battery performance optimisation
KR102632198B1 (en) * 2020-11-30 2024-02-01 중앙대학교 산학협력단 Apparatus and method for predicting and managing force evolution over cycle in battery packs
US11656291B2 (en) 2021-02-08 2023-05-23 Hong Kong Applied Science and Technology Research Institute Company Limited Fast screening method for used batteries using constant-current impulse ratio (CCIR) calibration
US20220252670A1 (en) * 2021-02-08 2022-08-11 Hong Kong Applied Science and Technology Research Institute Company Limited Fast Screening of Rechargeable Batteries Using Sectional Constant-Current Impulse Ratio (SCCIR) Calibration with Constant-Current Followed by Constant-Voltage Charging
CN114325445B (en) * 2021-11-22 2023-12-22 天津赛德美新能源科技有限公司 Regional frequency-based lithium ion battery health state rapid assessment method
CN115060320B (en) * 2022-06-20 2023-09-29 武汉涛初科技有限公司 Online monitoring and analyzing system for production quality of power lithium battery based on machine vision

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3460567B2 (en) * 1998-01-19 2003-10-27 松下電器産業株式会社 Secondary battery deterioration detection method and charger equipped with deterioration detection function
TW510977B (en) * 2000-03-13 2002-11-21 Nippon Telegraph & Telephone Capacity estimation method, degradation estimation method and degradation estimation apparatus for lithium-ion cells, and lithium-ion batteries
JP3370047B2 (en) * 2000-04-03 2003-01-27 日本電信電話株式会社 Lithium ion battery capacity estimation method, deterioration determination method, deterioration determination device, and lithium ion battery pack
JP4564999B2 (en) * 2007-11-21 2010-10-20 株式会社日本自動車部品総合研究所 In-vehicle secondary battery internal state detection device
KR100965743B1 (en) * 2008-04-25 2010-06-24 삼성에스디아이 주식회사 Method of braking current for rechargeable battery and battery pack using the same
JP5541112B2 (en) * 2010-11-22 2014-07-09 ミツミ電機株式会社 Battery monitoring device and battery monitoring method
JP5817157B2 (en) * 2011-03-16 2015-11-18 株式会社Gsユアサ Secondary battery state determination method, secondary battery system
JP2012247339A (en) * 2011-05-30 2012-12-13 Renesas Electronics Corp Semiconductor integrated circuit and operation method therefor
JP6044114B2 (en) * 2011-06-03 2016-12-14 株式会社Gsユアサ State determination device, power storage device, and state determination method
FR2977678A1 (en) * 2011-07-07 2013-01-11 Commissariat Energie Atomique Method for diagnosing battery, involves charging battery to reach predetermined maximum voltage for specific time in phase, and calculating state of health of battery from measured time and charging time
TWI426288B (en) * 2011-12-26 2014-02-11 Ind Tech Res Inst Method for estimating battery degradation
JP5842054B2 (en) * 2012-03-02 2016-01-13 株式会社日立製作所 Storage battery analysis system, storage battery analysis method, and storage battery analysis program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3127582A1 (en) * 2021-09-30 2023-03-31 Saft Method for estimating the state of health of an electrochemical element

Also Published As

Publication number Publication date
WO2015049300A1 (en) 2015-04-09
JP6502331B2 (en) 2019-04-17
FR3011393B1 (en) 2017-02-10
US20160245876A1 (en) 2016-08-25
FR3011393A1 (en) 2015-04-03
JP2016539320A (en) 2016-12-15
US10036781B2 (en) 2018-07-31

Similar Documents

Publication Publication Date Title
WO2015049300A1 (en) Method and apparatus for evaluating the state of health of a lithium battery
EP2634591B1 (en) Method and system for estimating the charge level of a lithium electrochemical element including a lithium phosphate positive electrode
EP3028054B1 (en) Estimation of the state of deterioration of an electric battery
EP2944970B1 (en) Method for estimating the state of health of a battery cell
EP3044601B1 (en) Method, device and system for estimating the state of charge of a battery
EP2397863B1 (en) System for monitoring the status of a battery
EP2410346B1 (en) Method of determining a parameter of at least one accumulator of a battery
EP3017497B1 (en) Method and system for managing the charging of a rechargeable battery comprising several branches of electrochemical elements connected in parallel
EP3443370B1 (en) Method for determining the value of parameters relating to the state of an accumulator of a battery, battery and electronic battery management system
EP3080625B1 (en) Method for estimating the state of health of a battery
WO2020064959A1 (en) Method and device for measuring, in real time and in situ, thermodynamic data of a battery (enthalpy and entropy)
WO2021064030A1 (en) Method for determining the state of health of a lithium-ion battery
WO2012114036A1 (en) On-board device for estimating the ageing of a power battery of a motor vehicle, and corresponding method
EP3072179B1 (en) Process for in-situ recalibration of a reference electrode integrated in an electrochemical system
FR3044424A1 (en) PORTABLE DEVICE FOR DIAGNOSING AN LI-ION TYPE TRACTION BATTERY AND METHOD USING SUCH A DEVICE
FR3044773A1 (en) METHOD FOR EVALUATING THE HEALTH CONDITION OF AN ELECTROCHEMICAL BATTERY
EP3678255A1 (en) Method for calibrating a family of lithium-ion battery elements, charging method, associated computer program product and charging device
FR2965361A1 (en) Method for estimating state of health of lithium-ion battery in e.g. hybrid motor vehicle, involves verifying that variation in voltage is strictly increased or decreased during considered time interval
WO2017108536A1 (en) Method for assessing the state of charge of a battery
FR3045218A1 (en) DETERMINATION OF PARAMETERS OF A DYNAMIC MODEL FOR AN ELECTROCHEMICAL BATTERY CELL
EP4127749A1 (en) Method for determining the lifetime of an electrochemical element of a battery in real time
FR3021461A1 (en) METHOD AND DEVICE FOR DIAGNOSING ABILITY TO REGENERATE A BATTERY

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20160331

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210611

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: B60L 58/16 20190101ALI20231206BHEP

Ipc: G01R 31/392 20190101ALI20231206BHEP

Ipc: G01R 31/378 20190101ALI20231206BHEP

Ipc: G01R 31/367 20190101ALI20231206BHEP

Ipc: H02J 7/00 20060101ALI20231206BHEP

Ipc: G01R 31/36 20060101AFI20231206BHEP

INTG Intention to grant announced

Effective date: 20240110