JP6831807B2 - Data processing device and diagnostic method - Google Patents
Data processing device and diagnostic method Download PDFInfo
- Publication number
- JP6831807B2 JP6831807B2 JP2018044607A JP2018044607A JP6831807B2 JP 6831807 B2 JP6831807 B2 JP 6831807B2 JP 2018044607 A JP2018044607 A JP 2018044607A JP 2018044607 A JP2018044607 A JP 2018044607A JP 6831807 B2 JP6831807 B2 JP 6831807B2
- Authority
- JP
- Japan
- Prior art keywords
- current
- charging
- lead
- storage battery
- charging current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000012545 processing Methods 0.000 title claims description 68
- 238000002405 diagnostic procedure Methods 0.000 title claims description 24
- 238000007600 charging Methods 0.000 claims description 278
- 238000011084 recovery Methods 0.000 claims description 138
- 239000002253 acid Substances 0.000 claims description 102
- 230000006866 deterioration Effects 0.000 claims description 80
- 238000010280 constant potential charging Methods 0.000 claims description 71
- 238000005259 measurement Methods 0.000 claims description 42
- 238000000034 method Methods 0.000 claims description 42
- 230000010354 integration Effects 0.000 claims description 10
- 238000012806 monitoring device Methods 0.000 description 58
- 230000006870 function Effects 0.000 description 34
- 238000010281 constant-current constant-voltage charging Methods 0.000 description 12
- 238000010586 diagram Methods 0.000 description 10
- 238000007599 discharging Methods 0.000 description 9
- 238000002474 experimental method Methods 0.000 description 6
- 238000012544 monitoring process Methods 0.000 description 6
- 230000002123 temporal effect Effects 0.000 description 6
- 238000010277 constant-current charging Methods 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 238000003745 diagnosis Methods 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 230000019635 sulfation Effects 0.000 description 1
- 238000005670 sulfation reaction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Secondary Cells (AREA)
- Tests Of Electric Status Of Batteries (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Description
本発明は、データ処理装置、および診断方法に関し、例えば鉛蓄電池の状態を監視するデータ処理装置、および鉛蓄電池の劣化状態を診断する診断方法に関する。 The present invention relates to a data processing device and a diagnostic method, for example, a data processing device for monitoring the state of a lead storage battery, and a diagnostic method for diagnosing a deteriorated state of the lead storage battery.
鉛蓄電池は、長期間の充放電の繰り返しにより、容量が低下し劣化する。鉛蓄電池を用いた蓄電システムでは、鉛蓄電池の劣化の一因であるサルフェーションを除去するために、鉛蓄電池を満充電状態にする回復充電を定期的に行っている。 Lead-acid batteries deteriorate in capacity due to repeated charging and discharging for a long period of time. In a power storage system using a lead-acid battery, recovery charging is periodically performed to fully charge the lead-acid battery in order to remove sulfation, which is one of the causes of deterioration of the lead-acid battery.
回復充電の方式としては、定電流―定電圧充電(CCCV)方式と多段充電方式が知られている。定電流―定電圧充電方式は、初めに一定の電流値による充電(以下、「定電流充電」または「CC充電」とも称する。)を行い、蓄電池電圧が所定の閾値に達した後に、一定の電圧による充電(以下、「定電圧充電」または「CV充電」とも称する。)を行って鉛蓄電池を満充電状態まで回復させる充電方式である。多段充電方式は、初めに定電流充電を行い、蓄電池電圧が所定の閾値に達した後に前回の電流値よりも低い電流値での定電流充電を行うことを複数回繰り返し、最後に、所定の電圧で定電圧充電を行って鉛蓄電池を満充電状態まで回復させる充電方式である。いずれの充電方式も、回復充電の後半では、定電圧充電を行う。 As a recovery charging method, a constant current-constant voltage charging (CCCV) method and a multi-stage charging method are known. In the constant current-constant voltage charging method, first charging with a constant current value (hereinafter, also referred to as "constant current charging" or "CC charging") is performed, and after the storage battery voltage reaches a predetermined threshold value, the constant current charging method is performed. This is a charging method in which a lead storage battery is restored to a fully charged state by charging with a voltage (hereinafter, also referred to as “constant voltage charging” or “CV charging”). In the multi-stage charging method, constant current charging is performed first, and after the storage battery voltage reaches a predetermined threshold, constant current charging at a current value lower than the previous current value is repeated a plurality of times, and finally, a predetermined current value is applied. It is a charging method that restores the lead-acid battery to a fully charged state by performing constant voltage charging with voltage. In both charging methods, constant voltage charging is performed in the latter half of recovery charging.
また、鉛蓄電池を用いた蓄電システムでは、鉛蓄電池の劣化状態を判定している。
鉛蓄電池の劣化状態の診断方法としては、鉛蓄電池の内部抵抗を計測し、その計測結果から鉛蓄電池の寿命を推定する方法や、鉛蓄電池を満充電にした後に残存容量が無くなるまで(放電終止電圧まで)放電し、放電電流を積算して実容量を計測する方法(容量試験)が知られている。
Further, in the power storage system using the lead storage battery, the deterioration state of the lead storage battery is determined.
As a method of diagnosing the deterioration state of the lead-acid battery, a method of measuring the internal resistance of the lead-acid battery and estimating the life of the lead-acid battery from the measurement result, or until the remaining capacity is exhausted after the lead-acid battery is fully charged (discharge termination). A method (capacity test) of discharging (up to a voltage) and integrating the discharge current to measure the actual capacity is known.
また、特許文献1には、鉛蓄電池の劣化状態の診断方法として、鉛蓄電池の回復充時に、蓄電池電圧が所定の上限電圧値以上になったら内部タイマーを駆動し、鉛蓄電池の充電電流値が所定の下限電流値以下になったら内部タイマーの駆動を終了させて、内部タイマーで計測した時間に基づいて鉛蓄電池の完全放電容量を算出する方法が開示されている。
Further, in
しかしながら、上述した従来の鉛蓄電池の劣化状態の診断方法では、以下に示す課題がある。
例えば、鉛蓄電池の内部抵抗を計測する方法では、内部抵抗を計測するために、鉛電池の各セルに専用のセンサ類を別途設置する必要がある。
However, the above-mentioned conventional method for diagnosing a deteriorated state of a lead storage battery has the following problems.
For example, in the method of measuring the internal resistance of a lead storage battery, it is necessary to separately install dedicated sensors in each cell of the lead battery in order to measure the internal resistance.
また、容量試験では、鉛蓄電池の満充電、完全放電、および再度の満充電が必要であり、蓄電システムの運用を長時間停止する必要がある。 Further, in the capacity test, the lead-acid battery needs to be fully charged, completely discharged, and fully charged again, and the operation of the power storage system needs to be stopped for a long time.
また、特許文献1に開示された診断方法は、定電圧充電を開始する前に複数回蓄電池電圧が上限電圧値以上となる多段充電方式の回復充電を行う蓄電システムに、適用することが困難である。
Further, the diagnostic method disclosed in
このように、従来の鉛蓄電池の劣化状態の診断方法では、種々の課題があるため、鉛蓄電池の新たな劣化判定技術が必要であると本願発明者らは考えた。 As described above, since the conventional method for diagnosing the deterioration state of the lead storage battery has various problems, the inventors of the present application have considered that a new deterioration determination technique for the lead storage battery is required.
本発明は、上述した課題に鑑みてなされたものであり、本発明の目的は、回復充電の方式によらず、より簡単に鉛蓄電池の劣化状態を診断できるようにすることにある。 The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to make it easier to diagnose a deteriorated state of a lead storage battery regardless of a recovery charging method.
本発明の代表的な実施の形態に係るデータ処理装置は、鉛蓄電池の回復充電の定電圧充電期間における充電電流の計測値を取得する計測値取得部と、前記定電圧充電期間における充電電流に関する第1パラメータと前記鉛蓄電池の劣化度合いを示す第2パラメータとの対応関係を表す対応関係データを記憶する記憶部と、前記取得部によって取得した前記計測値と、前記記憶部に記憶された前記対応関係データとに基づいて、前記鉛蓄電池の劣化状態を判定する判定部と、を有することを特徴とする。 The data processing device according to the typical embodiment of the present invention relates to a measurement value acquisition unit that acquires a measurement value of the charging current in the constant voltage charging period of the recovery charging of the lead storage battery, and a charging current in the constant voltage charging period. A storage unit that stores correspondence data that represents the correspondence between the first parameter and the second parameter that indicates the degree of deterioration of the lead-acid battery, the measurement value acquired by the acquisition unit, and the storage unit stored in the storage unit. It is characterized by having a determination unit for determining a deteriorated state of the lead storage battery based on the correspondence data.
本発明に係るデータ処理装置によれば、回復充電の方式によらず、より簡単に鉛蓄電池の劣化状態を診断することが可能となる。 According to the data processing device according to the present invention, it is possible to more easily diagnose the deteriorated state of the lead storage battery regardless of the recovery charging method.
1.実施の形態の概要
先ず、本願において開示される発明の代表的な実施の形態について概要を説明する。なお、以下の説明では、一例として、発明の構成要素に対応する図面上の参照符号を、括弧を付して記載している。
1. 1. Outline of Embodiment First, an outline of a typical embodiment of the invention disclosed in the present application will be described. In the following description, as an example, reference numerals on drawings corresponding to the components of the invention are described in parentheses.
〔1〕本発明の代表的な実施の形態に係るデータ処理装置(1,1A〜1C)は、鉛蓄電池(7)の回復充電の定電圧充電期間における充電電流の計測値(131)を取得する計測値取得部(12)と、前記定電圧充電期間における充電電流に関する第1パラメータと前記鉛蓄電池の劣化度合いを示す第2パラメータとの対応関係を表す対応関係データ(132,132A,132C)を記憶する記憶部(13)と、前記取得部によって取得した前記計測値と、前記記憶部に記憶された前記対応関係データとに基づいて、前記鉛蓄電池の劣化状態を判定する判定部(14,14A〜14C)と、を有することを特徴とする。 [1] The data processing apparatus (1,1A to 1C) according to the typical embodiment of the present invention acquires the measured value (131) of the charging current in the constant voltage charging period of the recovery charging of the lead storage battery (7). Correspondence data (132, 132A, 132C) showing the correspondence between the measured value acquisition unit (12) and the first parameter regarding the charging current during the constant voltage charging period and the second parameter indicating the degree of deterioration of the lead storage battery. Based on the storage unit (13) that stores the lead-acid battery, the measured value acquired by the acquisition unit, and the correspondence data stored in the storage unit, the determination unit (14) that determines the deterioration state of the lead-acid battery. , 14A-14C), and so on.
〔2〕上記データ処理装置(1)において、前記第1パラメータは、前記定電圧充電期間の末期における充電電流を示す回復充電末期電流であって、前記判定部(14)は、前記定電圧充電期間において充電電流が所定の閾値(Ith)より低下してから所定時間(t1)経過したときの充電電流の計測値を前記回復充電末期電流の計測値とし、当該計測値と前記対応関係データとに基づいて、前記鉛蓄電池の劣化状態を判定してもよい。 [2] In the data processing device (1), the first parameter is a recovery charging end-stage current indicating a charging current at the end of the constant-voltage charging period, and the determination unit (14) is used for the constant-voltage charging. The measured value of the charging current when a predetermined time (t1) elapses after the charging current falls below the predetermined threshold (Ith) in the period is used as the measured value of the recovery charging end stage current, and the measured value and the corresponding relationship data are used. The deterioration state of the lead storage battery may be determined based on the above.
〔3〕上記データ処理装置(1A)において、前記第1パラメータは、前記定電圧充電期間に充電電流が第1閾値(Ith1)に到達してから前記第1閾値よりも小さい第2閾値(Ith2)に到達するまでの時間を示す充電電流収束時間であって、前記判定部(14A)は、前記定電圧充電期間に充電電流が前記第1閾値に到達してから前記第2閾値に到達するまでの時間(t2)を計測する計時部(140A)と、前記計時部によって計測した前記時間の計測値と前記対応関係データとに基づいて、前記鉛蓄電池の劣化状態を判定する判定処理部(141A)とを含んでもよい。 [3] In the data processing device (1A), the first parameter is a second threshold value (Ith2) smaller than the first threshold value after the charging current reaches the first threshold value (Ith1) during the constant voltage charging period. ) Is the charging current convergence time indicating the time until the charging current reaches the first threshold value, and the determination unit (14A) reaches the second threshold value after the charging current reaches the first threshold value during the constant voltage charging period. A determination processing unit (140A) that determines the deterioration state of the lead-acid battery based on the time measuring unit (140A) that measures the time until (t2), the measured value of the time measured by the time measuring unit, and the correspondence data. 141A) and may be included.
〔4〕上記データ処理装置(1B)において、前記第1パラメータは、前記定電圧充電期間の末期における充電電流を示す回復充電末期電流であって、前記計測値取得部は、前記鉛蓄電池の充電電流と前記鉛蓄電池の放電電流とを取得し、前記判定部(14B)は、前記鉛蓄電池の充電電流の積算値を算出する充電電流積算部(142)と、前記鉛蓄電池の放電電流の積算値を算出する放電電流積算部(143)と、前回実施した回復充電が完了してからの前記充電電流の積算値と前回実施した回復充電が完了してからの前記放電電流の積算値との比率が所定値となったときの前記鉛蓄電池の充電電流の計測値を前記回復充電末期電流の計測値とし、当該計測値と前記対応関係データとに基づいて、前記鉛蓄電池の劣化状態を判定する判定処理部(141B)と、を含んでもよい。 [4] In the data processing device (1B), the first parameter is a recovery charging end-stage current indicating a charging current at the end of the constant-voltage charging period, and the measured value acquisition unit charges the lead storage battery. The determination unit (14B) acquires the current and the discharge current of the lead storage battery, and the determination unit (14B) integrates the charge current integration unit (142) for calculating the integrated value of the charge current of the lead storage battery and the discharge current of the lead storage battery. The discharge current integrating unit (143) that calculates the value, and the integrated value of the charging current after the completion of the recovery charging performed last time and the integrated value of the discharge current after the completion of the recovery charging performed last time. The measured value of the charging current of the lead storage battery when the ratio reaches a predetermined value is used as the measured value of the recovery charging end-stage current, and the deterioration state of the lead storage battery is determined based on the measured value and the corresponding relationship data. The determination processing unit (141B) to be used may be included.
〔5〕上記データ処理装置(1C)において、前記判定部は、前記定電圧充電期間における経過時間と充電電流の計測値とに基づいて、前記定電圧充電期間における前記充電電流の時間に対する変化を示す関数(式(1))を推定する関数推定部(144)と、前記関数推定部によって推定した関数に基づいて算出した前記第1パラメータと、前記対応関係データとに基づいて、前記鉛蓄電池の劣化状態を判定する判定処理部(141C)と、を含んでもよい。 [5] In the data processing device (1C), the determination unit determines the change of the charging current in the constant voltage charging period with respect to the time based on the elapsed time in the constant voltage charging period and the measured value of the charging current. The lead-acid battery is based on the function estimation unit (144) that estimates the function shown (Equation (1)), the first parameter calculated based on the function estimated by the function estimation unit, and the correspondence data. The determination processing unit (141C) for determining the deterioration state of the above may be included.
〔6〕本発明の代表的な実施の形態に係る鉛蓄電池の劣化状態の判定方法は、前記鉛蓄電池の回復充電の定電圧充電期間における充電電流の計測値を取得する計測値取得ステップと、前記計測値取得ステップによって取得した前記計測値と、記憶部に記憶された前記定電圧充電期間における充電電流に関する第1パラメータと前記鉛蓄電池の劣化度合いを示す第2パラメータとの対応関係を表す対応関係データとに基づいて、前記鉛蓄電池の劣化状態を判定する判定ステップと、を含むことを特徴とする。 [6] The method for determining the deteriorated state of the lead-acid battery according to a typical embodiment of the present invention includes a measurement value acquisition step for acquiring a measurement value of a charging current during a constant voltage charging period for recovery charging of the lead-acid battery. Correspondence representing the correspondence relationship between the measured value acquired by the measured value acquisition step, the first parameter regarding the charging current in the constant voltage charging period stored in the storage unit, and the second parameter indicating the degree of deterioration of the lead storage battery. It is characterized by including a determination step of determining a deteriorated state of the lead storage battery based on the relational data.
〔7〕上記診断方法において、前記第1パラメータは、前記定電圧充電期間の末期における充電電流を示す回復充電末期電流であって、前記判定ステップは、前記定電圧充電期間において充電電流が所定の閾値より低下してから所定時間経過したときの充電電流の計測値を前記回復充電末期電流の計測値とし、当該計測値と前記対応関係データとに基づいて、前記鉛蓄電池の劣化状態を判定するステップを含むことを特徴とする。 [7] In the above diagnostic method, the first parameter is a recovery charging end-stage current indicating a charging current at the end of the constant-voltage charging period, and in the determination step, the charging current is predetermined in the constant-voltage charging period. The measured value of the charging current when a predetermined time elapses after the voltage drops below the threshold value is used as the measured value of the recovery charging end-stage current, and the deterioration state of the lead-acid battery is determined based on the measured value and the corresponding relationship data. It is characterized by including steps.
〔8〕上記診断方法において、前記第1パラメータは、前記定電圧充電期間に充電電流が第1閾値に到達してから前記第1閾値よりも小さい第2閾値に到達するまでの時間を示す充電電流収束時間であって、前記判定ステップは、前記定電圧充電期間に充電電流が前記第1閾値に到達してから前記第2閾値に到達するまでの時間を計測する計時ステップと、前記計時ステップによって計測した前記時間の計測値と前記対応関係データとに基づいて、前記鉛蓄電池の劣化状態を判定する判定処理ステップとを含んでもよい。 [8] In the above diagnostic method, the first parameter indicates the time from when the charging current reaches the first threshold value to when it reaches the second threshold value smaller than the first threshold value during the constant voltage charging period. The determination step is a current convergence time, which is a time measuring step for measuring the time from when the charging current reaches the first threshold value to when the charging current reaches the second threshold value during the constant voltage charging period, and the time measuring step. The determination processing step of determining the deterioration state of the lead storage battery may be included based on the measured value of the time measured by the above and the correspondence data.
〔9〕上記診断方法において、前記第1パラメータは、前記定電圧充電期間の末期における充電電流を示す回復充電末期電流であって、前記計測値取得ステップは、前記鉛蓄電池の充電電流と放電電流とを取得し、前記判定ステップは、前記鉛蓄電池の充電電流の積算値を算出する充電電流積算ステップと、前記鉛蓄電池の放電電流の積算値を算出する放電電流積算ステップと、前回実施した回復充電が完了してからの前記充電電流の積算値と前回実施した回復充電が完了してからの前記放電電流の積算値との比率が所定値となったときの前記鉛蓄電池の充電電流の計測値を前記回復充電末期電流の計測値とし、当該計測値と前記対応関係データとに基づいて、前記鉛蓄電池の劣化状態を判定する判定処理ステップと、を含んでもよい。 [9] In the above diagnostic method, the first parameter is a recovery charging end-stage current indicating a charging current at the end of the constant-voltage charging period, and the measured value acquisition step is a charging current and a discharging current of the lead storage battery. The determination step includes a charging current integration step for calculating the integrated value of the charging current of the lead storage battery, a discharge current integration step for calculating the integrated value of the discharge current of the lead storage battery, and a recovery carried out last time. Measurement of the charging current of the lead storage battery when the ratio of the integrated value of the charging current after the completion of charging and the integrated value of the discharge current after the completion of the recovery charging performed last time reaches a predetermined value. The value may be a measured value of the recovery charge end-stage current, and may include a determination processing step of determining the deterioration state of the lead storage battery based on the measured value and the corresponding relationship data.
〔10〕上記診断方法において、前記判定ステップは、前記定電圧充電期間における経過時間と充電電流の計測値とに基づいて、前記定電圧充電期間における前記充電電流の時間に対する変化を示す関数を推定する関数推定ステップと、前記関数推定ステップによって推定した関数に基づいて算出した前記第1パラメータと、前記対応関係データとに基づいて、前記鉛蓄電池の劣化状態を判定する判定処理ステップと、を含んでもよい。 [10] In the above diagnostic method, the determination step estimates a function indicating a change of the charging current in the constant voltage charging period with respect to time, based on the elapsed time in the constant voltage charging period and the measured value of the charging current. The function estimation step to be performed, the first parameter calculated based on the function estimated by the function estimation step, and the determination processing step for determining the deterioration state of the lead storage battery based on the correspondence data are included. It may be.
2.実施の形態の具体例
以下、本発明の実施の形態の具体例について図を参照して説明する。なお、以下の説明において、各実施の形態において共通する構成要素には同一の参照符号を付し、繰り返しの説明を省略する。また、図面は模式的なものであり、各要素の寸法の関係、各要素の比率などは、現実と異なる場合があることに留意する必要がある。図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。
2. 2. Specific Examples of Embodiments Hereinafter, specific examples of embodiments of the present invention will be described with reference to the drawings. In the following description, the same reference numerals will be given to the components common to each embodiment, and repeated description will be omitted. In addition, it should be noted that the drawings are schematic, and the relationship between the dimensions of each element, the ratio of each element, and the like may differ from the reality. Even between drawings, there may be parts where the relationship and ratio of dimensions are different from each other.
≪本発明に係る鉛蓄電池の劣化診断方法の概要≫
先ず、本発明に係る鉛蓄電池の劣化診断方法の概要について説明する。
本願発明者らは、鉛蓄電池の回復充電の終了間際の充電電流、換言すれば、回復充電における定電圧(CV)充電期間の末期の充電電流(以下、「回復充電末期電流」とも称する。)の値と鉛蓄電池の充放電サイクル数との間に相関があり、回復充電末期電流から鉛蓄電池の充放電サイクルに相当した鉛蓄電池の劣化度合いを判定することが可能であることを見出した。
<< Outline of Deterioration Diagnosis Method for Lead-Acid Battery According to the Present Invention >>
First, the outline of the deterioration diagnosis method of the lead storage battery according to the present invention will be described.
The inventors of the present application have described the charging current just before the end of the recovery charging of the lead-acid battery, in other words, the charging current at the end of the constant voltage (CV) charging period in the recovery charging (hereinafter, also referred to as "recovery charging final current"). It was found that there is a correlation between the value of and the number of charge / discharge cycles of the lead storage battery, and it is possible to determine the degree of deterioration of the lead storage battery corresponding to the charge / discharge cycle of the lead storage battery from the recovery charge end-stage current.
図1は、鉛蓄電池の充放電サイクル数と回復充電末期電流との関係を示す図である。
図1には、回復充電の完了条件を「CV充電への切り替わり後、充電電流が0.5A以下になったとき」、または「CV充電への切り替わり後、12時間経過したとき」とした場合に、回復充電の完了間際の回復充電末期電流を計測して、充放電サイクル数との対応関係をグラフにしたものである。同図において、縦軸は鉛蓄電池の回復充電末期電流を表し、横軸は鉛蓄電池の充放電サイクル数を表している。
同図に示すように、回復充電末期電流は、鉛蓄電池の充放電サイクル数とともに増加する傾向にある。
FIG. 1 is a diagram showing the relationship between the number of charge / discharge cycles of a lead-acid battery and the final recovery charge current.
FIG. 1 shows the case where the completion condition of the recovery charge is "when the charging current becomes 0.5 A or less after switching to CV charging" or "when 12 hours have passed after switching to CV charging". In addition, the recovery charge end-stage current just before the completion of recovery charge is measured, and the correspondence relationship with the number of charge / discharge cycles is graphed. In the figure, the vertical axis represents the recovery charge end current of the lead-acid battery, and the horizontal axis represents the number of charge / discharge cycles of the lead-acid battery.
As shown in the figure, the recovery charge terminal current tends to increase with the number of charge / discharge cycles of the lead-acid battery.
図2は、鉛蓄電池の充放電サイクル数と蓄電池容量との関係を示す図である。
同図において、縦軸は鉛蓄電池の蓄電池容量を表し、横軸は鉛蓄電池の充放電サイクル数を表している。
同図に示すように、蓄電池容量は、鉛蓄電池の充放電サイクル数が増加するほど低下する傾向にある。
FIG. 2 is a diagram showing the relationship between the number of charge / discharge cycles of the lead storage battery and the capacity of the storage battery.
In the figure, the vertical axis represents the storage battery capacity of the lead-acid battery, and the horizontal axis represents the number of charge / discharge cycles of the lead-acid battery.
As shown in the figure, the storage battery capacity tends to decrease as the number of charge / discharge cycles of the lead storage battery increases.
図1および図2に基づいて、鉛蓄電池の回復充電末期電流と蓄電池容量の関係をグラフで表すと、図3に示すようになる。図3において、縦軸は鉛蓄電池の回復充電末期電流を表し、横軸は鉛蓄電池の蓄電池容量を表している。
図3から理解されるように、回復充電末期電流と鉛蓄電池の蓄電池容量とは相関があり、回復充電末期電流が増加するほど鉛蓄電池の蓄電池容量が低下する傾向がある。
A graph showing the relationship between the recovery charge end-stage current of the lead-acid battery and the storage battery capacity based on FIGS. 1 and 2 is as shown in FIG. In FIG. 3, the vertical axis represents the recovery charge terminal current of the lead-acid battery, and the horizontal axis represents the storage battery capacity of the lead-acid battery.
As can be understood from FIG. 3, there is a correlation between the end-of-recovery charge current and the storage battery capacity of the lead-acid battery, and the storage battery capacity of the lead-acid battery tends to decrease as the end-of-recovery charge current increases.
したがって、鉛蓄電池の回復充電中に回復充電末期電流を計測し、その計測値に基づいて、予め求めておいた回復充電末期電流と鉛蓄電池の蓄電池容量との対応関係を参照することにより、そのときの鉛蓄電池の蓄電池容量、すなわち鉛蓄電池の劣化状態を判定することが可能となる。 Therefore, by measuring the recovery charge terminal current during the recovery charge of the lead storage battery and referring to the correspondence relationship between the recovery charge terminal current and the storage battery capacity of the lead storage battery obtained in advance based on the measured value, the measurement can be performed. It is possible to determine the storage battery capacity of the lead storage battery at that time, that is, the deterioration state of the lead storage battery.
また、回復充電末期電流の増加は、回復充電が完了するまでの時間、すなわち、CV充電への切り替わり後、充電電流が所定の電流値まで低下するまでの時間が長くなることを意味する。 Further, the increase in the recovery charge terminal current means that the time until the recovery charge is completed, that is, the time until the charge current drops to a predetermined current value after switching to the CV charge becomes longer.
図4は、鉛蓄電池の充放電サイクル数と充電電流が所定の電流値まで低下するまでの時間との関係を示す図である。図4において、縦軸は鉛蓄電池の充放電サイクル数を表し、横軸は、回復充電におけるCV充電の期間に、充電電流が第1閾値Ith1から第2閾値Ith2(<Ith1)まで低下するまでの時間(以下、「充電電流収束時間」とも称する。)を表している。
図4に示すように、鉛蓄電池の充放電サイクル数の増加に伴い、充電電流収束時間が増加する傾向にある。
FIG. 4 is a diagram showing the relationship between the number of charge / discharge cycles of the lead-acid battery and the time until the charging current drops to a predetermined current value. In FIG. 4, the vertical axis represents the number of charge / discharge cycles of the lead-acid battery, and the horizontal axis represents the period until the charging current drops from the first threshold value Is1 to the second threshold value Is2 (<Ith1) during the CV charging period in the recovery charging. (Hereinafter, also referred to as “charging current convergence time”).
As shown in FIG. 4, as the number of charge / discharge cycles of the lead-acid battery increases, the charge current convergence time tends to increase.
したがって、鉛蓄電池の回復充電中に充電電流収束時間を計測し、その計測値に基づいて、予め求めておいた充電電流収束時間と鉛蓄電池の充放電サイクル数(または、充放電サイクル数に対応する蓄電池容量)との対応関係を参照することにより、そのときの鉛蓄電池の劣化状態を判定することが可能となる。
以下、上述した鉛蓄電池の劣化診断方法の具体的な実施の形態について、説明する。
Therefore, the charging current convergence time is measured during the recovery charging of the lead-acid battery, and based on the measured value, the charge current convergence time and the number of charge / discharge cycles (or the number of charge / discharge cycles) of the lead-acid battery obtained in advance correspond to each other. By referring to the correspondence with the storage battery capacity), it is possible to determine the deterioration state of the lead storage battery at that time.
Hereinafter, specific embodiments of the above-described lead storage battery deterioration diagnosis method will be described.
≪実施の形態1≫
図5は、本発明の実施の形態1に係る蓄電システムの構成を示す図である。
同図に示される蓄電システム100は、例えばサイクルユースの鉛蓄電池を備えた蓄電システムである。蓄電システム100は、例えば、通常時に電力供給部3(商用電源)から負荷8に給電し、停電の発生時には、電源バックアップ用の鉛蓄電池7から負荷8に給電する。
<<
FIG. 5 is a diagram showing a configuration of a power storage system according to the first embodiment of the present invention.
The
電力供給部3は、蓄電システム100および負荷8に電力を供給する機能部である。電力供給部3は、例えば、商用電源である。なお、電力供給部3は、商用電源に加えて、太陽光発電(PV:Photovoltaics)等の再生可能エネルギーに基づいて電力を発生させる発電設備を有していてもよい。
The power supply unit 3 is a functional unit that supplies electric power to the
蓄電システム100は、蓄電池7、PCS(Power Conditioning System)4、電流センサ5、電圧センサ6、監視装置1、および制御装置2を備えている。
The
蓄電池7は、電力を充放電可能に構成された鉛蓄電池である。蓄電池7は、単一のセル、或いは複数のセルを直列に接続して構成される蓄電モジュールである。以下、蓄電池7を「鉛蓄電池7」とも表記する。
The
PCS4は、後述する制御装置2によって制御され、電力供給部3、鉛蓄電池7、および負荷8の間で相互に電力を変換し、電力供給部3、鉛蓄電池7、および負荷8の間での電力の授受を制御する電力変換部である。例えば、PCS4は、電力供給部3からの交流電力(AC)を直流電力(DC)に変換し、鉛蓄電池7に供給する。PCS4は、例えば、DC/DCコンバータ、AC/DCコンバータ(AC/DC)、およびスイッチ回路等を含んで構成されている。
The PCS 4 is controlled by a
電流センサ5および電圧センサ6は、鉛蓄電池7の状態を示す物理量を計測するための機能部である。電流センサ5は、鉛蓄電池7の充電電流および放電電流を計測する。電圧センサ6は、鉛蓄電池7の出力電圧(蓄電池電圧)を計測する。
The current sensor 5 and the
監視装置1および制御装置2は、蓄電システム100全体の統括的な動作を制御する。
The
監視装置1は、電流センサ5および電圧センサ6によって計測された物理量を逐次取得し、当該物理量に基づいて鉛蓄電池7の状態を監視するデータ処理装置である。監視装置1は、例えば、BMU(Battery Management Unit)である。
The
制御装置2は、蓄電システム100の各構成要素の制御を司る装置である。具体的に、制御装置2は、PCS4を駆動することにより、鉛蓄電池7の充放電制御を行う。例えば、制御装置2は、監視装置1からの指示に応じて、定電流―定電圧充電(CCCV)方式または多段充電方式で鉛蓄電池7の回復充電を実行する。制御装置2は、例えばEMS(Energy Management System)である。
The
監視装置1および制御装置2は、例えば、CPU(Central Processing Unit)等プロセッサと、RAM(Random Access Memory)やROM(Read Only Memory)等の記憶装置と、I/F回路等の周辺回路とを含んで構成され、上述した監視装置1および制御装置2は、上記記憶装置に記憶されたプログラムに従ってプロセッサが各種演算を実行して周辺回路を制御することにより、実現される。
The
監視装置1は、鉛蓄電池7の監視機能の一つとして、鉛蓄電池7の劣化状態を診断する診断機能を有している。
図6は、実施の形態1に係る監視装置1の構成を示す図である。
同図に示すように、監視装置1は、上記診断機能を実現するための機能部として、通信部11、計測制御部12、記憶部13、および判定部14を有している。
The
FIG. 6 is a diagram showing a configuration of the
As shown in the figure, the
通信部11は、制御装置2との間でデータの送受信を行う機能部である。
The
計測制御部12は、電流センサ5および電圧センサ6を制御して、電流センサ5および電圧センサ6によって計測された物理量の計測結果を取得する機能部(計測結果取得部)である。例えば、計測制御部12は、定期的に、電流センサ5および電圧センサ6から電流および電圧の計測値を取得する。また、計測制御部12は、判定部14からの指示に応じて電流センサ5および電圧センサ6から電流および電圧の計測値を取得する。計測制御部12によって取得した電流値および電圧値は、記憶部13に記憶される。例えば、鉛蓄電池7の充電電流および放電電流の計測値、および鉛蓄電池7の蓄電池電圧の計測値が計測結果131として記憶部13に記憶される。
The
記憶部13は、診断機能を実現するために必要な各種データを記憶する機能部である。例えば、記憶部13は、計測制御部12によって取得した計測結果131を記憶する。また、記憶部13には、予め、後述する対応関係データ132が記憶されている。
The
判定部14は、鉛蓄電池7の劣化状態を判定するための機能部である。
判定部14は、鉛蓄電池7の回復充電の定電圧充電期間における充電電流の計測値と、記憶部13に記憶された対応関係データ132とに基づいて、鉛蓄電池7の劣化状態を判定する。
The
The
対応関係データ132とは、鉛蓄電池7の回復充電の定電圧充電期間における充電電流に関する第1パラメータと鉛蓄電池7の劣化度合いを示す第2パラメータとの対応関係を表すデータである。
The
ここで、第1パラメータは、上述した回復充電末期電流であり、第2パラメータは、鉛蓄電池7の蓄電池容量である。
例えば、上述の図3に示したような、鉛蓄電池7の回復充電末期電流と蓄電池容量との相関関係を予め実験等により求めておき、その相関関係を示すデータを対応関係データ132として記憶部13に記憶しておく。
Here, the first parameter is the recovery charge end-stage current described above, and the second parameter is the storage battery capacity of the lead-
For example, as shown in FIG. 3 above, the correlation between the recovery charge terminal current of the lead-
また、対応関係データ132は、一つではなく複数であってもよい。例えば、上述の図1に示したような、鉛蓄電池7の回復充電末期電流と充放電サイクルとの相関関係を予め実験等により求めておき、その相関関係を示すデータを第1対応関係データとし、さらに、上述の図2に示したような、鉛蓄電池7の充放電サイクルと蓄電池容量との相関関係を予め実験等により求めておき、その相関関係を示すデータを第2対応関係データとして記憶部13に記憶しておいてもよい。
Further, the
上述した対応関係データ132は、第1パラメータと第2パラメータとの関係を示すデータであればよく、そのデータ構造等は、特に制限されない。たとえば、対応関係データ132は、第1パラメータと第2パラメータとの関係を示す関数であってもよいし、ルックアップテーブルのようなテーブル形式のデータであってもよい。
The
具体的に、判定部14は、計時部140と判定処理部141とを含む。
計時部140は、鉛蓄電池7の回復充電の定電圧充電期間において充電電流が所定の閾値より低下してから所定時間t1が経過するまでの計時を行う。例えば、計時部140はタイマカウンタであって、鉛蓄電池7の回復充電の定電圧充電期間において充電電流が所定の閾値より低下したことを検知したらカウントを開始し、カウント値があらかじめ設定された所定時間t1に対応する設定値と一致したとき、通知信号を出力する。
Specifically, the
The
判定処理部141は、鉛蓄電池7の回復充電の定電圧充電期間において充電電流が所定の閾値より低下してから所定時間経過したときの充電電流の計測値を回復充電末期電流の計測値とし、当該計測値と対応関係データ132とに基づいて、鉛蓄電池7の劣化状態を判定する。例えば、判定処理部141は、計時部140から通知信号が出力されたときの充電電流の計測値を回復充電末期電流の計測値とする。
The
次に、実施の形態1に係る監視装置1による鉛蓄電池7の劣化状態を診断する診断方法について、具体的に説明する。
図7は、実施の形態1に係る鉛蓄電池の劣化状態を診断する診断方法の流れを示すフローチャートである。
Next, a diagnostic method for diagnosing the deteriorated state of the lead-
FIG. 7 is a flowchart showing a flow of a diagnostic method for diagnosing a deteriorated state of the lead storage battery according to the first embodiment.
図8は、回復充電時の鉛蓄電池7の充電電流および蓄電池電圧を示すタイミングチャートである。図8において、縦軸は、電流と電圧とを表し、横軸は、時間を表している。また、参照符号300は、鉛蓄電池7の充電電流を表し、参照符号400は、鉛蓄電池7の蓄電池電圧を表している。図8には、一例として、定電流―定電圧充電(CCCV)方式で回復充電を行った場合の充電電流および蓄電池電圧の時間的な変化が示されている。
FIG. 8 is a timing chart showing the charging current and the storage battery voltage of the lead-
図8に示すように、CCCV方式の回復充電では、最初に一定の電流値I1でCC充電を開始する。その後、蓄電池電圧が所定の電圧Vcに到達したら、CC充電を停止して、一定の電圧VcでCV充電を行い、鉛蓄電池7を満充電状態まで回復させる。
As shown in FIG. 8, in the CCCV type recovery charging, CC charging is first started at a constant current value I1. After that, when the storage battery voltage reaches a predetermined voltage Vc, CC charging is stopped, CV charging is performed at a constant voltage Vc, and the
図7に示すように、先ず、監視装置1は、回復充電の定電圧充電が開始されると、定電圧充電期間(CV充電期間)において、充電電流Iが所定の閾値Ithよりも低くなったか否かを判定する(ステップS11)。ステップS11において、充電電流Iが所定の閾値Ithよりも低くなった場合には、監視装置1は、計時部140によって計時を開始する(ステップS12)。
As shown in FIG. 7, first, when the constant voltage charging for recovery charging is started, in the constant voltage charging period (CV charging period), is the charging current I lower than the predetermined threshold value Is? It is determined whether or not (step S11). In step S11, when the charging current I becomes lower than the predetermined threshold value Is, the
次に、監視装置1は、充電電流Iが所定の閾値Ithより低下してから所定時間t1が経過したか否かを判定する(ステップS13)。
Next, the
ステップS13において、所定時間t1が経過した場合、監視装置1は、その時の充電電流の測定値を、回復充電末期電流の計測値とする(ステップS14)。例えば、図8において、計時部140が所定時間t1の経過時に信号を出力し、計測制御部12がその信号に応じて電流センサ5から取得した充電電流の計測値Icvを、回復充電末期電流の計測値とする。
In step S13, when the predetermined time t1 has elapsed, the
次に、監視装置1は、ステップS14で取得した充電電流の計測値と対応関係データ132とに基づいて、鉛蓄電池の劣化状態を判定する(ステップS15)。具体的には、判定処理部141が、記憶部13に記憶されている回復充電末期電流と蓄電池容量との関係を示す対応関係データ132に基づいて、ステップS14で取得した回復充電末期電流の計測値に対応する蓄電池容量を算出する。判定処理部141は、算出した蓄電池容量に基づいて、鉛蓄電池の劣化状態を判定する。
Next, the
以上、実施の形態1に係る監視装置1は、鉛蓄電池の回復充電の定電圧充電期間における充電電流の計測値と、予め求めておいた、定電圧充電期間における充電電流に関する第1パラメータと鉛蓄電池の劣化度合いを示す第2パラメータとの対応関係を表す対応関係データとに基づいて、鉛蓄電池の劣化状態を判定する。
As described above, the
これによれば、鉛蓄電池の蓄電池容量と相関のある回復充電末期電流に基づいて、鉛蓄電池の劣化度合いを把握することが可能となるので、鉛蓄電池の内部抵抗を測定するためのセンサ類を新たに設ける必要がない。 According to this, it is possible to grasp the degree of deterioration of the lead-acid battery based on the recovery charge terminal current that correlates with the storage battery capacity of the lead-acid battery. Therefore, sensors for measuring the internal resistance of the lead-acid battery can be used. There is no need to install a new one.
また、これによれば、定期的に実施する回復充電時に鉛蓄電池の劣化度合いを把握することが可能となるので、容量試験のように劣化を判定するために特別な充放電が不要である。これにより、蓄電システムの運用を停止する必要がない上に、鉛蓄電池の劣化を判定するための時間を大幅に短縮することが可能となる。 Further, according to this, since it is possible to grasp the degree of deterioration of the lead storage battery at the time of recovery charging which is carried out regularly, no special charge / discharge is required to determine the deterioration as in the capacity test. As a result, it is not necessary to stop the operation of the power storage system, and the time for determining the deterioration of the lead storage battery can be significantly shortened.
また、これによれば、充電電流と時間の組み合わせにより回復充電末期電流を計測するので、据置型蓄電池のように多段充電方式で回復充電を行う蓄電システムにも適用することが可能となる。 Further, according to this, since the recovery charge terminal current is measured by the combination of the charging current and the time, it can be applied to a power storage system that performs recovery charging by a multi-stage charging method such as a stationary storage battery.
したがって、実施の形態1に係る監視装置1によれば、回復充電の方式によらず、より簡単に鉛蓄電池の劣化状態を診断することが可能となる。
Therefore, according to the
更に、実施の形態1に係る監視装置1は、定電圧充電期間において充電電流が所定の閾値より低下してから所定時間経過したときの充電電流の計測値を回復充電末期電流の計測値とし、当該計測値と対応関係データ132とに基づいて、鉛蓄電池の劣化状態を判定する。これによれば、回復充電末期電流、すなわち回復充電の終了間際の充電電流を適切に計測することができるので、鉛蓄電池の劣化度合いをより高精度に判定することが可能となる。
Further, in the
≪実施の形態2≫
実施の形態1に係る診断方法では、回復充電末期電流に基づいて、鉛蓄電池の劣化状態を判定したが、実施の形態2に係る診断方法では、充電電流収束時間に基づいて、鉛蓄電池の劣化状態を判定する。なお、実施の形態2に係る蓄電システムは、監視装置の構成の点において、実施の形態1に係る蓄電システムと相違し、その他の点においては実施の形態1に係る蓄電システムと同様である。
<<
In the diagnostic method according to the first embodiment, the deterioration state of the lead storage battery is determined based on the recovery charge terminal current, but in the diagnostic method according to the second embodiment, the deterioration state of the lead storage battery is determined based on the charging current convergence time. Determine the state. The power storage system according to the second embodiment is different from the power storage system according to the first embodiment in the configuration of the monitoring device, and is the same as the power storage system according to the first embodiment in other respects.
図9は、実施の形態2に係る監視装置の構成を示す図である。
実施の形態2において、対応関係データ132Aの第1パラメータは、定電圧充電期間に充電電流が第1閾値Ith1に到達してから第2閾値Ith2(<Ith1)に到達するまでの充電電流収束時間(t2)であり、対応関係データ132Aの第2パラメータは、鉛蓄電池7の蓄電池容量である。
FIG. 9 is a diagram showing a configuration of a monitoring device according to the second embodiment.
In the second embodiment, the first parameter of the
例えば、上述の図4に示したような、鉛蓄電池7の充電電流収束時間t2と充放電サイクル数(または、充放電サイクル数に対応する蓄電池容量)との相関関係を予め実験等により求めておき、その相関関係を示すデータを対応関係データ132Aとして記憶部13に記憶しておく。
For example, as shown in FIG. 4 above, the correlation between the charging current convergence time t2 of the lead-
図9に示される監視装置1Aの判定部14Aは、計時部140Aおよび判定処理部141Aを有する。
The
計時部140Aは、定電圧充電期間に充電電流が第1閾値Ith1に到達してから第2閾値Ith2(<Ith1)に到達するまでの充電電流収束時間を計測する。計時部140Aは、例えばカウンタであって、定電圧充電期間に充電電流の計測値が第1閾値Ith1となったときにカウント動作を開始し、充電電流の計測値が第2閾値Ith2となったときにカウント動作を停止して、そのときのカウント値を充電電流収束時間の計測値として記憶する。
The
判定処理部141Aは、計時部140Aによる時間の計測値と対応関係データ132Aとに基づいて、鉛蓄電池7の劣化状態を判定する。例えば、判定処理部141Aは、充電電流収束時間と蓄電池容量との関係を示す対応関係データ132Aに基づいて、計時部140Aによる充電電流収束時間の計測値に対応する蓄電池容量を算出することにより、鉛蓄電池の劣化状態を判定する。
The
次に、実施の形態2に係る監視装置1Aによる鉛蓄電池7の劣化状態を診断する診断方法について、具体的に説明する。
図10は、実施の形態2に係る鉛蓄電池の劣化状態を診断する診断方法の流れを示すフローチャートである。
Next, a diagnostic method for diagnosing the deteriorated state of the
FIG. 10 is a flowchart showing a flow of a diagnostic method for diagnosing a deteriorated state of the lead storage battery according to the second embodiment.
図11は、回復充電時の鉛蓄電池7の充電電流と蓄電池電圧を示すタイミングチャートである。図11において、縦軸は、電流と電圧とを表し、横軸は、時間を表している。また、参照符号301は、鉛蓄電池7の充電電流を表し、参照符号401は、鉛蓄電池7の蓄電池電圧を表している。図11には、一例として、定電流―定電圧充電(CCCV)方式で回復充電を行った場合の充電電流および蓄電池電圧の時間的な変化が示されている。
FIG. 11 is a timing chart showing the charging current and the storage battery voltage of the lead-
図10に示すように、監視装置1Aは、回復充電の定電圧充電期間(CV充電期間)において、充電電流Iが所定の第1閾値Ith1に到達したか否かを判定する(ステップS21)。ステップS21において、充電電流Iが第1閾値Ith1に到達した場合には、監視装置1Aは、計時部140Aによって計時を開始する(ステップS22)。
As shown in FIG. 10, the
次に、監視装置1Aは、充電電流Iが第1閾値Ith1よりも低い第2閾値Ith2に到達したか否かを判定する(ステップS23)。ステップS23において、充電電流Iが第2閾値Ith2に到達していない場合には、計時部140Aによる計時を継続する。
一方、ステップS23において、充電電流Iが第2閾値Ith2に到達した場合には、図11に示すように、監視装置1Aは計時部140Aによる計時を終了し、そのときの計測時間t2を充電電流収束時間の計測値とする(ステップS24)。
Next, the
On the other hand, when the charging current I reaches the second threshold value Is2 in step S23, as shown in FIG. 11, the
次に、監視装置1Aは、ステップS24で取得した充電電流収束時間の計測値と記憶部13に記憶された対応関係データ132Aとに基づいて、鉛蓄電池の劣化状態を判定する(ステップS25)。例えば、監視装置1Aの判定処理部141Aが、充電電流収束時間t2と蓄電池容量との関係を示す対応関係データ132に基づいて、ステップS24で取得した充電電流収束時間の計測値に対応する蓄電池容量を算出する。判定処理部141Aは、算出した蓄電池容量に基づいて、鉛蓄電池の劣化状態を判定する。
Next, the
以上、実施の形態2に係る監視装置1Aによれば、実施の形態1に係る監視装置1と同様に、回復充電の方式によらず、より簡単に鉛蓄電池の劣化状態を診断することが可能となる。
As described above, according to the
更に、実施の形態2に係る監視装置1Aは、定電圧充電期間において充電電流が第1閾値Ith1に到達してから第2閾値Ith2(<Ith1)に到達するまでの時間の計測値を充電電流収束時間t2の計測値とし、当該計測値と対応関係データ132Aとに基づいて、鉛蓄電池の劣化状態を判定する。これによれば、充電電流収束時間、すなわち回復充電の終了間際の充電電流の時間的な変化を適切に計測することができるので、鉛蓄電池の劣化度合いをより高精度に判定することが可能となる。
Further, the
≪実施の形態3≫
実施の形態3に係る蓄電システムは、回復充電末期電流の決定方法に関して実施の形態1に係る蓄電システムと相違し、その他の点においては実施の形態1に係る蓄電システムと同様である。
<< Embodiment 3 >>
The power storage system according to the third embodiment is different from the power storage system according to the first embodiment in terms of a method for determining the recovery charge terminal current, and is the same as the power storage system according to the first embodiment in other respects.
図12は、実施の形態3に係る監視装置の構成を示す図である。
図12に示される監視装置1Bの判定部14Bは、充電電流積算部142、放電電流積算部143、および判定処理部141Bを有する。
FIG. 12 is a diagram showing a configuration of a monitoring device according to the third embodiment.
The
充電電流積算部142は、鉛蓄電池7の充電電流の積算値を算出する機能部である。放電電流積算部143は、鉛蓄電池7の放電電流の積算値を算出する機能部である。充電電流積算部142および放電電流積算部143は、回復充電が完了したタイミングで充電電流および放電電流の積算を開始する。
The charging current integrating
判定処理部141Bは、充電電流の積算値と放電電流の積算値との比率が所定値となったときの蓄電池の充電電流の計測値を回復充電末期電流の計測値とし、当該計測値と対応関係データ132とに基づいて、鉛蓄電池7の劣化状態を判定する。
The
具体的に、判定処理部141Bは、前回実施した回復充電が完了してから充電電流積算部142によって算出された充電電流の積算値と、前回実施した回復充電が完了してから放電電流積算部143によって算出された放電電流の積算値との比率を算出する。例えば、判定処理部141Bは、放電電流の積算値に対する充電電流の積算値の比率〔%〕を算出する。次に、判定処理部141Bは、算出した比率と比率基準値134とを比較する。
Specifically, the
ここで、比率基準値134は、回復充電における定電圧充電期間の末期を判定するための基準となる値である。一般に、回復充電は、放電容量に対して100%以上(例えば、104%)となるように過充電が行われる。そのため、比率基準値134は、100%を超える値、例えば101%〜104%の範囲の値に設定することが好ましい。
比率基準値134は、例えば、予め記憶部13に記憶されている。
Here, the
The
判定処理部141Bは、算出した比率が比率基準値134に到達したときの鉛蓄電池7の充電電流の計測値を回復充電末期電流の計測値とする。そして、判定処理部141Bは、回復充電末期電流と蓄電池容量との関係を示す対応関係データ132に基づいて、取得した回復充電末期電流の計測値に対応する蓄電池容量を算出することにより、鉛蓄電池の劣化状態を判定する。
The
次に、実施の形態3に係る監視装置1Bによる鉛蓄電池7の劣化状態を診断する診断方法について、具体的に説明する。
図13は、実施の形態3に係る鉛蓄電池の劣化状態を診断する診断方法の流れを示すフローチャートである。
Next, a diagnostic method for diagnosing the deteriorated state of the
FIG. 13 is a flowchart showing a flow of a diagnostic method for diagnosing a deteriorated state of the lead storage battery according to the third embodiment.
図14は、回復充電時の鉛蓄電池7の充電電流および放電電流を示すタイミングチャートである。図14において、縦軸は、電流を表し、横軸は、時間を表している。また、参照符号302は、鉛蓄電池7の充電電流を表し、参照符号303は、鉛蓄電池7の放電電流を表している。
FIG. 14 is a timing chart showing the charge current and discharge current of the lead-
先ず、監視装置1Bは、回復充電が完了したタイミングで鉛蓄電池7の充電電流および放電電流の積算を開始する(ステップS31)。例えば、図14において、回復充電が完了した時刻t31において、監視装置1Bは、充電電流積算部142によって鉛蓄電池7の充電電流の積算を開始するとともに、放電電流積算部143によって鉛蓄電池7の放電電流の積算を開始する。
First, the
次に、監視装置1Bは、判定処理部141Bによって、充電電流積算部142による充電電流の積算値と放電電流積算部143による放電電流の積算値との比率を算出する(ステップS32)。具体的には、放電電流の積算値に対する充電電流の積算値の比率を算出する。
Next, the
次に、監視装置1Bは、判定処理部141Bによって、ステップS32で算出した比率が比率基準値134に到達したか否かを判定する(ステップS33)。ステップS33において、ステップS32で算出した比率が比率基準値134に到達していない場合には、充電電流および放電電流の積算を継続する。
Next, the
一方、ステップS32で算出した比率が比率基準値134に到達した場合には、監視装置1Bは、その時の充電電流の計測値を回復充電末期電流の計測値として取得する(ステップS34)。例えば、図14の時刻t32において、放電電流の積算値に対する充電電流の積算値の比率が比率基準値134と一致した場合、監視装置1Bは、計測制御部12によって時刻t32において計測した充電電流の計測値を、回復充電末期電流の計測値とする。
On the other hand, when the ratio calculated in step S32 reaches the
次に、監視装置1Bは、ステップS34で取得した回復充電末期電流の計測値と対応関係データ132とに基づいて、鉛蓄電池の劣化状態を判定する(ステップS35)。具体的には、判定処理部141Bが、記憶部13に記憶されている回復充電末期電流と蓄電池容量との関係を示す対応関係データ132に基づいて、ステップS34で取得した回復充電末期電流の計測値に対応する蓄電池容量を算出する。判定処理部141Bは、算出した蓄電池容量に基づいて、鉛蓄電池の劣化状態を判定する。
Next, the
以上、実施の形態3に係る監視装置1Bによれば、実施の形態1に係る監視装置1と同様に、回復充電の方式によらず、より簡単に鉛蓄電池の劣化状態を診断することが可能となる。
As described above, according to the
また、実施の形態3に係る監視装置1Bは、前回実施した回復充電が完了してから充電電流および放電電流の積算を開始し、充電電流の積算値と放電電流の積算値との比率が所定値となったときの蓄電池の充電電流の計測値を回復充電末期電流の計測値として、鉛蓄電池7の劣化状態を判定する。これによれば、実施の形態1と同様に、回復充電の終了間際の充電電流を適切に計測することができるので、鉛蓄電池の劣化度合いをより高精度に判定することが可能となる。
Further, the
≪実施の形態4≫
実施の形態4に係る蓄電システムは、回復充電の定電圧充電期間における充電電流の対数曲線の近似関数に基づいて鉛蓄電池の劣化度合いを判定する点において、実施の形態1に係る蓄電システムと相違し、その他の点においては実施の形態1に係る蓄電システムと同様である。
<< Embodiment 4 >>
The power storage system according to the fourth embodiment is different from the power storage system according to the first embodiment in that the degree of deterioration of the lead storage battery is determined based on an approximate function of the logarithmic curve of the charging current during the constant voltage charging period of recovery charging. However, in other respects, it is the same as the power storage system according to the first embodiment.
図15は、回復充電における充電電流の特性を示す図である。
同図において、縦軸は充電電流を表し、横軸は時間を表している。また、参照符号303は、鉛蓄電池7の充電電流を表している。図15には、一例として、定電流―定電圧充電(CCCV)方式で回復充電を行った場合の充電電流および蓄電池電圧の時間的な変化が示されている。
FIG. 15 is a diagram showing the characteristics of the charging current in recovery charging.
In the figure, the vertical axis represents the charging current and the horizontal axis represents the time. Further,
図16は、回復充電の定電圧充電期間における充電電流の時間に対する変化を表す関数を片対数グラフで表示した場合の一例を示す図である。
図16に示すように、式(1)で表される関数は、充電電流を片対数で表示した場合、参照符号501〜503のような特性となる。参照符号501は、充放電サイクル数がC1の鉛蓄電池7の充電電流の時間変化を表し、参照符号502は、充放電サイクル数がC2(>C1)の鉛蓄電池7の充電電流の時間変化を表し、参照符号503は、充放電サイクル数がC3(>C2)の鉛蓄電池7の充電電流の時間変化を表している。
FIG. 16 is a diagram showing an example of a semi-logarithmic graph showing a function representing a change in charging current with time during a constant voltage charging period of recovery charging.
As shown in FIG. 16, the function represented by the equation (1) has characteristics such as
このように、回復充電の定電圧充電期間における鉛蓄電池の充電電流の時間変化は、片方対数で表示したときに直線に近似できる。したがって、定電圧充電期間における充電電流の時間に対する変化は、下記式(1)で表すことが可能である。 In this way, the time change of the charging current of the lead-acid battery during the constant voltage charging period of recovery charging can be approximated to a straight line when displayed in one logarithm. Therefore, the change of the charging current with respect to time in the constant voltage charging period can be expressed by the following equation (1).
式(1)において、Iは鉛蓄電池7の充電電流であり、tは時間である。また、Aは定数である。また、式(1)において、Bは、鉛蓄電池7の内部抵抗と鉛蓄電池7の容量とに基づく時定数である。ここで、容量は、鉛蓄電池7固有の値であって一定値である。一方、内部抵抗は、充放電サイクル数(鉛蓄電池7の劣化)に応じて増加する。したがって、時定数Bは、鉛蓄電池の劣化度合と相関のあるパラメータである。
さらに、式(1)において、I0は定数であって、回復充電末期電流に対応する。すなわち、定数I0は、鉛蓄電池の劣化度合と相関のあるパラメータである。
In the formula (1), I is the charging current of the lead-
Further, in the equation (1), I0 is a constant and corresponds to the recovery charge terminal current. That is, the constant I0 is a parameter that correlates with the degree of deterioration of the lead storage battery.
このように、定電圧充電期間における充電電流の時間に対する変化は上記式(1)で近似することが可能であり、かつ充放電サイクル数によって回復充電末期電流の値(定数IO)または波形の傾き(時定数B)が異なる。
そこで、実施の形態4に係る監視装置では、定電圧充電を開始してから一定間隔で充電電流を計測し、その計測値から算出した指数関数の近似式(式(1))における定数IOまたは時定数Bから、蓄電池の劣化度合いを判定する。
In this way, the change of the charging current with respect to time in the constant voltage charging period can be approximated by the above equation (1), and the value (constant IO) of the recovery charging end current or the gradient of the waveform depends on the number of charge / discharge cycles. (Time constant B) is different.
Therefore, in the monitoring device according to the fourth embodiment, the charging current is measured at regular intervals after the constant voltage charging is started, and the constant IO or the constant IO in the approximate expression (equation (1)) of the exponential function calculated from the measured value is used. The degree of deterioration of the storage battery is determined from the time constant B.
図17は、実施の形態4に係る監視装置1Cの構成を示す図である。
図17に示される監視装置1Cの判定部14Cは、関数推定部144および判定処理部141Cを有する。
FIG. 17 is a diagram showing a configuration of the monitoring device 1C according to the fourth embodiment.
The
関数推定部144は、鉛蓄電池7の回復充電の定電圧充電期間における経過時間と充電電流の計測値とに基づいて、定電圧充電期間における充電電流の時間に対する変化を示す関数を推定する機能部である。具体的に、関数推定部144は、定電圧充電の開始後に、計測制御部12によって一定の時間間隔で取得した充電電流の計測値から、上述した指数関数の近似式(式(1))を推定する。近似式(式(1))を求める手法としては、逐次演算アルゴリズムのLevenberg−Marquardt法等を用いればよい。
The
関数推定部144によって推定された近似式(式(1))は、記憶部13に関数データ135として記憶される。
The approximate expression (equation (1)) estimated by the
判定処理部141Cは、関数推定部144によって推定した関数から算出した第1パラメータと、対応関係データ132Cとに基づいて、鉛蓄電池7の劣化状態を判定する。
The
ここで、実施の形態4に係る対応関係データ132Cの第1パラメータは、近似式(式(1))における定数IOまたは時定数Bであり、対応関係データ132Cの第2パラメータは、鉛蓄電池7の蓄電池容量である。
Here, the first parameter of the
例えば、上述の図3に示したような、鉛蓄電池7の回復充電末期電流(定数IO)と蓄電池容量との相関関係を予め実験等により求めておき、その相関関係を示すデータを対応関係データ132Cとして記憶部13に記憶しておく。あるいは、図18に示すような、鉛蓄電池7の近似式(式(1))における時定数Bと蓄電池容量との相関関係を予め実験等により求めておき、その相関関係を示すデータを対応関係データ132Cとして記憶部13に記憶しておく。
For example, as shown in FIG. 3 above, the correlation between the recovery charge end-stage current (constant IO) of the lead-
次に、実施の形態4に係る監視装置1Cによる鉛蓄電池7の劣化状態を診断する診断方法について、具体的に説明する。
図19は、実施の形態4に係る鉛蓄電池の劣化状態を診断する診断方法の流れを示すフローチャートである。
Next, a diagnostic method for diagnosing the deteriorated state of the
FIG. 19 is a flowchart showing a flow of a diagnostic method for diagnosing a deteriorated state of the lead storage battery according to the fourth embodiment.
先ず、監視装置1Cは、回復充電において定電圧充電が開始されると、充電電流の計測を開始する(ステップS41)。例えば、監視装置1Bは、計測制御部12によって、所定の時間間隔で充電電流の計測値を電流センサ5から取得する。
First, the monitoring device 1C starts measuring the charging current when the constant voltage charging is started in the recovery charging (step S41). For example, the
次に、監視装置1Cは、定電圧充電期間に取得した充電電流の計測値に基づいて、充電電流の時間的な変化を表す近似式を算出する(ステップS42)。例えば、監視装置1Cの関数推定部144が、計測制御部12によって取得した複数の充電電流の計測値に基づいて、上記式(1)で表される近似式を算出し、関数データ135として記憶部13に記憶する。
Next, the monitoring device 1C calculates an approximate expression representing a temporal change in the charging current based on the measured value of the charging current acquired during the constant voltage charging period (step S42). For example, the
次に、監視装置1Cの判定処理部141Cが、ステップS43で算出した近似式(式(1))における第1パラメータを取得する(ステップS43)。例えば、判定処理部141Cが、記憶部13に記憶されている関数データ135から、定数IOまたは時定数Bを取得する。
Next, the
次に、監視装置1Cの判定処理部141Cが、ステップS44で取得した第1パラメータと、対応関係データ132Cとに基づいて、鉛蓄電池7の劣化状態を判定する(ステップS44)。
例えば、判定処理部141Cは、ステップS43で取得した近似式(式(1))の定数IOを回復充電末期電流の計測値とし、回復充電末期電流と蓄電池容量との関係を示す対応関係データ132Cに基づいて、回復充電末期電流の計測値に対応する蓄電池容量を算出する。あるいは、判定処理部141Cは、時定数Bと蓄電池容量との関係を示す対応関係データ132Cに基づいて、ステップS43で取得した近似式(式(1))における時定数Bの値に対応する蓄電池容量を算出する。そして、判定処理部141Bは、算出した蓄電池容量に基づいて、鉛蓄電池の劣化状態を判定する。
Next, the
For example, the
以上、実施の形態4に係る監視装置1Cによれば、実施の形態1に係る監視装置1と同様に、回復充電の方式によらず、より簡単に鉛蓄電池の劣化状態を診断することが可能となる。
As described above, according to the monitoring device 1C according to the fourth embodiment, it is possible to more easily diagnose the deteriorated state of the lead storage battery regardless of the recovery charging method, as in the
また、実施の形態4に係る監視装置1Cは、定電圧充電期間における経過時間と充電電流の計測値とに基づいて関数(式(1))を推定し、その関数の定数IOまたは時定数Bに基づいて鉛蓄電池7の劣化度合を判定する。これによれば、実施の形態1と同様に、回復充電の終了間際の充電電流、または充電電流の時間的な変化を適切に計測することができるので、鉛蓄電池の劣化度合いをより高精度に判定することが可能となる。
Further, the monitoring device 1C according to the fourth embodiment estimates a function (Equation (1)) based on the elapsed time in the constant voltage charging period and the measured value of the charging current, and the constant IO or the time constant B of the function. The degree of deterioration of the
≪実施の形態の拡張≫
以上、本発明者らによってなされた発明を実施の形態に基づいて具体的に説明したが、本発明はそれに限定されるものではなく、その要旨を逸脱しない範囲において種々変更可能であることは言うまでもない。
≪Expansion of embodiment≫
The inventions made by the present inventors have been specifically described above based on the embodiments, but it goes without saying that the present invention is not limited thereto and can be variously modified without departing from the gist thereof. No.
例えば、上述のフローチャートは、動作を説明するための一例を示すものであって、これに限定されない。すなわち、フローチャートの各図に示したステップは具体例であって、このフローに限定されるものではない。例えば、一部の処理の順番が変更されてもよいし、各処理間に他の処理が挿入されてもよいし、一部の処理が並列に行われてもよい。 For example, the flowchart described above is an example for explaining the operation, and is not limited thereto. That is, the steps shown in each figure of the flowchart are specific examples, and are not limited to this flow. For example, the order of some processes may be changed, other processes may be inserted between each process, and some processes may be performed in parallel.
1,1A〜1C…監視装置(データ処理装置)、2…制御装置、3…電力供給部(PCS)、5…電流センサ、6…電圧センサ、7…蓄電池(鉛蓄電池)、8…負荷、11…通信部、12…計測制御部、12…計測値取得部、13…記憶部、14,14A,14B,14C…判定部、100…蓄電システム、131…計測結果、132,132A,132C…対応関係データ、134…比率基準値、135…関数データ、140,140A…計時部、141,141A,141B,141C…判定処理部、142…充電電流積算部、143…放電電流積算部、144…関数推定部。
1,1A-1C ... Monitoring device (data processing device), 2 ... Control device, 3 ... Power supply unit (PCS), 5 ... Current sensor, 6 ... Voltage sensor, 7 ... Storage battery (lead storage battery), 8 ... Load, 11 ... Communication unit, 12 ... Measurement control unit, 12 ... Measurement value acquisition unit, 13 ... Storage unit, 14, 14A, 14B, 14C ... Judgment unit, 100 ... Power storage system, 131 ... Measurement result, 132, 132A, 132C ... Correspondence-related data, 134 ... Ratio reference value, 135 ... Function data, 140, 140A ... Measuring unit, 141, 141A, 141B, 141C ... Judgment processing unit, 142 ... Charging current integrating unit, 143 ... Discharging current integrating
Claims (8)
前記定電圧充電期間における充電電流に関する第1パラメータと前記鉛蓄電池の劣化度合いを示す第2パラメータとの対応関係を表す対応関係データを記憶する記憶部と、
前記計測値取得部によって取得した前記計測値と、前記記憶部に記憶された前記対応関係データとに基づいて、前記鉛蓄電池の劣化状態を判定する判定部と、を有し、
前記第1パラメータは、前記定電圧充電期間の末期における充電電流を示す回復充電末期電流であって、
前記計測値取得部は、前記鉛蓄電池の充電電流と前記鉛蓄電池の放電電流とを取得し、
前記判定部は、
前記鉛蓄電池の充電電流の積算値を算出する充電電流積算部と、
前記鉛蓄電池の放電電流の積算値を算出する放電電流積算部と、
前回実施した回復充電が完了してからの前記充電電流の積算値と前回実施した回復充電が完了してからの前記放電電流の積算値との比率が所定値となったときの前記鉛蓄電池の充電電流の計測値を前記回復充電末期電流の計測値とし、当該計測値と前記対応関係データとに基づいて、前記鉛蓄電池の劣化状態を判定する判定処理部と、を含む
データ処理装置。 A measurement value acquisition unit that acquires the measurement value of the charging current during the constant voltage charging period of recovery charging of the lead-acid battery,
A storage unit that stores correspondence data representing the correspondence between the first parameter relating to the charging current during the constant voltage charging period and the second parameter indicating the degree of deterioration of the lead storage battery.
And the measurement value obtained by the measurement value acquisition unit, on the basis of the stored the correspondence data in the storage unit, have a, a determination unit state of deterioration of the lead-acid battery,
The first parameter is a recovery charging end current indicating the charging current at the end of the constant voltage charging period.
The measured value acquisition unit acquires the charge current of the lead-acid battery and the discharge current of the lead-acid battery.
The determination unit
A charging current integrating unit that calculates the integrated value of the charging current of the lead-acid battery,
A discharge current integrating unit that calculates the integrated value of the discharge current of the lead-acid battery,
The lead-acid battery when the ratio of the integrated value of the charging current after the completion of the recovery charging performed last time and the integrated value of the discharge current after the completion of the recovery charging performed last time becomes a predetermined value. A data processing device including a determination processing unit that determines a deterioration state of the lead-acid battery based on the measured value of the charging current as the measured value of the recovery charging end-stage current and the measured value and the corresponding relationship data .
前記第1パラメータは、前記定電圧充電期間の末期における充電電流を示す回復充電末期電流であって、
前記判定部は、前記定電圧充電期間において充電電流が閾値より低下してから所定時間経過したときの充電電流の計測値を前記回復充電末期電流の計測値とし、当該計測値と前記対応関係データとに基づいて、前記鉛蓄電池の劣化状態を判定する
ことを特徴とするデータ処理装置。 In the data processing apparatus according to claim 1,
The first parameter is a recovery charging end current indicating the charging current at the end of the constant voltage charging period.
The determination unit uses the measured value of the charging current when a predetermined time elapses after the charging current drops below the threshold value in the constant voltage charging period as the measured value of the recovery charging end-stage current, and the measured value and the corresponding relationship data. A data processing device for determining a deteriorated state of the lead storage battery based on the above.
前記第1パラメータは、前記定電圧充電期間に充電電流が第1閾値に到達してから前記第1閾値よりも小さい第2閾値に到達するまでの時間を示す充電電流収束時間であって、
前記判定部は、
前記定電圧充電期間に充電電流が前記第1閾値に到達してから前記第2閾値に到達するまでの時間を計測する計時部と、
前記計時部によって計測した前記時間の計測値と前記対応関係データとに基づいて、前記鉛蓄電池の劣化状態を判定する判定処理部とを含む
ことを特徴とするデータ処理装置。 In the data processing apparatus according to claim 1,
The first parameter is a charging current convergence time indicating the time from when the charging current reaches the first threshold value to when it reaches the second threshold value smaller than the first threshold value during the constant voltage charging period.
The determination unit
A time measuring unit that measures the time from when the charging current reaches the first threshold value to when it reaches the second threshold value during the constant voltage charging period.
A data processing device including a determination processing unit that determines a deterioration state of the lead storage battery based on the measured value of the time measured by the time measuring unit and the correspondence data.
前記判定部は、
前記定電圧充電期間における経過時間と充電電流の計測値とに基づいて、前記定電圧充電期間における前記充電電流の時間に対する変化を示す関数を推定する関数推定部と、
前記関数推定部によって推定した関数に基づいて算出した前記第1パラメータと、前記対応関係データとに基づいて、前記鉛蓄電池の劣化状態を判定する判定処理部と、を含む ことを特徴とするデータ処理装置。 In the data processing apparatus according to claim 1,
The determination unit
A function estimation unit that estimates a function indicating a change in the charging current with respect to time in the constant voltage charging period based on the elapsed time in the constant voltage charging period and the measured value of the charging current.
Data including a determination processing unit for determining a deterioration state of the lead-acid battery based on the first parameter calculated based on a function estimated by the function estimation unit and the correspondence data. Processing equipment.
前記鉛蓄電池の充電電流をI、時間をt、時定数をB、第1定数をI0、第2定数をAとしたとき、前記関数は下記式(1)によって表され、
前記第1パラメータは、前記定電圧充電期間の末期における充電電流を表す回復充電末期電流であって、
前記判定処理部は、前記関数推定部によって推定した前記関数の前記第1定数を前記回復充電末期電流の計測値とし、当該計測値と前記対応関係データとに基づいて、前記鉛蓄電池の劣化状態を判定する
ことを特徴とするデータ処理装置。
When the charging current of the lead-acid battery is I, the time is t, the time constant is B, the first constant is I0, and the second constant is A, the function is expressed by the following equation (1).
The first parameter is a recovery charging end current representing the charging current at the end of the constant voltage charging period.
The determination processing unit uses the first constant of the function estimated by the function estimation unit as the measured value of the recovery charge end-stage current, and based on the measured value and the corresponding relationship data, the deterioration state of the lead storage battery. A data processing device characterized by determining.
前記鉛蓄電池の充電電流をI、時間をt、時定数をB、第1定数をI0、第2定数をAとしたとき、前記関数は下記式(1)によって表され、
前記第1パラメータは、前記時定数であって、
前記判定処理部は、前記関数推定部によって推定した前記関数の前記時定数と前記対応関係データとに基づいて、前記鉛蓄電池の劣化状態を判定する
ことを特徴とするデータ処理装置。
When the charging current of the lead-acid battery is I, the time is t, the time constant is B, the first constant is I0, and the second constant is A, the function is expressed by the following equation (1).
The first parameter is the time constant.
The determination processing unit is a data processing device that determines a deterioration state of the lead storage battery based on the time constant of the function estimated by the function estimation unit and the correspondence data.
前記鉛蓄電池の回復充電の定電圧充電期間における充電電流の計測値を取得する計測値取得ステップと、
前記計測値取得ステップによって取得した前記計測値と、記憶部に記憶された前記定電圧充電期間における充電電流に関する第1パラメータと前記鉛蓄電池の劣化度合いを示す第2パラメータとの対応関係を表す対応関係データとに基づいて、前記鉛蓄電池の劣化状態を判定する判定ステップと、を含み、
前記第1パラメータは、前記定電圧充電期間の末期における充電電流を示す回復充電末期電流であって、
前記計測値取得ステップは、前記鉛蓄電池の充電電流と放電電流とを取得し、
前記判定ステップは、
前記鉛蓄電池の充電電流の積算値を算出する充電電流積算ステップと、
前記鉛蓄電池の放電電流の積算値を算出する放電電流積算ステップと、
前回実施した回復充電が完了してからの前記充電電流の積算値と前回実施した回復充電が完了してからの前記放電電流の積算値との比率が所定値となったときの前記鉛蓄電池の充電電流の計測値を前記回復充電末期電流の計測値とし、当該計測値と前記対応関係データとに基づいて、前記鉛蓄電池の劣化状態を判定する判定処理ステップと、を含む
診断方法。 It is a method for determining the deterioration state of lead-acid batteries.
A measurement value acquisition step for acquiring a measurement value of the charging current during the constant voltage charging period of the recovery charge of the lead-acid battery, and a measurement value acquisition step.
Correspondence representing the correspondence relationship between the measured value acquired by the measured value acquisition step, the first parameter regarding the charging current in the constant voltage charging period stored in the storage unit, and the second parameter indicating the degree of deterioration of the lead storage battery. based on the relationship data, see containing and a determination step of determining the deterioration state of the lead-acid battery,
The first parameter is a recovery charging end current indicating the charging current at the end of the constant voltage charging period.
In the measurement value acquisition step, the charge current and the discharge current of the lead storage battery are acquired, and the measurement value acquisition step is performed.
The determination step is
A charging current integration step for calculating the integrated value of the charging current of the lead-acid battery, and
A discharge current integration step for calculating the integrated value of the discharge current of the lead-acid battery, and
The lead-acid battery when the ratio of the integrated value of the charging current after the completion of the recovery charging performed last time and the integrated value of the discharge current after the completion of the recovery charging performed last time becomes a predetermined value. A diagnostic method including a determination processing step of determining a deterioration state of the lead-acid battery based on the measured value of the charging current as the measured value of the recovery charging end-stage current and the measured value and the corresponding relationship data .
前記鉛蓄電池の回復充電の定電圧充電期間における充電電流の計測値を取得する計測値取得ステップと、
前記計測値取得ステップによって取得した前記計測値と、記憶部に記憶された前記定電圧充電期間における充電電流に関する第1パラメータと前記鉛蓄電池の劣化度合いを示す第2パラメータとの対応関係を表す対応関係データとに基づいて、前記鉛蓄電池の劣化状態を判定する判定ステップと、を含み、
前記判定ステップは、
前記定電圧充電期間における経過時間と充電電流の計測値とに基づいて、前記定電圧充電期間における前記充電電流の時間に対する変化を示す関数を推定する関数推定ステップと、
前記関数推定ステップによって推定した関数に基づいて算出した前記第1パラメータと、前記対応関係データとに基づいて、前記鉛蓄電池の劣化状態を判定する判定処理ステップと、を含み、
前記鉛蓄電池の充電電流をI、時定数をB、第1定数をI0、第2定数をAとしたとき、前記関数は下記式(1)によって表され、
前記第1パラメータは、前記定電圧充電期間の末期における充電電流を表す回復充電末期電流であって、
前記判定処理ステップは、前記関数推定ステップによって推定した前記関数の前記第1定数を前記回復充電末期電流の計測値とし、当該計測値と前記対応関係データとに基づいて、前記鉛蓄電池の劣化状態を判定する
ことを特徴とする診断方法。
A measurement value acquisition step for acquiring a measurement value of the charging current during the constant voltage charging period of the recovery charge of the lead-acid battery, and a measurement value acquisition step.
Correspondence representing the correspondence relationship between the measured value acquired by the measured value acquisition step, the first parameter regarding the charging current in the constant voltage charging period stored in the storage unit, and the second parameter indicating the degree of deterioration of the lead storage battery. Including a determination step of determining the deterioration state of the lead-acid battery based on the related data.
The determination step is
A function estimation step for estimating a function indicating a change in the charging current with respect to time in the constant voltage charging period based on the elapsed time in the constant voltage charging period and the measured value of the charging current.
The first parameter calculated based on the function estimated by the function estimation step and a determination processing step for determining the deterioration state of the lead storage battery based on the correspondence data are included.
When the charging current of the lead-acid battery is I, the time constant is B, the first constant is I0, and the second constant is A, the function is expressed by the following equation (1).
The first parameter is a recovery charging end current representing the charging current at the end of the constant voltage charging period.
In the determination processing step, the first constant of the function estimated by the function estimation step is used as the measured value of the recovery charge end-stage current, and the deterioration state of the lead storage battery is based on the measured value and the corresponding relationship data. A diagnostic method characterized by determining.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018044607A JP6831807B2 (en) | 2018-03-12 | 2018-03-12 | Data processing device and diagnostic method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018044607A JP6831807B2 (en) | 2018-03-12 | 2018-03-12 | Data processing device and diagnostic method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019158531A JP2019158531A (en) | 2019-09-19 |
JP6831807B2 true JP6831807B2 (en) | 2021-02-17 |
Family
ID=67994720
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018044607A Active JP6831807B2 (en) | 2018-03-12 | 2018-03-12 | Data processing device and diagnostic method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6831807B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111308353A (en) * | 2020-01-07 | 2020-06-19 | 天津市中力神盾电子科技有限公司 | Storage battery abnormity judgment method and system |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3868711B2 (en) * | 1999-07-21 | 2007-01-17 | 三菱化学株式会社 | Secondary battery unit and measuring method of electric capacity in secondary battery unit |
JP2001292534A (en) * | 2000-04-04 | 2001-10-19 | Sekisui Chem Co Ltd | Determining apparatus for deterioration of lithium ion battery |
KR100406796B1 (en) * | 2001-10-17 | 2003-11-21 | 삼성에스디아이 주식회사 | Method to precisely estimate effective full-discharge capacity of secondary battery |
JP2004134129A (en) * | 2002-10-08 | 2004-04-30 | Honda Motor Co Ltd | Charge/discharge control device of storage battery |
JP4564999B2 (en) * | 2007-11-21 | 2010-10-20 | 株式会社日本自動車部品総合研究所 | In-vehicle secondary battery internal state detection device |
JP5817157B2 (en) * | 2011-03-16 | 2015-11-18 | 株式会社Gsユアサ | Secondary battery state determination method, secondary battery system |
FR3011393B1 (en) * | 2013-10-01 | 2017-02-10 | Centre Nat Rech Scient | METHOD AND APPARATUS FOR EVALUATING THE HEALTH CONDITION OF A LITHIUM BATTERY |
JP6520654B2 (en) * | 2015-11-12 | 2019-05-29 | 株式会社豊田自動織機 | Method of detecting the degree of deterioration of lead battery and method of controlling charging of lead battery |
-
2018
- 2018-03-12 JP JP2018044607A patent/JP6831807B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2019158531A (en) | 2019-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6895771B2 (en) | Storage battery deterioration judgment method and storage battery deterioration judgment device | |
JP6734784B2 (en) | How to estimate battery health | |
CN110870130B (en) | Battery system charge control device, battery system, and battery charge control method | |
US8996324B2 (en) | Battery-state monitoring apparatus | |
EP3343689B1 (en) | Deterioration degree estimation device and deterioration degree estimation method | |
CN109856548B (en) | Power battery capacity estimation method | |
CN100449857C (en) | Degradation judgment circuit for secondary battery | |
EP2728368B1 (en) | Condition estimation device and method for battery | |
JP4817647B2 (en) | Secondary battery life judgment method. | |
WO2008026476A1 (en) | Method and device for estimating soc value of secondary battery and degradation judging method and device | |
US10444296B2 (en) | Control device, control method, and recording medium | |
JP2012253975A (en) | Charging/discharging control method for alkali storage battery, and charging/discharging system | |
KR101695122B1 (en) | Apparatus and method for estimating electric energy of electric storage device | |
JP2009031219A (en) | Battery state detection method and device, and operation expression derivation method | |
JP6575308B2 (en) | Internal resistance calculation device, computer program, and internal resistance calculation method | |
KR20130129096A (en) | Open circuit voltage estimation device, state estimation device, method of open circuit voltage estimation | |
JP5372208B2 (en) | Secondary battery charging method and charging device using the same | |
JP6831807B2 (en) | Data processing device and diagnostic method | |
JP2014109535A (en) | Internal resistance estimation device, charging apparatus, discharging apparatus, and internal resistance estimation method | |
JP2004177373A (en) | Method of estimating battery condition, and method of determining engine start | |
JP5904916B2 (en) | Battery soundness calculation device and soundness calculation method | |
JP2016223964A (en) | Method and device for diagnosing deterioration of power storage device | |
JP4125105B2 (en) | Secondary battery remaining capacity calculation device and remaining capacity calculation method thereof | |
JP3913206B2 (en) | Secondary battery deterioration judgment circuit | |
JP2021197769A (en) | Method of estimating deterioration state of zinc battery and electrical power system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190725 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200715 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200729 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200904 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210106 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210129 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6831807 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |