JP5372208B2 - Secondary battery charging method and charging device using the same - Google Patents

Secondary battery charging method and charging device using the same Download PDF

Info

Publication number
JP5372208B2
JP5372208B2 JP2012110028A JP2012110028A JP5372208B2 JP 5372208 B2 JP5372208 B2 JP 5372208B2 JP 2012110028 A JP2012110028 A JP 2012110028A JP 2012110028 A JP2012110028 A JP 2012110028A JP 5372208 B2 JP5372208 B2 JP 5372208B2
Authority
JP
Japan
Prior art keywords
charging
secondary battery
polarization voltage
current
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012110028A
Other languages
Japanese (ja)
Other versions
JP2013240153A (en
Inventor
祐介 瀬角
恭一 森山
憲一 藤井
琢二 園田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wave Technology Inc Japan
Original Assignee
Wave Technology Inc Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wave Technology Inc Japan filed Critical Wave Technology Inc Japan
Priority to JP2012110028A priority Critical patent/JP5372208B2/en
Publication of JP2013240153A publication Critical patent/JP2013240153A/en
Application granted granted Critical
Publication of JP5372208B2 publication Critical patent/JP5372208B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、二次電池の充電方法およびそれを用いた充電装置に関し、さらに劣化診断もしうる二次電池の充電方法およびそれを用いた充電装置に関する。   The present invention relates to a secondary battery charging method and a charging device using the same, and further relates to a secondary battery charging method capable of performing deterioration diagnosis and a charging device using the same.

二次電池は、古くは鉛蓄電池の発明に始まり、近年ではニッケル水素電池やリチウムイオン電池などが開発実用化され、その性能の向上とともに用途を拡げてきた。二酸化炭素の削減で注目されている、電気自動車やハイブリッド電気自動車などの用途では、二次電池はそれらの性能を大きく左右する。二次電池の運用では、より急速充電が可能であり、より電池の劣化を低減する充電方法が望まれている。   Rechargeable batteries began with the invention of lead-acid batteries. In recent years, nickel-metal hydride batteries and lithium-ion batteries have been developed and put to practical use, and their applications have been expanded along with improvements in performance. In applications such as electric vehicles and hybrid electric vehicles that are attracting attention for reducing carbon dioxide, secondary batteries greatly affect their performance. In operation of a secondary battery, a quick charging is possible, and a charging method that further reduces deterioration of the battery is desired.

二次電池の充電方式には大きく分けて、定電流方式と定電圧方式の2つがある。定電流方式では、充電の進行に伴い二次電池の端子間にかかる電圧が増加するので、二次電池を劣化させるおそれがある。定電圧方式では、充電が進むと充電電流が減少するため、充電完了までに時間がかかるといった問題がある。また、二次電池の種類によって充放電特性や安全性が異なるため、それぞれの二次電池に適した充電方法がある。   Secondary battery charging methods can be broadly divided into a constant current method and a constant voltage method. In the constant current method, the voltage applied between the terminals of the secondary battery increases with the progress of charging, which may cause deterioration of the secondary battery. The constant voltage method has a problem that it takes time to complete charging because charging current decreases as charging progresses. In addition, since charge / discharge characteristics and safety differ depending on the type of secondary battery, there are charging methods suitable for each secondary battery.

一般に、二次電池の充電においては、充電の状況や充電が完了した時点を把握して、充電時の電流や電圧を制御する必要がある。特に、大電流にて充電する急速充電では、過充電しないように、充電の完了時点を的確に把握することが重要となる。   In general, in charging a secondary battery, it is necessary to grasp the state of charging and the point in time when charging is completed, and to control the current and voltage during charging. In particular, in the quick charge that charges with a large current, it is important to accurately grasp the completion point of the charge so as not to overcharge.

さらに、急速充電すると、分極が大きくなって充電電圧が高くなり、二次電池の劣化を引き起こすという問題がある。また、充電時のジュール熱の発生により、二次電池の温度が高くなることも問題である。   Furthermore, when the battery is rapidly charged, there is a problem that the polarization becomes large and the charging voltage becomes high, causing deterioration of the secondary battery. Another problem is that the temperature of the secondary battery increases due to the generation of Joule heat during charging.

ここで、ニッケル水素電池を例にとり、充電時間の経過に対する充電電圧の応答波形の典型的なグラフを図1に示した。ニッケル水素電池を定電流で充電すると、充電時間の経過とともに充電電圧は増加している。ある時間を経過すると、充電電圧は急に増加しピークを示した後、低下している。充電電圧がピークになるとき、充電電圧増加の時間変化率、すなわち充電電圧の時間微分を求めると、dV/dt=0(ゼロ)となっている。また、充電電圧がピークから低下した電圧差は、−ΔVと呼ばれている。   Here, taking a nickel metal hydride battery as an example, a typical graph of the response waveform of the charging voltage with respect to the elapsed charging time is shown in FIG. When a nickel metal hydride battery is charged with a constant current, the charging voltage increases with the passage of charging time. After a certain period of time, the charging voltage suddenly increases, shows a peak, and then decreases. When the charge voltage increases at a peak and the time change rate of the charge voltage increase, that is, the time derivative of the charge voltage is obtained, dV / dt = 0 (zero). The voltage difference at which the charging voltage has dropped from the peak is called -ΔV.

充電の完了時点を把握する技術として、上述した充電電圧のピークや−ΔVを測定する充電方法が、例えば特開2007−252086号公報に示されている。   As a technique for grasping the completion time of charging, a charging method for measuring the above-described charging voltage peak and −ΔV is disclosed in, for example, Japanese Patent Application Laid-Open No. 2007-252086.

さらに、非水系電解質の二次電池を充電するための方法であって、パルス充電を行った際に生じるセル電圧の変化を分極電圧として検出することが、特開2008−181866号公報や特開平09−233725号公報に示されている。
特開2007−252086号公報 特開2008−181866号公報 特開平09−233725号公報
Further, it is a method for charging a secondary battery of a non-aqueous electrolyte, and it is possible to detect a change in cell voltage generated when pulse charging is performed as a polarization voltage. 09-233725.
JP 2007-252086 A JP 2008-181866 A JP 09-233725 A

しかし、充電電圧のピークや−ΔVを測定する充電方法では、充電電圧の増加を検知するため、充電電圧の増加を検知したときには、すでに二次電池の劣化が始まっているおそれがある。このほか、二次電池の温度または温度変化を捉えて充電を制御する方法もあるが、この方法も充電時のジュール熱の発生を検知するため、電圧を測定して判断する方法より検知が遅れて、二次電池の劣化が進行しているおそれがある。   However, in the charging method that measures the peak of the charging voltage and -ΔV, the increase in the charging voltage is detected. Therefore, when the increase in the charging voltage is detected, there is a possibility that the secondary battery has already started to deteriorate. In addition, there is a method to control charging by capturing the temperature or temperature change of the secondary battery, but this method also detects the generation of Joule heat during charging, so detection is delayed compared to the method of measuring and judging voltage. Therefore, the secondary battery may be deteriorated.

上述した特開2008−181866号公報に記載された技術は、非水系電解質の二次電池を対象とする充電方法であり、負極の表面に金属リチウムが析出することで劣化が起きるとして、リチウムイオンの偏在による濃度分極の増加を検知している。なお、この充電方法は、ニッケル水素電池や鉛蓄電池の充電には対応していない。   The technique described in Japanese Patent Application Laid-Open No. 2008-181866 described above is a charging method for a secondary battery of a non-aqueous electrolyte, and lithium ion is assumed to be deteriorated by deposition of metallic lithium on the surface of the negative electrode. The increase in concentration polarization due to the uneven distribution of is detected. This charging method does not support charging of nickel metal hydride batteries or lead acid batteries.

上述した特開平09−233725号公報に記載された技術は、二次電池の電圧が一定以上になったら、ガスが発生し劣化が起きるとして、分極電圧が所定の値以上にならないように、充電電流値を下げる制御を行っている。このとき、分極電圧は、充電のパルス電流をオフしてから所定のタイミングで2回電圧を取得し、その差電圧として算出している。この方法では、正確な分極電圧を得ることは困難である。   The technology described in Japanese Patent Application Laid-Open No. 09-233725 described above is charged so that when the voltage of the secondary battery exceeds a certain level, gas is generated and deterioration occurs, so that the polarization voltage does not exceed a predetermined value. Control is performed to reduce the current value. At this time, the polarization voltage is calculated as a differential voltage obtained by obtaining the voltage twice at a predetermined timing after turning off the charging pulse current. With this method, it is difficult to obtain an accurate polarization voltage.

また同公報の図3に示された充電のタイムチャートによると、1秒の充電時間(オン時間)に対し、100m秒(0.1秒)の時間(オフ時間)をかけて、二次電池の端子間電圧を測定している。なお、オン時間とオフ時間とも、任意に決められてよいことが述べられている。   Further, according to the charging time chart shown in FIG. 3 of the publication, a secondary battery is charged with a time (off time) of 100 milliseconds (0.1 seconds) with respect to a charging time (on time) of 1 second. The voltage between terminals is measured. It is stated that both the on time and the off time may be arbitrarily determined.

本発明は、化学反応を利用して充放電する二次電池の充電時における劣化を低減できる二次電池の充電方法およびそれを用いる充電装置の提供を目的とする。   An object of this invention is to provide the charging method of a secondary battery which can reduce deterioration at the time of charge of the secondary battery charged / discharged using a chemical reaction, and a charging device using the same.

本発明による二次電池の充電方法であって、
請求項1に記載の発明は
学反応を利用して充放電する二次電池を、間欠動作にて充電する二次電池の充電方法において、
前記間欠動作の充電休止時に、前記二次電池の電圧から求めた分極電圧によって、充電電流を下げる制御をするに際し、
まず、前記間欠動作の充電休止時毎に、前記二次電池の電圧から分極電圧を測定し、当該分極電圧の2階時間微分が正から負になったときに、充電電流を下げる制御をするとともに、
予め、前記二次電池について、間欠動作にて充電するときの充電電流を増加させ、それぞれの充電電流で充電した後の充電休止時に分極電圧をそれぞれ測定し、前記充電電流の増加に対する前記分極電圧の増加の傾きが小さくなったときの分極電圧に、前記二次電池の分極電圧の電流依存性係数を乗じた値を第1しきい値とし、
前記充電休止時毎に測定する分極電圧が、前記第1しきい値を超えたときに、充電電流を下げる制御をすることを特徴とする二次電池の充電方法である。
A method for charging a secondary battery according to the present invention, comprising:
Invention according to claim 1,
The secondary battery for charging and discharging by using a chemical reaction, in the charging method of the rechargeable battery to be charged by an intermittent operation,
When controlling the charging current to be lowered by the polarization voltage obtained from the voltage of the secondary battery during the charging suspension of the intermittent operation,
First, every time charging is stopped during the intermittent operation, the polarization voltage is measured from the voltage of the secondary battery, and when the second-order time derivative of the polarization voltage changes from positive to negative, the charging current is controlled to decrease. With
In advance, for the secondary battery, the charging current when charging by intermittent operation is increased, and the polarization voltage is measured at the time of charging suspension after charging with the respective charging current, and the polarization voltage with respect to the increase of the charging current A value obtained by multiplying the polarization voltage when the slope of the increase of the current by the current dependency coefficient of the polarization voltage of the secondary battery is a first threshold value,
The secondary battery charging method is characterized in that when the polarization voltage measured at each charging pause exceeds the first threshold value, the charging current is controlled to decrease.

請求項に記載の発明は、
請求項に記載の二次電池の充電方法において、
まず、前記二次電池について、複数の充電電流に対して間欠動作にて充電し、当該間欠動作における充電休止時毎に前記分極電圧を測定し、当該分極電圧の2階時間微分が正から負になったときの分極電圧を変曲点分極電圧としてそれぞれ求め、当該変曲点分極電圧の電流依存性のグラフを求め、
つぎに、前記二次電池について、間欠動作にて充電するときの充電電流を段階的に増加させ、それぞれの充電電流で充電した後の充電休止時に分極電圧をそれぞれ測定し、前記充電電流の増加に対して前記分極電圧の増加の傾きが小さくなったときの、充電電流Ibと分極電圧bとを求め、
さらに、前記充電電流Ibのときの前記グラフ上の分極電圧aを求めておき、
前記分極電圧の電流依存性係数を、前記変曲点分極電圧の電流依存性のグラフにb/aを乗じた値とすることを特徴とする二次電池の充電方法である。
The invention described in claim 2
In the charging method of the secondary battery according to claim 1 ,
First, the secondary battery is charged intermittently with respect to a plurality of charging currents, and the polarization voltage is measured every time charging is stopped in the intermittent operation. The second-order time derivative of the polarization voltage is negative to positive. The polarization voltage at the time of becoming the inflection point polarization voltage, respectively, to obtain a graph of the current dependence of the inflection point polarization voltage,
Next, for the secondary battery, the charging current when charging in an intermittent operation is increased stepwise, the polarization voltage is measured at the time of charging suspension after charging with each charging current, and the charging current is increased. The charging current Ib and the polarization voltage b when the inclination of the increase in the polarization voltage is reduced with respect to
Further, the polarization voltage a on the graph at the time of the charging current Ib is obtained,
A method for charging a secondary battery, wherein the current dependency coefficient of the polarization voltage is a value obtained by multiplying the graph of the current dependency of the inflection point polarization voltage by b / a.

請求項に記載の発明は、
請求項1または2に記載の二次電池の充電方法において、
前記充電休止時毎に測定する分極電圧が、充電動作切り換えの所定の値以上になると、所定時間内の充電休止回数が所定の回数である通常動作から、当該通常動作より充電休止回数の多い診断動作に切り換えて充電することを特徴とする二次電池の充電方法である。
The invention according to claim 3
In the charging method of the secondary battery according to claim 1 or 2 ,
When the polarization voltage measured at each charging pause is equal to or higher than a predetermined value for switching the charging operation, the diagnosis is performed more frequently than the normal operation from the normal operation in which the charging suspension frequency within the predetermined time is a predetermined number of times. A charging method for a secondary battery, wherein the charging is performed by switching to an operation.

請求項に記載の発明は、
請求項1〜のいずれか1項に記載の二次電池の充電方法において、
予め、前記二次電池の当初にて、間欠動作にて充電するときの充電電流を段階的に増加させ、それぞれの充電電流で充電した後の充電休止時に分極電圧をそれぞれ測定し、前記充電電流の増加に対して前記分極電圧の増加の傾きが小さくなったときの分極電圧を求めて、第2しきい値とするとともに、そのときの充電電流を当初の充電電流とし、
使用中の前記二次電池にて、同様に間欠動作にて充電するときの充電電流を段階的に増加させ、それぞれの充電電流で充電した後の充電休止時に分極電圧をそれぞれ測定し、当該分極電圧が前記第2しきい値を超えるときの充電電流を求めて、使用時の充電電流とし、
前記当初の充電電流に対する、前記使用時の充電電流の割合に基づいて、前記二次電池の劣化の度合いを判断することを特徴とする二次電池の充電方法である。
The invention according to claim 4
In the charging method of the secondary battery of any one of Claims 1-3 ,
In advance, at the beginning of the secondary battery, the charging current when charging by intermittent operation is increased stepwise, and the polarization voltage is measured at the time of charging suspension after charging at each charging current , and the charging current The polarization voltage when the slope of increase of the polarization voltage becomes smaller with respect to the increase of the polarization voltage is determined as a second threshold, and the charging current at that time is the initial charging current,
Similarly, in the secondary battery in use, the charging current when charging in the intermittent operation is increased stepwise, and the polarization voltage is measured at the time of charging suspension after charging with the respective charging currents. Obtaining the charging current when the voltage exceeds the second threshold value, the charging current during use,
The secondary battery charging method is characterized in that the degree of deterioration of the secondary battery is determined based on a ratio of the charging current in use to the initial charging current.

請求項に記載の発明は、
請求項1〜のいずれか1項に記載の二次電池の充電方法において、
さらに複数の二次電池の個別情報を蓄積できるデータテーブルを準備し、
前記複数の二次電池のうち充電する二次電池について、充電休止時毎に測定する分極電圧と、前記二次電池の電圧値とから起電力値を測定し、当該二次電池の識別記号とともに前記データテーブルに蓄積し、
前記二次電池に関する前記データテーブルのデータと、前記二次電池の同種の二次電池で予め測定した劣化の度合いのデータとから、前記二次電池の劣化の度合いを判断することを特徴とする二次電池の充電方法である。
The invention described in claim 5
In the charging method of the secondary battery of any one of Claims 1-3 ,
In addition, a data table that can store individual information on multiple secondary batteries is prepared.
For the secondary battery to be charged among the plurality of secondary batteries, the electromotive force value is measured from the polarization voltage measured at every charging suspension and the voltage value of the secondary battery, and together with the identification symbol of the secondary battery Accumulate in the data table;
The degree of deterioration of the secondary battery is determined from data in the data table relating to the secondary battery and data on the degree of deterioration measured in advance with a secondary battery of the same type as the secondary battery. This is a secondary battery charging method.

請求項に記載の発明は、
請求項1〜のいずれか1項に記載の二次電池の充電方法において、
前記充電休止時毎に測定する分極電圧が、設定された前記第1しきい値の所定の割合以下であれば、前記充電電流を増加させて充電することを特徴とする二次電池の充電方法である。
The invention described in claim 6
In the charging method of the secondary battery of any one of Claims 1-3 ,
A charging method for a secondary battery, wherein charging is performed by increasing the charging current if a polarization voltage measured at each charging pause time is equal to or less than a predetermined ratio of the set first threshold value. It is.

本発明による二次電池の充電装置であって
求項に記載の発明は、
化学反応を利用して充放電する二次電池を、間欠動作にて充電する二次電池の充電装置において、
前記間欠動作の充電休止時に、前記二次電池の電圧から求めた分極電圧によって、充電電流を下げる制御機構を有し、
当該制御機構は、まず、前記充電休止時毎に前記二次電池の電圧から分極電圧を測定し、当該分極電圧の2階時間微分が正から負になったときに、充電電流を下げる制御手段を有するとともに、
予め、前記二次電池について、間欠動作にて充電するときの充電電流を増加させ、それぞれの充電電流で充電した後の充電休止時に分極電圧をそれぞれ測定し、充電電流を増加させて分極電圧を測定し、前記充電電流の増加に対する前記分極電圧の増加の傾きが小さくなったときの分極電圧に、前記二次電池の分極電圧の電流依存性係数を乗じた値を第1しきい値とし、
前記充電休止時毎に測定する分極電圧が、前記第1しきい値を超えたときに、充電電流を下げる制御手段を有することを特徴とする二次電池の充電装置である。
A charging device for a secondary battery according to the present invention , comprising:
The invention described in Motomeko 7,
In a secondary battery charging device that charges a secondary battery that is charged and discharged using a chemical reaction in an intermittent operation,
A control mechanism for lowering the charging current by the polarization voltage obtained from the voltage of the secondary battery at the time of charging suspension of the intermittent operation;
The control mechanism first measures the polarization voltage from the voltage of the secondary battery every time the charging is stopped, and the control means reduces the charging current when the second-order time derivative of the polarization voltage changes from positive to negative. And having
For the secondary battery, the charging current when charging in an intermittent operation is increased in advance, the polarization voltage is measured at the time of charging suspension after charging with each charging current , and the charging current is increased to increase the polarization voltage. The first threshold value is a value obtained by multiplying the polarization voltage when the inclination of the increase in the polarization voltage with respect to the increase in the charging current is reduced by the current dependence coefficient of the polarization voltage of the secondary battery,
The secondary battery charging device according to claim 1, further comprising control means for reducing a charging current when a polarization voltage measured at each charging suspension exceeds the first threshold value.

請求項に記載の発明は、
請求項に記載の二次電池の充電装置において、
まず、前記二次電池について、複数の充電電流に対して間欠動作にて充電し、当該間欠動作における充電休止時毎に分極電圧を測定し、当該分極電圧の2階時間微分が正から負になったときの分極電圧を変曲点分極電圧としてそれぞれ求め、当該変曲点分極電圧の電流依存性のグラフを求め、
つぎに、前記二次電池について、間欠動作にて充電するときの充電電流を段階的に増加させ、それぞれの充電電流で充電した後の充電休止時に分極電圧をそれぞれ測定し、前記充電電流の増加に対して前記分極電圧の増加の傾きが小さくなったときの、充電電流Ibと分極電圧bとを求め、
さらに、前記充電電流Ibのときの前記グラフ上の分極電圧aを求めておき、
前記分極電圧の電流依存性係数を、前記変曲点分極電圧の電流依存性のグラフにb/aを乗じた値とする手段を有することを特徴とする二次電池の充電装置である。
The invention according to claim 8 provides:
The secondary battery charging device according to claim 7 ,
First, for the secondary battery, charging is performed intermittently with respect to a plurality of charging currents, and the polarization voltage is measured every time charging is stopped in the intermittent operation, and the second-order time derivative of the polarization voltage is changed from positive to negative. Obtain the polarization voltage at each time as the inflection point polarization voltage, obtain a graph of the current dependence of the inflection point polarization voltage,
Next, for the secondary battery, the charging current when charging in an intermittent operation is increased stepwise, the polarization voltage is measured at the time of charging suspension after charging with each charging current, and the charging current is increased. The charging current Ib and the polarization voltage b when the inclination of the increase in the polarization voltage is reduced with respect to
Further, the polarization voltage a on the graph at the time of the charging current Ib is obtained,
A charging device for a secondary battery, comprising means for setting the current dependency coefficient of the polarization voltage to a value obtained by multiplying the graph of the current dependency of the inflection point polarization voltage by b / a.

請求項に記載の発明は、
請求項7または8に記載の二次電池の充電装置において、
前記充電休止時毎に測定する分極電圧が、充電動作切り換えの所定の値以上になると、所定時間内の充電休止回数が所定の回数である通常動作から、該通常動作より充電休止回数の多い診断動作に切り換えて充電する制御手段を有することを特徴とする二次電池の充電装置である。
The invention according to claim 9 is:
The secondary battery charging device according to claim 7 or 8 ,
When the polarization voltage measured at each charging pause becomes equal to or higher than a predetermined value for switching the charging operation, a diagnosis with a larger number of charging pauses than the normal operation is performed from the normal operation in which the number of charging pauses within a predetermined time is a predetermined number. A charging device for a secondary battery comprising a control means for charging by switching to operation.

請求項10に記載の発明は、
請求項のいずれか1項に記載の二次電池の充電装置において、
予め、前記二次電池の当初にて、間欠動作にて充電するときの充電電流を段階的に増加させ、それぞれの充電電流で充電した後の充電休止時に分極電圧をそれぞれ測定し、前記充電電流の増加に対して前記分極電圧の増加の傾きが小さくなったときの分極電圧を求めて、第2しきい値とするとともに、そのときの充電電流を当初の充電電流とし、
使用中の前記二次電池にて、同様に間欠動作にて充電するときの充電電流を段階的に増加させ、それぞれの充電電流で充電した後の充電休止時に分極電圧をそれぞれ測定し、当該分極電圧が前記第2しきい値を超えるときの充電電流を求めて、使用時の充電電流とし、
前記当初の充電電流に対する、前記使用時の充電電流の割合に基づいて、前記二次電池の劣化の度合いを判断する手段を有することを特徴とする二次電池の充電装置である。
The invention according to claim 10 is:
The secondary battery charging device according to any one of claims 7 to 9 ,
In advance, at the beginning of the secondary battery, the charging current when charging by intermittent operation is increased stepwise, and the polarization voltage is measured at the time of charging suspension after charging at each charging current , and the charging current The polarization voltage when the slope of increase of the polarization voltage becomes smaller with respect to the increase of the polarization voltage is determined as a second threshold, and the charging current at that time is the initial charging current,
Similarly, in the secondary battery in use, the charging current when charging in the intermittent operation is increased stepwise, and the polarization voltage is measured at the time of charging suspension after charging with the respective charging currents. Obtaining the charging current when the voltage exceeds the second threshold value, the charging current during use,
A charging device for a secondary battery, comprising means for determining a degree of deterioration of the secondary battery based on a ratio of the charging current at the time of use to the initial charging current.

請求項11に記載の発明は、
請求項のいずれか1項に記載の二次電池の充電装置において、
さらに複数の二次電池の個別情報を蓄積できるデータテーブルを準備し、
前記複数の二次電池のうち充電する二次電池について、充電休止時毎に測定する分極電圧と、前記二次電池の電圧とから起電力を測定し、当該二次電池の識別記号とともに前記データテーブルに蓄積し、
前記二次電池に関する前記データテーブルのデータと、前記二次電池の同種の二次電池で予め測定した劣化の度合いのデータとから、前記二次電池の劣化の度合いを判断する手段を有することを特徴とする二次電池の充電装置である。
The invention according to claim 11
The secondary battery charging device according to any one of claims 7 to 9 ,
In addition, a data table that can store individual information on multiple secondary batteries is prepared.
For the secondary battery to be charged among the plurality of secondary batteries, the electromotive force is measured from the polarization voltage measured at every charging suspension and the voltage of the secondary battery, and the data together with the identification symbol of the secondary battery Accumulate on the table,
Means for judging the degree of deterioration of the secondary battery from the data in the data table relating to the secondary battery and the data of the degree of deterioration measured in advance for the same type of secondary battery of the secondary battery. It is the charging device of the secondary battery characterized.

請求項12に記載の発明は、
請求項のいずれか1項に記載の二次電池の充電装置において、
前記充電休止時毎に測定する分極電圧が、前記第1しきい値の所定の割合以下であれば、前記充電電流を増加させて充電する手段を有することを特徴とする二次電池の充電装置である。
The invention according to claim 12
The secondary battery charging device according to any one of claims 7 to 9 ,
A charging device for a secondary battery, characterized in that it has means for increasing the charging current and charging if the polarization voltage measured at each charging pause is less than or equal to a predetermined ratio of the first threshold value. It is.

請求項1とに記載された発明では、
前記間欠動作の充電休止時毎に、前記二次電池の電圧から分極電圧を測定し、当該分極電圧の2階時間微分が正から負になったときは、副反応が始まる前である。そのタイミングで充電電流を下げる制御をしているので、二次電池で副反応の発生を抑えられるので、二次電池の劣化を低減できる。
In the invention described in claims 1 and 7 ,
The polarization voltage is measured from the voltage of the secondary battery every time charging is stopped during the intermittent operation, and the second-order time derivative of the polarization voltage changes from positive to negative before the side reaction starts. Since the charging current is controlled to decrease at that timing, the occurrence of side reactions can be suppressed in the secondary battery, so that the deterioration of the secondary battery can be reduced.

また、当該二次電池の使用状況が不明であっても、充電をしながら分極電圧を測定しその変化によって、充電電流を下げる制御をすることができるので、二次電池の劣化を低減できる。   Even if the usage status of the secondary battery is unknown, the polarization voltage can be measured while charging, and the charging current can be controlled by changing the voltage. Therefore, the deterioration of the secondary battery can be reduced.

また、分極電圧の電流依存性を考慮した、分極電圧のしきい値を用い、この値を超えると充電電流を下げる制御をしている。例えば、二次電池の状態によっては、分極電圧の2階時間微分が正から負になったときが不明瞭な場合もあり、そのような場合にも、充電電流を下げる制御を確実に実施でき、二次電池で副反応の発生を抑えられるので、二次電池の劣化を低減できる。 In addition, a polarization voltage threshold is used in consideration of the current dependency of the polarization voltage, and when this value is exceeded, the charging current is controlled to decrease. For example, depending on the state of the secondary battery, it may be unclear when the second-order time derivative of the polarization voltage changes from positive to negative, and even in such a case, control for reducing the charging current can be reliably performed. Since the secondary battery can suppress the occurrence of side reactions, deterioration of the secondary battery can be reduced.

請求項に記載された発明では、
請求項に記載された発明において、
二次電池の分極電圧の電流依存性係数を、確実に求めることができる。
In the invention described in claims 2 and 8 ,
In the invention described in claims 1 and 7 ,
The current dependency coefficient of the polarization voltage of the secondary battery can be obtained reliably.

請求項に記載された発明では、
二次電池の分極電圧が増加して、副反応が発生しやすい状態になっても、通常動作より充電休止回数の多い診断動作で充電している。このため、副反応発生の兆候となる分極電圧の増加を逃すことなく把握できるので、充電電流を下げる制御を確実に実施することができる。
In the invention described in claims 3 and 9 ,
Even if the polarization voltage of the secondary battery increases and a side reaction is likely to occur, the secondary battery is charged by a diagnostic operation that has a higher number of charging pauses than the normal operation. For this reason, since it can grasp | ascertain without missing the increase in the polarization voltage which becomes a symptom of generation | occurrence | production of a side reaction, the control which reduces a charging current can be implemented reliably.

請求項10に記載された発明では、
請求項1〜のいずれか1項に記載の二次電池の充電方法において、
二次電池における、当初の充電電流に対する、使用時の充電電流の割合に基づいて、二次電池の劣化の度合いを判断することができるので、より的確な判断が可能となる。
なお、二次電池の当初とは、多くの場合は新品である二次電池の使用開始時のことであり、それまでの使用状況がわからない場合は、本発明による充電方法または充電装置によって充電を開始する時点であってよい。
In the invention described in claims 4 and 10 ,
In the charging method of the secondary battery of any one of Claims 1-3 ,
Since the degree of deterioration of the secondary battery can be determined based on the ratio of the charging current at the time of use to the initial charging current in the secondary battery, more accurate determination can be made.
The initial secondary battery is often the start of use of a new secondary battery. If the current usage status is unknown, the secondary battery can be charged by the charging method or the charging device according to the present invention. It may be the time to start.

請求項11に記載された発明では、
さらに複数の二次電池の個別情報を蓄積できるデータテーブルを用いて、二次電池に関するデータを個別に蓄積することができるので、標準的な劣化のデータとの対比により、より正確に二次電池の劣化の度合いを判断することができる。
In the invention described in claims 5 and 11 ,
In addition, data related to secondary batteries can be stored individually using a data table that can store individual information on a plurality of secondary batteries. Therefore, secondary batteries can be more accurately compared with standard deterioration data. It is possible to determine the degree of deterioration of the.

請求項12に記載された発明では、
充電休止時毎に測定する分極電圧が、設定された第1しきい値の所定の割合以下であれば、充電電流を増加させて充電している。したがって、二次電池を劣化のおこさない充電電流の範囲内で、できるだけ大きな充電電流で充電することができるので、極力短い時間で充電を完了することができる。
In the invention described in claims 6 and 12 ,
If the polarization voltage measured at each charging stop is equal to or less than a predetermined ratio of the set first threshold value, charging is performed by increasing the charging current. Therefore, since the secondary battery can be charged with a charging current as large as possible within the range of the charging current that does not deteriorate, charging can be completed in as short a time as possible.

また、本発明が適用される二次電池としては、ニッケル水素電池やリチウムイオン電池、鉛蓄電池などが挙げられる。   In addition, examples of the secondary battery to which the present invention is applied include a nickel metal hydride battery, a lithium ion battery, and a lead storage battery.

ニッケル水素電池における充電電圧の応答波形を示す図である。It is a figure which shows the response waveform of the charge voltage in a nickel metal hydride battery. 二次電池の等価回路モデルを示す図である。It is a figure which shows the equivalent circuit model of a secondary battery. 時間的経過に伴う充電反応と副反応の状態を説明する図である。It is a figure explaining the state of the charge reaction and side reaction with time progress. 二次電池の充電時における電極表面の分極電圧を測定したグラフである。It is the graph which measured the polarization voltage of the electrode surface at the time of charge of a secondary battery. 本発明の一例である実施形態1の充電装置のブロック構成図である。It is a block block diagram of the charging device of Embodiment 1 which is an example of this invention. 本発明の一例である実施形態1の充電方法のフローチャートである。It is a flowchart of the charging method of Embodiment 1 which is an example of this invention. 間欠充電モードによる電圧応答波形を示す図である。It is a figure which shows the voltage response waveform by intermittent charge mode. 拡散による分極電圧の推定の方法を説明する図である。It is a figure explaining the method of estimation of the polarization voltage by spreading | diffusion. 実施形態1における充電電圧と充電電流と分極電圧のタイムチャートである。3 is a time chart of a charging voltage, a charging current, and a polarization voltage in the first embodiment. 図10(a)は、定電流充電において、副反応が活発化するときの、分極電圧の時間的変化を模式的に図示している。図10(b)は、分極電圧の1階微分を模式的に図示している。図10(c)は、分極電圧の2階微分を模式的に図示している。FIG. 10A schematically shows a temporal change in the polarization voltage when a side reaction is activated in constant current charging. FIG. 10B schematically illustrates the first derivative of the polarization voltage. FIG. 10 (c) schematically illustrates the second derivative of the polarization voltage. 実施形態1における電池状態を判断するフローチャートである。3 is a flowchart for determining a battery state in the first embodiment. 充電電流の増加に対する分極電圧の増加の傾きが小さくなった点を求める方法を説明する図である。It is a figure explaining the method of calculating | requiring the point where the inclination of the increase in the polarization voltage with respect to the increase in charging current became small. 電流依存性係数を説明する図である。It is a figure explaining a current dependence coefficient. 二次電池の劣化の様子を説明する図である。It is a figure explaining the mode of degradation of a secondary battery. 充電電流の違いによる副反応開始の違いを説明する図である。It is a figure explaining the difference in the side reaction start by the difference in charging current. 本発明の充電方法による充電と従来の充電方法である定電流充電とにおいて、充放電サイクルの増加と放電容量の推移の様子を示したグラフである。It is the graph which showed the mode of the increase in a charging / discharging cycle and the transition of discharge capacity in the charge by the charging method of this invention, and the constant current charge which is the conventional charging method. (a)本発明の充電方法と従来の充電方法とにおいて、充電電流の時間的変化の一例を示すグラフであり、(b)本発明の充電方法における分極電圧の時間的変化の一例を示すグラフである。(a) is a graph showing an example of a temporal change in charging current in the charging method of the present invention and the conventional charging method, and (b) a graph showing an example of a temporal change in polarization voltage in the charging method of the present invention. It is. 充放電サイクル試験において、満充電時に測定した内部抵抗と分極電圧とに対する、放電容量におけるそれぞれの低下量をプロットした図である。It is the figure which plotted each fall amount in discharge capacity with respect to the internal resistance and polarization voltage which were measured at the time of a full charge in a charging / discharging cycle test.

(副反応の説明)
まず、本発明を説明する前にその理解を容易にするために、二次電池の充電時における副反応の発生開始時の充電特性の挙動を説明する。
(Description of side reactions)
First, in order to facilitate understanding of the present invention before describing the present invention, the behavior of charging characteristics at the start of occurrence of a side reaction during charging of a secondary battery will be described.

二次電池の充放電に伴う内部の挙動を理解するために、二次電池の等価回路モデルを図2に示した。電極表面には、ネルンストの式に基づき電圧が電気二重層として発生している。このとき、無負荷で定常状態における正極と負極の電気二重層12,22での電圧の和が、二次電池の起電力になる。   In order to understand the internal behavior associated with charging / discharging of the secondary battery, an equivalent circuit model of the secondary battery is shown in FIG. On the electrode surface, a voltage is generated as an electric double layer based on the Nernst equation. At this time, the sum of the voltages at the positive and negative electric double layers 12 and 22 in a steady state with no load becomes the electromotive force of the secondary battery.

二次電池を充電するとき、電池電圧は起電力から分極の電圧分だけ増加する。この分極は、電解質や電極の電気抵抗に起因する抵抗による分極と、電極反応の活性化エネルギーに起因する活性化による分極と、電極反応の進行に伴って電極表面における反応物の濃度が減少することにより生じる拡散による分極と、に分けられる。充電時の電池内部における電荷移動は、電極内部の電子移動と、電極表面での電子移動を伴う充電反応と、溶液から電極表面に、またはその逆方向に活物質が拡散する過程と、に分けられる。   When the secondary battery is charged, the battery voltage increases from the electromotive force by the polarization voltage. This polarization is due to the resistance due to the electrical resistance of the electrolyte and electrode, the polarization due to the activation due to the activation energy of the electrode reaction, and the concentration of the reactant on the electrode surface decreases as the electrode reaction proceeds. And polarization caused by diffusion. Charge transfer inside the battery during charging is divided into electron movement inside the electrode, a charging reaction involving electron movement on the electrode surface, and a process in which the active material diffuses from the solution to the electrode surface or vice versa. It is done.

活性化による分極については、電極表面の充電反応が律速段階にあるときに顕著になり、ネルンストの式によると、電気二重層の電圧が増加して充電反応の活性化エネルギーを下げるように働く。拡散による分極については、活物質の拡散が律速段階のときに顕著になり、電極表面と溶液バルクにおいて活物質の濃度差が生じ、ネルンストの式により電気二重層の電圧が増加する。   The polarization due to activation becomes prominent when the charging reaction on the electrode surface is in the rate-determining step, and according to the Nernst equation, the voltage of the electric double layer increases and acts to lower the activation energy of the charging reaction. The polarization due to diffusion becomes significant when the diffusion of the active material is in the rate-determining stage, and a difference in the concentration of the active material occurs between the electrode surface and the solution bulk, and the voltage of the electric double layer increases according to the Nernst equation.

ところで、化学反応を用いる二次電池は、化学反応によって電極/電解液間において電子が受け渡しされ、電流が流れることを特徴とする。充放電反応によって電子が受け渡される量は、予め電池内部に充填された活物質の量以下に制限される。   By the way, a secondary battery using a chemical reaction is characterized in that electrons are transferred between an electrode and an electrolytic solution by a chemical reaction, and an electric current flows. The amount of electrons transferred by the charge / discharge reaction is limited to the amount of the active material previously filled in the battery.

図3は、二次電池が充電反応しうる量を超えて充電したときにおける、電池の挙動を模式的に示したグラフである。
図3(a)に示したように、二次電池を充電し続けると、やがて充電反応の活物質が枯渇することにより分極電圧が急に増加して、副反応が発生する分極電圧に達する。
これは、図3(b)に示すように、主な電極反応が充電反応から電解液の分解や電極格子の腐食などの副反応に替わるためであり、満充電状態に近い状態であり、電池への注入電荷量に対する充電効率が低下する。副反応は、充電反応と比べて活性化エネルギーが高いので、活性化による分極の違いにより、分極電圧が高くなると、副反応が支配的になり始める。
図3(c)は、充電の状況を示すグラフであり、充電時間の経過とともに、State Of Charge(SOC)が1に近づいている様子を表している。SOCが1に近づくということは、満充電状態に近づいていることを示している。
FIG. 3 is a graph schematically showing the behavior of the battery when the secondary battery is charged beyond an amount capable of being charged.
As shown in FIG. 3 (a), when the secondary battery is continuously charged, the polarization voltage suddenly increases due to depletion of the active material for the charge reaction, and reaches a polarization voltage at which a side reaction occurs.
This is because, as shown in FIG. 3 (b), the main electrode reaction is changed from a charging reaction to a side reaction such as decomposition of the electrolytic solution or corrosion of the electrode grid, and the battery is almost fully charged. The charging efficiency with respect to the amount of charge injected into the battery decreases. Since the side reaction has higher activation energy than the charge reaction, the side reaction starts to dominate when the polarization voltage increases due to the difference in polarization due to activation.
FIG. 3C is a graph showing the state of charging, and shows a state of state (SOC) approaching 1 as the charging time elapses. The SOC approaching 1 indicates that the fully charged state is approaching.

図4に、二次電池の充電時における電極表面の分極電圧を、実測したグラフを示す。グラフでは、分極電圧が増加して副反応が発生する分極電圧に達した後に、副反応の発生熱で電池温度が上昇するため、分極電圧が低下している。   FIG. 4 shows a graph in which the polarization voltage on the electrode surface during charging of the secondary battery is measured. In the graph, after the polarization voltage increases and reaches a polarization voltage at which a side reaction occurs, the battery temperature rises due to the heat generated by the side reaction, so the polarization voltage decreases.

上述した現象を、図2に示した二次電池の等価回路モデルを用いて説明する。二次電池において、充電が進行して充電活物質の量とともに充電反応量が低下し始めると、拡散による分極の増加が顕著になり、電気二重層の電圧とともに充電電圧が増加する。このとき、電極表面における充電反応と副反応が起こりやすくなるが、充電反応は活物質の量が残り少ないため充電反応は増えず、副反応が活発に起こり始める。副反応が起こると、内部抵抗の増加により放電能力の低下を起こし、二次電池は劣化する。そこで、電極表面に存在する分極電圧の増加を抑えられると、充電時の劣化を低減できることになる。
したがって、充電時に拡散による分極電圧をモニタすると、その時々において副反応が活発化するかどうか判断して、充電電流を適切に制御することができるので、充電時の劣化を低減することができる。
The phenomenon described above will be described using the equivalent circuit model of the secondary battery shown in FIG. In the secondary battery, when charging progresses and the charge reaction amount starts to decrease with the amount of the charge active material, an increase in polarization due to diffusion becomes significant, and the charge voltage increases with the voltage of the electric double layer. At this time, charging reaction and side reaction are likely to occur on the electrode surface, but since the amount of active material remaining in the charging reaction is small, the charging reaction does not increase and the side reaction starts to occur actively. When a side reaction occurs, the discharge capacity is reduced due to an increase in internal resistance, and the secondary battery deteriorates. Therefore, if an increase in the polarization voltage existing on the electrode surface can be suppressed, deterioration during charging can be reduced.
Therefore, if the polarization voltage due to diffusion is monitored during charging, it can be determined whether the side reaction is activated at that time, and the charging current can be appropriately controlled, so that deterioration during charging can be reduced.

加えて、本発明による二次電池の充電方法では、分極電圧を確認しながら、充電電流を大きくしていくことが好ましい。このような二次電池の充電方法によると、充電時の劣化を低減しながら、できるだけ大きな充電電流で充電することができるので、急速な充電が可能になる。   In addition, in the secondary battery charging method according to the present invention, it is preferable to increase the charging current while confirming the polarization voltage. According to such a charging method of the secondary battery, it is possible to charge with a charging current as large as possible while reducing deterioration during charging, so that rapid charging becomes possible.

(実施形態1)
図5は、本発明の実施形態1における充電装置のブロック構成図である。
充電装置は、二次電池1を充電するための電気を供給する充電回路9と、充電回路9の充電電流を検出する電流検出部3と、二次電池1の充電電圧または電池電圧を検出する電圧検出部2と、電圧検出部からの充電電圧が入力され充電電圧の時間変化率を算出する電圧変化算出部6と、電流検出部3からの充電電流と電圧検出部2からの電圧および電圧変化算出部6からの充電電圧の時間変化率の各信号により二次電池の充電状況を判断する充電判断部7と、充電判断部からの信号により充電回路の供給する電流および電圧を制御する充電制御部8と、を備えている。電圧変化算出部6と充電判断部7とは、マイクロプロセッサ内に構成されるとよい。
(Embodiment 1)
FIG. 5 is a block configuration diagram of the charging device according to the first embodiment of the present invention.
The charging device detects a charging voltage or a battery voltage of the secondary battery 1, a charging circuit 9 that supplies electricity for charging the secondary battery 1, a current detection unit 3 that detects a charging current of the charging circuit 9, and the like. A voltage detection unit 2; a voltage change calculation unit 6 that calculates a rate of change of the charging voltage over time when a charging voltage from the voltage detection unit is input; a charging current from the current detection unit 3; a voltage and a voltage from the voltage detection unit 2; Charge determining unit 7 that determines the charging status of the secondary battery based on each signal of the time change rate of the charging voltage from the change calculating unit 6, and charging that controls the current and voltage supplied by the charging circuit based on the signal from the charge determining unit And a control unit 8. The voltage change calculation unit 6 and the charge determination unit 7 may be configured in a microprocessor.

そして二次電池1は、充電回路9と電圧検出部2と電流検出部3に接続されている。電圧検出部2と電流検出部3とは、充電判断部7においてデジタル処理するために、それぞれ検出したアナログデータをデジタルデータに変換するA/Dコンバータ4a,4bを備えている。さらに、電圧検出部2と電流検出部3とは、A/D変換における量子化ノイズを除去するフィルタ5a,5bを備えることが好ましい。   The secondary battery 1 is connected to the charging circuit 9, the voltage detection unit 2, and the current detection unit 3. The voltage detection unit 2 and the current detection unit 3 include A / D converters 4a and 4b that convert detected analog data into digital data for digital processing in the charge determination unit 7, respectively. Furthermore, it is preferable that the voltage detection unit 2 and the current detection unit 3 include filters 5a and 5b that remove quantization noise in A / D conversion.

以下、実施形態1における充電装置の動作について説明する。
まず基本的な充電装置の動作を説明する。二次電池1は充電回路9によって定電流充電され、このときに二次電池1を流れる充電電流は、電流検出部3によって測定され、A/Dコンバータ4bにてデジタルデータに変換され、フィルタ5bを通過してノイズが除去されて、充電判断部7へ出力される。二次電池の充電電圧は、電圧検出部2で検出され、同じくA/Dコンバータ4aにてデジタルデータに変換され、フィルタ5aを通過してノイズが除去されて、電圧変化測定部6と充電判断部7へ出力される。
Hereinafter, the operation of the charging apparatus according to the first embodiment will be described.
First, the basic operation of the charging device will be described. The secondary battery 1 is charged with a constant current by the charging circuit 9, and the charging current flowing through the secondary battery 1 at this time is measured by the current detector 3, converted into digital data by the A / D converter 4b, and the filter 5b. , And noise is removed and output to the charge determination unit 7. The charging voltage of the secondary battery is detected by the voltage detection unit 2, converted into digital data by the A / D converter 4a, passed through the filter 5a, noise is removed, and the voltage change measurement unit 6 and the charging determination Is output to the unit 7.

上述したような構成を持つ充電装置における動作のフローチャートを、図6に示す。
充電装置において、充電の開始に先立って、二次電池の状態を判断するステップ(S100)が含まれているとよい。このステップについては後述する。
FIG. 6 shows a flowchart of the operation of the charging apparatus having the above-described configuration.
The charging device may include a step (S100) of determining the state of the secondary battery prior to the start of charging. This step will be described later.

例えば、二次電池の状態から、充電を行うと判断されると、充電が開始される(S101)。充電は定電流モードの間欠動作で行われ(S102)、充電中の充電電流と充電電圧とが測定される(S103)。そして、間欠動作における充電休止時には、電圧検出部が検出する電池電圧の過渡的な応答から、分極電圧を算出している(S104)。   For example, when it is determined that charging is performed from the state of the secondary battery, charging is started (S101). Charging is performed by intermittent operation in the constant current mode (S102), and the charging current and charging voltage during charging are measured (S103). Then, when charging is stopped in intermittent operation, the polarization voltage is calculated from the transient response of the battery voltage detected by the voltage detector (S104).

拡散による分極電圧の算出について詳しく説明する。
図7は、電池電圧の過渡的な応答の典型例を模式的に表したグラフである。充電が休止されたとき、電池電圧は急に降下する(V1)。このV1は、抵抗による分極に相当する。電池電圧は、その後時間の経過とともに徐々に低下し、Δτを経過した後、ΔV2低下する。さらに時間が経過すると、電池電圧は収束し、拡散による分極電圧に相当するV2低下することになる。収束した電圧は、二次電池の起電力に相当する。
The calculation of the polarization voltage by diffusion will be described in detail.
FIG. 7 is a graph schematically showing a typical example of the transient response of the battery voltage. When charging is suspended, the battery voltage drops rapidly (V1). This V1 corresponds to polarization due to resistance. The battery voltage then gradually decreases with time, and after Δτ has elapsed, it decreases by ΔV2. When the time further elapses, the battery voltage converges and V2 corresponding to the polarization voltage due to diffusion decreases. The converged voltage corresponds to the electromotive force of the secondary battery.

充電の完了時点を的確に把握するためには、拡散による分極を正確に測定する必要がある。Δτ時間で測定されるΔV2は、拡散による分極の正確な値とはいえない。拡散による分極を正確に測定しようとすると、測定時間を長くとる必要があり、この間充電ができないことになる。このため、急速充電しようとしているにも拘わらず、充電休止時間が長くなり、結局、充電にかかる時間が長くなってしまうことになる。そこで、限られた充電休止時間で、拡散による分極のより正確な値を得るには、電池電圧の過渡的な応答から拡散による分極電圧を算出するとよい。   In order to accurately grasp the completion time of charging, it is necessary to accurately measure polarization due to diffusion. ΔV 2 measured in Δτ time is not an accurate value of polarization due to diffusion. In order to accurately measure the polarization due to diffusion, it is necessary to take a long measurement time, and charging cannot be performed during this time. For this reason, the charging suspension time becomes long despite the fact that rapid charging is attempted, and the time required for charging becomes long after all. Therefore, in order to obtain a more accurate value of polarization due to diffusion with a limited charging pause time, it is preferable to calculate the polarization voltage due to diffusion from the transient response of the battery voltage.

ここで、拡散による分極によって、電池電圧Vは次式で示す指数関数によって減衰している。
(数1)
V=V2・exp(-t/τ)+E (1)
V2:拡散による分極電圧、t:経過時間、τ:時定数、E:起電力
なお図8に、時間の経過とともに、電池電圧Vが減衰する様子を実測したデータの一例を示す。
Here, the battery voltage V is attenuated by an exponential function expressed by the following equation by polarization due to diffusion.
(Equation 1)
V = V2 · exp (-t / τ) + E (1)
V2: Polarization voltage due to diffusion, t: elapsed time, τ: time constant, E: electromotive force FIG. 8 shows an example of data obtained by actually measuring how the battery voltage V decays with time.

上記(1)式には、3つの未知数を含んでいるので、電池電圧Vの過渡的な応答における3つ以上の測定データがあれば、これら3つの未知数を定めることができる。そこで、3つ以上の測定データからカーブフィッティングすると、拡散による分極電圧V2を確度よく算出することができる。   Since the equation (1) includes three unknowns, if there are three or more measurement data in the transient response of the battery voltage V, these three unknowns can be determined. Therefore, when curve fitting is performed from three or more measurement data, the polarization voltage V2 due to diffusion can be accurately calculated.

図6に戻り、算出した分極電圧が、充電動作を診断動作に切り替えるための電圧以上かどうか、判断される(S105)。
切り替え電圧以上であると判断されると、副反応の活発化を的確に把握するために、間欠動作の間隔を短くして、通常動作より所定の時間内に充電を休止する回数が多い診断動作で充電するように制御されるとよい(S106)。
切り替え電圧未満であって、直前の間欠動作の間隔が短ければ、間欠動作の間隔を初期値に戻し、間欠動作の間隔が初期値であれば、それを維持する。
Returning to FIG. 6, it is determined whether the calculated polarization voltage is equal to or higher than the voltage for switching the charging operation to the diagnostic operation (S105).
When it is determined that the voltage is higher than the switching voltage, in order to accurately grasp the activation of the side reaction, the interval of the intermittent operation is shortened, and the diagnosis operation is more frequently stopped within a predetermined time than the normal operation. It may be controlled to charge with (S106).
If it is less than the switching voltage and the interval of the immediately preceding intermittent operation is short, the interval of the intermittent operation is returned to the initial value, and if the interval of the intermittent operation is the initial value, it is maintained.

そして、分極電圧の2階時間微分が正から負になったか否か、を判断する(S108)。2階時間微分が正から負になっていると、充電電流が設定下限値以下であるかがチェックされ(S110)、充電電流が設定下限値以下でなければ、充電電流を下げて充電が続けられ(S111)、充電電流が設定下限値以下であれば、充電を終了する(S112)。   Then, it is determined whether or not the second-order time derivative of the polarization voltage has changed from positive to negative (S108). If the second-order time derivative changes from positive to negative, it is checked whether the charging current is below the set lower limit (S110). If the charging current is not below the set lower limit, the charging current is lowered and charging continues. If the charging current is not more than the set lower limit value (S111), the charging is terminated (S112).

分極電圧の2階時間微分が正から負になっていなければ、分極電圧がしきい値(第1しきい値)以上であるか否か、が判定される(S109)。
分極電圧がしきい値以上であると、充電電流が設定下限値以下であるかがチェックされ(S110)、分極電圧がしきい値未満であると、間欠動作での充電が続けられる(S102)。
If the second-order time derivative of the polarization voltage does not change from positive to negative, it is determined whether or not the polarization voltage is greater than or equal to a threshold value (first threshold value) (S109).
If the polarization voltage is equal to or higher than the threshold value, it is checked whether the charging current is equal to or lower than the set lower limit value (S110) .If the polarization voltage is lower than the threshold value, charging in intermittent operation is continued (S102). .

以上述べた動作は、例えばマイクロプロセッサに組み込まれたソフトウエア手段によって実行することができる。   The operations described above can be executed by, for example, software means incorporated in the microprocessor.

ここで、実施形態1の充電装置の充電時における、充電電圧、充電電流、分極電圧の1階時間微分および2階時間微分の典型例を、模式的グラフにて図9に示す。
まず充電電圧は、時間的経過とともに増加している。そして、分極電圧が増加し、診断動作切り替え電圧になると、診断動作で充電するようになる。診断動作は、充電休止の回数が多く、分極電圧を測定する頻度が多くなっている。このように、診断動作で充電されると、分極電圧の増加を確実に捕捉できるようになる。
Here, typical examples of the first-order time differentiation and the second-order time differentiation of the charging voltage, the charging current, and the polarization voltage during charging of the charging device of Embodiment 1 are shown in FIG. 9 as a schematic graph.
First, the charging voltage increases with time. When the polarization voltage increases and becomes the diagnostic operation switching voltage, charging is performed in the diagnostic operation. In the diagnostic operation, the number of charging pauses is large, and the frequency of measuring the polarization voltage is high. Thus, when charged in the diagnostic operation, an increase in polarization voltage can be reliably captured.

この例において、充電電流は、診断動作に切り替えられても、通常動作と同じとしている。そして、さらに分極電圧が増加し、分極電圧の2階時間微分が正から負になったと判断されたとき、充電電流が下げられる。充電電流が下げられることによって、充電電圧も急に低下しており、劣化を抑えながら充電されていることがわかる。   In this example, the charging current is the same as the normal operation even when the diagnosis operation is switched. When it is determined that the polarization voltage further increases and the second-order time derivative of the polarization voltage has changed from positive to negative, the charging current is reduced. When the charging current is lowered, the charging voltage is suddenly lowered, and it can be seen that charging is performed while suppressing deterioration.

本発明による充電の特徴の1つは、間欠動作の充電休止時毎に、二次電池の電圧から分極電圧を測定し、当該分極電圧の2階時間微分が正から負になったときに、充電電流を下げる制御をするところにある。そこで以下に、分極電圧の時間変化について詳しく説明する。   One of the features of the charging according to the present invention is that the polarization voltage is measured from the voltage of the secondary battery every time charging is stopped during intermittent operation, and when the second-order time derivative of the polarization voltage changes from positive to negative, The control is to lower the charging current. Therefore, the time change of the polarization voltage will be described in detail below.

図10(a)は、定電流充電において、副反応が活発化するときの、分極電圧の時間的変化を模式的に図示している。
(1)の段階では、副反応が活発化する予兆として分極電圧が急増する。
(2)の段階では、副反応が活発化し始めることによって、分極電圧の時間的増加の傾きが緩やかになる。
(3)の段階では、副反応による発生熱で分極電圧が低下する。
FIG. 10A schematically shows a temporal change in the polarization voltage when a side reaction is activated in constant current charging.
In the stage (1), the polarization voltage rapidly increases as a sign that the side reaction is activated.
In the stage (2), the side reaction starts to become active, so that the slope of the increase in the polarization voltage with time becomes gentle.
In the stage (3), the polarization voltage is reduced by the heat generated by the side reaction.

図10(b)は、分極電圧の時間変化率、すなわち分極電圧の1階時間微分のグラフを模式的に図示している。ここで、分極電圧の1階時間微分は、ある間欠動作時に求めた分極電圧と、その前回の分極電圧との差から求められる。
図から明らかなように、(1)の段階では、副反応の活発化による分極電圧の急上昇に伴って、分極電圧の1階時間微分が増加していることがわかる。
その後に起こる(2)の段階では、分極電圧の1階時間微分は減少しており、(3)の段階では、副反応による発生熱により分極電圧が低下するのに伴って、分極電圧の1階時間微分は、負に転じている。
FIG. 10 (b) schematically shows a graph of the time change rate of the polarization voltage, that is, the first-order time derivative of the polarization voltage. Here, the first-order time derivative of the polarization voltage is obtained from the difference between the polarization voltage obtained during a certain intermittent operation and the previous polarization voltage.
As is apparent from the figure, in the stage (1), it is understood that the first-order time derivative of the polarization voltage increases with the rapid increase of the polarization voltage due to the activation of the side reaction.
In the subsequent stage (2), the first-order time derivative of the polarization voltage decreases, and in the stage (3), the polarization voltage decreases by 1 due to the heat generated by the side reaction. The floor time derivative turns negative.

さらに、分極電圧の2階時間微分は、(1)の段階では急に増加しており、(2)の段階との境界で、正から負に変化している。本発明では、この時点を捉えて、充電電流を下げる制御をすることにより、二次電池の劣化を低減している。   Furthermore, the second-order time derivative of the polarization voltage increases rapidly at the stage (1), and changes from positive to negative at the boundary with the stage (2). In the present invention, the deterioration of the secondary battery is reduced by taking control at this point and reducing the charging current.

以上の説明から明らかなように、分極電圧の時間変化率の時間変化、すなわち分極電圧の2階時間微分は、副反応の発生の状況に対応して変化していることがわかる。したがって、分極電圧の2階時間微分が正から負になったときを検知すれば、副反応が活発化することの兆しを捉えることができる。その結果、充電電流を下げることができ、二次電池の劣化を低減できる。   As is clear from the above description, it can be seen that the time change of the time change rate of the polarization voltage, that is, the second-order time derivative of the polarization voltage changes in accordance with the occurrence of the side reaction. Therefore, by detecting when the second-order time derivative of the polarization voltage has changed from positive to negative, it is possible to capture a sign that the side reaction is activated. As a result, the charging current can be reduced, and the deterioration of the secondary battery can be reduced.

次に図11を用いて、二次電池の状態を判断するステップ(S100)について説明する。
このステップ(S100)は、充電を開始する前に二次電池の状態を診断して、充電を行うかどうかを判断する。
Next, the step of determining the state of the secondary battery (S100) will be described using FIG.
In this step (S100), the state of the secondary battery is diagnosed before starting charging, and it is determined whether or not charging is to be performed.

まず、充電電流を印加する前の電池電圧を測定する(S1001)。
次に、1サイクル分の間欠動作の充電を行う(S1002)。二次電池に定電流を印加して、電池電圧の立ち下がり応答から、抵抗による分極電圧V1と拡散による分極電圧V2とを測定する(S1003)。このV2の測定に際しても、上述した算出方法を利用するとよい。
First, the battery voltage before applying the charging current is measured (S1001).
Next, an intermittent operation for one cycle is charged (S1002). A constant current is applied to the secondary battery, and the polarization voltage V1 due to resistance and the polarization voltage V2 due to diffusion are measured from the falling response of the battery voltage (S1003). In the measurement of V2, the above-described calculation method may be used.

電流印加前の電池電圧は充電の進行とともに高くなり、分極電圧V2は充電活物質がなくなる満充電状態付近で急に増加する。電池電圧がしきい値以上である場合には、過充電を避けるため、これ以上の充電は必要ないと判断して、充電を終了する。電池電圧がしきい値以下であり、かつ分極電圧がしきい値以上のときは、二次電池が劣化していると判断してその結果を表示する。そして、上述した充電を開始する。
以上述べた動作は、マイクロプロセッサに組み込まれたソフトウエア手段にて実行することができる。
The battery voltage before current application increases with the progress of charging, and the polarization voltage V2 increases rapidly in the vicinity of the fully charged state where the charging active material is exhausted. When the battery voltage is equal to or higher than the threshold value, in order to avoid overcharging, it is determined that no further charging is necessary, and the charging is terminated. When the battery voltage is lower than the threshold value and the polarization voltage is higher than the threshold value, it is determined that the secondary battery has deteriorated and the result is displayed. And the charge mentioned above is started.
The operations described above can be executed by software means incorporated in the microprocessor.

図11に示した二次電池の状態を判断するステップは、充電を開始する前に好ましく適用される。   The step of determining the state of the secondary battery shown in FIG. 11 is preferably applied before charging is started.

ここで、第1しきい値の求め方について説明する。
図12は、充電電流の増加に対する分極電圧の増加の傾きが小さくなった点を求める方法を説明する図である。図12において、横軸は充電電流であり、縦軸は分極電圧である。
Here, how to obtain the first threshold value will be described.
FIG. 12 is a diagram for explaining a method for obtaining a point at which the slope of increase in polarization voltage with respect to increase in charging current is reduced. In FIG. 12, the horizontal axis is the charging current, and the vertical axis is the polarization voltage.

予め、二次電池について、充電電流を段階的に増加させて分極電圧を測定し、測定点をグラフにプロットする。そして、プロットを繋いでいくと、充電電流の増加に対する前記分極電圧の増加の傾きが小さくなる点が存在する。この点における、充電電流をIbとし、分極電圧bとしておく。このときの分極電圧をしきい値としてもよいが、さらに二次電池の分極電圧の電流依存性係数を乗じた値を第1しきい値とするとよい。   For a secondary battery, the charging current is increased stepwise to measure the polarization voltage, and the measurement points are plotted on a graph. As the plots are connected, there is a point where the inclination of the increase in the polarization voltage with respect to the increase in the charging current becomes smaller. The charging current at this point is Ib and the polarization voltage b. The polarization voltage at this time may be used as a threshold value, but a value obtained by further multiplying the current dependency coefficient of the polarization voltage of the secondary battery may be set as the first threshold value.

次に図13を用いて分極電圧の電流依存性係数の求め方について説明する。
二次電池について、複数の充電電流に対して間欠動作にて充電し、当該間欠動作における前記充電休止時毎に分極電圧を測定し、当該分極電圧の2階時間微分が正から負になったときの分極電圧を変曲点分極電圧としてそれぞれ求めておく。そして、当該変曲点分極電圧の電流依存性を、グラフにプロットし、プロットを繋いでしきい値の電流依存性を求めておく。
つづいて、先に求めた充電電流をIbにおける、グラフ上の値を読み取り、分極電圧aとする。
そして、b/aを算出し、変曲点分極電圧の電流依存性のグラフにb/aを乗じた値を分極電圧の電流依存性係数とする。
Next, how to obtain the current dependency coefficient of the polarization voltage will be described with reference to FIG.
Regarding the secondary battery, charging was performed intermittently with respect to a plurality of charging currents, and the polarization voltage was measured at each charging pause in the intermittent operation, and the second-order time derivative of the polarization voltage was changed from positive to negative. Each polarization voltage is obtained as an inflection point polarization voltage. Then, the current dependency of the inflection point polarization voltage is plotted on a graph, and the current dependency of the threshold value is obtained by connecting the plots.
Subsequently, the value on the graph of the charging current obtained previously in Ib is read to obtain the polarization voltage a.
Then, b / a is calculated, and a value obtained by multiplying the current dependence graph of the inflection point polarization voltage by b / a is defined as a current dependence coefficient of the polarization voltage.

これとは別に、本発明による充電方法および充電装置では、例えば、充電の終了した満充電状態の二次電池に対して、別の観点から劣化の判断を下すことができる。満充電状態の二次電池に対して、印加する充電電流を大きくしたときに、分極電圧が第2しきい値を超えるときの充電電流に基づいて、劣化の度合いを判断することができる。具体的には、使用時における分極電圧の第2しきい値を超えるときの充電電流が、当初の充電電流に比べてその割合が小さくなると、二次電池が劣化していると判断することができる。以下に、その説明を行う。   Apart from this, in the charging method and the charging device according to the present invention, for example, it is possible to make a determination of deterioration from another viewpoint with respect to a fully charged secondary battery that has been charged. When the charging current applied to the fully charged secondary battery is increased, the degree of deterioration can be determined based on the charging current when the polarization voltage exceeds the second threshold value. Specifically, when the charge current when the polarization voltage exceeds the second threshold value during use is smaller than the initial charge current, it can be determined that the secondary battery has deteriorated. it can. This will be described below.

図14(a)は、充電電流を増加させたときの、分極電圧の増加の様子を模式的に表したグラフである。
(1)の段階までは、充電電流が増加しても、分極電圧はほとんど増加しない。このとき、副反応はほとんど起こっていない。
(2)の段階では、充電電流が増加すると、分極電圧は急激に増加しており、分極電圧の増加の傾きが緩やかになるときに、副反応が起こり始めている。
(3)の段階では、充電電流が増加しても、分極電圧はほとんど飽和しており、ほとんど増加しない。
FIG. 14 (a) is a graph schematically showing how the polarization voltage increases when the charging current is increased.
Until the stage (1), the polarization voltage hardly increases even if the charging current increases. At this time, the side reaction hardly occurs.
In the stage (2), as the charging current increases, the polarization voltage increases rapidly, and a side reaction begins to occur when the slope of increase in the polarization voltage becomes gentle.
In the stage (3), even if the charging current increases, the polarization voltage is almost saturated and hardly increases.

図14(b)は、二次電池の劣化の状態によって、充電電流の値が異なる様子を模式的に示している。例えば、同じ充電状態であり、二次電池が劣化していると、分極電圧が増加し始める充電電流、すなわち充電電流の増加に対して分極電圧の増加の傾きが小さくなったときの充電電流の値が小さくなっていることがわかる。つまり、満充電状態の二次電池において、分極の電圧が増加し始める充電電流の値の大小から、二次電池の劣化の度合いを判断することができる。   FIG. 14B schematically shows a state in which the value of the charging current varies depending on the state of deterioration of the secondary battery. For example, if the rechargeable battery is in the same charging state, the charging current at which the polarization voltage starts to increase, i.e. the charging current when the slope of the increase in the polarization voltage becomes smaller with respect to the increase in the charging current, It can be seen that the value is small. That is, in a fully charged secondary battery, the degree of deterioration of the secondary battery can be determined from the magnitude of the charging current value at which the polarization voltage starts to increase.

さらに、予め二次電池の当初における当該充電電流を測定しておき、この当初の充電電流と使用時の充電電流との割合から、二次電池の劣化の度合いを判断すると、より判断の精度が高くなるので、好ましい。
このような機能は、マイクロプロセッサに組み込まれたソフトウエア手段にて実現できる。
Furthermore, if the charging current at the beginning of the secondary battery is measured in advance, and the degree of deterioration of the secondary battery is determined from the ratio between the initial charging current and the charging current at the time of use, the accuracy of the determination is further improved. Since it becomes high, it is preferable.
Such a function can be realized by software means incorporated in the microprocessor.

ここで、充電電流の違いによって、副反応開始の時期が異なることについて説明する。図15において、(a)は充電電流2アンペア(A)で充電したときの、充電時間に対する分極電圧の増加の様子を測定したグラフである。(b)は同じく、充電電流4アンペアで充電したときのグラフである。
図15から、充電電流4Aで充電した方が、早いタイミングで副反応が開始していることがわかる。
Here, it will be described that the side reaction start timing varies depending on the charging current. In FIG. 15, (a) is a graph obtained by measuring the state of increase in polarization voltage with respect to charging time when charging is performed at a charging current of 2 amperes (A). (B) is also a graph when it is charged with a charging current of 4 amperes.
From FIG. 15, it can be seen that the side reaction is started at an earlier timing when the battery is charged with the charging current 4 </ b> A.

以上説明したような構成を持つ充電装置によれば、定電流で充電したときにおける、分極電圧の急な増加を検知することによって、主な電極反応が充電反応から副反応に入れ替わるところが検知できるようになり、電池の劣化を引き起こす副反応が活発化する前に充電電流を下げる制御ができるようになる。その結果として、大電流充電による二次電池の劣化を抑制しつつ、急速充電が可能になる。したがって、従来の急速充電方法より大きな充電電流を設定でき、充電時間をさらに短くすることができる。   According to the charging device having the configuration as described above, it is possible to detect where the main electrode reaction is switched from the charging reaction to the side reaction by detecting a sudden increase in the polarization voltage when charging with a constant current. Thus, it becomes possible to control to lower the charging current before the side reaction that causes the deterioration of the battery is activated. As a result, rapid charging is possible while suppressing deterioration of the secondary battery due to large current charging. Therefore, a charging current larger than that of the conventional quick charging method can be set, and the charging time can be further shortened.

(具体例1)
本発明による充電における充電時の劣化抑制の効果を、以下に実測データを用いて説明する。
(Specific example 1)
The effect of suppressing deterioration during charging in charging according to the present invention will be described below using actual measurement data.

本発明による充電の特徴の1つは、分極電圧の2階時間微分が正から負になったときに、充電電流を下げる制御をすることにある。   One of the features of charging according to the present invention is that control is performed to reduce the charging current when the second-order time derivative of the polarization voltage changes from positive to negative.

そこで、本発明による充電として上述の実施形態1で説明した充電装置を用いた充電と、従来法である定電流充電とにおいて、充放電サイクルの増加と放電容量の推移の様子を示したグラフを、図16に示す。グラフの横軸は充放電サイクル数であり、グラフの縦軸は2アンペア(A)の電流値で放電したときの放電容量である。ここで、従来法である定電流充電は、市販されている充電器で多く採用されている充電方法である。   Therefore, in the charging using the charging device described in the first embodiment as the charging according to the present invention and the constant current charging which is the conventional method, a graph showing the state of the increase in the charge / discharge cycle and the transition of the discharge capacity is shown. As shown in FIG. The horizontal axis of the graph is the number of charge / discharge cycles, and the vertical axis of the graph is the discharge capacity when discharged at a current value of 2 amperes (A). Here, constant current charging, which is a conventional method, is a charging method that is widely used in commercially available chargers.

一般に二次電池は、充放電サイクルを繰り返すと劣化していき、例えば充放電サイクル500回付近で放電容量が初期値の半分程度まで下がってしまい、寿命と判断される。また、基本的に充放電時の電流が大きいほど、副反応が起こりやすくなるため、二次電池が寿命となるまでの充放電サイクル数は短くなってしまう。   In general, a secondary battery deteriorates when a charge / discharge cycle is repeated, and for example, the discharge capacity is reduced to about half of the initial value in the vicinity of 500 charge / discharge cycles. Also, basically, the larger the current during charging / discharging, the easier side reactions occur, so the number of charging / discharging cycles until the secondary battery reaches the end of its life is shortened.

図16に示したグラフから、まず従来法の定電流充電では、初期の放電容量が約1750mAhであり、充放電サイクル500回後の放電容量が約1050mAhであった。一方、本発明による充電は、後で詳しく述べる通り、定電流充電における充電電流値より大きな電流値で充電して、充電時間を短縮している。それにも拘わらず、初期の放電容量が約1850mAhであり、充放電サイクル500回後の放電容量が約1020mAhであり、従来法による充電の劣化の度合いが同程度であることがわかる。   From the graph shown in FIG. 16, first, in the constant current charging of the conventional method, the initial discharge capacity was about 1750 mAh, and the discharge capacity after 500 charge / discharge cycles was about 1050 mAh. On the other hand, as will be described in detail later, the charging according to the present invention is performed by charging with a current value larger than the charging current value in constant current charging, thereby shortening the charging time. Nevertheless, the initial discharge capacity is about 1850 mAh, the discharge capacity after 500 charge / discharge cycles is about 1020 mAh, and it can be seen that the degree of deterioration of charging by the conventional method is comparable.

本発明による充電は、別の観点から、分極電圧のしきい値を設定し、充電中の分極電圧が当該しきい値を超えない範囲の充電電流で充電すると理解されてもよい。
その充電電流の最大値は、この具体例1では、容量時間率をCとしたときの3倍である3Cとした。一方、従来法である定電流充電方法では、市販充電器を模擬的に再現しており、容量時間率Cの1倍の電流値で充電している。
The charging according to the present invention may be understood from another point of view by setting a polarization voltage threshold value and charging with a charging current in a range in which the polarization voltage during charging does not exceed the threshold value.
The maximum value of the charging current in this specific example 1 was 3C, which is three times the capacity time ratio C. On the other hand, in the constant current charging method which is a conventional method, a commercially available charger is simulated, and charging is performed at a current value that is one time the capacity time rate C.

次に、図17の(a)のグラフは、本発明による充電と従来法とにおいて、充電電流の時間的変化の一例を示しており、(b)のグラフと、本発明による充電において、分極電圧の時間的変化の一例を示している。   Next, the graph of FIG. 17A shows an example of the temporal change of the charging current in the charging according to the present invention and the conventional method. In the graph of FIG. An example of the temporal change in voltage is shown.

この具体例1の本発明による充電における充電電流の最大値は、上述したように、3Cとし、具体例1で使用した二次電池の容量時間率Cは2アンペアであるので、6アンペアとした。一方、従来法の充電における充電電流の最大値は、容量時間率Cの1倍である2アンペアとした。   As described above, the maximum value of the charging current in the charging according to the present invention of the specific example 1 is 3 C, and the capacity time rate C of the secondary battery used in the specific example 1 is 2 amperes, so that it is 6 amperes. . On the other hand, the maximum value of the charging current in the conventional charging is 2 amperes, which is 1 times the capacity time rate C.

本発明の充電における具体的な特徴は、図17の(b)に示したように、分極電圧が設定したしきい値を超えないように、充電電流を制御していることと理解されてもよい。より具体的には、設定するしきい値を、上述した方法で求めたしきい値よりも少々小さく、例えば90%しきい値として設定し、拡散分極の電圧がその90%しきい値を超えた場合、充電電流を下げる制御をすればよい。このように、例えば90%しきい値を、しきい値として設定する理由としては、極力、副反応を発生させないようにするために、安全を見込んでいるためである。   A specific feature of charging according to the present invention is understood that the charging current is controlled so that the polarization voltage does not exceed the set threshold as shown in FIG. Good. More specifically, the threshold value to be set is slightly smaller than the threshold value obtained by the above-described method, for example, set as a 90% threshold value, and the diffusion polarization voltage exceeds the 90% threshold value. In such a case, the charging current may be reduced. Thus, for example, the reason why the 90% threshold value is set as the threshold value is that safety is expected in order to prevent side reactions as much as possible.

図17に示したように、本発明による充電では、例えば4アンペアの電流値で充電を開始し、間欠動作で充電するサイクルのうち間欠時に分極電圧を測定している。充電当初の分極電圧は、例えば設定したしきい値20mVの80%以下である16mV以下であるので、より急速な充電を行うために、充電電流値を、例えば4.5アンペアに大きくして、次のサイクルの充電を行っている。   As shown in FIG. 17, in the charging according to the present invention, charging is started at a current value of, for example, 4 amperes, and the polarization voltage is measured during an intermittent cycle of charging in an intermittent operation. Since the polarization voltage at the beginning of charging is, for example, 16 mV or less, which is 80% or less of the set threshold value 20 mV, in order to perform more rapid charging, the charging current value is increased to, for example, 4.5 amperes, The next cycle is being charged.

そして、分極電圧を確認しながら、充電電流値を順次大きくしていくと、設定した最大の充電電流値(6アンペア)に達する。6アンペアで充電を続けていると、分極電圧の値が増加して、例えば90%しきい値を超えるので、充電電流値を5.5アンペアに下げて、次のサイクルの充電を行っている。充電電流値を5.5アンペアと維持していても、充電の進行に従い、分極電圧の値が再び増加して90%しきい値に達するので、充電電流値を順次、5アンペア、4.5アンペア、4アンペアに下げて、次のサイクルの充電を行っている。そして、充電電流値を4アンペアとして充電した時点で、充電している二次電池が所定の温度に達したので、充電完了と判定した。このとき、充電に要した時間は、24分であった。   Then, when the charging current value is sequentially increased while confirming the polarization voltage, the set maximum charging current value (6 amperes) is reached. If charging continues at 6 amps, the value of the polarization voltage increases and exceeds, for example, the 90% threshold value. Therefore, the charging current value is lowered to 5.5 amps and the next cycle is charged. . Even if the charging current value is maintained at 5.5 amperes, as the charging progresses, the value of the polarization voltage increases again and reaches the 90% threshold value. The battery is charged to the next cycle after being lowered to 4 amps. Then, when the charging current value was charged at 4 amperes, the charged secondary battery reached a predetermined temperature, so that it was determined that charging was completed. At this time, the time required for charging was 24 minutes.

一方、従来法の充電では、2アンペアの定電流値で充電を続けた。そして、同じく、二次電池が所定の温度に達した時点で、充電完了とした。このとき、充電に要した時間は、60分であった。
なお、上述した実施形態1では、充電電流が設定下限値以下となったとき、充電を終了していた。しかし、この具体例1において、充電完了の判定は、簡略化のために、二次電池が所定の温度になった時点とした。さらに、充電完了の判定は、充電量(電流×時間)が所定の値となる時点としてもよい。
On the other hand, in the conventional charging, the charging was continued at a constant current value of 2 amperes. Similarly, the charging is completed when the secondary battery reaches a predetermined temperature. At this time, the time required for charging was 60 minutes.
In the first embodiment described above, the charging is terminated when the charging current becomes equal to or lower than the set lower limit value. However, in the first specific example, the determination of the completion of charging is performed at the time when the secondary battery reaches a predetermined temperature for simplification. Furthermore, the determination of the completion of charging may be performed at the time when the charging amount (current × time) becomes a predetermined value.

このように、分極電圧に基づいて制御することを特徴とする本発明の充電方法では、定電流充電方法よりも大きな電流値で充電しているのにも拘わらず、図16に示したように、放電容量が定電流充電方法とほぼ同じような推移しており、同程度の寿命を有していることがわかる。つまり、本発明の充電方法では、最大値3Cの充電電流値で急速に充電しているにも拘わらず、1Cの定電流充電と同程度等の劣化速度に抑えることができることがわかる。   Thus, in the charging method of the present invention, which is controlled based on the polarization voltage, as shown in FIG. 16, although charging is performed with a larger current value than in the constant current charging method. It can be seen that the discharge capacity is almost the same as that of the constant current charging method and has the same life. That is, it can be seen that the charging method according to the present invention can suppress the deterioration rate to the same level as that of the constant current charging of 1C, although it is rapidly charged with the charging current value of the maximum value of 3C.

しかも、充電時間についても、定電流充電方法では所定の充電完了まで60分を要したのに対して、本発明の充電方法では同じく24分で充電できることが確認された。この結果は、本発明の分極電圧を用いて制御する充電方法によれば、充電時間を従来の定電流充電方法の半分以下に短縮することを可能としながらも、充電による劣化を抑制できることを示している。つまり、本発明のように、充電時の電流値を大きくした場合でも、分極電圧を大きくならないように制御すれば、副反応発生による活発化を抑えることができる。   Moreover, with regard to the charging time, it was confirmed that the constant current charging method required 60 minutes to complete predetermined charging, whereas the charging method of the present invention can be charged in 24 minutes. This result shows that the charging method controlled using the polarization voltage of the present invention can suppress the deterioration due to charging while enabling the charging time to be reduced to half or less of the conventional constant current charging method. ing. That is, even when the current value during charging is increased as in the present invention, the activation due to the occurrence of a side reaction can be suppressed by controlling the polarization voltage so as not to increase.

さらに、この具体例1の本発明による充電において、分極電圧が所定の値、例えば、しきい値の80%未満であれば、充電電流を増加させる制御を行うとよい。このような制御をすることで、充電による劣化の程度を増大させない範囲で、より大きな充電電流で充電することができる。したがって、このような制御を行うと、二次電池をより急速に充電しながらも、充電による劣化の程度を増大させることがないので、実用的にも好ましい。なお、拡散分極の電圧値が、設定したしきい値の80%以上90%未満であれば、その充電電流値を維持させればよい。   Further, in the charging according to the present invention of the specific example 1, if the polarization voltage is a predetermined value, for example, less than 80% of the threshold value, it is preferable to perform control to increase the charging current. By performing such control, charging can be performed with a larger charging current within a range in which the degree of deterioration due to charging is not increased. Therefore, such control is preferable from a practical viewpoint because the secondary battery is charged more rapidly and does not increase the degree of deterioration due to charging. If the voltage value of diffusion polarization is not less than 80% and less than 90% of the set threshold value, the charging current value may be maintained.

(実施形態2)
本発明の実施形態2の充電装置における特徴は、充電判断部7に電圧変化算出部6から出力されたデータをデータテーブルに蓄積して、その傾向から二次電池における劣化の進行を診断する機能を付加したことである。
(Embodiment 2)
A feature of the charging device according to the second embodiment of the present invention is that the charging judgment unit 7 accumulates data output from the voltage change calculation unit 6 in a data table and diagnoses the progress of deterioration in the secondary battery from the tendency. Is added.

例えば、充電診断部7に、起電力と充電電圧と内部抵抗を記憶する機能、および二次電池の識別番号をデータテーブルに登録する機能を付加しておく。二次電池を充電するときに、ユーザーが二次電池の識別番号を入力することによって、充電終了を判定したときの起電力や充電電圧、分極電圧、放電時における容量低下量など、当該二次電池の劣化に関するデータをデータテーブルに蓄積することができ、充電を繰り返すとこれらデータの傾向から二次電池の劣化の進行を推定できる。   For example, a function for storing the electromotive force, the charging voltage, and the internal resistance and a function for registering the identification number of the secondary battery in the data table are added to the charging diagnosis unit 7. When charging the secondary battery, the secondary battery identification number is entered by the user to determine the end of charging, such as the electromotive force, the charging voltage, the polarization voltage, the capacity drop during discharging, etc. Data relating to battery deterioration can be accumulated in the data table, and when charging is repeated, the progress of secondary battery deterioration can be estimated from the tendency of these data.

また、複数回充電してデータを蓄積しなくても、当該二次電池と同種の二次電池で予め劣化の度合いを測定したデータがあれば、1回の測定でも二次電池の劣化の度合いを判断することができる。   In addition, even if charging is performed multiple times and data is not accumulated, if there is data obtained by measuring the degree of deterioration in advance with a secondary battery of the same type as the secondary battery, the degree of deterioration of the secondary battery even with one measurement. Can be judged.

図18は、劣化診断の一例として実際に充放電サイクル試験を行ない、満充電時に測定した内部抵抗と分極電圧とに対する、放電容量におけるそれぞれの低下量をプロットした図である。図16において、縦軸は、放電容量の初期値1800mAhに対する放電容量の低下量である。横軸のうち分極電圧値は、分極電圧の増加のしやすさを表わすために、測定時の電流値補正を掛けて同じ電流印加条件としている。   FIG. 18 is a diagram in which the charge / discharge cycle test is actually performed as an example of the deterioration diagnosis, and the respective reduction amounts in the discharge capacity are plotted against the internal resistance and the polarization voltage measured at the time of full charge. In FIG. 16, the vertical axis represents the amount of decrease in discharge capacity with respect to the initial discharge capacity value of 1800 mAh. In the horizontal axis, the polarization voltage value is set to the same current application condition by applying a current value correction at the time of measurement in order to indicate the ease of increase of the polarization voltage.

図18から明らかなように、二次電池は充放電を繰り返すことで、分極電圧と内部抵抗が増加していき、これに伴って放電容量が低下することがわかる。したがって、充放電を繰り返したときに、分極電圧と内部抵抗のデータの傾向を把握することで、二次電池の劣化の進行を推定することができる。   As can be seen from FIG. 18, the secondary battery is repeatedly charged and discharged, whereby the polarization voltage and the internal resistance increase, and the discharge capacity decreases accordingly. Therefore, when charging / discharging is repeated, the progress of deterioration of the secondary battery can be estimated by grasping the tendency of the polarization voltage and internal resistance data.

さらに、当該二次電池における、分極電圧と内部抵抗のデータととに、放電時における容量低下量も蓄積しておくと、当該二次電池において、予め劣化の進行について測定をしていなくとも、二次電池の劣化の進行を推定することができるので、好ましい。 Furthermore, in the secondary cell, as well as the polarization voltage and the internal resistance of the data, the should also be accumulated capacity reduction amount at the time of discharge, in the secondary battery, without have any measured progression of pre-degradation It is preferable because the progress of deterioration of the secondary battery can be estimated.

また、識別機能は他の方法であってもよい。また、蓄積するデータの取得タイミングは、充電終了判断時だけでなく、充電開始前のステップ(S100)でもよい。充電開始前のデータで診断する場合、二次電池の充電状態は、満充電状態から完全放電状態まで考えられるため、分極電圧のデータは充電回数と充電状態の関数になる。充電状態とともに増加する起電力に対する分極電圧を示すマップを用意して、取得されたデータをプロットしていくことで、分極電圧の増加傾向から充電の繰り返しによる劣化の進行を推定できる。   The identification function may be another method. In addition, the acquisition timing of the accumulated data may be not only at the time of charging end determination, but also at a step before starting charging (S100). When diagnosing with data before the start of charging, since the charging state of the secondary battery can be considered from a fully charged state to a fully discharged state, the polarization voltage data is a function of the number of times of charging and the charging state. By preparing a map showing the polarization voltage with respect to the electromotive force that increases with the state of charge, and plotting the acquired data, it is possible to estimate the progress of deterioration due to repeated charging from the increasing tendency of the polarization voltage.

この構成によれば、充電装置の構成を変えることなく、電圧変化算出部から出力されたデータを蓄積して診断する機能を充電判断部に追加するだけで、二次電池の繰り返し使用による劣化の進行を推定できる。また、充電終了時の取得データで診断すると、満充電状態のみのデータが得られ、診断プロセスにかかる負荷を減らすことができ、充電開始前の取得データで診断すると、各充電状態における起電力や分極電圧の情報が得られる。   According to this configuration, without changing the configuration of the charging device, the function of accumulating and diagnosing data output from the voltage change calculation unit is added to the charging determination unit, and deterioration due to repeated use of the secondary battery is prevented. Progress can be estimated. In addition, if the diagnosis is based on the acquired data at the end of charging, only the fully charged state data can be obtained, and the load on the diagnostic process can be reduced. Information on the polarization voltage can be obtained.

本発明による二次電池の充電装置およびそれに用いる充電方法は、ニッケル水素電池やリチウムイオン電池、鉛蓄電池など充電において、二次電池の劣化を抑制しつつ、急速充電が可能になるので、好ましく利用できる。   The charging device for the secondary battery and the charging method used therefor according to the present invention are preferably used because charging is possible while suppressing deterioration of the secondary battery in charging such as a nickel metal hydride battery, a lithium ion battery, and a lead storage battery. it can.

1 二次電池
2 電圧検出部
3 電流検出部
4a,4b A/Dコンバータ
5a,5b フィルタ
6 電圧変化算出部
7 充電診断部
8 充電制御部
9 充電回路
11,21 電極の純抵抗
31 電解液のイオン拡散抵抗
12,22 無負荷で定常時の電気二重層の電圧
13,23 電荷移動抵抗と拡散抵抗
14,24 電気二重層容量
DESCRIPTION OF SYMBOLS 1 Secondary battery 2 Voltage detection part 3 Current detection part 4a, 4b A / D converter 5a, 5b Filter 6 Voltage change calculation part 7 Charge diagnostic part 8 Charge control part 9 Charging circuit 11, 21 Pure resistance 31 of electrode Electrolytic solution Ion diffusion resistance 12, 22 Electric double layer voltage 13, 23 in steady state with no load Charge transfer resistance and diffusion resistance 14, 24 Electric double layer capacitance

Claims (12)

化学反応を利用して充放電する二次電池を、間欠動作にて充電する二次電池の充電方法において、
前記間欠動作の充電休止時に、前記二次電池の電圧から求めた分極電圧によって、充電電流を下げる制御をするに際し、
まず、前記充電休止時毎に、前記二次電池の電圧から分極電圧を測定し、当該分極電圧の2階時間微分が正から負になったときに、充電電流を下げる制御をするとともに、
予め、前記二次電池について、間欠動作にて充電するときの充電電流を増加させ、それぞれの充電電流で充電した後の充電休止時に分極電圧をそれぞれ測定し、前記充電電流の増加に対する前記分極電圧の増加の傾きが小さくなったときの分極電圧に、前記二次電池の分極電圧の電流依存性係数を乗じた値を第1しきい値とし、
前記充電休止時毎に測定する分極電圧が、前記第1しきい値を超えたときに、充電電流を下げる制御をすることを特徴とする二次電池の充電方法。
In a charging method of a secondary battery that charges a secondary battery that charges and discharges using a chemical reaction in an intermittent operation,
When controlling the charging current to be lowered by the polarization voltage obtained from the voltage of the secondary battery during the charging suspension of the intermittent operation,
First, every time the charging is stopped, the polarization voltage is measured from the voltage of the secondary battery, and when the second-order time derivative of the polarization voltage changes from positive to negative, the charging current is controlled to be reduced,
In advance, for the secondary battery, the charging current when charging by intermittent operation is increased, and the polarization voltage is measured at the time of charging suspension after charging with the respective charging current, and the polarization voltage with respect to the increase of the charging current A value obtained by multiplying the polarization voltage when the slope of the increase of the current by the current dependency coefficient of the polarization voltage of the secondary battery is a first threshold value,
A charging method for a secondary battery, characterized in that when the polarization voltage measured at each charging pause exceeds the first threshold value, the charging current is controlled to decrease.
請求項に記載の二次電池の充電方法において、
まず、前記二次電池について、複数の充電電流に対して間欠動作にて充電し、当該間欠動作における前記充電休止時毎に分極電圧を測定し、当該分極電圧の2階時間微分が正から負になったときの分極電圧を変曲点分極電圧としてそれぞれ求め、当該変曲点分極電圧の電流依存性のグラフを求め、
つぎに、前記二次電池について、間欠動作にて充電するときの充電電流を段階的に増加させ、それぞれの充電電流で充電した後の充電休止時に分極電圧をそれぞれ測定し、前記充電電流の増加に対して前記分極電圧の増加の傾きが小さくなったときの、充電電流Ibと分極電圧bとを求め、
さらに、前記充電電流Ibのときの前記グラフ上の分極電圧aを求めておき、
前記分極電圧の電流依存性係数を、前記変曲点分極電圧の電流依存性のグラフにb/aを乗じた値とすることを特徴とする二次電池の充電方法。
In the charging method of the secondary battery according to claim 1 ,
First, the secondary battery is charged intermittently with respect to a plurality of charging currents, and the polarization voltage is measured at each charging pause in the intermittent operation. The second-order time derivative of the polarization voltage is negative to positive. The polarization voltage at the time of becoming the inflection point polarization voltage, respectively, to obtain a graph of the current dependence of the inflection point polarization voltage,
Next, for the secondary battery, the charging current when charging in an intermittent operation is increased stepwise, the polarization voltage is measured at the time of charging suspension after charging with each charging current, and the charging current is increased. The charging current Ib and the polarization voltage b when the inclination of the increase in the polarization voltage is reduced with respect to
Further, the polarization voltage a on the graph at the time of the charging current Ib is obtained,
A method for charging a secondary battery, wherein the current dependency coefficient of the polarization voltage is a value obtained by multiplying the graph of the current dependency of the inflection point polarization voltage by b / a.
請求項1または2に記載の二次電池の充電方法において、
前記充電休止時毎に測定する分極電圧が、充電動作切り換えの所定の値以上になると、所定時間内の充電休止回数が所定の回数である通常動作から、該通常動作より充電休止回数の多い診断動作に切り換えて充電することを特徴とする二次電池の充電方法。
In the charging method of the secondary battery according to claim 1 or 2 ,
When the polarization voltage measured at each charging pause becomes equal to or higher than a predetermined value for switching the charging operation, a diagnosis with a larger number of charging pauses than the normal operation is performed from the normal operation in which the number of charging pauses within a predetermined time is a predetermined number. A charging method for a secondary battery, wherein the charging is switched to operation.
請求項1〜のいずれか1項に記載の二次電池の充電方法において、
予め、前記二次電池の当初にて、間欠動作にて充電するときの充電電流を段階的に増加させ、それぞれの充電電流で充電した後の充電休止時に分極電圧をそれぞれ測定し、前記充電電流の増加に対して前記分極電圧の増加の傾きが小さくなったときの分極電圧を求めて、第2しきい値とするとともに、そのときの充電電流を当初の充電電流とし、
使用中の前記二次電池にて、同様に間欠動作にて充電するときの充電電流を段階的に増加させ、それぞれの充電電流で充電した後の充電休止時に分極電圧をそれぞれ測定し、当該分極電圧が前記第2しきい値を超えるときの充電電流を求めて、使用時の充電電流とし、
前記当初の充電電流に対する、前記使用時の充電電流の割合に基づいて、前記二次電池の劣化の度合いを判断することを特徴とする二次電池の充電方法。
In the charging method of the secondary battery of any one of Claims 1-3 ,
In advance, at the beginning of the secondary battery, the charging current when charging by intermittent operation is increased stepwise, and the polarization voltage is measured at the time of charging suspension after charging at each charging current , and the charging current The polarization voltage when the slope of increase of the polarization voltage becomes smaller with respect to the increase of the polarization voltage is determined as a second threshold, and the charging current at that time is the initial charging current,
Similarly, in the secondary battery in use, the charging current when charging in the intermittent operation is increased stepwise, and the polarization voltage is measured at the time of charging suspension after charging with the respective charging currents. Obtaining the charging current when the voltage exceeds the second threshold value, the charging current during use,
A method for charging a secondary battery, comprising: determining a degree of deterioration of the secondary battery based on a ratio of the charging current at the time of use to the initial charging current.
請求項1〜のいずれか1項に記載の二次電池の充電方法において、
さらに複数の二次電池の個別情報を蓄積できるデータテーブルを準備し、
前記複数の二次電池のうち充電する二次電池について、充電休止時毎に測定する分極電圧と、前記二次電池の電圧とから起電力を測定し、当該二次電池の識別記号とともに前記データテーブルに蓄積し、
前記二次電池に関する前記データテーブルのデータと、前記二次電池の同種の二次電池で予め測定した劣化の度合いのデータとから、前記二次電池の劣化の度合いを判断することを特徴とする二次電池の充電方法。
In the charging method of the secondary battery of any one of Claims 1-3 ,
In addition, a data table that can store individual information on multiple secondary batteries is prepared.
For the secondary battery to be charged among the plurality of secondary batteries, the electromotive force is measured from the polarization voltage measured at every charging suspension and the voltage of the secondary battery, and the data together with the identification symbol of the secondary battery Accumulate on the table,
The degree of deterioration of the secondary battery is determined from data in the data table relating to the secondary battery and data on the degree of deterioration measured in advance with a secondary battery of the same type as the secondary battery. Rechargeable battery charging method.
請求項1〜のいずれか1項に記載の二次電池の充電方法において、
前記充電休止時毎に測定する分極電圧が、前記第1しきい値の所定の割合以下であれば、前記充電電流を増加させて充電することを特徴とする二次電池の充電方法。
In the charging method of the secondary battery of any one of Claims 1-3 ,
A charging method for a secondary battery, wherein charging is performed by increasing the charging current if a polarization voltage measured at each charging pause time is equal to or less than a predetermined ratio of the first threshold value.
化学反応を利用して充放電する二次電池を、間欠動作にて充電する二次電池の充電装置において、
前記間欠動作の充電休止時に、前記二次電池の電圧から求めた分極電圧によって、充電電流を下げる制御機構を有し、
当該制御機構は、まず、前記間欠動作の充電休止時毎に、前記二次電池の電圧から分極電圧を測定し、当該分極電圧の2階時間微分が正から負になったときに、充電電流を下げる制御手段を有するとともに、
予め、前記二次電池について、間欠動作にて充電するときの充電電流を増加させ、それぞれの充電電流で充電した後の充電休止時に分極電圧をそれぞれ測定し、前記充電電流の増加に対する前記分極電圧の増加の傾きが小さくなったときの分極電圧に、前記二次電池の分極電圧の電流依存性係数を乗じた値を第1しきい値とし、
前記充電休止時毎に測定する分極電圧が、前記第1しきい値を超えたときに、充電電流を下げる制御手段を有することを特徴とする二次電池の充電装置。
In a secondary battery charging device that charges a secondary battery that is charged and discharged using a chemical reaction in an intermittent operation,
A control mechanism for lowering the charging current by the polarization voltage obtained from the voltage of the secondary battery at the time of charging suspension of the intermittent operation;
The control mechanism first measures the polarization voltage from the voltage of the secondary battery at every charging stop of the intermittent operation, and when the second-order time derivative of the polarization voltage changes from positive to negative, the charging current Control means for lowering
In advance, for the secondary battery, the charging current when charging by intermittent operation is increased, and the polarization voltage is measured at the time of charging suspension after charging with the respective charging current, and the polarization voltage with respect to the increase of the charging current A value obtained by multiplying the polarization voltage when the slope of the increase of the current by the current dependency coefficient of the polarization voltage of the secondary battery is a first threshold value,
A charging device for a secondary battery, comprising control means for reducing a charging current when a polarization voltage measured at each charging suspension exceeds the first threshold value.
請求項に記載の二次電池の充電装置において、
まず、前記二次電池について、複数の充電電流に対して間欠動作にて充電し、当該間欠動作における前記充電休止時毎に分極電圧を測定し、当該分極電圧の2階時間微分が正から負になったときの分極電圧を変曲点分極電圧としてそれぞれ求め、当該変曲点分極電圧の電流依存性のグラフを求め、
つぎに、前記二次電池について、間欠動作にて充電するときの充電電流を段階的に増加させ、それぞれの充電電流で充電した後の充電休止時に分極電圧をそれぞれ測定し、前記充電電流の増加に対して前記分極電圧の増加の傾きが小さくなったときの、充電電流Ibと分極電圧bとを求め、
さらに、前記充電電流Ibのときの前記グラフ上の分極電圧aを求めておき、
前記分極電圧の電流依存性係数を、前記変曲点分極電圧の電流依存性のグラフにb/aを乗じた値とする手段を有することを特徴とする二次電池の充電装置。
The secondary battery charging device according to claim 7 ,
First, the secondary battery is charged intermittently with respect to a plurality of charging currents, and the polarization voltage is measured at each charging pause in the intermittent operation. The second-order time derivative of the polarization voltage is negative to positive. The polarization voltage at the time of becoming the inflection point polarization voltage, respectively, to obtain a graph of the current dependence of the inflection point polarization voltage,
Next, for the secondary battery, the charging current when charging in an intermittent operation is increased stepwise, the polarization voltage is measured at the time of charging suspension after charging with each charging current, and the charging current is increased. The charging current Ib and the polarization voltage b when the inclination of the increase in the polarization voltage is reduced with respect to
Further, the polarization voltage a on the graph at the time of the charging current Ib is obtained,
A charging device for a secondary battery, comprising means for setting the current dependency coefficient of the polarization voltage to a value obtained by multiplying the graph of the current dependency of the inflection point polarization voltage by b / a.
請求項7または8に記載の二次電池の充電装置において、
前記充電休止時毎に測定する分極電圧が、充電動作切り換えの所定の値以上になると、所定時間内の充電休止回数が所定の回数である通常動作から、該通常動作より充電休止回数の多い診断動作に切り換えて充電する制御手段を有することを特徴とする二次電池の充電装置。
The secondary battery charging device according to claim 7 or 8 ,
When the polarization voltage measured at each charging pause becomes equal to or higher than a predetermined value for switching the charging operation, a diagnosis with a larger number of charging pauses than the normal operation is performed from the normal operation in which the number of charging pauses within a predetermined time is a predetermined number. A charging device for a secondary battery, comprising control means for charging by switching to operation.
請求項のいずれか1項に記載の二次電池の充電装置において、
予め、前記二次電池の当初にて、間欠動作にて充電するときの充電電流を段階的に増加させ、それぞれの充電電流で充電した後の充電休止時に分極電圧をそれぞれ測定し、前記充電電流の増加に対して前記分極電圧の増加の傾きが小さくなったときの分極電圧を求めて、第2しきい値とするとともに、そのときの充電電流を当初の充電電流とし、
使用中の前記二次電池にて、間欠動作にて充電するときの充電電流を段階的に増加させ、それぞれの充電電流で充電した後の充電休止時に分極電圧をそれぞれ測定し、当該分極電圧が前記第2しきい値を超えるときの充電電流を求めて、使用時の充電電流とし、
前記当初の充電電流に対する、前記使用時の充電電流の割合に基づいて、前記二次電池の劣化の度合いを判断する手段を有することを特徴とする二次電池の充電装置。
The secondary battery charging device according to any one of claims 7 to 9 ,
In advance, at the beginning of the secondary battery, the charging current when charging by intermittent operation is increased stepwise, and the polarization voltage is measured at the time of charging suspension after charging at each charging current , and the charging current The polarization voltage when the slope of increase of the polarization voltage becomes smaller with respect to the increase of the polarization voltage is determined as a second threshold, and the charging current at that time is the initial charging current,
In the secondary battery in use, the charging current when charging by intermittent operation is increased stepwise, and the polarization voltage is measured at the time of charging suspension after charging with the respective charging current. The charge current when the second threshold value is exceeded is determined as the charge current during use.
A charging device for a secondary battery, comprising means for determining a degree of deterioration of the secondary battery based on a ratio of the charging current at the time of use to the initial charging current.
請求項のいずれか1項に記載の二次電池の充電装置において、
さらに複数の二次電池の個別情報を蓄積できるデータテーブルを準備し、
前記複数の二次電池のうち充電する二次電池について、充電休止時毎に測定する分極電圧と、前記二次電池の電圧とから起電力を測定し、当該二次電池の識別記号とともに前記データテーブルに蓄積し、
前記二次電池に関する前記データテーブルのデータと、前記二次電池の同種の二次電池で予め測定した劣化の度合いのデータとから、前記二次電池の劣化の度合いを判断する手段を有することを特徴とする二次電池の充電装置。
The secondary battery charging device according to any one of claims 7 to 9 ,
In addition, a data table that can store individual information on multiple secondary batteries is prepared.
For the secondary battery to be charged among the plurality of secondary batteries, the electromotive force is measured from the polarization voltage measured at every charging suspension and the voltage of the secondary battery, and the data together with the identification symbol of the secondary battery Accumulate on the table,
Means for judging the degree of deterioration of the secondary battery from the data in the data table relating to the secondary battery and the data of the degree of deterioration measured in advance for the same type of secondary battery of the secondary battery. A rechargeable battery charging device.
請求項のいずれか1項に記載の二次電池の充電装置において、
前記充電休止時毎に測定する分極電圧が、前記第1しきい値の所定の割合以下であれば、前記充電電流を増加させて充電する手段を有することを特徴とする二次電池の充電装置。
The secondary battery charging device according to any one of claims 7 to 9 ,
A charging device for a secondary battery, characterized in that it has means for increasing the charging current and charging if the polarization voltage measured at each charging pause is less than or equal to a predetermined ratio of the first threshold value. .
JP2012110028A 2012-05-11 2012-05-11 Secondary battery charging method and charging device using the same Expired - Fee Related JP5372208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012110028A JP5372208B2 (en) 2012-05-11 2012-05-11 Secondary battery charging method and charging device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012110028A JP5372208B2 (en) 2012-05-11 2012-05-11 Secondary battery charging method and charging device using the same

Publications (2)

Publication Number Publication Date
JP2013240153A JP2013240153A (en) 2013-11-28
JP5372208B2 true JP5372208B2 (en) 2013-12-18

Family

ID=49764728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012110028A Expired - Fee Related JP5372208B2 (en) 2012-05-11 2012-05-11 Secondary battery charging method and charging device using the same

Country Status (1)

Country Link
JP (1) JP5372208B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11876397B2 (en) 2018-12-21 2024-01-16 Lg Energy Solution, Ltd. Apparatus and method for controlling step charging of secondary battery

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6707436B2 (en) * 2016-11-15 2020-06-10 日野自動車株式会社 Battery control device and control method
US11598817B2 (en) * 2018-04-17 2023-03-07 Mitsubishi Electric Corporation Storage cell diagnostic device and storage cell diagnostic method, and storage cell control system
KR20210046407A (en) * 2019-10-18 2021-04-28 주식회사 엘지화학 Apparatus and method for estimating state of charge
KR20220015998A (en) 2020-07-31 2022-02-08 주식회사 엘지에너지솔루션 Overpotential characteristics evaluating apparatus and overpotential characteristics evaluating method for battery
JP2022188638A (en) * 2021-06-09 2022-12-21 株式会社日立製作所 Charging control system, charge control method, and program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11876397B2 (en) 2018-12-21 2024-01-16 Lg Energy Solution, Ltd. Apparatus and method for controlling step charging of secondary battery

Also Published As

Publication number Publication date
JP2013240153A (en) 2013-11-28

Similar Documents

Publication Publication Date Title
KR101897859B1 (en) Detection method of Li plating, method and apparatus for charging secondary battery and secondary battery system using the same
JP5372208B2 (en) Secondary battery charging method and charging device using the same
EP2711727B1 (en) Battery condition estimation device and method of generating open circuit voltage characteristic
WO2010001605A1 (en) Life span estimation method for a lead acid battery and a power supply system
JP2015104139A (en) Charging method of secondary battery, and charging device employing the same
EP2728368B1 (en) Condition estimation device and method for battery
JP5738784B2 (en) Power storage system
US20190094305A1 (en) Amount of charge calculation device, recording medium, and amount of charge calculation method
JP6500789B2 (en) Control system of secondary battery
JP6614007B2 (en) Internal resistance calculation device, computer program, and internal resistance calculation method
JPWO2017033311A1 (en) Deterioration degree estimation device and deterioration degree estimation method
JP2012253975A (en) Charging/discharging control method for alkali storage battery, and charging/discharging system
JP6301048B1 (en) Battery management device and battery pack system
JP5565276B2 (en) Method for correcting the amount of charge in a lithium ion battery
JP2006153663A (en) Method of determining lifetime of secondary battery
JPWO2017169088A1 (en) Lithium ion secondary battery life estimation device
JP6421986B2 (en) Secondary battery charging rate estimation method, charging rate estimation device, and soundness estimation device
JP2015104138A (en) Charging method of secondary battery, and charging device employing the same
JP2000270491A (en) Lithium ion battery charging method and lithium ion battery charger
JP5911407B2 (en) Battery soundness calculation device and soundness calculation method
JP2014109535A (en) Internal resistance estimation device, charging apparatus, discharging apparatus, and internal resistance estimation method
CN109444750A (en) A kind of capacity of lead acid battery predictor method
JP5904916B2 (en) Battery soundness calculation device and soundness calculation method
JP2018137109A (en) Life estimation device
JP7174327B2 (en) Method for determining state of secondary battery

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130917

R150 Certificate of patent or registration of utility model

Ref document number: 5372208

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees