EP3045816B1 - Dispositif de commande d'une installation de brûleur - Google Patents

Dispositif de commande d'une installation de brûleur Download PDF

Info

Publication number
EP3045816B1
EP3045816B1 EP15151600.2A EP15151600A EP3045816B1 EP 3045816 B1 EP3045816 B1 EP 3045816B1 EP 15151600 A EP15151600 A EP 15151600A EP 3045816 B1 EP3045816 B1 EP 3045816B1
Authority
EP
European Patent Office
Prior art keywords
ionisation
ionisation current
current
air volume
volume flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15151600.2A
Other languages
German (de)
English (en)
Other versions
EP3045816A1 (fr
Inventor
Thomas Born
Bernd Schmiederer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to PL15151600T priority Critical patent/PL3045816T3/pl
Priority to EP15151600.2A priority patent/EP3045816B1/fr
Priority to US14/982,171 priority patent/US10054309B2/en
Priority to CA2917749A priority patent/CA2917749C/fr
Publication of EP3045816A1 publication Critical patent/EP3045816A1/fr
Application granted granted Critical
Publication of EP3045816B1 publication Critical patent/EP3045816B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C99/00Subject-matter not provided for in other groups of this subclass
    • F23C99/001Applying electric means or magnetism to combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/12Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/12Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
    • F23N5/123Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods using electronic means

Definitions

  • the present disclosure relates to control curves, as used in connection with ionization in burner systems, for example in gas burners.
  • the present disclosure relates to the correction of such control curves taking into account the aging and / or drift of a sensor signal.
  • the air ratio during combustion can be determined by means of an ionization current through an ionization electrode.
  • An alternating voltage is first applied to the ionization electrode. Due to the rectifier effect of a flame, an ionization current flows as a direct current in only one direction.
  • the ionization current detected at the ionization electrode is plotted against the speed of the fan of a gas burner.
  • the ionization current is typically measured in microamps.
  • the speed of the fan of a gas burner is typically measured in revolutions per minute.
  • the speed of the fan of a gas burner is also a measure of the air volume flow and the performance of the burner system, that is, for a quantity of heat per time.
  • test points are plotted. First of all, these test points can be included in tests under laboratory conditions. The recorded values are stored and taken into account in an (electronic) control.
  • Ionization electrodes are subject to aging during operation. This aging is caused by deposits and / or deposits during the operation of a burner system. In particular, an oxide layer can form on the surface of an ionization electrode whose thickness changes over the course of the operating hours. As a result of the aging of an ionization electrode, a drift of the ionization current occurs. Consequently, a control curve recorded under laboratory conditions requires a correction from time to time, at the latest after 1000 to 3000 operating hours.
  • a control device with correction of the control curve of an ionization electrode is disclosed in EP2466204B1 ,
  • the correction of the control curve takes place in three steps.
  • the controller performs a regular operation.
  • the control device controls or regulates the actuators of the burner system to a changed feed ratio. In particular, the speed of the fan of a burner system is changed.
  • the control device adjusts an air volume flow of the burner system.
  • the changed feed ratio is above the stoichiometric value of the air ratio of 1.
  • the air ratio is reduced by 0.1 or by 0.06 to values greater than or equal to 1.05. From the detected ionization signal and from stored data, a setpoint value is recalculated in a third step.
  • the correction of the control curve presupposes that the heat generated during the duration of the test can also be dissipated to consumers such as heating or service water. Otherwise, the amount of heat generated during the test is higher than the amount of heat removed. As a result, the temperature in the system rises and the temperature controller of the system switches off the burner. The test on a certain air flow can not be completed in this case.
  • EP2466204B1 is registered on December 16, 2010 and issued on November 13, 2013. EP2466204B1 discloses and claims a control device for a burner system.
  • EP1293727A1 The European patent application EP1293727A1 is registered on September 13, 2001. EP1293727A1 teaches a control device for a burner according to the preamble of claim 1.
  • US5049063A was notified on 26 December 1989 and granted on 17 September 1991.
  • US5049063A discloses an apparatus for controlling the combustion of a burner.
  • the present disclosure is an improved correction of the control curve of an ionization electrode, which at least partially overcomes the aforementioned disadvantages.
  • the present disclosure is based on the finding that burner conditions and thus any corrections to a control curve change slowly during operation.
  • the conditions and, consequently, the due corrections along the control curves generally do not change abruptly. This allows an estimate of how a correction at a test point affects adjacent values.
  • the above finding allows the correction of a control curve during operation of a burner system and at any air flow rates.
  • the cited finding also makes it possible to correct a control curve in a calibration mode or maintenance mode of a burner system.
  • a first step several test points, ie ionization currents relative to blower speeds or air flow rates of the burner system, recorded. This ensures that at least one test point is close to the currently required air volume flow. If a test run is not possible at an existing test point, the correction determined for an adjacent test point is first calculated into the correction of the present test point. Thus, the thus-corrected present test point is equalized to adjacent test points.
  • the Fig. 1 schematically shows a burner system, preferably a gas burner, with a control device according to the invention and / or with the inventive method.
  • the control operates in normal operation as a fuel-air-composite control.
  • a burner generates a flame (1).
  • An ionization electrode (2) detects an ionization current.
  • At the ionization electrode (2) is typically an AC voltage in the range 110 V ... 240 V at.
  • the ionization current detected by the ionization electrode (2) means that a DC voltage applied to the ionization electrode (2) is superposed by a DC voltage. This results in a direct current.
  • This DC increases with increasing ionization of the gas in the flame area.
  • the direct current decreases with increasing excess air of combustion.
  • a low-pass filter For further processing of the signal of the ionization electrode, it is common to use a low-pass filter, so that the ionization current is produced from the filtered ionization signal (4).
  • the occurring DC voltage results in a direct current, which is typically in the range of less than 150 microamps and often well below this value.
  • a device for separating direct current and alternating current of an ionization electrode is, for example, in EP1154203B1 .
  • Fig. 1 shown and explained inter alia in section 12 of the description. On the relevant parts of the disclosure of EP1154203B1 is referred to here.
  • Ionization electrodes (2) as used herein are commercially available.
  • the material of the ionization electrodes (2) is often KANTHAL®, e.g. APM® or A-1®.
  • Nikrothal® electrodes are also contemplated by those skilled in the art.
  • the ionization current is amplified by a flame amplifier (3).
  • the flame amplifier (3) also closes the electrical circuit by connecting the flame amplifier (3) to the ground electrode of the burner.
  • the ionization signal (4) processed by the flame amplifier (3) is relayed to an adjusting device (5).
  • the adjusting device (5) uses in normal operation, the ionization signal (4) as an input signal for a control.
  • the ionization signal (4) is preferably an analog electrical signal. It (4) may alternatively be designed as a digital signal or as a digital variable of two software module units.
  • the adjusting device (5) reacts to an external request signal (11), which specifies a heat output.
  • the control can be switched on and off on the basis of the request signal (11).
  • a quantity of heat and associated air flow can, for example, from a parent, in Fig. 1 not shown, temperature control circuit can be requested.
  • such a specification can be specified by an external consumer and / or directly by hand, for example by means of a potentiometer.
  • the request signal (11) is mapped to speed setpoints for a fan as the first actuator (6). Subsequently, the speed setpoints are compared with a speed signal (9) returned by a blower (6).
  • a speed controller integrated in the control device (5) controls the blower (6) via a first control signal (8) to a desired flow rate of air (12) corresponding to the request signal (11).
  • the Swiftinreichtung (5) comprises a speed control, in particular a speed control for proportional, integral and / or derivative components, and gives a control signal to the blower (6) on.
  • the request signal (11) can be imaged directly on the first control signal (8) of the blower (6). Furthermore, the mapping of the request signal (11) to a fuel valve as a first, power-carrying actuator is possible.
  • a second actuator (7) leads via the supply of fuel (13) to the air ratio.
  • the adjusting device (5) forms the predetermined request signal (11), ie the rotational speed feedback signal (9), to a nominal value of the ionization signal (4).
  • the fuel valve (7) regulated. In this way, a change in the ionization signal (4) via a second control signal (10) causes a change in the position of the fuel valve (7). This changes the flow of fuel (13).
  • the control loop is closed by causing a change in the amount of fuel for a given amount of air, a change of the ionization current through the flame (1) and through the ionization electrode (2). Associated with this is a change in the ionization signal (4) until its actual value again equals the predetermined desired value.
  • Fig. 2 shows as a solid curve a control curve (14).
  • the ionization current in microamps (15) is plotted against the air volume flow (16).
  • the air volume flow (16) corresponds to the speed of the fan (6).
  • Such a control curve serves the setting device (5) for setting the air ratio for various request signals (11) taking into account the ionization signal (4).
  • control device is designed to set an air volume flow (16) of the burner system, taking into account the ionization flow (15).
  • Common burner systems in the sense of this disclosure have powers of a few 10 kW up to 100 kW and above and the associated air volume flows. Common speeds of the blower are in the range of a few 1000 to 10,000 revolutions per minute.
  • Fig. 2 shows the Ionisationstrom (15) for different air flow rates (16).
  • the different values of the ionization current (15) for different air volume flows (16) are first recorded in the laboratory (under test conditions). This results in the control curve (14).
  • Fig. 2 are recorded value pairs of ionization and air flow connected by straight, solid lines to a control curve. The value pairs are bases of the standard curve and are marked with crosses X in Fig. 2 located.
  • the recording of the bases of a control curve preferably takes place in the laboratory with a new and / or less aged ionization electrode (2).
  • control device is designed to join the bases to a control curve.
  • the joining to a control curve also includes the subsequently disclosed interpolation.
  • the control device accordingly comprises a memory and is designed to store pairs of air volume flow (16) of the burner system and ionization flow (15).
  • the memory may be, for example, random access memory (RAM), flash memory, EPROM memory, EEPROM memory, memory registers, one or more hard drives, one or more floppy disks, other optical drives, or any computer-readable medium. This list is not exhaustive.
  • the memory of the controller is non-volatile.
  • Fig. 2 is linearly interpolated between the recorded values.
  • quadratic interpolation takes place between the recorded values, ie a quadratic term and / or a higher-order term is taken into account in addition to a linear term.
  • interpolated between the recorded values on the basis of (cubic) splines.
  • the interpolation provides additional values of the ionization current (15) in addition to the recorded values of the ionization current (15).
  • the other values of the ionization current are between the recorded values. They are still between the corresponding set air flow rates (16) of the burner system.
  • the interpolation results in the ionization flow to the air volume flow between the recorded values.
  • the test points are also determined in the laboratory with a new and / or less aged ionization electrode. This is done using the test procedure as in EP2466204B1 revealed performed.
  • the I C0 values are in Fig. 2 shown as circles on the control curve (14).
  • the I B0 values are shown as circles above the control curve (14).
  • I C0 value and I B0 value of a test point are at the same (or substantially the same) blower speed or at the same (or substantially the same) air flow rate.
  • the I C0 values result from the control curve due to the selected air flow rates for the test points. They can be either identical to a vertex or calculated by interpolation.
  • the I B0 values result from the selected ⁇ change in the air ratio ⁇ at the respective test point.
  • interpolation points for the control curve are recorded in the laboratory.
  • 5, 10, 15, 20 or 25 test points are recorded along the control curve (14) under laboratory conditions.
  • the ionization electrode (2) is subject to aging during operation. As a result of aging, the characteristics of the ionization electrode (2) change. In other words, the control curve of an aged ionization electrode (2) deviates from that (14) of a new ionization electrode (2).
  • Fig. 2 shows as a dashed curve a deviating control curve (17).
  • the deviating control curve (17) takes into account the aging of the ionization electrode (2).
  • the points in the form of crosses of this control curve (17) are the ionization current values corrected at the test points based on the tests.
  • Fig. 2 shows next to the cross-shaped test points a special test point (18).
  • the test point (18) is a test point at which at least one test run had to be aborted (or could not be started at all). Therefore, the ionization current of this test point (18) is taken to an older date than the ionization currents of the other test points of the dashed control curve (17).
  • test point (18) it is quite possible that at the test point (18) several test procedures have failed. This may occur, for example, if at the time of one or more tests, the requested amount of heat or the requested air volume flow (16) is not removed. The temperature in the system rises in such a case as described in the introduction and the test run is aborted.
  • the dashed control curve (17) deviates upwards in the region of the test point (18).
  • the dashed control curve (17) and the laboratory recorded rule curve (14) in the region of the test point (18) are less spaced than usual. It can be assumed that the distorted by that test point (18) control curve (17) the aged ionization electrode (2) not optimally characterized.
  • the obviously faulty test point (18) can now be corrected based on the assumption that adjacent test points change similarly.
  • I B0 be the absorbed ionization current during a test run under laboratory conditions
  • I B1 the absorbed ionization current during a first test run after several hours of operation.
  • the ionization currents I B0 and I B1 correspond to a mixture enriched in comparison to the control curve, that is to say there is more fuel (13), in particular more gas, and less air (12). The same can be achieved, for example, by supplying more fuel (13) at a constant fan speed.
  • the ionization current I neighbor Bk of the k- th test run and the corresponding laboratory value I NaChbarB0 are known at the posthear point of the test point (18).
  • the above estimate is based on the assumption that adjacent test points shift (roughly) equally. This assumption is not always a good approximation. In particular, it is not when the test value changes greatly from one test run to the next.
  • test at a test point estimated by a neighbor is basically made up for as soon as the burner output or air flow rate matches.
  • the inventive control device is designed to form a difference between the Inverse of a first ionization current I neighbor Bk to a first air volume flow and a reciprocal of a second ionization I neighbor B0 , which was recorded in time before the first ionization current I neighbor Bk and belongs to the first air flow or substantially to the first air flow.
  • I neighbor B0 was recorded in time before the first ionization current I neighbor Bk by I neighbor B0 was recorded, for example during a test run under laboratory conditions.
  • the control device is furthermore designed to calculate the reciprocal and the value of a displaced ionization current I Bk ⁇ as the sum of this difference and the reciprocal of a further ionization current I B0 , the further ionization current and the displaced ionization current belonging to a second air volume flow of the burner system is different from the first air volume flow of the burner system.
  • the index k refers to the current test run.
  • the ionization currents and air volume flows with the indices 1 to k - 1 refer to previously performed test runs or the test values calculated by filtering, ie to historical tests at this test point. Depending on the embodiment individual of these historical test values or all historical test values are stored in the control device.
  • the value of the filter constant e can assume values between 0 and 1, preferably between 0.2 and 0.8, furthermore preferably between 0.35 and 0.65 or 0.5 to 0.9.
  • the adjustment is made to a test point with the same or substantially the same air volume flow (16) of the burner system.
  • the filter constants e and e ' may be different from each other.
  • control device is designed to filter the reciprocal or the value of the shifted ionization current I Bk ⁇ using a filter constant e , e ' to the reciprocal or value of a historical ionization current I B (k - 1) , which is prior to first ionization current I NachbarBk was recorded and belongs to the second air volume flow or substantially to the second air volume flow, so that as a result of filtering a filtered ionization current I Bk ' and its inverse are calculated.
  • I B (k-1) was recorded in time before the first ionization current I neighbor Bk by recording I B (k-1) in operation with the index k -1 during the test run, for example.
  • Typical time intervals between successive test runs range from a few tens to a few hundred hours. But it can also be only a few hours or a few thousand hours between successive test runs.
  • a filtered ionization current I Bk 'of a test point depends on the ionization current I B (k - 1) of its immediately preceding test point.
  • the value of the filter constant f varies as well as the value of the filter constant e between 0 and 1, preferably between 0.2 and 0.8, more preferably between 0.35 and 0.65 or between 0.5 and 0.9.
  • the filter constants e and f may be the same or different depending on the embodiment.
  • the person skilled in the art readily recognizes that the filtering of ionization currents on the basis of previous test points can also refer to more than two ionization currents of preceding test points.
  • control device is designed to calculate a second difference from a reciprocal of the filtered ionization current I Bk ' and from the reciprocal of the ionization current I B0 .
  • the control device is also designed to add this second difference to the reciprocal of a third ionization current I C0 and to obtain a shifted third ionization current I Ck ' , wherein the third ionization current I C0 was recorded before the first ionization current I N - achbarBk and second air volume flow of the burner system heard.
  • I C0 was taken in time before the first ionization current I neighbor Bk by I C0 was recorded, for example, during a test run under laboratory conditions. Test runs under laboratory conditions typically take place as type tests and / or routine tests and / or as factory tests during the development or during the manufacture of a device.
  • each individual recorded value of the ionization current I B0 , optionally I B1 and, if applicable, I C0 is a (weighted) mean value of a plurality of measured values of the ionization current.
  • the weighting is an arithmetic or geometric mean.
  • n inverse ionization currents 1 / I B01 , 1 / I B02 , 1 / I B03 ,..., 1 / I B0n according to FIG n I B 0 1 I B 01 + 1 I B 02 + 1 I B 03 + ... + 1 I B 0 n averaged to an average ionization current I B0 .
  • the thus determined ionization current I Ck ' is now based on the corrected control curve.
  • the ionization current becomes obvious faulty test point (18) replaced by the ionization current I Ck ' .
  • control device is additionally designed to store the shifted third ionization current as part of a corrected control curve (17) and / or to calculate and / or store the correction (deviation) from this ionization current to the original control curve.
  • the burner system continues to run on the basis of the corrected control curve until the burner system controls the power range or the air volume flow to test point (18) once again, ie modulates into the area around test point (18) .
  • an ionization current at the same test point can be determined, so that an actual measured value is present.
  • the burner system then again uses a control curve based on measured values and not (only) on filtered estimates.
  • the modulation of the burner system in the area around the test point (18) can be done both targeted at the start of the burner system as well as during operation.
  • the present correction on the basis of a filtering of the ionization currents to previous measured values is not used during the first hours of operation. Due to the peculiarity of a comparatively rapid aging of the ionization electrode (2) during the first hours of operation or days, an adjustment during this time is suppressed. Preferably, an adjustment during an operating time of about three days is suppressed. Further preferably, alignment is inhibited during an initial operation time of one hour or two hours or five hours or ten hours or 20 hours or one day or two days or five days or ten days or twenty days. By suppressing the adjustment, deviating and generally somewhat leaner combustion values are obtained for the new condition, which however can be well tolerated.
  • the correction based on an adjustment during the first hours of operation is not suppressed. Instead, the comparatively rapid aging of the ionization electrode (2) is taken into account by first carrying out test runs at shorter time intervals. By using test runs within shorter time intervals, the test points shift less between the test runs. Therefore, in the case of test runs within shorter time intervals, the mentioned method of equalization to ionization currents to previous measured values can continue to be used.
  • the comparatively rapid change of the ionization electrode (2) is determined by shortened time intervals between test runs.
  • the system recognizes the change in the ionization current between successive test runs and automatically shortens or lengthens the time intervals between test runs.
  • the shortening or lengthening of the time intervals between successive test runs occurs as a function of the change in the ionization current (that is, as a function of the gradient).
  • control device is formed on the basis of the at least one ionization electrode (2) to record repeated ionization currents (15), and the control device is designed to repeatedly form a difference between the reciprocal of a first ionization current to a first air volume flow (16) and a reciprocal of a second ionization current, which was recorded before the first ionization current and to the first air volume flow (16) or substantially to first air volume flow (16), wherein the time intervals between differences depending on the differences of the respective recorded ionization currents.
  • any values of ionization currents can be estimated and / or filtered on a control curve. This includes in particular those values of ionization currents which have arisen through interpolation between measured values.
  • the correction of the control curve is carried out by selecting the most suitable test point in operation based on the current burner output.
  • the most suitable test point is that test point which is closest to the current burner output or the current fan speed or the current air volume flow.
  • an ionization current is then recorded.
  • the ionization currents at the remaining test points are taken to the best matching test point after the ionization current.
  • the ionization currents for example, can only be recorded when the burner output or the fan speed or the air volume flow is modulated in the vicinity of the respective test point.
  • control device is preferably designed to select a most suitable test point of the control curve (14 or 17) in operation starting from the current air volume flow 16 of the burner system and to record a pair of ionization flow 15 and air flow 16 at this test point.
  • the inclusion of pairs of ionization 15 and air flow 16 at other test points of the control curve (14 or 17) is postponed in time.
  • Portions of a controller or method according to the present disclosure may be implemented as hardware, as a software module executed by a computing unit, or a cloud computer, or as a combination of the foregoing.
  • the software may include firmware, a hardware driver running within an operating system, or an application program.
  • the present disclosure thus also relates to a computer program product which has the features this disclosure contains or performs the necessary steps.
  • the functions described may be stored as one or more instructions on a computer-readable medium.
  • RAM random access memory
  • MRAM magnetic random access memory
  • ROM read only memory
  • EPROM electronically programmable ROM
  • EEPROM electronically programmable and erasable ROM
  • register Hard disk a removable storage device
  • optical storage any suitable medium that can be accessed by a computer or other IT devices and applications.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Combustion (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Regulation And Control Of Combustion (AREA)

Claims (13)

  1. Dispositif de régulation d'une installation de brûleur comportant au moins un brûleur, et au moins une électrode d'ionisation (2) qui est agencée de manière à être située dans la zone d'une flamme (1) du au moins un brûleur lorsque l'installation de brûleur est en fonctionnement, selon lequel :
    le dispositif de régulation est conçu de manière à mesurer un courant d'ionisation (15) au moyen d'au moins une électrode d'ionisation (2),
    le dispositif de régulation est conçu de manière à régler un débit volumique d'air (16) en tenant compte du courant d'ionisation (15),
    le dispositif de régulation comprend une mémoire et est conçu de manière à enregistrer des couples de débit volumique d'air (16) de l'installation de brûleur et de courant d'ionisation (15),
    le dispositif de régulation est conçu de manière à former une différence entre la valeur inverse d'un premier courant d'ionisation (INachbarBk ) correspondant à un premier débit volumique d'air (16) et une valeur inverse d'un second courant d'ionisation (INachbarB0 ) qui a été mesuré avant le premier courant d'ionisation (INachbarBk ) et correspond ou correspond essentiellement au premier débit volumique d'air (16), et
    le dispositif de régulation est conçu de manière à calculer, en tant que somme de cette différence et de la valeur inverse d'un autre courant d'ionisation (IB0 ), la valeur inverse et la valeur d'un courant d'ionisation décalé (IBk↑ ),
    caractérisé en ce que le dispositif de régulation est conçu de manière à filtrer la valeur inverse ou la valeur du courant d'ionisation décalé (IBk↑ ) en utilisant une constante de filtre appliquée à la valeur inverse ou la valeur d'un courant d'ionisation historique, qui a été mesuré avant le premier courant d'ionisation (INachbarBk ) et correspond ou correspond essentiellement au second débit volumique d'air, de telle manière qu'un courant d'ionisation filtré et sa valeur inverse sont calculés en tant que résultat du filtrage,
    dans lequel l'autre courant d'ionisation (IB0 ) et le courant d'ionisation décalé (IBk↑ ) correspondent à un second débit volumique d'air de l'installation de brûleur qui est différent du premier débit volumique d'air de l'installation de brûleur, et
    en ce que le second courant d'ionisation (INachbarB0 ) a été mesuré dans des conditions de laboratoire sur une électrode d'ionisation neuve ou peu vieillie.
  2. Dispositif de régulation d'une installation de brûleur selon la revendication 1, dans lequel le dispositif de régulation est conçu en outre pour calculer une seconde différence entre une valeur inverse du courant d'ionisation filtré et une valeur inverse de l'autre courant d'ionisation (IB0 ).
  3. Dispositif de régulation d'une installation de brûleur selon la revendication 2, dans lequel le dispositif de régulation est conçu en outre pour additionner la seconde différence à la valeur inverse d'un troisième courant d'ionisation et pour obtenir à partir de là un troisième courant d'ionisation décalé, le troisième courant d'ionisation ayant été mesuré avant le premier courant d'ionisation (INachbarBk ) et correspondant au second débit volumique d'air de l'installation de brûleur.
  4. Dispositif de régulation d'une installation de brûleur selon la revendication 3, dans lequel le dispositif de régulation est conçu en outre pour réunir et enregistrer des couples de débit volumique d'air (16) de l'installation de brûleur et de courant d'ionisation (15) afin de former une courbe de régulation (14 ou 17).
  5. Dispositif de régulation d'une installation de brûleur selon la revendication 4, dans lequel le dispositif de régulation est conçu en outre pour calculer et/ou pour enregistrer le troisième courant d'ionisation décalé sous forme d'une partie d'une courbe de régulation corrigée (17) et/ou pour calculer et/ou enregistrer, à partir de ce courant d'ionisation, la correction, notamment l'écart par rapport à la courbe de régulation initiale.
  6. Dispositif de régulation d'une installation de brûleur selon la revendication 1, dans lequel l'autre courant d'ionisation (IB0 ) a été mesuré dans des conditions de laboratoire avec une électrode d'ionisation neuve ou peu vieillie.
  7. Dispositif de régulation d'une installation de brûleur selon la revendication 1, dans lequel le courant d'ionisation historique a été mesuré après le second courant d'ionisation.
  8. Dispositif de régulation d'une installation de brûleur selon l'une des revendications précédentes, dans lequel le filtrage de la valeur ou de la valeur inverse du courant d'ionisation décalé (IBk↑ ) s'effectue sur la valeur ou la valeur inverse d'un courant d'ionisation historique, en diminuant la valeur ou la valeur inverse du courant d'ionisation décalé (IBk↑ ) d'un certain pourcentage et en augmentant la valeur ou la valeur inverse du courant d'ionisation historique du même pourcentage.
  9. Dispositif de régulation d'une installation de brûleur selon l'une des revendications précédentes, dans lequel le dispositif de régulation est conçu pour mesurer un courant d'ionisation (15) en se basant sur la au moins une électrode d'ionisation (2) et la mesure du courant d'ionisation (15) comprend plusieurs mesures individuelles des courants d'ionisation (15).
  10. Dispositif de régulation d'une installation de brûleur selon la revendication 4 ou 5, dans lequel le dispositif de régulation est conçu pour sélectionner, en fonctionnement, en partant du débit volumique d'air instantané (16) de l'installation de brûleur, un point de test le plus approprié de la courbe de régulation (14 ou 17) et pour enregistrer au niveau de ce point de test un couple de courant d'ionisation (15) et de débit volumique d'air (16) et pour différer dans le temps l'enregistrement des couples de courant d'ionisation (15) et de débit volumique d'air (16) à d'autres points d'essai de la courbe de régulation (14 ou 17).
  11. Dispositif de régulation d'une installation de brûleur selon l'une des revendications précédentes, dans lequel le dispositif de régulation est conçu pour former une différence entre la valeur inverse d'un premier courant d'ionisation (INachbarBk ) correspondant à un premier débit volumique d'air (16) et une valeur inverse d'un second courant d'ionisation (INachbarB0 ), qui a été mesuré avant le premier courant d'ionisation (INachbarBk ) et qui correspond ou correspond essentiellement au premier débit volumique d'air (16), et dans lequel la formation de la différence est effectuée pour la première fois après une heure ou après deux heures ou après cinq heures ou après dix heures ou après 20 heures ou après un jour ou après deux jours ou après 5 jours ou après 10 jours ou après 20 jours.
  12. Dispositif de régulation d'une installation de brûleur selon l'une des revendications précédentes, dans lequel le dispositif de régulation est conçu de manière à mesurer des courants d'ionisation (15) de façon répétée à partir de la au moins une électrode d'ionisation (2) et le dispositif de régulation est conçu pour former de façon répétée une différence entre la valeur inverse d'un premier courant d'ionisation (INachbarBk ) correspondant à un premier débit volumique d'air (16) et une valeur inverse d'un second courant d'ionisation (INachbarB0 ), qui a été mesuré avant le premier courant d'ionisation (INachbarBk ) et qui correspond ou correspond essentiellement au premier débit volumique d'air (16), et dans lequel les intervalles de temps entre les formations de différence sont fonction des différences entre les courants d'ionisation respectivement mesurés.
  13. Procédé de régulation d'une installation de brûleur comportant au moins un brûleur, et au moins une électrode d'ionisation (2) qui est agencée de manière à être située dans la zone d'une flamme (1) du au moins un brûleur lorsque l'installation de brûleur est en fonctionnement, le procédé comprenant les étapes suivantes
    mesure d'un courant d'ionisation (15) à partir de la au moins une électrode d'ionisation (2),
    réglage d'un débit volumique d'air (16) de l'installation de brûleur en tenant compte du courant d'ionisation (15), enregistrement de couples de débit volumique d'air (16) de l'installation de brûleur et de courant d'ionisation (15),
    formation d'une différence entre la valeur inverse d'un premier courant d'ionisation (INachbarBk ) correspondant à un premier débit volumique d'air (16) et une valeur inverse d'un second courant d'ionisation (INachbarB0 ), qui a été mesuré avant le premier courant d'ionisation (INachbarBk ) et qui correspond ou correspond essentiellement au premier débit volumique d'air (16),
    caractérisé en ce que le procédé comprend en outre les étapes suivantes :
    calcul de la valeur inverse et de la valeur d'un courant d'ionisation décalé (IBk↑ ) en tant que somme de cette différence et de la valeur inverse d'un autre courant d'ionisation (IB0 ), l'autre courant d'ionisation (IB0 ) et le courant d'ionisation décalé (IBk↑ ) correspondant à un second débit volumique d'air de l'installation de brûleur qui est différent du premier débit volumique d'air (16) de l'installation de brûleur,
    filtrage de la valeur inverse ou de la valeur du courant d'ionisation décalé (IBk↑ ) en utilisant une constante de filtre appliquée à la valeur inverse ou la valeur d'un courant d'ionisation historique, qui a été mesuré avant le premier courant d'ionisation (INachbarBk ) et qui correspond ou correspond essentiellement au second débit volumique d'air, de telle manière qu'un courant d'ionisation filtré et sa valeur inverse sont calculés en tant que résultats du filtrage,
    le procédé comprenant en outre une étape de calcul d'une seconde différence entre une valeur inverse du courant d'ionisation filtré et une valeur inverse de l'autre courant d'ionisation (IB0 ).
EP15151600.2A 2015-01-19 2015-01-19 Dispositif de commande d'une installation de brûleur Active EP3045816B1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PL15151600T PL3045816T3 (pl) 2015-01-19 2015-01-19 Urządzenie do regulacji instalacji palnikowej
EP15151600.2A EP3045816B1 (fr) 2015-01-19 2015-01-19 Dispositif de commande d'une installation de brûleur
US14/982,171 US10054309B2 (en) 2015-01-19 2015-12-29 Device for regulating a burner system
CA2917749A CA2917749C (fr) 2015-01-19 2016-01-15 Dispositif de regulation d'un dispositif de bruleur

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP15151600.2A EP3045816B1 (fr) 2015-01-19 2015-01-19 Dispositif de commande d'une installation de brûleur

Publications (2)

Publication Number Publication Date
EP3045816A1 EP3045816A1 (fr) 2016-07-20
EP3045816B1 true EP3045816B1 (fr) 2018-12-12

Family

ID=52347236

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15151600.2A Active EP3045816B1 (fr) 2015-01-19 2015-01-19 Dispositif de commande d'une installation de brûleur

Country Status (4)

Country Link
US (1) US10054309B2 (fr)
EP (1) EP3045816B1 (fr)
CA (1) CA2917749C (fr)
PL (1) PL3045816T3 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3825610A1 (fr) 2019-11-22 2021-05-26 Vaillant GmbH Procédé et dispositif de mesure de la valeur lambda dans un bruleur à combustion des fossiles, en particulier pour une installation de chauffage et/ou d'eau sanitaire
EP4119847A1 (fr) 2021-07-16 2023-01-18 Siemens Aktiengesellschaft Dispositif de combustion comprenant un dispositif de régulation

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015225886A1 (de) * 2015-12-18 2017-06-22 Robert Bosch Gmbh Heizgerätesystem und Verfahren mit einem Heizgerätesystem
HUE057172T2 (hu) 2017-03-27 2022-04-28 Siemens Ag Elzáródás észlelés
CN114576648B (zh) * 2021-11-18 2022-12-06 浙江菲斯曼供热技术有限公司 用于运行气体燃烧器的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5049063A (en) * 1988-12-29 1991-09-17 Toyota Jidosha Kabushiki Kaisha Combustion control apparatus for burner
EP1293727A1 (fr) * 2001-09-13 2003-03-19 Siemens Building Technologies AG Appareil de commande d'un brûleur et méthode de réglage

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2455350A (en) * 1942-07-11 1948-12-07 Honeywell Regulator Co Control device
US3399974A (en) * 1965-03-02 1968-09-03 Hewlett Packard Co Gas analyzer
CS154807B1 (fr) * 1972-05-15 1974-04-30
US4588372A (en) * 1982-09-23 1986-05-13 Honeywell Inc. Flame ionization control of a partially premixed gas burner with regulated secondary air
EP0242625B1 (fr) * 1986-04-25 1990-12-27 Siemens Aktiengesellschaft Dispositif de mesure qui associe une valeur de mesure à une grandeur de mesure et sonde de mesure correspondante
US5896842A (en) * 1997-06-05 1999-04-27 General Motors Corporation Closed-loop ignition timing control
DE10023273A1 (de) 2000-05-12 2001-11-15 Siemens Building Tech Ag Messeinrichtung für eine Flamme
ITMO20050204A1 (it) * 2005-08-02 2007-02-03 Merloni Termosanitari Spa Metodo di controllo della combustione a ricerca guidata del set point
EP2177830A1 (fr) * 2008-10-16 2010-04-21 Siemens Building Technologies HVAC Products GmbH Brûleur à gaz pour une régulation combinée gaz-air
DK2439451T3 (da) * 2010-10-08 2014-03-10 Bfi Automation Gmbh Apparat til erkendelse af tilstedeværelsen af en flamme
EP2466204B1 (fr) 2010-12-16 2013-11-13 Siemens Aktiengesellschaft Dispositif de réglage pour une installation de brûleur
PL2495496T3 (pl) * 2011-03-03 2015-10-30 Siemens Ag Instalacja palnikowa

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5049063A (en) * 1988-12-29 1991-09-17 Toyota Jidosha Kabushiki Kaisha Combustion control apparatus for burner
EP1293727A1 (fr) * 2001-09-13 2003-03-19 Siemens Building Technologies AG Appareil de commande d'un brûleur et méthode de réglage

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3825610A1 (fr) 2019-11-22 2021-05-26 Vaillant GmbH Procédé et dispositif de mesure de la valeur lambda dans un bruleur à combustion des fossiles, en particulier pour une installation de chauffage et/ou d'eau sanitaire
DE102019131577A1 (de) * 2019-11-22 2021-05-27 Vaillant Gmbh Verfahren und Vorrichtung zur Messung des Lambda-Wertes in einem fossil befeuerten Brenner, insbesondere für eine Heizungs- und/oder Brauchwasseranlage
EP4119847A1 (fr) 2021-07-16 2023-01-18 Siemens Aktiengesellschaft Dispositif de combustion comprenant un dispositif de régulation

Also Published As

Publication number Publication date
PL3045816T3 (pl) 2019-07-31
EP3045816A1 (fr) 2016-07-20
CA2917749A1 (fr) 2016-07-19
US20160209026A1 (en) 2016-07-21
US10054309B2 (en) 2018-08-21
CA2917749C (fr) 2018-03-13

Similar Documents

Publication Publication Date Title
EP3045816B1 (fr) Dispositif de commande d'une installation de brûleur
EP2466204B1 (fr) Dispositif de réglage pour une installation de brûleur
EP2495496B1 (fr) Installation de brûleur
DE2849275C2 (fr)
DE4215959C2 (de) Verstärkungsfaktor-Einstelleinrichtung für PID-Regler
DE102005018272B4 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102017204021A1 (de) Verfahren zum Aktualisieren einer Kennlinie in einem Heizsystem sowie eine Steuereinheit und ein Heizsystem
EP1936183A2 (fr) Procédé destiné à la régulation de la température d'une bougie de préchauffage d'un moteur à combustion interne
EP2093644B1 (fr) Procédé et dispositif pour modifier une grandeur de température mesurée à l'entrée d'un régulateur de chauffage
EP1150186B1 (fr) Optimisation en direct basée sur un modèle
DE102005056152A1 (de) Verfahren zum Kalibrieren des von einem Breitband-Lambdasensor bereitgestellten Signals und Vorrichtung zur Durchführung des Verfahrens
DE102005038492B4 (de) Verfahren und Vorrichtung zur Offsetbestimmung eines berechneten oder gemessenen Lambdawertes
DE102021206905A1 (de) Steuermodul und Steuerverfahren für einen Kühlkreislauf eines Fahrzeugs
EP3382277A1 (fr) Détection d'une bâche
EP1396681A1 (fr) Regulateur de brûleur et procédé pour ajuster un regulateur de brûleur
DE102006007786B3 (de) Verfahren und Vorrichtung zur Abschätzung mindestens eines Steuerparameters einer Einspritzanlage einer Brennkraftmaschine für eine Zieleinspritzmenge
DE102016222732A1 (de) Verfahren und Vorrichtung zum Durchführen einer Positionsregelung für eine Stellgebereinheit
EP2187276B1 (fr) Procédé de définition de valeurs de paramètres destinées au réglage de l'état d'un système
EP4119847B1 (fr) Dispositif de combustion comprenant un dispositif de régulation
EP3290800B1 (fr) Procédé d'actualisation d'une caractéristique dans un système de chauffage ainsi que unité de commande et système de chauffage
EP3825610A1 (fr) Procédé et dispositif de mesure de la valeur lambda dans un bruleur à combustion des fossiles, en particulier pour une installation de chauffage et/ou d'eau sanitaire
EP1916585A2 (fr) Procédé et dispositif destinés à la production des caractéristiques de température et à leur linéarisation
DE102014000395A1 (de) Verfahren zur Steuerung einer Verbrennungskraftmaschine
DE102016209385A1 (de) Verfahren zum Regeln eines hydraulischen Druckbegrenzungsventils, Sliding-Mode-Regler und Verfahren zum Einstellen eines Stellgesetzes und einer Schaltfunktion
DE19525066A1 (de) Verfahren zur Parametrierung und Inbetriebnahme eines prädiktiven Reglers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170117

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180425

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180724

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1076527

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015007158

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181212

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190312

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190312

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190412

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015007158

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190119

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190131

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

26N No opposition filed

Effective date: 20190913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1076527

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200119

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230113

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240318

Year of fee payment: 10

Ref country code: GB

Payment date: 20240112

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20240111

Year of fee payment: 10

Ref country code: IT

Payment date: 20240124

Year of fee payment: 10