EP3050840B1 - Determining parameters for multiple direction forklifts - Google Patents

Determining parameters for multiple direction forklifts Download PDF

Info

Publication number
EP3050840B1
EP3050840B1 EP16153451.6A EP16153451A EP3050840B1 EP 3050840 B1 EP3050840 B1 EP 3050840B1 EP 16153451 A EP16153451 A EP 16153451A EP 3050840 B1 EP3050840 B1 EP 3050840B1
Authority
EP
European Patent Office
Prior art keywords
multiple direction
load
sensor
forklift
direction forklift
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16153451.6A
Other languages
German (de)
French (fr)
Other versions
EP3050840A1 (en
Inventor
Carsten Schöttke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jungheinrich AG
Original Assignee
Jungheinrich AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jungheinrich AG filed Critical Jungheinrich AG
Publication of EP3050840A1 publication Critical patent/EP3050840A1/en
Application granted granted Critical
Publication of EP3050840B1 publication Critical patent/EP3050840B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F17/00Safety devices, e.g. for limiting or indicating lifting force
    • B66F17/003Safety devices, e.g. for limiting or indicating lifting force for fork-lift trucks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/12Platforms; Forks; Other load supporting or gripping members
    • B66F9/14Platforms; Forks; Other load supporting or gripping members laterally movable, e.g. swingable, for slewing or transverse movements
    • B66F9/147Whole unit including fork support moves relative to mast

Definitions

  • the invention relates to a method for determining at least one static and / or dynamic characteristic of a three-way forklift, and a three-way stacker comprising an arrangement for determining at least one static and / or dynamic characteristic of a three-way forklift.
  • at least one sensor is associated with the load-carrying device carrying element of the industrial truck and arranged at a distance from the central axis of the industrial truck in the width direction of the industrial truck.
  • Three-side forklift are often used in the form of so-called.
  • These in contrast to conventional forklift trucks, have the additional capability of not only moving their load-handling means (i.e., in particular their fork) up and down but also of pivoting them laterally and of laterally shifting them in the direction of the width of the truck.
  • the center of gravity or the wheel or axle contact forces of the truck noticeably affect the driving characteristics of the vehicle. For example, a maximum achievable braking effect on an axle is reduced if this braked axle is relieved by the center of gravity of the truck.
  • Another example is the lateral stability of the vehicle, which, for example, when cornering affects and the is related to the position of the center of gravity of the vehicle with respect to the central axis in the width direction.
  • the shows EP 2 607 295 A1 an industrial truck whose tilting moment is determined in the longitudinal direction inter alia from the support forces introduced into the mast mounting points.
  • Last are from the JP H06 156996 A and the JP H06 247698 A
  • Forklift trucks are known in which load detection devices are assigned to the forks of the truck DE 298 24 820 U1 discloses a generic three-way forklift.
  • moments caused by the load can be determined, from which in turn the desired static and / or dynamic characteristic can be determined.
  • the load carried by the load handler exerts a moment on the load handler carrying member that may depend on the position of the load handler, the weight of the load, a possible speed change of the truck, etc.
  • load handling device carrying member is hereby broad understand.
  • a driver's cab is provided on which a side thruster with a fork carriage and attached forks is provided.
  • the load-carrying device carrying element comprises the driver's seat as well as the components of the side pushing device fixedly connected to the driver's station. Due to the fact that the load acts directly on the side thrust device, load-dependent moments which are used according to the invention for determining the static and / or dynamic characteristics are produced on the load-carrying device carrying element.
  • design parameters of the industrial truck can also be stored in a storage unit, and in the calculation of the at least one characteristic, the design parameters of the industrial truck can also be used.
  • the design parameters may in particular be geometric properties as well as the mass distribution of the industrial truck.
  • further information about the interaction of the load and the construction of the truck itself can be determined using the sensor data.
  • the method further comprises directly or indirectly measuring a second moment caused by the load or the weight of the load by means of a second sensor, wherein in calculating the at least one characteristic also the sensor data output by the second sensor can be used , Due to the additional data obtained by the second sensor, the measurement of the static and / or dynamic characteristics of the industrial truck can be further specified or parameters with a higher information content can be obtained. For example, a plausibility check of the data output by the two sensors can already be carried out against each other with two sensors, thus ensuring the intended function of the sensors.
  • the second sensor or optionally a third sensor can also be assigned to the load-carrying device carrying element of the truck and spaced in the width direction of the truck from the central axis of the truck, in this case preferably symmetrically to the first sensor with respect to the central axis of the truck in the longitudinal direction.
  • Such an arrangement of the second or a third sensor facilitates the calculation of the desired characteristic clearly, since the symmetry properties of the structure can be exploited.
  • the method may include determining the relative position of the load relative to the wheel axles of the truck and the center axis of the truck longitudinally and / or determining the weight of the load, calculating an expected static and / or dynamic characteristic from the determined relative position, or / and the weight of the load and comparing the expected characteristic with the calculated characteristic.
  • the determination of the relative position of the load or the weight of the load can be carried out by known means such as pressure sensors or hydraulic sensors.
  • the measuring of the first moment caused by the load can be done by means of a tension sensor or by determining an elastic deformation of the component.
  • the two types of sensor mentioned are particularly simple and cost-effective ways to measure the moment caused by the load directly or indirectly.
  • stress transducers are low maintenance, fail-safe and easy to read.
  • the current Height of the load to be determined can also be done by known sensors.
  • the height of the load is of particular interest when the truck is in motion, as the inertia of the load during acceleration or deceleration may result in a further change in, for example, the axle loads of the truck.
  • the at least one static and / or dynamic characteristic of the industrial truck in the method according to the invention can be the current center of gravity position of the industrial truck or a wheel or axle load of the industrial truck. As already mentioned, these parameters of the industrial truck are of particular interest since they can be safety-critical values.
  • At least one operating parameter of the industrial truck can be adapted on the basis of the determined at least one static and / or dynamic parameter of the industrial truck.
  • An example of this may be a permissible maximum speed of the truck, which can be increased or decreased depending on the determined current center of gravity position of the truck.
  • the invention relates to a three-way stacker according to claim 10.
  • the calculation unit may be assigned a memory unit in which construction parameters of the industrial truck are stored, and the calculation unit may be configured to calculate the at least one characteristic using the design parameters of the industrial truck.
  • the arrangement may additionally include a second sensor configured to detect a second load or weight of the load caused by the load, and the computing unit may be configured to generate the at least one characteristic using output from the second sensor To calculate sensor data.
  • the arrangement may be formed so that the second sensor or optionally a third sensor is also assigned to the load-carrying device-carrying element of the truck and spaced in the width direction of the truck from the central axis of the truck, preferably symmetrically to the first sensor with respect to the central axis.
  • the first and the second sensor or the first and the third sensor may be identical.
  • the arrangement may further comprise means for determining the relative position of the load relative to the wheel axles of the truck and the longitudinal axis of the truck and / or for determining the weight of the load, and the computing unit may be configured to provide an expected static and / or dynamic To calculate the characteristic from the determined relative position and / or the weight of the load.
  • the calculation unit can be set up to compare the expected parameter with the calculated parameter.
  • the industrial truck may comprise means which are adapted to adapt at least one operating parameter of the industrial truck based on the determined at least one static and / or dynamic characteristic of the industrial truck.
  • a three-sided stacker designated by the reference numeral 1 is shown in an oblique plan view.
  • the three-way stacker 1 has a front axle 10 with a right and a left front wheel and a single (in Fig. 1 not to be seen) rear wheel on.
  • the three-way stacker 1 further comprises a rear portion 12 in which are incorporated functional elements such as a drive motor, various hydraulic devices, and a counterweight.
  • the three-way stacker 1 comprises a telescopic mast 14, on which a driver's cab 16 is guided in a height-adjustable manner.
  • a load-receiving device 18 is pivotally mounted and displaceable in the width direction of the three-way stacker 1, wherein the load-receiving device in turn comprises a fork 20 which can carry a load during operation of the vehicle.
  • the load carried by the load receiving device 18 exerts, as soon as it is raised, depending on its position, a moment on the three-way forklift 1 and in particular the driver's cab 16, since the load-receiving device 18 is connected to the three-way stacker 1 in the area of the driver's cab 16 and thus the Weight of the load in the driver's compartment 16 attacks.
  • Fig. 2 now the driver's cab 16 is shown isolated.
  • the assembly 24 by means of which the driver's station 16 cooperates with the mast 14, the control element 22, through which the driver of the three-way forklift 1 steering commands and other operating instructions to a control device of the vehicle enters, and a bottom plate 26, on the one hand the driver of the vehicle offers a footprint and on the other hand at least part of the weight of the load receives and passes.
  • the bottom plate 26 can easily be elastically twisted during operation of the truck 1 or at least under mechanical tension.
  • Fig. 3 the driver's cab 16 is off Fig. 2 shown again, this time in perspective from diagonally below.
  • the assembly 24 and the bottom plate 26 can be seen again.
  • two elements 28 are shown, on which a rail is mounted in the mounted state, of which the load receiving device 18 is supported and along which it is laterally displaceable in the width direction of the three-way stacker 1. Accordingly, the weight of the load is introduced via the load receiving device 18 and the two elements 28 in the bottom plate 26 of the operator's cab 16.
  • the area in which the elements 28 are connected to the bottom plate 26 is in the lower cutout in FIG Fig. 3 shown enlarged.
  • the load-carrying device carrying member is the bottom plate 26 and the element 28. More specifically, in the enlarged view in FIG Fig. 3 Furthermore, two sensors 30a and 30b are visible, which are attached to the underside of the bottom plate 26. These are voltage pick-up elements that can convert a voltage applied to the bottom plate 26 mechanical stress into an electrical voltage signal.
  • the two sensors 30a and 30b may be wired or wirelessly in communication with a computing unit that receives and processes the signals and thus the data from the sensors. According to the invention, not necessarily both sensors 30a and 30b have to be provided, but rather provide Fig. 3 only particularly suitable positions for the attachment of the sensors 30a and 30b.
  • Fig. 4 in which again the driver's cab 16 is shown, but this time in a view obliquely from above.
  • sensors 32a and 32b are arranged on the upper side of the bottom plate 26. You are thus in the footwell of the vehicle 1.
  • the two sensors 32a and 32b are arranged substantially symmetrically with respect to the central axis of the operator's cab 16 and thus of the three-way stacker 1.
  • the sensors 30a and 30b shown can also be used in Fig. 4 shown sensors 32a and 32b either individually or collectively and they are wireless or wired in contact with a computing unit, not shown.
  • Fig. 5 is now roughly schematically a circuit and connection diagram of the sensors and data processing components shown, which form an inventive arrangement for determining a characteristic of an industrial truck.
  • the already on the basis of Fig. 3 and 4 discussed sensors 30a, 30b, 32a, 32b provide to the computing unit 34 data representing a stress at their respective position.
  • the calculation unit 34 is coupled to a storage unit 36 in which construction parameters of the industrial truck are stored. From the voltage values recorded by the sensors 30a, 30b, 32a, 32b and the design parameters of the industrial truck stored in the storage unit 36, the calculation unit 34 is able to determine static and dynamic characteristics of the industrial truck, such as the current center of gravity position with respect to the truck axles and calculate the wheel and axle loads of the respective wheels or axles.
  • the design parameters stored in the storage unit 36 are preferably inter alia geometric parameters of the industrial truck, such as the relative position of the axes relative to one another and the mass distribution within the industrial truck.
  • the latter can now in turn output signals which are used to adjust the operating parameters of the industrial truck. For example, if the calculation of the current center of gravity has shown that the center of gravity of the truck is offset relatively laterally from the center axis of the truck in the longitudinal direction, a maximum cornering speed can be forcibly limited to eliminate the risk of tilting of the truck when cornering.
  • the maximum permissible speed of the truck are limited, since the braking effect of the braked axle is reduced in such a case compared to an unloaded state.
  • the travel speed or the exit speed or both speeds may be limited based on the measured and processed values.
  • the elements 38a, 38b and 38c in FIG Fig. 5 Accordingly, exemplary represent systems for limiting the maximum cornering speed, the maximum travel speed and the maximum diagonal speed of the truck.
  • FIG. 6 an exemplary output of the two sensors 32a and 32b is shown Fig. 4 shown, wherein the solid line in Fig. 6 the output of the first sensor 32a and the dashed line corresponds to the output of the second sensor 32b.
  • the sensors operate to convert a mechanical voltage applied to the component to which they are attached into an electrical voltage U or U ', the output electrical voltage being proportional to the detected mechanical stress.
  • the output electrical voltage values are plotted over time t.
  • the load-carrying device without carrying a load, is located in the region of the second sensor 32b with respect to the width direction of the truck, wherein the forks of the load receiving device are pivoted in, ie they are oriented parallel to the width direction of the truck.
  • a predetermined load is now lifted by the load receiving device.
  • the lifted load is between the time t 2 and the time t 3 from the position in the region of the second sensor 32b with respect to the width of the truck in the range of first sensor 32a shifted.
  • the load is rotated by 90 °, ie at time t 5 , the fork of the load-carrying device in the longitudinal direction of the truck.
  • the two voltage curves U and U 'over time t are explained as follows: Before the time t 1 , the first sensor 32a outputs a voltage U 0 and the second sensor 32b outputs a voltage U 0 '.
  • the voltage U 0 ' is slightly higher than the voltage U 0 , which can be explained by the fact that the load-receiving device already has a certain weight, which is reflected in the position of the sensor 32b in a higher output voltage.
  • the mechanical stress of a position of the first sensor 32a increases from the time t 2 to the time t 3 from the output voltage U 1 to the output voltage U 2 , after which the lateral displacement movement is completed.
  • the output voltage of the second sensor 32b decreases from the value U 1 'to the value U 2 ' between the time t 2 and the time t 3 , since, as mentioned, the load or its point of application to the bottom plate 26 from the position of second sensor 32b removed.
  • the calculation unit 34 is able to calculate the load moment currently acting on the industrial truck.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Forklifts And Lifting Vehicles (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Bestimmen von wenigstens einer statischen oder/und dynamischen Kenngröße eines Dreiseitenstaplers, sowie ein Dreiseitenstapler umfassend eine Anordnung zum Bestimmen von wenigstens einer statischen oder/und dynamischen Kenngröße eines Dreiseitenstaplers. Hierbei ist erfindungsgemäß wenigstens ein Sensor dem Lastaufnahmevorrichtung-Trageelement des Flurförderzeugs zugeordnet und in Breitenrichtung des Flurförderzeugs von der Mittelachse des Flurförderzeugs beabstandet angeordnet.The invention relates to a method for determining at least one static and / or dynamic characteristic of a three-way forklift, and a three-way stacker comprising an arrangement for determining at least one static and / or dynamic characteristic of a three-way forklift. In this case, according to the invention, at least one sensor is associated with the load-carrying device carrying element of the industrial truck and arranged at a distance from the central axis of the industrial truck in the width direction of the industrial truck.

Insbesondere in modernen Hochregallagern werden häufig Flurförderzeuge in Form sog. Dreiseitenstapler eingesetzt. Diese verfügen im Gegensatz zu herkömmlichen Gabelstaplern zusätzlich über die Möglichkeit, ihre Lastaufnahmemittel (d.h. insbesondere ihre Gabel) nicht nur auf und ab zu bewegen, sondern sie ferner zu schwenken und in Breitenrichtung des Flurförderzeugs seitlich zu versetzen.Especially in modern high-bay warehouses are often used in the form of so-called. Three-side forklift. These, in contrast to conventional forklift trucks, have the additional capability of not only moving their load-handling means (i.e., in particular their fork) up and down but also of pivoting them laterally and of laterally shifting them in the direction of the width of the truck.

Durch diese erhöhte Flexibilität des Lastaufnahmemittels werden allerdings zusätzliche Freiheitsgrade geschaffen, was die Positionierung der Last bezüglich der Radachsen des Flurförderzeugs und bezüglich seiner Mittelachse in Fahrzeugbreitenrichtung betrifft. Dies hat eine Auswirkung auf die Gewichtsverteilung des aus Flurförderzeug und Last gebildeten Systems und insbesondere auf die Schwerpunktlage und damit die Rad- bzw. Achsaufstandskräfte des Fahrzeugs.This increased flexibility of the lifting device, however, additional degrees of freedom are created, which relates to the positioning of the load with respect to the wheel axles of the truck and with respect to its central axis in the vehicle width direction. This has an effect on the weight distribution of the truck and load system formed and in particular on the center of gravity and thus the wheel or axle contact forces of the vehicle.

Die Schwerpunktlage bzw. die Rad- oder Achsaufstandskräfte des Flurförderzeugs wirken sich auf die Fahreigenschaften des Fahrzeugs merklich aus. Beispielsweise ist eine maximal erzielbare Bremswirkung auf einer Achse verringert, wenn durch die Schwerpunktlage des Flurförderzeugs diese gebremste Achse entlastet ist. Ein weiteres Beispiel ist die Seitenstabilität des Fahrzeugs, die sich beispielsweise bei Kurvenfahrten auswirkt und die mit der Position des Schwerpunkts des Fahrzeugs bezüglich der Mittelachse in Breitenrichtung zusammenhängt.The center of gravity or the wheel or axle contact forces of the truck noticeably affect the driving characteristics of the vehicle. For example, a maximum achievable braking effect on an axle is reduced if this braked axle is relieved by the center of gravity of the truck. Another example is the lateral stability of the vehicle, which, for example, when cornering affects and the is related to the position of the center of gravity of the vehicle with respect to the central axis in the width direction.

Da sowohl die angesprochene maximal erzielbare Bremswirkung als auch die mögliche Kurvengeschwindigkeit des Flurförderzeugs sicherheitsrelevant sind, werden Flurförderzeuge bisher derart konzipiert, dass auch im ungünstigsten Fall, entsprechend einer vollen Beladung, ein sicheres Abbremsen gewährleistet ist und aufgrund dessen die maximale zulässige Fahrtgeschwindigkeit in der Regel auf ein voll beladenes Flurförderzeug ausgelegt ist. Allerdings wären bei einer geringeren Beladung oder wenigstens einer geeigneten Schwerpunktlage des Flurförderzeugs auch höhere Geschwindigkeiten denkbar, ohne dass Einbußen bei der Sicherheit in Kauf genommen werden müssen, da beispielsweise die Bremskraft in einem solchen Fall immer noch ausreichend sein kann, selbst wenn die zulässige Höchstgeschwindigkeit erhöht wird.Since both the aforementioned maximum achievable braking effect as well as the possible cornering speed of the truck are relevant to safety, trucks are so far designed so that even in the worst case, corresponding to a full load, a safe braking is guaranteed and therefore the maximum permissible speed usually on a fully loaded truck is designed. However, at a lower load or at least a suitable center of gravity of the truck higher speeds would be conceivable without loss of security must be taken into account, for example, the braking force in such a case may still be sufficient, even if the maximum permissible speed increases becomes.

Daher ist es von erhöhtem Interesse, statische und dynamische Kenngrößen des Flurförderzeugs, wie beispielsweise die bereits diskutierte Schwerpunktlage, zu bestimmen. Ein solches Verfahren ist beispielsweise aus dem Dokument EP 0 814 051 A1 bekannt, in welchem ein Verfahren vorgestellt wird, in dem Massenschwerpunkt eines Flurförderzeugs in Abhängigkeit von der Gesamtmasse des Fahrzeugs einschließlich der Last und der Hubhöhe errechnet wird. Ferner ist beispielsweise aus der DE 10 2006 028 551 A1 ein Flurförderzeug bekannt, bei dem durch einen als Achsbauteil vorgesehenen Kraftsensor eine Achslast eines Flurförderzeugs bestimmt werden kann. Aus der WO 2010/140880 A2 ist ferner ein System bekannt, in dem ein Lastmoment einer von einem Gabelstapler getragenen Last mittels eines in der Gabel selbst vorgesehenen druck- oder spannungssensitiven Sensors gemessen werden kann. Zuletzt sei noch die EP 0 343 839 A2 erwähnt, in der mittels Druck- und Hydrauliksensoren die Masse der getragenen Last eines Flurförderzeugs und deren Lage bestimmt werden, woraus eine Schwerpunktposition des Flurförderzeugs berechnet wird.Therefore, it is of increased interest to determine static and dynamic characteristics of the truck, such as the already discussed center of gravity. Such a method is for example from the document EP 0 814 051 A1 in which a method is presented in which the center of gravity of an industrial truck is calculated as a function of the total mass of the vehicle, including the load and the lifting height. Furthermore, for example, from the DE 10 2006 028 551 A1 an industrial truck is known in which an axle load of a truck can be determined by a force sensor provided as an axle component. From the WO 2010/140880 A2 Furthermore, a system is known in which a load torque of a load carried by a forklift truck can be measured by means of a pressure or voltage-sensitive sensor provided in the fork itself. Last is still the EP 0 343 839 A2 mentions, in the means of pressure and hydraulic sensors, the mass of the carried load of a truck and their location are determined, from which a center of gravity position of the truck is calculated.

Allen diesen bekannten Systemen ist allerdings gemein, dass sie lediglich dazu geeignet sind, die Lage des Schwerpunkts des Flurförderzeugs bezüglich der Längsrichtung und der Höhenrichtung des Flurförderzeugs zu bestimmen, während die für ein Flurförderzeug wie einen Dreiseitenstapler typisch auftretenden, durch die Last erzeugten, in Querrichtungen wirkenden Momente nicht berücksichtigt werden können.However, all these known systems have in common that they are only adapted to determine the position of the center of gravity of the truck with respect to the longitudinal direction and the height direction of the truck, while the typical for an industrial truck such as a three-way forklift, generated by the load, in transverse directions acting moments can not be considered.

Ferner ist aus der EP 0 483 493 A2 ein Flurförderzeug bekannt, in welchem in den beiden Gelenkverbindungen, mittels derer das Hubgerüst schwenkbar am Fahrzeugkörper angelenkt ist, Dehnungsstreifen vorgesehen sind. In ähnlicher Weise werden in dem aus der WO 20014/069568 A1 bekannten Flurförderzeug Kraftsensoren zur Erfassung der über die Neigungszylinder auf den Mast wirkenden Stützkräfte verwendet.Furthermore, from the EP 0 483 493 A2 a truck is known in which in the two articulated joints, by means of which the mast is pivotally articulated on the vehicle body, stretch marks are provided. Similarly, in the from the WO 20014/069568 A1 known truck used force sensors for detecting the force acting on the mast over the pitch cylinders supporting forces.

Des Weiteren zeigt die EP 2 607 295 A1 ein Flurförderzeug, dessen Kippmoment in Längsrichtung unter anderem aus den in den Hubgerüst-Lagerungspunkten eingeleiteten Abstützkräften bestimmt wird. Zuletzt sind aus der JP H06 156996 A und der JP H06 247698 A Flurförderzeuge bekannt, in denen Lastdetektionsvorrichtungen den Gabelzinken des Flurförderzeugs zugeordnet sind DE 298 24 820 U1 offenbart einen gattungsgemäßen Dreiseitenstapler.Furthermore, the shows EP 2 607 295 A1 an industrial truck whose tilting moment is determined in the longitudinal direction inter alia from the support forces introduced into the mast mounting points. Last are from the JP H06 156996 A and the JP H06 247698 A Forklift trucks are known in which load detection devices are assigned to the forks of the truck DE 298 24 820 U1 discloses a generic three-way forklift.

Um nun die komplexen, bei modernen Flurförderzeug auftretenden Lastmomente erfassen und verarbeiten zu können, wird erfindungsgemäß ein Verfahren zum Bestimmen von wenigstens einer statischen oder/und dynamischen Kenngröße eines Dreiseitenstaplers gemäß Anspruch 1 vorgeschlagen.In order to be able to detect and process the complex load moments occurring in modern industrial trucks, a method for determining at least one static and / or dynamic characteristic of a three-side forklift according to claim 1 is proposed according to the invention.

Durch das Vorsehen des ersten Sensors im Bereich des Lastaufnahmevorrichtung-Trageelements und abseits der Mittelachse des Dreiseitenstaplers können durch die Last hervorgerufene Momente bestimmt werden, aus denen wiederum die gewünschte statische oder/und dynamische Kenngröße bestimmt werden kann. Die von der Lastaufnahmevorrichtung getragene Last übt ein Moment auf das Lastaufnahmevorrichtung-Trageelement aus, das von der Position der Lastaufnahmevorrichtung, dem Gewicht der Last, einer möglichen Geschwindigkeitsänderung des Flurförderzeugs, etc. abhängen kann.By providing the first sensor in the region of the load-carrying device carrying element and off the center axis of the three-way forklift, moments caused by the load can be determined, from which in turn the desired static and / or dynamic characteristic can be determined. The load carried by the load handler exerts a moment on the load handler carrying member that may depend on the position of the load handler, the weight of the load, a possible speed change of the truck, etc.

Der Begriff des Lastaufnahmevorrichtung-Trageelements ist hierbei breit zu verstehen. In gebräuchlichen Dreiseitenstaplern ist ein Fahrerstand vorgesehen, an dem ein Seitenschubgerät mit einem Gabelträger und daran befestigten Lastgabeln vorgesehen ist. Erfindungsgemäß umfasst in einer solchen Anordnung das Lastaufnahmevorrichtung-Trageelement den Fahrerstand sowie die fest mit dem Fahrerstand verbundenen Komponenten des Seitenschubgeräts. Dadurch, dass die Last unmittelbar an dem Seitenschubgerät angreift, entstehen an dem Lastaufnahmevorrichtung-Trageelement lastabhängige Momente, die erfindungsgemäß zur Bestimmung der statischen oder/und dynamischen Kenngröße verwendet werden.The term load handling device carrying member is hereby broad understand. In conventional three-way stackers, a driver's cab is provided on which a side thruster with a fork carriage and attached forks is provided. According to the invention, in such an arrangement, the load-carrying device carrying element comprises the driver's seat as well as the components of the side pushing device fixedly connected to the driver's station. Due to the fact that the load acts directly on the side thrust device, load-dependent moments which are used according to the invention for determining the static and / or dynamic characteristics are produced on the load-carrying device carrying element.

In einer Ausführungsform des Verfahrens können ferner Konstruktionsparameter des Flurförderzeug in einer Speichereinheit hinterlegt werden, und bei dem Berechnen der wenigstens einen Kenngröße können die Konstruktionsparameter des Flurförderzeugs ebenfalls verwendet werden. Hierbei kann es sich bei den Konstruktionsparametern insbesondere um geometrische Eigenschaften sowie die Massenverteilung des Flurförderzeugs handeln. Somit können insbesondere weitergehende Informationen über die Wechselwirkung der Last und der Konstruktion des Flurförderzeugs selbst mit Hilfe der Sensordaten bestimmt werden.In one embodiment of the method, design parameters of the industrial truck can also be stored in a storage unit, and in the calculation of the at least one characteristic, the design parameters of the industrial truck can also be used. In this case, the design parameters may in particular be geometric properties as well as the mass distribution of the industrial truck. Thus, in particular further information about the interaction of the load and the construction of the truck itself can be determined using the sensor data.

In einer weiteren vorzugsweisen Ausführungsform umfasst das Verfahren ferner ein direktes oder indirektes Messen eines zweiten durch die Last hervorgerufenen Moments oder des Gewichts der Last mittels eines zweiten Sensors, wobei bei dem Berechnen der wenigstens einen Kenngröße ebenfalls die von dem zweiten Sensor ausgegebenen Sensordaten verwendet werden können. Durch die zusätzlichen, durch den zweiten Sensor gewonnenen Daten kann die Messung der statischen oder/und dynamischen Kenngröße des Flurförderzeugs weiter präzisiert werden bzw. können Kenngrößen mit einem höheren Informationsgehalt gewonnen werden. Beispielsweise kann bereits mit zwei Sensoren eine Plausibilitätsprüfung der von den beiden Sensoren ausgegebenen Daten gegeneinander ausgeführt werden und somit die vorgesehene Funktion der Sensoren sichergestellt werden.In a further preferred embodiment, the method further comprises directly or indirectly measuring a second moment caused by the load or the weight of the load by means of a second sensor, wherein in calculating the at least one characteristic also the sensor data output by the second sensor can be used , Due to the additional data obtained by the second sensor, the measurement of the static and / or dynamic characteristics of the industrial truck can be further specified or parameters with a higher information content can be obtained. For example, a plausibility check of the data output by the two sensors can already be carried out against each other with two sensors, thus ensuring the intended function of the sensors.

In einer bevorzugten Ausführungsform kann der zweite Sensor oder gegebenenfalls ein dritter Sensor ebenfalls dem Lastaufnahmevorrichtung-Trageelement des Flurförderzeugs zugeordnet und in Breitenrichtung des Flurförderzeugs von der Mittelachse des Flurförderzeugs beabstandet angeordnet sein, hierbei vorzugsweise symmetrisch zu dem ersten Sensor bezüglich der Mittelachse des Flurförderzeugs in Längsrichtung. Eine solche Anordnung des zweiten oder eines dritten Sensors erleichtert die Berechnung der gewünschten Kenngröße deutlich, da die Symmetrieeigenschaften des Aufbaus ausgenutzt werden können.In a preferred embodiment, the second sensor or optionally a third sensor can also be assigned to the load-carrying device carrying element of the truck and spaced in the width direction of the truck from the central axis of the truck, in this case preferably symmetrically to the first sensor with respect to the central axis of the truck in the longitudinal direction. Such an arrangement of the second or a third sensor facilitates the calculation of the desired characteristic clearly, since the symmetry properties of the structure can be exploited.

Ferner kann das Verfahren ein Bestimmen der relativen Position der Last bezüglich der Radachsen des Flurförderzeugs und der Mittelachse des Flurförderzeugs in Längsrichtung oder/und ein Bestimmen des Gewichts der Last, ein Berechnen einer erwarteten statischen oder/und dynamischen Kenngröße aus der bestimmten relativen Position oder/und dem Gewicht der Last sowie ein Vergleichen der erwarteten Kenngröße mit der berechneten Kenngröße umfassen. Hierbei kann die Bestimmung der relativen Position der Last bzw. des Gewichts der Last mit bekannten Mitteln wie beispielsweise Drucksensoren oder Hydrauliksensoren durchgeführt werden. Durch den Vergleich von berechneter oder erwarteter Kenngröße kann ein unerwünschter Zustand vermieden werden, indem durch eine Plausibilitätsprüfung der erwarteten gegen die berechnete Kenngröße eine fehlerfreie Funktion der Sensoren für die weiteren Komponenten überprüft wird.Further, the method may include determining the relative position of the load relative to the wheel axles of the truck and the center axis of the truck longitudinally and / or determining the weight of the load, calculating an expected static and / or dynamic characteristic from the determined relative position, or / and the weight of the load and comparing the expected characteristic with the calculated characteristic. In this case, the determination of the relative position of the load or the weight of the load can be carried out by known means such as pressure sensors or hydraulic sensors. By comparing the calculated or expected characteristic value, an undesired state can be avoided by checking the error-free function of the sensors for the other components by performing a plausibility check of the expected characteristic quantity against the calculated parameter.

In einer bevorzugten Ausführungsform kann in dem Verfahren das Messen des ersten durch die Last hervorgerufenen Moments mittels eines Spannungsaufnehmers oder durch Bestimmung einer elastischen Verformung des Bauteils erfolgen. Die beiden genannten Sensortypen bilden besonders einfache und kostengünstige Möglichkeiten, das von der Last hervorgerufene Moment direkt oder indirekt zu messen. Insbesondere Spannungsaufnehmer sind hierbei wartungsarm, ausfallsicher und leicht auszulesen.In a preferred embodiment, in the method, the measuring of the first moment caused by the load can be done by means of a tension sensor or by determining an elastic deformation of the component. The two types of sensor mentioned are particularly simple and cost-effective ways to measure the moment caused by the load directly or indirectly. In particular, stress transducers are low maintenance, fail-safe and easy to read.

In einer weiteren vorteilhaften Ausführungsform kann ferner die momentane Höhe der Last bestimmt werden. Dies kann ebenfalls mittels bekannter Sensoren erfolgen. Die Höhe der Last ist insbesondere von Interesse, wenn sich das Flurförderzeug in Bewegung befindet, da es durch die Trägheit der Last bei einem Beschleunigen oder einem Abbremsen zu einer weiteren Änderung beispielsweise der Achslasten des Flurförderzeugs kommen kann. Insbesondere kann es sich bei der wenigstens einen statischen oder/und dynamischen Kenngröße des Flurförderzeugs in dem erfindungsgemäßen Verfahren um die momentane Schwerpunktsposition des Flurförderzeugs oder eine Rad- oder Achslast des Flurförderzeugs handeln. Diese Kenngrößen des Flurförderzeugs sind wie bereits angesprochen von besonderem Interesse, da es sich bei ihnen um sicherheitskritische Werte handeln kann.In a further advantageous embodiment, the current Height of the load to be determined. This can also be done by known sensors. The height of the load is of particular interest when the truck is in motion, as the inertia of the load during acceleration or deceleration may result in a further change in, for example, the axle loads of the truck. In particular, the at least one static and / or dynamic characteristic of the industrial truck in the method according to the invention can be the current center of gravity position of the industrial truck or a wheel or axle load of the industrial truck. As already mentioned, these parameters of the industrial truck are of particular interest since they can be safety-critical values.

In einer Weiterbildung des Verfahrens kann anhand der bestimmten wenigstens einen statischen oder/und dynamischen Kenngröße des Flurförderzeugs wenigstens ein Betriebsparameter des Flurförderzeugs angepasst werden. Ein Beispiel hierfür kann eine zulässige Maximalgeschwindigkeit des Flurförderzeugs sein, die abhängig von der bestimmten momentanen Schwerpunktsposition des Flurförderzeugs erhöht oder erniedrigt werden kann.In one development of the method, at least one operating parameter of the industrial truck can be adapted on the basis of the determined at least one static and / or dynamic parameter of the industrial truck. An example of this may be a permissible maximum speed of the truck, which can be increased or decreased depending on the determined current center of gravity position of the truck.

In einem weiteren Aspekt betrifft die Erfindung einen Dreiseitenstapler gemäß Anspruch 10.In a further aspect, the invention relates to a three-way stacker according to claim 10.

In einer bevorzugten Ausführungsform kann ferner der Berechnungseinheit eine Speichereinheit zugeordnet sein, in der Konstruktionsparameter des Flurförderzeugs gespeichert sind, und die Berechnungseinheit kann dazu eingerichtet sein, die wenigstens eine Kenngröße unter Verwendung der Konstruktionsparameter des Flurförderzeugs zu berechnen. Ferner kann die Anordnung zusätzlich einen zweiten Sensor umfassen, der dazu eingerichtet ist, ein zweites durch die Last hervorgerufenes Moment oder das Gewicht der Last zu detektieren, und die Berechnungseinheit kann dazu eingerichtet sein, die wenigstens eine Kenngröße unter Verwendung von von dem zweiten Sensor ausgegebenen Sensordaten zu berechnen.In a preferred embodiment, furthermore, the calculation unit may be assigned a memory unit in which construction parameters of the industrial truck are stored, and the calculation unit may be configured to calculate the at least one characteristic using the design parameters of the industrial truck. Further, the arrangement may additionally include a second sensor configured to detect a second load or weight of the load caused by the load, and the computing unit may be configured to generate the at least one characteristic using output from the second sensor To calculate sensor data.

Ferner kann die Anordnung so gebildet sein, dass der zweite Sensor oder gegebenenfalls ein dritter Sensor ebenfalls dem Lastaufnahmevorrichtung-Trageelement des Flurförderzeugs zugeordnet und in Breitenrichtung des Flurförderzeugs von der Mittelachse des Flurförderzeugs beabstandet angeordnet ist, vorzugsweise symmetrisch zu dem ersten Sensor bezüglich der Mittelachse. Weiter vorzugsweise können der erste und der zweite Sensor bzw. der erste und der dritte Sensor baugleich sein.Further, the arrangement may be formed so that the second sensor or optionally a third sensor is also assigned to the load-carrying device-carrying element of the truck and spaced in the width direction of the truck from the central axis of the truck, preferably symmetrically to the first sensor with respect to the central axis. Further preferably, the first and the second sensor or the first and the third sensor may be identical.

Die Anordnung kann ferner Mittel zum Bestimmen der relativen Position der Last bezüglich der Radachsen des Flurförderzeugs und der Mittelachse des Flurförderzeugs in Längsrichtung oder/und zum Bestimmen des Gewichts der Last umfassen, und die Berechnungseinheit kann dazu eingerichtet sein, eine erwartete statische oder/und dynamische Kenngröße aus der bestimmten relativen Position oder/und dem Gewicht der Last zu berechnen. Hierbei kann die Berechnungseinheit dazu eingerichtet sein, die erwartete Kenngröße mit der berechneten Kenngröße zu vergleichen.The arrangement may further comprise means for determining the relative position of the load relative to the wheel axles of the truck and the longitudinal axis of the truck and / or for determining the weight of the load, and the computing unit may be configured to provide an expected static and / or dynamic To calculate the characteristic from the determined relative position and / or the weight of the load. In this case, the calculation unit can be set up to compare the expected parameter with the calculated parameter.

Zusätzlich kann das Flurförderzeug Mittel umfassen, die dazu eingerichtet sind, anhand der bestimmten wenigstens eine statische oder/und dynamische Kenngröße des Flurförderzeugs wenigstens einem Betriebsparameter des Flurförderzeugs anzupassen.In addition, the industrial truck may comprise means which are adapted to adapt at least one operating parameter of the industrial truck based on the determined at least one static and / or dynamic characteristic of the industrial truck.

Die Vorteile und weitere Einzelheiten der vorliegenden Erfindung werden nun mittels der in den folgenden schematischen Figuren dargestellten Ausführungsformen näher erläutert.The advantages and further details of the present invention will now be explained in more detail by means of the embodiments illustrated in the following schematic figures.

Diese zeigen im Einzelnen:

Fig. 1
eine schematische Darstellung eines Dreiseitenstaplers in einer schrägen Draufsicht;
Fig. 2
einen Fahrerstand eines Dreiseitenstaplers in einer schrägen Draufsicht;
Fig. 3
eine schräge Unteransicht des Fahrerstands aus Fig. 2, an dem Sensoren einer erfindungsgemäßen Anordnung vorgesehen sind;
Fig. 4
einen Blick in den Fußraum eines Fahrerstands eines Dreiseitenstaplers, in dem Sensoren in alternativen Positionen angeordnet sind;
Fig. 5
eine schematische Darstellung einer erfindungsgemäßen Anordnung;
Fig. 6
eine schematische Darstellung einer Sensorausgabe von einem ersten und einem zweiten Sensor in einer erfindungsgemäßen Anordnung.
These show in detail:
Fig. 1
a schematic representation of a three-way stacker in an oblique plan view;
Fig. 2
a driver's station of a three-way forklift in an oblique plan view;
Fig. 3
an oblique bottom view of the driver's cab Fig. 2 on which sensors of an arrangement according to the invention are provided;
Fig. 4
a look into the footwell of a driver's cab of a three-way forklift, in which sensors are arranged in alternative positions;
Fig. 5
a schematic representation of an arrangement according to the invention;
Fig. 6
a schematic representation of a sensor output of a first and a second sensor in an inventive arrangement.

In Fig. 1 ist ein mit dem Bezugszeichen 1 bezeichneter Dreiseitenstapler in einer schrägen Draufsicht gezeigt. Der Dreiseitenstapler 1 weist eine Vorderachse 10 mit einem rechten und einem linken Vorderrad sowie ein einzelnes (in Fig. 1 nicht zu sehendes) Hinterrad auf. Der Dreiseitenstapler 1 umfasst ferner einen hinteren Abschnitt 12, in dem funktionale Elemente wie beispielsweise ein Antriebsmotor, diverse Hydraulikvorrichtungen und ein Gegengewicht aufgenommen sind. Des Weiteren umfasst der Dreiseitenstapler 1 ein teleskopierbares Hubgerüst 14, an dem ein Fahrerstand 16 höhenverstellbar geführt ist. An dem Fahrerstand 16 ist wiederum in bekannter Weise eine Lastaufnahmevorrichtung 18 schwenkbar sowie in Breitenrichtung des Dreiseitenstaplers 1 versetzbar angebracht, wobei die Lastaufnahmevorrichtung wiederum eine Gabel 20 umfasst, die im Betrieb des Fahrzeugs eine Last tragen kann. Die von der Lastaufnahmevorrichtung 18 getragene Last übt, sobald sie angehoben wird, abhängig von ihrer Position, ein Moment auf dem Dreiseitenstapler 1 und insbesondere den Fahrerstand 16 aus, da die Lastaufnahmevorrichtung 18 im Bereich des Fahrerstands 16 mit dem Dreiseitenstapler 1 verbunden ist und somit die Gewichtskraft der Last im Bereich des Fahrerstands 16 angreift.In Fig. 1 a three-sided stacker designated by the reference numeral 1 is shown in an oblique plan view. The three-way stacker 1 has a front axle 10 with a right and a left front wheel and a single (in Fig. 1 not to be seen) rear wheel on. The three-way stacker 1 further comprises a rear portion 12 in which are incorporated functional elements such as a drive motor, various hydraulic devices, and a counterweight. Furthermore, the three-way stacker 1 comprises a telescopic mast 14, on which a driver's cab 16 is guided in a height-adjustable manner. On the driver's stand 16, in turn, in a known manner, a load-receiving device 18 is pivotally mounted and displaceable in the width direction of the three-way stacker 1, wherein the load-receiving device in turn comprises a fork 20 which can carry a load during operation of the vehicle. The load carried by the load receiving device 18 exerts, as soon as it is raised, depending on its position, a moment on the three-way forklift 1 and in particular the driver's cab 16, since the load-receiving device 18 is connected to the three-way stacker 1 in the area of the driver's cab 16 and thus the Weight of the load in the driver's compartment 16 attacks.

In Fig. 2 ist nun der Fahrerstand 16 isoliert gezeigt. Insbesondere ist auf Fig. 2 die Baugruppe 24 zu erkennen, mittels derer der Fahrerstand 16 mit dem Hubmast 14 zusammenwirkt, das Bedienelement 22, durch das der Fahrer des Dreiseitenstaplers 1 Lenkbefehle und sonstige Bedienungsanweisungen an eine Steuerungsvorrichtung des Fahrzeugs eingibt, sowie eine Bodenplatte 26, die einerseits dem Fahrer des Fahrzeugs eine Standfläche bietet und zum anderen wenigstens einen Teil der Gewichtskraft der Last aufnimmt und weitergibt. Durch die Wirkung der Last kann sich im Betrieb des Flurförderzeugs 1 die Bodenplatte 26 leicht elastisch verwinden oder sie steht zumindest unter mechanischer Spannung.In Fig. 2 now the driver's cab 16 is shown isolated. In particular, is on Fig. 2 to recognize the assembly 24, by means of which the driver's station 16 cooperates with the mast 14, the control element 22, through which the driver of the three-way forklift 1 steering commands and other operating instructions to a control device of the vehicle enters, and a bottom plate 26, on the one hand the driver of the vehicle offers a footprint and on the other hand at least part of the weight of the load receives and passes. By the action of the load, the bottom plate 26 can easily be elastically twisted during operation of the truck 1 or at least under mechanical tension.

In Fig. 3 ist der Fahrerstand 16 aus Fig. 2 erneut dargestellt, diesmal in Perspektive von schräg unten. Hierbei ist erneut die Baugruppe 24 sowie die Bodenplatte 26 zu erkennen. Ferner sind zwei Elemente 28 dargestellt, an denen im montierten Zustand eine Schiene angebracht ist, von der die Lastaufnahmevorrichtung 18 getragen wird und entlang derer sie in Breitenrichtung des Dreiseitenstaplers 1 seitlich versetzbar ist. Dementsprechend wird die Gewichtskraft der Last über die Lastaufnahmevorrichtung 18 und die beiden Elemente 28 in die Bodenplatte 26 des Fahrerstands 16 eingeleitet. Der Bereich, in dem die Elemente 28 mit der Bodenplatte 26 verbunden sind, ist in dem unteren Ausschnitt in Fig. 3 vergrößert dargestellt. Da wie angesprochen in diesem Bereich die Bodenplatte 26 das Gewicht der Last aufnimmt, steht dieser Bereich der Bodenplatte 26 unter besonders starker Spannung und es wirkt ein lastabhängiges Moment auf die Platte. In der Sprache der vorliegenden Patentansprüche handelt es sich bei dem Lastaufnahmevorrichtung-Trageelement somit um die Bodenplatte 26 und das Element 28. Insbesondere in der vergrößerten Darstellung unten in Fig. 3 sind ferner zwei Sensoren 30a und 30b zu erkennen, die an der Unterseite der Bodenplatte 26 angebracht sind. Es handelt sich hierbei um Spannungaufnehmer-Elemente, die eine an der Bodenplatte 26 anliegende mechanische Spannung in ein elektrisches Spannungssignal umwandeln können. Die beiden Sensoren 30a und 30b können kabelgebunden oder kabellos mit einer Berechnungseinheit in Verbindung stehen, die die Signale und damit die Daten der Sensoren empfängt und verarbeitet. Es müssen erfindungsgemäß nicht notwendigerweise beide Sensoren 30a und 30b bereitgestellt sein, vielmehr stellt Fig. 3 nur besonders geeignete Positionen für das Anbringen der Sensoren 30a und 30b dar.In Fig. 3 the driver's cab 16 is off Fig. 2 shown again, this time in perspective from diagonally below. Here, the assembly 24 and the bottom plate 26 can be seen again. Furthermore, two elements 28 are shown, on which a rail is mounted in the mounted state, of which the load receiving device 18 is supported and along which it is laterally displaceable in the width direction of the three-way stacker 1. Accordingly, the weight of the load is introduced via the load receiving device 18 and the two elements 28 in the bottom plate 26 of the operator's cab 16. The area in which the elements 28 are connected to the bottom plate 26 is in the lower cutout in FIG Fig. 3 shown enlarged. As mentioned in this area, the bottom plate 26 receives the weight of the load, this area of the bottom plate 26 is under particularly strong tension and it acts a load-dependent moment on the plate. Thus, in the language of the present claims, the load-carrying device carrying member is the bottom plate 26 and the element 28. More specifically, in the enlarged view in FIG Fig. 3 Furthermore, two sensors 30a and 30b are visible, which are attached to the underside of the bottom plate 26. These are voltage pick-up elements that can convert a voltage applied to the bottom plate 26 mechanical stress into an electrical voltage signal. The two sensors 30a and 30b may be wired or wirelessly in communication with a computing unit that receives and processes the signals and thus the data from the sensors. According to the invention, not necessarily both sensors 30a and 30b have to be provided, but rather provide Fig. 3 only particularly suitable positions for the attachment of the sensors 30a and 30b.

Ähnliches gilt für Fig. 4, in der erneut der Fahrerstand 16 dargestellt ist, dieses Mal allerdings in einer Ansicht von schräg oben. Hierbei sind Sensoren 32a und 32b auf der Oberseite der Bodenplatte 26 angeordnet. Sie befinden sich somit im Fußraum des Fahrzeugs 1. Wie in Fig. 4 zu erkennen ist, sind die beiden Sensoren 32a und 32b im Wesentlichen symmetrisch bezüglich der Mittelachse des Fahrerstands 16 und damit des Dreiseitenstaplers 1 angeordnet. Ebenso wie die in Fig. 3 dargestellten Sensoren 30a und 30b können auch die in Fig. 4 gezeigten Sensoren 32a und 32b entweder einzeln oder gemeinsam vorliegen und sie stehen drahtlos oder drahtgebunden mit einer nicht gezeigten Berechnungseinheit in Kontakt.The same applies to Fig. 4 , in which again the driver's cab 16 is shown, but this time in a view obliquely from above. In this case, sensors 32a and 32b are arranged on the upper side of the bottom plate 26. You are thus in the footwell of the vehicle 1. As in Fig. 4 can be seen, the two sensors 32a and 32b are arranged substantially symmetrically with respect to the central axis of the operator's cab 16 and thus of the three-way stacker 1. Just like the in Fig. 3 The sensors 30a and 30b shown can also be used in Fig. 4 shown sensors 32a and 32b either individually or collectively and they are wireless or wired in contact with a computing unit, not shown.

In Fig. 5 ist nun grob schematisch ein Schaltungs- und Verbindungsplan der Sensoren und Datenverarbeitungskomponenten gezeigt, die eine erfindungsgemäße Anordnung zum Bestimmen einer Kenngröße eines Flurförderzeugs bilden. Die bereits anhand der Fig. 3 und 4 besprochenen Sensoren 30a, 30b, 32a, 32b liefern an die Berechnungseinheit 34 Daten, die eine mechanische Spannung an ihrer jeweiligen Position repräsentieren. Ferner ist die Berechnungseinheit 34 mit einer Speichereinheit 36 gekoppelt, in der Konstruktionsparameter des Flurförderzeugs hinterlegt sind. Aus den von den Sensoren 30a, 30b, 32a, 32b aufgenommenen Spannungswerten sowie den in der Speichereinheit 36 hinterlegten Konstruktionsparametern des Flurförderzeugs ist die Berechnungseinheit 34 in der Lage, statische und dynamische Kenngrößen des Flurförderzeugs, wie beispielsweise die aktuelle Schwerpunktsposition bezüglich der Achsen des Flurförderzeugs sowie die Rad- und Achslasten der jeweiligen Räder bzw. Achsen zu berechnen. Dementsprechend handelt es sich bei den in der Speichereinheit 36 hinterlegten Konstruktionsparametern vorzugsweise u. a. um geometrische Parameter des Flurförderzeugs, wie beispielsweise die relative Lage der Achsen zueinander und die Massenverteilung innerhalb des Flurförderzeugs. Auf Grundlage der Berechnungsergebnisse der Berechnungseinheit 34 kann diese nun wiederum Signale ausgeben, anhand derer Betriebsparamter des Flurförderzeugs angepasst werden. Beispielsweise kann, wenn die Berechnung der momentanen Schwerpunktlage ergeben hat, dass der Schwerpunkt des Flurförderzeugs relativ weit seitlich von der Mittelachse des Flurförderzeugs in Längsrichtung versetzt ist, eine maximale Kurvengeschwindigkeit zwangsweise beschränkt werden, um die Gefahr eines Kippens des Flurförderzeugs bei einer Kurvenfahrt auszuschließen. Ähnlich kann, wenn festgestellt werden sollte, dass die gebremste Achse des Flurförderzeugs aufgrund der Positionierung der getragenen Last relativ stark entlastet ist, d. h. dass die entsprechende Achslast relativ niedrig ist, ebenfalls die zulässige Maximalgeschwindigkeit des Flurförderzeugs beschränkt werden, da die Bremswirkung der gebremsten Achse in einem solchen Fall gegenüber einem unbeladenen Zustand verringert ist. Ferner kann beispielsweise bei einer Diagonalfahrt, d.h. wenn während einer Fortbewegung des Flurförderzeugs zusätzlich die Lastaufnahmevorrichtung nach oben gefahren wird, entweder die Fortbewegungsgeschwindigkeit oder die Ausfahrgeschwindigkeit oder beide Geschwindigkeiten auf Grundlage der gemessenen und verarbeiteten Werte begrenzt werden. Die Elemente 38a, 38b und 38c in Fig. 5 stellen demnach beispielhaft Systeme zur Beschränkung der maximalen Kurvengeschwindigkeit, der maximalen Fahrtgeschwindigkeit und der maximalen Diagonalfahrtgeschwindigkeit des Flurförderzeugs dar.In Fig. 5 is now roughly schematically a circuit and connection diagram of the sensors and data processing components shown, which form an inventive arrangement for determining a characteristic of an industrial truck. The already on the basis of Fig. 3 and 4 discussed sensors 30a, 30b, 32a, 32b provide to the computing unit 34 data representing a stress at their respective position. Furthermore, the calculation unit 34 is coupled to a storage unit 36 in which construction parameters of the industrial truck are stored. From the voltage values recorded by the sensors 30a, 30b, 32a, 32b and the design parameters of the industrial truck stored in the storage unit 36, the calculation unit 34 is able to determine static and dynamic characteristics of the industrial truck, such as the current center of gravity position with respect to the truck axles and calculate the wheel and axle loads of the respective wheels or axles. Accordingly, the design parameters stored in the storage unit 36 are preferably inter alia geometric parameters of the industrial truck, such as the relative position of the axes relative to one another and the mass distribution within the industrial truck. On the basis of the calculation results of the calculation unit 34, the latter can now in turn output signals which are used to adjust the operating parameters of the industrial truck. For example, if the calculation of the current center of gravity has shown that the center of gravity of the truck is offset relatively laterally from the center axis of the truck in the longitudinal direction, a maximum cornering speed can be forcibly limited to eliminate the risk of tilting of the truck when cornering. Similarly, if it should be determined that the braked axle of the truck is relieved relatively heavily due to the positioning of the carried load, ie that the corresponding Axle load is relatively low, also the maximum permissible speed of the truck are limited, since the braking effect of the braked axle is reduced in such a case compared to an unloaded state. Further, for example, in a diagonal ride, ie, while the truck is being driven upwards during travel of the truck, either the travel speed or the exit speed or both speeds may be limited based on the measured and processed values. The elements 38a, 38b and 38c in FIG Fig. 5 Accordingly, exemplary represent systems for limiting the maximum cornering speed, the maximum travel speed and the maximum diagonal speed of the truck.

In Fig. 6 ist schließlich zur weiteren Illustration eine beispielhafte Ausgabe der beiden Sensoren 32a und 32b aus Fig. 4 dargestellt, wobei die durchgezogene Linie in Fig. 6 der Ausgabe des ersten Sensors 32a und die gestrichelte Linie der Ausgabe des zweiten Sensors 32b entspricht. Die Sensoren arbeiten derart, dass sie eine an dem Bauteil, an dem sie befestigt sind, anliegende mechanische Spannung in eine elektrische Spannung U bzw. U' umwandeln, wobei die ausgegebene elektrische Spannung proportional zur detektierten mechanischen Spannung ist. Die ausgegebenen elektrischen Spannungswerte sind jeweils über der Zeit t aufgetragen.In Fig. 6 Finally, for further illustration, an exemplary output of the two sensors 32a and 32b is shown Fig. 4 shown, wherein the solid line in Fig. 6 the output of the first sensor 32a and the dashed line corresponds to the output of the second sensor 32b. The sensors operate to convert a mechanical voltage applied to the component to which they are attached into an electrical voltage U or U ', the output electrical voltage being proportional to the detected mechanical stress. The output electrical voltage values are plotted over time t.

Zwischen der Zeit t1 und t5 läuft der folgende Prozess ab:
Zunächst ist die Lastaufnahmevorrichtung, ohne dass sie eine Last trägt, bezüglich der Breitenrichtung des Flurförderzeugs im Bereich des zweiten Sensors 32b befindlich, wobei die Gabeln der Lastaufnahmevorrichtung eingeschwenkt sind, d.h. dass sie parallel zur Breitenrichtung des Flurförderzeugs orientiert sind. Zum Zeitpunkt t1 wird nun von der Lastaufnahmevorrichtung eine vorbestimmte Last angehoben. Die angehobene Last wird zwischen dem Zeitpunkt t2 und dem Zeitpunkt t3 von der Position im Bereich des zweiten Sensors 32b bezüglich der Breite des Flurförderzeugs in den Bereich des ersten Sensors 32a verschoben. Schließlich wird zwischen der Zeit t4 und der Zeit t5 die Last um 90° gedreht, d.h. zum Zeitpunkt t5 weist die Gabel der Lastaufnahmevorrichtung in Längsrichtung des Flurförderzeugs. Die beiden Spannungsverläufe U und U' über der Zeit t erklären sich nun folgendermaßen:
Vor der Zeit t1 gibt der erste Sensor 32a eine Spannung U0 aus und der zweite Sensor 32b eine Spannung U0'. Hierbei ist die Spannung U0' etwas höher als die Spannung U0, was sich dadurch erklären lässt, dass die Lastaufnahmevorrichtung bereits ein gewisses Eigengewicht aufweist, was sich an der Position des Sensors 32b in einer höheren Ausgabespannung niederschlägt. Zum Zeitpunkt t1 steigt durch Anheben der Last die mechanischen Spannung sowohl am Ort des ersten Sensors 32a als auch des zweiten Sensors 32b abrupt an und die jeweiligen Ausgabespannungen U und U' erhöhen sich auf die Spannungswerte U1 und U'1. Bei einem weiteren Anheben bis zum Zeitpunkt t2 ändert sich die mechanische Spannung an den Sensoren kaum, wodurch sich auch die Ausgabespannung bis zur Zeit t2 praktisch nicht ändert. Zu diesem Zeitpunkt setzt nun eine horizontale Bewegung der Last in Breitenrichtung des Flurförderzeugs ein. Hierbei bewegt sich die Last aus einer Position, die näher dem Sensor 32b ist, zu einer Position, die näher dem Sensor 32a ist. Daher erhöht sich die mechanische Spannung einer Position des ersten Sensors 32a vom Zeitpunkt t2 an bis zum Zeitpunkt t3 von der Ausgabespannung U1 zur Ausgabespannung U2, wonach die seitliche Verschiebebewegung beendet ist. Gleichzeitig verringert sich die Ausgabespannung des zweiten Sensors 32b vom Wert U1' zum Wert U2' zwischen dem Zeitpunkt t2 und dem Zeitpunkt t3, da, wie angesprochen, sich die Last bzw. ihr Angriffspunkt an der Bodenplatte 26 von der Position des zweiten Sensors 32b entfernt.
Between time t 1 and t 5 , the following process takes place:
First, the load-carrying device, without carrying a load, is located in the region of the second sensor 32b with respect to the width direction of the truck, wherein the forks of the load receiving device are pivoted in, ie they are oriented parallel to the width direction of the truck. At time t 1 , a predetermined load is now lifted by the load receiving device. The lifted load is between the time t 2 and the time t 3 from the position in the region of the second sensor 32b with respect to the width of the truck in the range of first sensor 32a shifted. Finally, between the time t 4 and the time t 5, the load is rotated by 90 °, ie at time t 5 , the fork of the load-carrying device in the longitudinal direction of the truck. The two voltage curves U and U 'over time t are explained as follows:
Before the time t 1 , the first sensor 32a outputs a voltage U 0 and the second sensor 32b outputs a voltage U 0 '. Here, the voltage U 0 'is slightly higher than the voltage U 0 , which can be explained by the fact that the load-receiving device already has a certain weight, which is reflected in the position of the sensor 32b in a higher output voltage. At time t 1 , by raising the load, the mechanical stress abruptly increases both at the location of the first sensor 32a and the second sensor 32b, and the respective output voltages U and U 'increase to the voltage values U 1 and U' 1 . With a further lifting up to the time t 2 , the mechanical tension on the sensors hardly changes, as a result of which the output voltage practically does not change until time t 2 . At this time, now sets in a horizontal movement of the load in the width direction of the truck. At this time, the load moves from a position closer to the sensor 32b to a position closer to the sensor 32a. Therefore, the mechanical stress of a position of the first sensor 32a increases from the time t 2 to the time t 3 from the output voltage U 1 to the output voltage U 2 , after which the lateral displacement movement is completed. At the same time, the output voltage of the second sensor 32b decreases from the value U 1 'to the value U 2 ' between the time t 2 and the time t 3 , since, as mentioned, the load or its point of application to the bottom plate 26 from the position of second sensor 32b removed.

Vom Zeitpunkt t4 bis zum Zeitpunkt t5 wird, wie angesprochen, die Last um 90° geschwenkt. Da sich hierbei der Schwerpunkt der Last von der Bodenplatte 26 entfernt, steigt die mechanische Spannung sowohl an der Position des ersten Sensors 32a als auch an der Position des zweiten Sensors 32b zwischen der Zeit t4 und der Zeit t5 jeweils auf die Werte U3 und U3' an.From time t 4 to time t 5 , as mentioned, the load is pivoted by 90 °. As the center of gravity of the load moves away from the bottom plate 26, the mechanical stress increases both at the position of the first sensor 32a and at the position of the second sensor 32b between the time t 4 and the time t 5 in each case to the values U 3 and U 3 '.

Aus den so ermittelten jeweiligen momentanen Spannungswerten U und U' ist die Berechnungseinheit 34 in der Lage, das momentan auf das Flurförderzeug wirkende Lastmoment zu berechnen.From the respective instantaneous voltage values U and U 'thus determined, the calculation unit 34 is able to calculate the load moment currently acting on the industrial truck.

Claims (18)

  1. A method for determining at least one static and/or dynamic characteristic of a multiple direction forklift (1), comprising:
    - direct or indirect measuring, by means of a first sensor (30a, 30b, 32a, 32b), of a first torque caused by a load;
    - calculating the at least one characteristic by using sensor data output by the first sensor (30a, 30b, 32a, 32b);
    wherein the multiple direction forklift (1) comprises a load receiving device (18), which is movably supported by a support element (26, 28) of the load receiving device, and wherein
    the multiple direction forklift (1) comprises a driver's cabin, on which a lateral pushing apparatus having a fork lift and forks attached thereto is provided, wherein the support element (26, 28) of the load receiving device comprises the driver's cabin and the components of the lateral pushing apparatus, which are fixedly connected to the driver's cabin, wherein the first sensor (30a, 30b, 32a, 32b) is associated with the support element (26, 28) of the load receiving device of the multiple direction forklift (1) and is positioned at a distance from the central axis of the multiple direction forklift (1), when viewed in the width-direction of the multiple direction forklift (1).
  2. The method of claim 1, further comprising:
    - storing construction parameters of the multiple direction forklift (1) in a storage unit (36);
    wherein the construction parameters of the multiple direction forklift (1) are also used for calculating the at least one characteristic.
  3. The method of claim 1 or 2, further comprising:
    - direct or indirect measuring, by means of a second sensor (30a, 30b, 32a, 32b), of a second torque caused by a load or of the weight of the load;
    wherein the sensor data output by the second sensor (30a, 30b, 32a, 32b) are also used for calculating the at least one characteristic.
  4. The method of claim 3, characterised in that the second sensor (30a, 30b, 32a, 32b) or optionally a third sensor (30a, 30b, 32a, 32b) is also associated with the support element (26, 28) of the load receiving device of the multiple direction forklift (1) and is positioned at a distance from the central axis of the multiple direction forklift (1), when viewed in the width-direction of the multiple direction forklift (1), preferably in a symmetrical position with respect to the central axis relative to the first sensor (30a, 30b, 32a, 32b).
  5. The method of any of the preceding claims, characterised in that the method also comprises:
    - determining the relative position of the load relative to the wheel axes of the multiple direction forklift (1) and to the central axis of the multiple direction forklift (1) in the longitudinal direction, or/and determining the weight of the load;
    - calculating an expected static and/or dynamic characteristic based on the determined relative position or/and on the weight of the load;
    - comparing the expected characteristic with the calculated characteristic.
  6. The method of any of the preceding claims, characterised in that the measuring of the first torque caused by a load occurs by means of a voltage sensor (30a, 30b, 32a, 32b) or by determining an elastic deformation of a component.
  7. The method of any of the preceding claims, characterised in that the momentary height of the load is also determined.
  8. The method of any of the preceding claims, characterised in that the at least one static or/and dynamic characteristic of the multiple direction forklift (1) is the momentary position of the centre of mass of the multiple direction forklift (1) or of a wheel or axle load of the multiple direction forklift.
  9. The method of any of the preceding claims, characterised in that at least one operating parameter of the multiple direction forklift is adapted based on the determined at least one static or/and dynamic characteristic of the multiple direction forklift (1).
  10. A multiple direction forklift (1), comprising an arrangement for determining at least one static or/and dynamic characteristic of a multiple direction forklift (1), comprising:
    - a computing unit (34);
    - a first sensor (30a, 30b, 32a, 32b), which is arranged and configured for directly or indirectly detecting a first torque caused by a load;
    wherein the multiple direction forklift (1) comprises a load receiving device (18), which is movably supported by a support element (26, 28) of the load receiving device,
    wherein the computing unit (34) is configured for calculating the at least one characteristic by using sensor data output by the first sensor (30a, 30b, 32a, 32b),
    wherein the multiple direction forklift (1) comprises a driver's cabin, on which a lateral pushing apparatus having a fork lift and forks attached thereto is provided, wherein the support element (26, 28) of the load receiving device comprises the driver's cabin and the components of the lateral pushing apparatus, which are fixedly connected to the driver's cabin, and wherein the first sensor (30a, 30b, 32a, 32b) is associated with the support element (26, 28) of the load receiving device of the multiple direction forklift (1) and is positioned at a distance from the central axis of the multiple direction forklift, when viewed in the width-direction of the multiple direction forklift (1).
  11. The multiple direction forklift (1) of claim 10, characterized in that the computing unit (34) is associated with a storage unit (36), in which construction parameters of the multiple direction forklift (1) are stored, and in that the computing unit (34) is configured for calculating the at least one characteristic by using the construction parameters of the multiple direction forklift.
  12. The multiple direction forklift (1) of claim 10 or 11, characterized in that the arrangement also comprises a second sensor (30a, 30b, 32a, 32b), which is configured for detecting a second torque caused by the load or the weight of the load, and the computing unit (34) is configured for calculating the at least one characteristic by using sensor data output by the second sensor (30a, 30b, 32a, 32b).
  13. The multiple direction forklift (1) of claim 12, characterized in that the second sensor (30a, 30b, 32a, 32b) or optionally a third sensor (30a, 30b, 32a, 32b) is also associated with the support element (26, 28) of the load receiving device of the multiple direction forklift (1) and is positioned at a distance from the central axis of the multiple direction forklift (1), when viewed in the width-direction of the multiple direction forklift (1), preferably in a symmetrical position with respect to the central axis relative to the first sensor (30a, 30b, 32a, 32b).
  14. The multiple direction forklift (1) of any of claims 12 or 13, characterized in that the first sensor (30a, 30b, 32a, 32b) and the second sensor (30a, 30b, 32a, 32b) or the first (30a, 30b, 32a, 32b) and the third sensor (30a, 30b, 32a, 32b) are of identical design.
  15. The multiple direction forklift (1) of any of claims 10 to 14, characterized in that means are also provided for determining the relative position of the load with respect to the wheel axes of the multiple direction forklift and the central axis of the multiple direction forklift in the longitudinal direction, or/and for determining the weight of the load,
    in that the computing unit (34) is configured for calculating an expected static or/and dynamic characteristic based on the relative position or/and the weight of the load, and the computing unit (34) is also configured for comparing the expected characteristic with the calculated characteristic.
  16. The multiple direction forklift of any of claims 10 to 15, characterized in that the first sensor (30a, 30b, 32a, 32b) is a voltage sensor (30a, 30b, 32a, 32b), which determines an elastic deformation of a component.
  17. The multiple direction forklift (1) of any of claims 10 to 16, characterized in that means are also provided for determining the momentary height of the load.
  18. The multiple direction forklift of any of claims 10 - 17, characterized in that means (38a, 38b, 38c) are also provided, which are configured for adapting at least one operating parameter of the multiple direction forklift based on the determined at least one static or/and dynamic characteristic of the multiple direction forklift.
EP16153451.6A 2015-01-30 2016-01-29 Determining parameters for multiple direction forklifts Active EP3050840B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015201671.4A DE102015201671A1 (en) 2015-01-30 2015-01-30 Characteristic determination for industrial trucks

Publications (2)

Publication Number Publication Date
EP3050840A1 EP3050840A1 (en) 2016-08-03
EP3050840B1 true EP3050840B1 (en) 2019-04-10

Family

ID=55272351

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16153451.6A Active EP3050840B1 (en) 2015-01-30 2016-01-29 Determining parameters for multiple direction forklifts

Country Status (2)

Country Link
EP (1) EP3050840B1 (en)
DE (1) DE102015201671A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29824820U1 (en) * 1997-07-23 2002-10-02 Steinbock GmbH, 85368 Moosburg Truck

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4942529A (en) 1988-05-26 1990-07-17 The Raymond Corporation Lift truck control systems
DE4030748A1 (en) * 1990-09-28 1992-04-02 Linde Ag CONVEYOR FORCE WITH A MONITORING DEVICE FOR THE LOAD CONDITION
JPH06156996A (en) * 1992-11-20 1994-06-03 Showa:Kk Load detecting device for fork-lift
JPH06247698A (en) * 1993-02-22 1994-09-06 Komatsu Forklift Co Ltd Allowable load monitoring device for fork-lift
DE19624308A1 (en) 1996-06-18 1998-01-02 Still Wagner Gmbh & Co Kg Method for operating an industrial truck and industrial truck for carrying out the method
DE10054789A1 (en) * 2000-11-04 2002-05-08 Still Wagner Gmbh & Co Kg Industrial truck with a mast and an additional movement device for a load handler
DE10226599A1 (en) * 2002-06-14 2003-12-24 Still Wagner Gmbh & Co Kg Method for controlling at least one movement of an industrial truck
DE10304658A1 (en) * 2003-02-05 2004-08-19 Bosch Rexroth Ag Industrial truck
DE102005011998B4 (en) * 2004-04-07 2021-02-04 Linde Material Handling Gmbh Industrial truck with increased static or quasi-static tipping stability
DE102006028551A1 (en) 2006-06-22 2008-01-17 Linde Material Handling Gmbh Forklift with axle load on rear axle
DE102008035574A1 (en) * 2008-07-30 2010-02-04 Linde Material Handling Gmbh Load center determining method for load at load-carrying equipment of e.g. reach truck, involves detecting pressure of lift drive as reference value for determination of balance point distance of load in unloaded condition
NL1037015C2 (en) 2009-06-03 2010-12-07 Ravas Europ B V LIFTING DEVICE AND LIFTING VEHICLE.
DE102011010709A1 (en) * 2011-02-09 2012-08-09 Jungheinrich Aktiengesellschaft Counterweight conveyor vehicle with a device for determining the load torque
DE102011118984B4 (en) * 2011-11-19 2023-10-12 Jungheinrich Aktiengesellschaft Device for measuring load and load center distance in an industrial truck
DE102011056752A1 (en) * 2011-12-21 2013-06-27 Still Gmbh Method for determining the overturning torque in the longitudinal direction for industrial trucks
DE102013114940A1 (en) * 2013-12-30 2015-07-02 Still Gesellschaft Mit Beschränkter Haftung Method for determining the load center of a forklift

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29824820U1 (en) * 1997-07-23 2002-10-02 Steinbock GmbH, 85368 Moosburg Truck

Also Published As

Publication number Publication date
EP3050840A1 (en) 2016-08-03
DE102015201671A1 (en) 2016-08-04

Similar Documents

Publication Publication Date Title
DE102005012004B4 (en) Industrial truck with increased static / quasi-static and dynamic tipping stability
EP2477930B1 (en) Load-carrying vehicle with vertically adjustable lifting device
EP0483493B1 (en) Fork lift truck with load condition monitoring device
EP2070864B1 (en) Method for operating an industrial truck
DE102020000820A1 (en) Forklift
EP3312132B1 (en) Proactive reduction of vibrations in an industrial truck
DE10010011A1 (en) Warehouse transport vehicle has stabilising device for increasing stability, wheel load sensors for each wheel connected to monitoring device controlling lifting and/or drive systems
EP3241801A1 (en) Method for collision monitoring in an industrial truck
EP2805911B1 (en) Industrial truck, in particular picking truck with a driver's cab that can be raised and lowered
DE102017011302A1 (en) FORKLIFT
DE102005011998B4 (en) Industrial truck with increased static or quasi-static tipping stability
WO2010086112A1 (en) Lifting device, in particular for an industrial truck
EP1359113B1 (en) Lift truck with a device for moving the lift mast
EP1371603B1 (en) Control system for at least one movement of an industrial truck
EP3050840B1 (en) Determining parameters for multiple direction forklifts
EP2733036B1 (en) Mobile machine with loading system
EP1247765B1 (en) Load monitoring device for foot boards
EP2450305B1 (en) Industrial truck with deformation sensor in tilt cylinder
DE102017204918A1 (en) Method for determining an axle load
EP3670428A1 (en) Industrial truck and method for determining load in an industrial truck
DE102019130333A1 (en) Industrial trucks, in particular reach trucks
DE102007060433A1 (en) Industrial truck for use as picking unit, has two construction units relatively moved to each other based on load that is accommodated in load fork, where load fork is adjustable in its height
DE102018118018A1 (en) Method for operating an industrial truck with monitoring of the load condition and corresponding truck
DE19637124A1 (en) Stability safety device for vehicle-mounted crane or load handling device
EP3760573B1 (en) Reach truck

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20160926

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180611

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502016004057

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B66F0009100000

Ipc: B66F0009140000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: B66F 17/00 20060101ALI20181002BHEP

Ipc: B66F 9/14 20060101AFI20181002BHEP

INTG Intention to grant announced

Effective date: 20181029

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1118381

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016004057

Country of ref document: DE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: JUNGHEINRICH AKTIENGESELLSCHAFT

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190410

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190910

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190711

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190810

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016004057

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

26N No opposition filed

Effective date: 20200113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200129

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200129

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200129

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1118381

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230628

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240119

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20240123

Year of fee payment: 9

Ref country code: FR

Payment date: 20240123

Year of fee payment: 9