JP5817157B2 - Secondary battery state determination method, secondary battery system - Google Patents

Secondary battery state determination method, secondary battery system Download PDF

Info

Publication number
JP5817157B2
JP5817157B2 JP2011058158A JP2011058158A JP5817157B2 JP 5817157 B2 JP5817157 B2 JP 5817157B2 JP 2011058158 A JP2011058158 A JP 2011058158A JP 2011058158 A JP2011058158 A JP 2011058158A JP 5817157 B2 JP5817157 B2 JP 5817157B2
Authority
JP
Japan
Prior art keywords
current value
charging
secondary battery
time
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011058158A
Other languages
Japanese (ja)
Other versions
JP2012194053A (en
Inventor
上田 純也
純也 上田
小西 大助
大助 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2011058158A priority Critical patent/JP5817157B2/en
Publication of JP2012194053A publication Critical patent/JP2012194053A/en
Application granted granted Critical
Publication of JP5817157B2 publication Critical patent/JP5817157B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、劣化等の電池の状態を判定する技術に関する。   The present invention relates to a technique for determining a state of a battery such as deterioration.

従来から、繰り返し使用可能な2次電池が用いられている。2次電池は、充電と放電を繰り返すことで何度も使用することができ、充電不能な電池に比べて環境に優しく、電気自動車など現在その使用分野を広げている。   Conventionally, secondary batteries that can be used repeatedly have been used. Secondary batteries can be used many times by repeating charging and discharging, are more environmentally friendly than non-chargeable batteries, and are currently expanding their fields of use such as electric vehicles.

このような電池では、使用回数が増えるに従って劣化により内部抵抗が増加する。内部抵抗が増加すると、最大電圧や最大電力など電池に求められている性能を実現することができない。そのため、電池が要求性能を実現できる状態であるか否かを把握するために、従来から、劣化等の電池の状態を判定する技術が知られている(例えば、特許文献1および特許文献2)。この技術は電池の充電時間に基づいて電池の状態を判定するものであり、具体的には、電池を定電流充電した後に定電圧充電をする定電流−定電圧充電の充電方法において、定電圧充電の充電時間に基づいて電池の状態を判定する。この技術によれば、電池を充電させる場合に測定される充電時間を用いて電池の状態を判定することができ、電池の状態を正確に判定することができるという。   In such a battery, the internal resistance increases due to deterioration as the number of uses increases. When the internal resistance increases, the performance required for the battery such as maximum voltage and maximum power cannot be realized. Therefore, in order to grasp whether or not the battery is in a state where the required performance can be realized, conventionally, a technique for determining the state of the battery such as deterioration is known (for example, Patent Document 1 and Patent Document 2). . This technology determines the state of the battery based on the charging time of the battery. Specifically, in a constant current-constant voltage charging method in which constant voltage charging is performed after the battery is charged with constant current, a constant voltage is used. The state of the battery is determined based on the charging time of charging. According to this technique, the state of the battery can be determined using the charging time measured when the battery is charged, and the state of the battery can be accurately determined.

特開2001−289924号公報JP 2001-289924 A 特開2007−78506号公報JP 2007-78506 A

本発明者らは、電池の状態の判定精度を向上させるために、定電圧充電の充電期間における電池への充電電圧や充電電流等の種々のふるまいを詳しく精査したところ、充電時間に基づく電池の状態判定には、判定精度の向上の余地が残されていることが解った。   In order to improve the determination accuracy of the state of the battery, the present inventors have scrutinized various behaviors such as charging voltage and charging current to the battery during the charging period of constant voltage charging. It has been found that there is still room for improvement in determination accuracy in the state determination.

本発明は、電池の状態の判定精度を向上させる技術を提供することにある。   An object of the present invention is to provide a technique for improving the accuracy of battery state determination.

定電圧充電の充電期間における充電電流のふるまいを詳しく精査したところ、定電圧充電の初期では、電池の状態の違いによらず充電電流の時間経過に伴う変化がほぼ一定であるのに対して、定電圧充電の後期にかけて電池の状態の違いに起因する充電電流の時間経過に伴う変化の違いが顕著になるという知見を得た。本発明者らは、この知見に基づき、以下の状態判定方法等を創作するに至った。   A detailed examination of the behavior of the charging current during the charging period of constant voltage charging shows that, in the initial stage of constant voltage charging, the change over time of the charging current is almost constant regardless of the difference in the state of the battery, It was found that the difference in the change in the charging current with the passage of time due to the difference in the state of the battery became remarkable in the latter half of the constant voltage charging. Based on this finding, the present inventors have created the following state determination method and the like.

本発明は、定電流充電から定電圧充電に切り替わって充電される二次電池の状態判定方法であって、定電流充電時の電流値より小さい第1の電流値、および前記第1の電流値より小さい第2の電流値が定められており、定電圧充電時に前記第1の電流値から前記第2の電流値に減少する時間に基づいて前記二次電池の状態を判定する。   The present invention relates to a state determination method for a secondary battery that is charged by switching from constant current charging to constant voltage charging, the first current value being smaller than the current value during constant current charging, and the first current value. A smaller second current value is determined, and the state of the secondary battery is determined based on a time period during which the first current value decreases to the second current value during constant voltage charging.

上記の発明において、前記第1の電流値が前記定電流充電時の電流値の半分以下の値であることが好ましい。つまり、定電圧充電時の電流値が定電流充電時の電流値の半分以下になった以後に、二次電池の状態を判定するための時間の計測を開始することが好ましい。   In the above invention, it is preferable that the first current value is not more than half of the current value during the constant current charging. That is, it is preferable to start measuring the time for determining the state of the secondary battery after the current value at the time of constant voltage charging becomes half or less of the current value at the time of constant current charging.

この状態判定方法では、電池の状態を判定するための判定時間を計測する際に、計測開始時間を定電圧充電時の電流値より小さい電流値に達したときに設定することで、定電圧充電の初期における充電時間を計測しない。電池の状態の違いによって充電電流の時間経過に伴う変化が顕著となる領域に、電池の状態を判定するための判定時間を設定することで、電池の状態を精度よく判定することができる。さらに、判定時間の計測開始の電流値を定電流充電時の電流値の半分以下とする。つまり、定電圧充電の電流値が定電流充電時の電流値の半分以下になった以後に判定時間の計測を開始することで、より精度よく電池の状態を判定することができる。   In this state determination method, when measuring the determination time for determining the state of the battery, the measurement start time is set when the current value that is smaller than the current value at the time of constant voltage charging is reached. Do not measure the charging time in the initial stage. By setting a determination time for determining the state of the battery in a region where a change with time of the charging current becomes significant due to a difference in the state of the battery, the state of the battery can be accurately determined. Furthermore, the current value at the start of measurement of the determination time is set to half or less of the current value at the time of constant current charging. That is, the battery state can be determined with higher accuracy by starting measurement of the determination time after the current value of constant voltage charging becomes half or less of the current value during constant current charging.

本発明は、定電流充電から定電圧充電に切り替わって充電される二次電池を備えた二次電池システムであって、定電流充電時の電流値より小さい第1の電流値、および前記第1の電流値より小さい第2の電流値が定められており、定電圧充電時に前記第1の電流値から前記第2の電流値に減少する時間に基づいて前記二次電池の状態を判定する機能を有する二次電池システムにも具現化される。   The present invention is a secondary battery system including a secondary battery that is charged by switching from constant current charging to constant voltage charging, the first current value being smaller than the current value at the time of constant current charging, and the first A second current value smaller than the first current value is determined, and the state of the secondary battery is determined based on a time period during which the first current value decreases to the second current value during constant voltage charging It is embodied also in the secondary battery system which has.

本発明によれば、電池の状態の判定精度を向上させることができる。   According to the present invention, the battery state determination accuracy can be improved.

本実施形態の状態判定装置のブロック図The block diagram of the state determination apparatus of this embodiment 本実施形態の状態判定処理を示すフローチャートThe flowchart which shows the state determination process of this embodiment 本実施形態の状態判定処理を示すフローチャートThe flowchart which shows the state determination process of this embodiment 状態判定処理における二次電池に流れる電流の変化を示すグラフThe graph which shows the change of the electric current which flows into the secondary battery in state judgment processing 容量保持率と判定時間Tの関係を示すグラフA graph showing the relationship between the capacity retention rate and the determination time T

<実施形態>
以下、本発明の実施形態について、図1ないし図5を用いて説明する。
1.状態判定装置の構成
図1は、本実施形態における電池システム10の構成を示す図である。電池システム10は、二次電池12と接続されることで、当該二次電池12を充電するとともに、当該二次電池12の劣化等の状態を判定する機能を備えている。本実施形態では、二次電池12として、リン酸リチウムを正極に使用した鉄系のリチウムイオンバッテリを用いた例を示す。
<Embodiment>
Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 5.
1. Configuration of State Determination Device FIG. 1 is a diagram illustrating a configuration of a battery system 10 in the present embodiment. The battery system 10 has a function of charging the secondary battery 12 by being connected to the secondary battery 12 and determining a state such as deterioration of the secondary battery 12. In the present embodiment, an example in which an iron-based lithium ion battery using lithium phosphate as a positive electrode is used as the secondary battery 12 will be described.

図1に示すように、電池システム10は、電池管理装置(以下「BMS」という)20、充電部26、充電用配線28を備えており、BMS20には電流計22、電圧計24が含まれる。
充電部26は、外部電源14に接続されており、外部電源14から供給される電力を、充電用配線28及び接続端子16を介して二次電池12に供給する。本実施形態では、充電部26が電池システム10内に備えられている形態であるが、充電部26を充電器として電池システム10の外部に備えてもよい。電流計22は、充電用配線28を介して二次電池12を流れる電流を所定期間毎に測定する。電圧計24は、充電用配線28に接続されており、充電部26から二次電池12に印加される電圧を所定期間毎に測定する。
As shown in FIG. 1, the battery system 10 includes a battery management device (hereinafter referred to as “BMS”) 20, a charging unit 26, and a charging wiring 28, and the BMS 20 includes an ammeter 22 and a voltmeter 24. .
The charging unit 26 is connected to the external power supply 14, and supplies power supplied from the external power supply 14 to the secondary battery 12 through the charging wiring 28 and the connection terminal 16. In the present embodiment, the charging unit 26 is provided in the battery system 10, but the charging unit 26 may be provided outside the battery system 10 as a charger. The ammeter 22 measures the current flowing through the secondary battery 12 via the charging wiring 28 every predetermined period. The voltmeter 24 is connected to the charging wiring 28 and measures the voltage applied from the charging unit 26 to the secondary battery 12 every predetermined period.

BMS20は、中央処理装置(以下「CPU」という)30、ROMやRAMなどのメモリ32、アナログ−デジタル変換機(以下「ADC」という)34、及びこれらをお互いに接続するバス36を備えている。   The BMS 20 includes a central processing unit (hereinafter referred to as “CPU”) 30, a memory 32 such as ROM and RAM, an analog-digital converter (hereinafter referred to as “ADC”) 34, and a bus 36 that connects these components to each other. .

メモリ32には、電池システム10の動作を制御するための各種のプログラムが記憶されており、CPU30は、メモリ32から読み出したプログラムに従って、計時部40、制御部42、判定部44等として機能し、各部の制御を行う。   Various programs for controlling the operation of the battery system 10 are stored in the memory 32, and the CPU 30 functions as a timer unit 40, a control unit 42, a determination unit 44, etc. according to the program read from the memory 32. Control each part.

ADC34は、電流計22及び電圧計24に接続されており、電流計22及び電圧計24から送信されるアナログデータである電流値I及び電圧値Vを、デジタルデータに変換し、変換した電流値I及び電圧値Vを、バス36を介してメモリ32に一時的に記憶する。制御部42及び判定部44として機能するCPU30は、メモリ32に記憶された当該電流値及び電圧値を用いて、充電部26等を制御する。   The ADC 34 is connected to the ammeter 22 and the voltmeter 24. The ADC 34 converts the current value I and the voltage value V, which are analog data transmitted from the ammeter 22 and the voltmeter 24, into digital data, and converts the converted current value. I and the voltage value V are temporarily stored in the memory 32 via the bus 36. The CPU 30 functioning as the control unit 42 and the determination unit 44 controls the charging unit 26 and the like using the current value and the voltage value stored in the memory 32.

2.状態判定処理
図2から図5を用いて、状態判定装置10における二次電池12の劣化等の状態判定処理を説明する。図2、3は、CPU30で実行される状態判定処理のフローチャートを示す。容量欠損状態の異なる二次電池12を充電した際の電流値の変化を図4に示す。図4において電流値が一定である領域が定電流充電の領域であり、電流値が時間とともに減衰する領域が定電圧充電の領域である。定電流−定電圧充電の充電方法は、初めは定電流充電によって充電し、二次電池の電池電圧が所定値に達すると定電圧充電に切り替わり、以後は電池電圧が所定値に保持されるように定電圧充電で充電する充電方法である。
2. State Determination Processing State determination processing such as deterioration of the secondary battery 12 in the state determination device 10 will be described with reference to FIGS. 2 and 3 are flowcharts of the state determination process executed by the CPU 30. FIG. FIG. 4 shows changes in the current value when the secondary batteries 12 having different capacity deficiencies are charged. In FIG. 4, the region where the current value is constant is the constant current charging region, and the region where the current value decays with time is the constant voltage charging region. The charging method of constant current-constant voltage charging is initially charged by constant current charging, switched to constant voltage charging when the battery voltage of the secondary battery reaches a predetermined value, and thereafter the battery voltage is held at the predetermined value. This is a charging method in which the battery is charged by constant voltage charging.

CPU30は、ユーザによって二次電池12が接続され、操作部等を介して充電指示が入力されると、メモリ32に記憶されたプログラムに従って処理を実行する。CPU30は、処理を開始すると、まず、二次電池12に対して定電流充電を開始する(S2)。メモリ32には、予め基準電流値Ikが記憶されており、CPU30は、定電流充電において二次電池12に流れる電流が基準電流値Ikとなるように、充電部26を制御する。ここで、二次電池12の充電深度100%から充電深度0%までの電池容量を1時間で放電する電流値をIcとした場合、基準電流値Ikは0.7Ic≦Ik≦1.5Icで設定されることが好ましい。   When the secondary battery 12 is connected by the user and a charging instruction is input via the operation unit or the like, the CPU 30 executes processing according to a program stored in the memory 32. When starting the process, the CPU 30 first starts constant current charging for the secondary battery 12 (S2). The memory 32 stores a reference current value Ik in advance, and the CPU 30 controls the charging unit 26 so that the current flowing through the secondary battery 12 in the constant current charging becomes the reference current value Ik. Here, when the current value for discharging the battery capacity from the charging depth 100% to the charging depth 0% of the secondary battery 12 in 1 hour is Ic, the reference current value Ik is 0.7Ic ≦ Ik ≦ 1.5Ic. It is preferably set.

CPU30は、定電流充電において二次電池12に印加される電圧を監視する(S4:NO)。メモリ32には、予め基準電圧値Vkが記憶されており、CPU30は、定電流充電において二次電池12に印加される電圧が基準電圧値Vkに達すると(S4:YES)、制御部42として機能し、定電流充電を終了し(S6)、二次電池12に対する定電圧充電を開始する(S8)。   CPU30 monitors the voltage applied to the secondary battery 12 in constant current charge (S4: NO). A reference voltage value Vk is stored in the memory 32 in advance. When the voltage applied to the secondary battery 12 in constant current charging reaches the reference voltage value Vk (S4: YES), the CPU 30 operates as the control unit 42. Functions, ends constant current charging (S6), and starts constant voltage charging for the secondary battery 12 (S8).

CPU30は、定電圧充電において二次電池12に印加される電圧が基準電圧値Vkとなるように、充電部26を制御する。これによって、定電圧充電開始直後は基準電流値Ikであった二次電池12に流れる電流は、図4に示すように充電が進むにつれて減少する。   The CPU 30 controls the charging unit 26 so that the voltage applied to the secondary battery 12 in the constant voltage charging becomes the reference voltage value Vk. As a result, the current flowing through the secondary battery 12 that was at the reference current value Ik immediately after the start of constant voltage charging decreases as the charging proceeds as shown in FIG.

また、CPU30は、定電圧充電において二次電池12に流れる電流を監視する(S10:NO)。メモリ32には、予めユーザ等によって第1の電流値Is及び第2の電流値Ieが設定されている。第1の電流値Isは、基準電流値Ikよりも小さく設定されており、第2の電流値Ieは、第1の電流値Isよりも小さく、かつ「0」Aよりも大きい電流に設定されている。CPU30は、定電圧充電において二次電池12に流れる電流が第1の電流値Isとなった場合(S10:YES)、制御部42として機能し、判定時間Tの計測を開始する(S12)。このとき、CPU30はまた、計時部40として機能する。   Moreover, CPU30 monitors the electric current which flows into the secondary battery 12 in constant voltage charge (S10: NO). In the memory 32, a first current value Is and a second current value Ie are set in advance by a user or the like. The first current value Is is set smaller than the reference current value Ik, and the second current value Ie is set smaller than the first current value Is and larger than “0” A. ing. When the current flowing through the secondary battery 12 in the constant voltage charging becomes the first current value Is (S10: YES), the CPU 30 functions as the control unit 42 and starts measuring the determination time T (S12). At this time, the CPU 30 also functions as the timer unit 40.

CPU30は、判定時間Tの計測を開始後、再び二次電池12に流れる電流を監視し(S14:NO)、二次電池12に流れる電流が第2の電流値Ieとなった場合(S14:YES)、制御部42として機能し、判定時間Tの計測を終了する(S16)。   After starting measurement of the determination time T, the CPU 30 monitors the current flowing through the secondary battery 12 again (S14: NO), and when the current flowing through the secondary battery 12 becomes the second current value Ie (S14: YES), it functions as the control unit 42 and ends the measurement of the determination time T (S16).

CPU30は、判定時間Tの計測の終了後、再び二次電池12に流れる電流を監視する(S18:NO)。メモリ32には、予め終端電流値Izが記憶されている。定電流充電の時間と定電圧充電の時間との合計時間が一定時間に達した場合、または、二次電池12に流れる電流が終端電流値Izとなった場合(S18:YES)、充電を終了する(S20)。   CPU30 monitors the electric current which flows into the secondary battery 12 again after completion | finish of the measurement of the determination time T (S18: NO). The memory 32 stores a termination current value Iz in advance. When the total time of the constant current charging time and the constant voltage charging time reaches a certain time, or when the current flowing through the secondary battery 12 reaches the termination current value Iz (S18: YES), the charging is terminated. (S20).

次に、CPU30は、計測された判定時間Tに基づいて二次電池12の状態を判定する。この際、CPU30は、判定部44として機能する。メモリ32には、予め照合時間Thが記憶されており、CPU30は、計測された判定時間Tを照合時間Thと比較する(S22)。CPU30は、判定時間Tが照合時間Thよりも短い場合(S22:YES)、二次電池12の劣化は小さいと判定し(S24)、処理を終了する。一方、判定時間Tが照合時間Th以上である場合(S22:NO)、二次電池12の劣化は大きいと判定し(S26)、表示部等を介してユーザに報知し(S28)、処理を終了する。   Next, the CPU 30 determines the state of the secondary battery 12 based on the measured determination time T. At this time, the CPU 30 functions as the determination unit 44. The memory 32 stores the verification time Th in advance, and the CPU 30 compares the measured determination time T with the verification time Th (S22). When the determination time T is shorter than the collation time Th (S22: YES), the CPU 30 determines that the deterioration of the secondary battery 12 is small (S24) and ends the process. On the other hand, when the determination time T is equal to or longer than the collation time Th (S22: NO), it is determined that the secondary battery 12 is largely deteriorated (S26), and the user is notified via the display unit (S28). finish.

3.本実施形態の効果
電池容量が10Ahである二次電池を用いた45℃サイクル試験において、第1の電流値Isおよび第2の電流値Ieが異なる場合の電池状態判定の精度について検証した。45℃サイクル試験のサイクル試験前(サイクル数0)、50サイクル、150サイクル、300サイクル、500サイクル、750サイクルおよび1000サイクル経過した時点で、二次電池の温度を25℃に冷却した後に充電をおこなった。充電は、25℃で10A(上記の基準電流値Ikに該当)の電流値で3.45V(上記の基準電圧値Vkに該当)まで定電流充電をおこなった後、3.45Vで定電圧充電をおこない、定電流充電および定電圧充電の合計時間が3時間に達した時点で充電を終了した。上記の充電が終了した後に25℃で10Aの電流値にて2.0Vまで放電をおこない放電容量を求めた。サイクル試験前の放電容量に対する各サイクル経過の放電容量の割合を容量保持率とした場合、50サイクル、150サイクル、300サイクル、500サイクル、750サイクルおよび1000サイクル経過した時点の容量保持率はそれぞれ、96.1、93.7、92.0、89.9、87.9および85.7であった。
3. Effect of this embodiment In a 45 ° C. cycle test using a secondary battery having a battery capacity of 10 Ah, the accuracy of the battery state determination when the first current value Is and the second current value Ie are different was verified. Before the cycle test of the 45 ° C cycle test (number of cycles 0), 50 cycles, 150 cycles, 300 cycles, 500 cycles, 750 cycles, and 1000 cycles, the secondary battery was cooled to 25 ° C and then charged. I did it. Charging is performed at a constant current of 3.45 V at a current value of 10 A (corresponding to the above reference current value Ik) at 25 ° C. and then constant voltage charging at 3.45 V. The charging was terminated when the total time of constant current charging and constant voltage charging reached 3 hours. After the above charging was completed, the battery was discharged to 2.0 V at a current value of 10 A at 25 ° C. to determine the discharge capacity. When the ratio of the discharge capacity after each cycle to the discharge capacity before the cycle test is defined as the capacity retention rate, the capacity retention rate at the time when 50 cycles, 150 cycles, 300 cycles, 500 cycles, 750 cycles and 1000 cycles have elapsed, 96.1, 93.7, 92.0, 89.9, 87.9 and 85.7.

本検証で設定した各条件の第1の電流値Is、第2の電流値IeおよびR2乗値を表1に示す。また、前記第1の電流値Isおよび第2の電流値Ieから計測された判定時間Tと各サイクル経過後の容量保持率との関係を図5に示す。図5では、各サイクル経過後に同一の第1の電流値Isおよび第2の電流値Ieで計測された判定時間Tが近似直線で結ばれている。表1のR2乗値は上記の近似直線の近似式と判定時間Tとのズレ量を示すパラメータであって、R2乗値が1に近いほどズレ量が小さいことを示す。   Table 1 shows the first current value Is, the second current value Ie, and the R-square value of each condition set in this verification. FIG. 5 shows the relationship between the determination time T measured from the first current value Is and the second current value Ie and the capacity retention after each cycle. In FIG. 5, the determination time T measured with the same first current value Is and second current value Ie after the elapse of each cycle is connected by an approximate straight line. The R square value in Table 1 is a parameter indicating the amount of deviation between the approximate expression of the above approximate line and the determination time T, and the closer the R square value is to 1, the smaller the amount of deviation.

Figure 0005817157
Figure 0005817157

表1の第3条件、第4条件および第5条件のR2乗値は0.95以上であり、計測された判定時間Tと近似直線との一致性が良好であった。判定時間Tと近似直線との一致性が良好であることによって、精度の高い照合時間Thを予め設定することでき、かつ、判定時間Tを照合時間Thと照合する際の精度、つまり、判定時間Tが照合時間Thより短いか長いかの照合の精度が向上する。一方、第1条件および第2条件では判定時間Tと近似直線とのズレ量が大きく、ズレ量が大きいことに起因して判定時間Tを照合時間Thと照合した結果が誤った判定である可能性が高くなる。   The R square values of the third condition, the fourth condition and the fifth condition in Table 1 were 0.95 or more, and the coincidence between the measured determination time T and the approximate line was good. Since the coincidence between the determination time T and the approximate line is good, a highly accurate collation time Th can be set in advance, and the accuracy when the determination time T is collated with the collation time Th, that is, the determination time. The accuracy of the collation is improved whether T is shorter or longer than the collation time Th. On the other hand, in the first condition and the second condition, the amount of deviation between the judgment time T and the approximate line is large, and the result of collating the judgment time T with the collation time Th due to the large amount of deviation may be an erroneous judgment. Increases nature.

以上のように、定電流充電の初期を含まない領域を判定時間Tの対象とすることで、電池の状態の違いによる判定時間Tの違いが顕著となり、電池の状態をより精度よく判定することができる。さらに、第1の電流値Isを、基準電流値Ikの半分以下の電流値に設定する、つまり、定電圧充電の電流値が0.5Ikに達した以後に判定時間Tの計測を開始することで、電池状態の判定精度をより向上させることができる。   As described above, by making the region not including the initial stage of constant current charging the target of the determination time T, the difference in the determination time T due to the difference in the battery state becomes significant, and the battery state can be determined more accurately. Can do. Furthermore, the first current value Is is set to a current value that is less than or equal to half of the reference current value Ik, that is, the measurement of the determination time T is started after the constant voltage charging current value reaches 0.5 Ik. Thus, the battery state determination accuracy can be further improved.

10:状態判定装置、12:二次電池、20:BMS、22:電流計、24:電圧計、26:充電部、30:CPU、32:メモリ、34:ADS、40:計時部、42:制御部、44:判定部、Ik:基準電流値、Vk:基準電圧値 10: State determination device, 12: Secondary battery, 20: BMS, 22: Ammeter, 24: Voltmeter, 26: Charging unit, 30: CPU, 32: Memory, 34: ADS, 40: Timekeeping unit, 42: Control unit, 44: determination unit, Ik: reference current value, Vk: reference voltage value

Claims (2)

定電流充電から定電圧充電に切り替わって充電される二次電池の状態判定方法であって、
定電流充電時の電流値の半分の値よりも小さい第1の電流値、および前記第1の電流値より小さい第2の電流値が定められており、定電圧充電時に前記第1の電流値から前記第2の電流値に減少する時間を、予め設定された照合時間と比較することより、前記二次電池の状態を判定する二次電池の状態判定方法。
A method for determining the state of a secondary battery that is charged by switching from constant current charging to constant voltage charging,
A first current value smaller than half of the current value during constant current charging and a second current value smaller than the first current value are determined, and the first current value during constant voltage charging. A method for determining the state of the secondary battery , wherein the state of the secondary battery is determined by comparing a time during which the current value decreases to the second current value with a preset verification time .
定電流充電から定電圧充電に切り替わって充電される二次電池を備えた二次電池システムであって、
定電流充電時の電流値の半分の値よりも小さい第1の電流値、および前記第1の電流値より小さい第2の電流値が定められており、定電圧充電時に前記第1の電流値から前記第2の電流値に減少する時間を、予め設定された照合時間と比較することより、前記二次電池の状態を判定する二次電池システム。
A secondary battery system including a secondary battery that is charged by switching from constant current charging to constant voltage charging,
A first current value smaller than half of the current value during constant current charging and a second current value smaller than the first current value are determined, and the first current value during constant voltage charging. A secondary battery system that determines a state of the secondary battery by comparing a time during which the current value decreases to the second current value with a preset collation time .
JP2011058158A 2011-03-16 2011-03-16 Secondary battery state determination method, secondary battery system Active JP5817157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011058158A JP5817157B2 (en) 2011-03-16 2011-03-16 Secondary battery state determination method, secondary battery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011058158A JP5817157B2 (en) 2011-03-16 2011-03-16 Secondary battery state determination method, secondary battery system

Publications (2)

Publication Number Publication Date
JP2012194053A JP2012194053A (en) 2012-10-11
JP5817157B2 true JP5817157B2 (en) 2015-11-18

Family

ID=47086090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011058158A Active JP5817157B2 (en) 2011-03-16 2011-03-16 Secondary battery state determination method, secondary battery system

Country Status (1)

Country Link
JP (1) JP5817157B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3011393B1 (en) * 2013-10-01 2017-02-10 Centre Nat Rech Scient METHOD AND APPARATUS FOR EVALUATING THE HEALTH CONDITION OF A LITHIUM BATTERY
JP6494431B2 (en) * 2015-06-02 2019-04-03 三菱電機株式会社 Deterioration diagnosis device for electricity storage devices
JP6831807B2 (en) * 2018-03-12 2021-02-17 古河電気工業株式会社 Data processing device and diagnostic method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08136629A (en) * 1994-11-11 1996-05-31 Kyushu Electric Power Co Inc Device for diagnosing service life of battery
JP2001292534A (en) * 2000-04-04 2001-10-19 Sekisui Chem Co Ltd Determining apparatus for deterioration of lithium ion battery
JP5541112B2 (en) * 2010-11-22 2014-07-09 ミツミ電機株式会社 Battery monitoring device and battery monitoring method

Also Published As

Publication number Publication date
JP2012194053A (en) 2012-10-11

Similar Documents

Publication Publication Date Title
CN107991623B (en) Battery ampere-hour integral SOC estimation method considering temperature and aging degree
US8994337B2 (en) Balancing method and balancing system of battery pack
JP6490414B2 (en) Secondary battery state detection device and secondary battery state detection method
JP6106991B2 (en) State management device and method for equalizing storage elements
US8823326B2 (en) Method for determining the state of charge of a battery in charging or discharging phase
JP6200359B2 (en) Secondary battery internal temperature estimation device and secondary battery internal temperature estimation method
JP2002107427A (en) Method for detecting residual capacity of secondary battery
US20180246174A1 (en) Deterioration degree estimation device and deterioration degree estimation method
US20140365150A1 (en) Method and device for determining a charge state of an electric energy store
US10302706B2 (en) Apparatus for calculating state of charge of storage battery
CN101636872A (en) Quick charging method of lithium based secondary battery and electronic apparatus employing it
US11095130B2 (en) Power storage apparatus for estimating an open-circuit voltage
CN108120932B (en) Method and device for estimating state of health of rechargeable battery
JP6970289B2 (en) Charge control devices, transportation equipment, and programs
KR20130129096A (en) Open circuit voltage estimation device, state estimation device, method of open circuit voltage estimation
JP2015215272A (en) Secondary battery state detection device and secondary battery state detection method
JP6452403B2 (en) Secondary battery state detection device and secondary battery state detection method
CN111562498A (en) Method and system for estimating available capacity of power battery
JP2014068468A (en) Charge control device
CN110687458A (en) Terminal battery electric quantity determination method and device
JP5817157B2 (en) Secondary battery state determination method, secondary battery system
JP6210552B2 (en) Secondary battery state detection device and secondary battery state detection method
JP2014045626A (en) Charging controller
JP2016181991A (en) Charger and control method of charger
JP2014109535A (en) Internal resistance estimation device, charging apparatus, discharging apparatus, and internal resistance estimation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150914

R150 Certificate of patent or registration of utility model

Ref document number: 5817157

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150