EP3043929B1 - Classification of polycrystalline silicon - Google Patents

Classification of polycrystalline silicon Download PDF

Info

Publication number
EP3043929B1
EP3043929B1 EP14752593.5A EP14752593A EP3043929B1 EP 3043929 B1 EP3043929 B1 EP 3043929B1 EP 14752593 A EP14752593 A EP 14752593A EP 3043929 B1 EP3043929 B1 EP 3043929B1
Authority
EP
European Patent Office
Prior art keywords
pptw
silicon
screen
ppmw
size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14752593.5A
Other languages
German (de)
French (fr)
Other versions
EP3043929A1 (en
Inventor
Andreas Schneider
Peter Gruebl
Rainer Hauswirth
Reiner Pech
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wacker Chemie AG
Original Assignee
Wacker Chemie AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wacker Chemie AG filed Critical Wacker Chemie AG
Publication of EP3043929A1 publication Critical patent/EP3043929A1/en
Application granted granted Critical
Publication of EP3043929B1 publication Critical patent/EP3043929B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B1/00Sieving, screening, sifting, or sorting solid materials using networks, gratings, grids, or the like
    • B07B1/46Constructional details of screens in general; Cleaning or heating of screens
    • B07B1/4609Constructional details of screens in general; Cleaning or heating of screens constructional details of screening surfaces or meshes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B1/00Sieving, screening, sifting, or sorting solid materials using networks, gratings, grids, or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B1/00Sieving, screening, sifting, or sorting solid materials using networks, gratings, grids, or the like
    • B07B1/28Moving screens not otherwise provided for, e.g. swinging, reciprocating, rocking, tilting or wobbling screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B1/00Sieving, screening, sifting, or sorting solid materials using networks, gratings, grids, or the like
    • B07B1/46Constructional details of screens in general; Cleaning or heating of screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B13/00Grading or sorting solid materials by dry methods, not otherwise provided for; Sorting articles otherwise than by indirectly controlled devices
    • B07B13/14Details or accessories
    • B07B13/18Control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B2201/00Details applicable to machines for screening using sieves or gratings
    • B07B2201/04Multiple deck screening devices comprising one or more superimposed screens

Definitions

  • the invention relates to a method for classifying polysilicon.
  • Polycrystalline silicon serves as a starting material for the production of monocrystalline silicon for semiconductors according to the Czochralski (CZ) or zone melting (FZ) method, as well as for the production of monocrystalline or multicrystalline silicon by various drawing and casting method Production of solar cells for photovoltaics.
  • CZ Czochralski
  • FZ zone melting
  • Polycrystalline silicon is usually produced by means of the Siemens process.
  • a bell-shaped reactor ("Siemens reactor") carrier body, usually thin filament rods made of silicon, heated by direct passage of current and a reaction gas containing hydrogen and one or more silicon-containing components introduced.
  • the silicon-containing component used is trichlorosilane (SiHCl 3 , TCS) or a mixture of trichlorosilane with dichlorosilane (SiH 2 Cl 2 , DCS) and / or with tetrachlorosilane (SiCl 4 , STC). More rarely, but also on an industrial scale silane (SiH 4) is used.
  • the filament rods are mounted vertically in electrodes located at the bottom of the reactor, via which the connection to the power supply takes place.
  • High-purity polysilicon deposits on the heated filament rods and the horizontal bridge, increasing their diameter over time.
  • the reactor bell is opened and the rods are removed by hand or with the help of special devices, so-called removal aids for further processing or for temporary storage.
  • polycrystalline silicon rods are broken down into small fragments, which are usually subsequently sized.
  • Polycrystalline silicon granules or polysilicon granules for short is an alternative to the polysilicon produced in the Siemens process. While the polysilicon obtained in the Siemens process as a cylindrical silicon rod, the time-consuming and costly crushed before further processing into fragments and, if necessary, must be cleaned again, polysilicon granules bulk material properties and can be used directly as a raw material for example for single crystal production for the photovoltaic and electronics industry , Polysilicon granules are produced in a fluidized bed reactor. This is done by fluidization of silicon particles by means of a gas flow in a fluidized bed, which is heated by a heater to high temperatures. By addition of a silicon-containing reaction gas a pyrolysis reaction takes place on the hot particle surface.
  • silicon-containing compounds for example chlorosilanes or bromosilanes
  • monosilane SiH 4
  • mixtures of these gases with hydrogen can be used as the silicon-containing educt gas.
  • the polycrystalline silicon granules are divided after its preparation by means of a sieve in two or more fractions.
  • the smallest sieve fraction (Siebunterkorn) can then be processed in a grinding plant to seed particles and added to the reactor.
  • the screening target fraction is usually packed.
  • US 2009081108 A1 discloses a workbench for manually sorting polycrystalline silicon by size and quality.
  • An ionization system is implemented to neutralize electrostatic charges by active air ionization. Ionizers penetrate the clean room air with ions in such a way that static charges on insulators and ungrounded conductors are dissipated.
  • a screening machine is generally a machine for screening, ie the separation (separation) of solid mixtures to particle sizes.
  • the drive of the screening machines is usually electromagnetic or by unbalance motors or gearbox.
  • the movement of the Siebbelags serves the further transport of the feedstock in Siebleksscardi and the passage of the fine fraction through the mesh openings.
  • the sieve tower completes a horizontal circular movement in one plane.
  • the particles on the screen fabric largely retain their orientation.
  • Planeting machines are preferably used for needle-shaped, platelet-shaped, elongated or fibrous screening goods, in which a throwing up of the sample is not necessarily beneficial.
  • a special type is the Mehrdecksiebmaschine, which can fractionate several grain sizes simultaneously. They are designed for a large number of sharp separations in the mid to ultra-fine grain range.
  • the drive principle is based on two-deck planer on two counter-rotating unbalance motors that produce a linear vibration.
  • the screen material moves in a straight line over the horizontal separating surface.
  • the machine works with low vibration acceleration.
  • US 8021483 B2 discloses an apparatus for sorting polycrystalline silicon pieces including a vibratory motor assembly and a step bottom classifier attached to the vibratory motor assembly.
  • the vibratory motor assembly causes the pieces of silicon to move over a first bottom containing grooves.
  • dust is removed by a stream of air through a perforated plate.
  • the pieces of silicon settle in holes of grooves or remain on ridges of the grooves.
  • pieces of silicon smaller than a gap fall through it onto a conveyor belt. Larger pieces of silicon move across the gap and fall to the second floor.
  • the parts of the device that come in contact with the polycrystalline silicon pieces are made of materials that minimize contamination of silicon. Examples are tungsten carbide, PE, PP, PFA, PU, PVDF, PTFE, silicon and ceramics.
  • US 2007235574 A1 discloses a device for crushing and sorting polycrystalline silicon, comprising a polysilicon rough-cut feeder in a crusher, the crusher, and a polysilicon-collapse classifier, the device being provided with a controller having at least one variable setting a crushing parameter in the crusher and / or at least one sorting parameter in the sorting system allows.
  • the sorting plant consists of a multi-stage mechanical screening plant and a multi-stage optoelectronic separation plant.
  • Preference Schwingsiebmaschinen that are driven by an unbalance motor used. As Siebbelag mesh and perforated sieves are preferred.
  • the screening levels can be successively or in another structure, such.
  • B. a tree structure be arranged.
  • the sieves are arranged in three stages in a tree structure.
  • the freed from fines polysilicon fraction is preferably sorted by means of optoelectronic separation plant. Sorting of polysilicon fracture can be done according to all criteria that are state of the art in image processing. It is preferably carried out according to one to three of the criteria selected from the group length, area, shape, morphology, color and weight of polysilicon fragments, particularly preferably length and area.
  • DE3811091A1 discloses a method of mechanically classifying polycrystalline silicon fracture, wherein the silicon fracture is on one or more screens, each comprising a polycrystalline silicon screen, whereby the silicon fraction is separated into various size classes.
  • US 5165548 A discloses an apparatus for size separating silicon pieces suitable for semiconductor applications, comprising a cylindrical screen connected to a device for rotating the cylindrical screen, wherein the surfaces of the screen contacting the silicon pieces consist essentially of silicon suitable for semiconductor applications.
  • EP 1454679 B1 describes a screening device with a first oscillating body, which is provided with first cross members, and a second oscillating body, which is provided with second cross members, which first and second cross members are arranged alternately and have clamping devices, so that elastic Siebbeläge between a first and one each second cross member are clamped, and a drive unit which is directly coupled to the first oscillating body and over which the first oscillating body is positively guided, so that the clamped elastic Siebbeläge between a stretched and a compressed position are moved back and forth, the second oscillating body opposite the first oscillating body is forcibly guided.
  • the rounded by a first vibratory conveyor unit silicon break can via a second vibratory conveyor unit are performed.
  • Their conveying surface consists of parallel arranged hyperpure silicon plates, which are fixed by lateral fastening devices.
  • the hyperpure silicon plates have through openings, for example in the form of openings.
  • the conveyor edges, which serve as a lateral boundary of the conveyor surfaces, are also made of hyperpure silicon plates and are fixed, for example, by hold-down.
  • the conveyor surfaces made of hyperpure silicon slabs are supported by steel plates and optionally damping mats.
  • US 2012052297 A1 discloses a process for the production of polycrystalline silicon, comprising breaking into broken pieces of polycrystalline silicon deposited on thin rods in a Siemens reactor, classifying the fragments into size classes of about 0.5 mm to greater than 45 mm, treating the silicon fragments by means of compressed air or dry ice to form silicon Remove dust from the debris without chemical wet cleaning.
  • the polycrystalline silicon is classified as follows: fraction size 0 (BG0) in mm: about 0.5 to 5; Break size 1 (BG1) in mm: approx. 3 to 15; Fracture size 2 (BG2) in mm: approx. 10 to 40; Crack size 3 (BG3) in mm: approx.
  • US 2009120848 A1 describes a device which allows a flexible classification of broken polycrystalline silicon, characterized in that it comprises a mechanical sieve and an optoelectronic sorting system, wherein the poly-break is separated by the mechanical sieve into a silicon fines and a silicon remainder and the silicon -Restanteil is separated via an optoelectronic sorting in other fractions.
  • the mechanical screen is preferably a vibrating screen, which is driven by an unbalance motor.
  • the sieving index For a throwing motion, the sieving index must be> 1.
  • the movement of silicon fracture or granulate is particularly preferably a throwing movement, the sieving index being 1.6 to 3.0. It has been shown that this results in even improved screening results, in particular an even higher selectivity between the different size classes.
  • the oscillation amplitude is preferably 0.5 to 8 mm, particularly preferably 1 to 4 mm.
  • the rotational speed ⁇ / 2 ⁇ is preferably 400 to 2000 rpm, more preferably 600 to 1500 rpm.
  • the throwing angle is preferably 30 to 60 °, particularly preferably 40 to 50 °.
  • the screen tilt angle with respect to the horizontal is preferably 0 to 15 °, particularly preferably 0 to 10 °.
  • the screening machine preferably comprises a feed area in which the screenings are fed and a discharge area in which classified screenings are removed.
  • the size of the sieve openings increases in the direction of discharge. Fractions / break sizes are preferably separated by successively arranged discharges.
  • the screening machine comprises mutually arranged screen decks. This has the advantage that large fragments can not damage fine mesh screen coverings. Preferably, fractions / break sizes are separated by discharges arranged one below the other.
  • the screening machine comprises a frame-sieve system. This allows a quick screen change. Also, the monitoring of any contamination is facilitated.
  • Such a frame-sieve system provides that screen coverings are screwed to the frame, glued, plugged or potted, that the frame made of wear-resistant plastic (preferably PP, PE, PU), possibly with steel reinforcement, or at least lined with wear-resistant plastic are.
  • the frames are sealed by vertical clamping. This can avoid contamination and material loss.
  • screen linings made of particularly wear-resistant plastics, namely elastomers having a hardness greater than 65 Shore A, more preferably having a hardness greater than 80 Shore A.
  • the Shore hardness is specified in the standards DIN 53505 and DIN 7868.
  • one or more screen coverings or their surfaces may consist of such an elastomer.
  • Both one or more screen coverings or their surfaces as well as all product-contacting components and linings are preferably made of plastics with a total contamination (metals, dopants) of less than 2000 ppmw, preferably less than 500 ppmw and more preferably less than 100 ppmw.
  • the maximum contamination of the plastics with the elements Al, Ca, P, Ti, Sn and Zn should be less than 100 ppmw, more preferably less than 20 ppmw.
  • the maximum contamination of the plastics with the elements Cr, Fe, Mg, As, Co, Cu, Mo, Sb and W should be less than 10 ppmw, more preferably less than 0.2 ppmw.
  • the determination of the impurities is carried out by means of ICP-MS (mass spectrometry with inductively coupled plasma).
  • the screen coverings of plastics preferably comprise a reinforcement or filling of metals, glass fiber, carbon fiber, ceramic or composite materials for stiffening.
  • the screenings are dedusted.
  • the mechanical sieving mobilizes most of the fine dust adhering to the bulk material on the individual screen decks. This effect is used in the invention to dedust the bulk material during the screening process.
  • the gas flow can be generated either by a suction or by a gas purging.
  • Suitable visual gases are purified air, nitrogen or other inert gases.
  • a gas velocity of 0.05 to 0.5 m / s, more preferably 0.2 to 0.3 m / s should be present.
  • a gas velocity of 0.2 m / s can be set, for example, with a gas throughput or an extraction capacity of about 720 Nm 3 / h per m 2 of screen area.
  • fine dust particles are understood that are smaller than 10 microns.
  • dedusting by means of countercurrent air classification in the discharge lines of the individual sieve fractions is optionally carried out.
  • the classifying gas is fed into the lower area of the flue ducts and the dust-laden exhaust gas is discharged in the upper area immediately in front of the screening machine.
  • the dust-laden exhaust gas is discharged in the upper area immediately in front of the screening machine.
  • the advantage of this dedusting method is that the visual flow can be adapted to the particle size of the sieve fraction. With a coarse sieve fraction, for example, a high visual flow can be set without fine product being carried along. This gives a very good dedusting and the desired low particulate matter in the product.
  • the speed is temporarily increased up to 4000 rev / min, to free the screen coverings of Steckkorn.
  • the oscillation amplitude can be temporarily increased to up to 15 mm.
  • free-blow balls made of plastic or hyperpure silicon in order to free the screen coverings from sticking grain.
  • the oscillation amplitude decreases towards the discharge.
  • the ratio of the vibration amplitude at the discharge is up to 50% less than at the inlet. It has been shown that both wear and product contamination can be further reduced.
  • the drive As a drive for the screening machine come linear, circular or elliptical oscillator in question.
  • the drive preferably provides a vertical acceleration component to reduce screen wear and to avoid pinch.
  • Square openings are also preferred. With them advantages of rectangular and round openings can be combined.
  • the screening tray and the Siebauslässe inside are completely lined with silicon or with a thermoplastic or elastomeric plastic.
  • Steel body of the screening machine are preferably provided with welded PP lining segments. Preference is also the use of interior linings made of PU.
  • steel-reinforced PU castings have proven to be particularly suitable.
  • silicon hole strips are used as the screen covering.
  • One or more screen coverings can be designed in this way. These are preferably perforated square rods made of hyperpure silicon.
  • These preferably have at least in part a conical hole shape, i. the cross-sectional area is smaller at the top than at the bottom. This contributes to avoiding pinch.
  • the cone preferably has an angle of 1 to 20 °, particularly preferably 1 to 5 °.
  • an edge rounding of the holes with a radius of 0.1 to 2 mm is provided on the upper Sieboberseite to avoid breakouts and wear, which would lead to a deterioration of the selectivity.
  • only the lower part of the hole is conical and the upper part is cylindrical, so that the hole is not expanded too quickly due to wear.
  • Plastic-sheathed metal support strips are preferably provided for stabilization in the event of breakage of the Si strips, in order to avoid contamination and to secure against loosening of fragments in case of inguinal hernia.
  • individual Si strips are provided with hard metal end strips, which are braced horizontally or vertically.
  • the hard metal used is preferably WC, SiC, SiN or TiN.
  • the Si perforated screen is placed on a base, glued or screwed. This allows higher strength, larger areas and the use of thinner or thicker screens possible. Breakage is easier to avoid.
  • Si perforated sieves and sieves made of plastic or sieves with a plastic covering It is particularly preferred to use both Si perforated sieves and sieves made of plastic or sieves with a plastic covering.
  • a Si-hole sieve with a hole diameter of 5 mm to 50 mm is used as the first sieve cut.
  • the large fragments can clean the sprue grains and thus prevent clogging.
  • one or more screens made of plastic or plastic coverings are used.
  • an additional pre-screen with a plastic coating and with a mesh ratio to the underlying screen deck of from 1.5: 1 to 10: 1 is used. This can reduce the plastic wear on the lower screen deck. The outlets of both screen decks are merged.
  • the Vorsiebdeck preferably has a lower wire tension. This serves to minimize wear.
  • the method according to the invention leads to polycrystalline silicon fragments having a sharp particle size distribution without large overlap or to polycrystalline silicon granules classified with a high selectivity, which was not possible in the prior art.
  • Classified polycrystalline silicon fragments are also described, characterized by a particle size classification in fractional size classes 2, 1, 0 and F, whereby it applies for the fragments that at fraction size 2 max. 5% by weight smaller than 11 mm and max. 5% by weight greater than 27 mm; at fraction size 1 max. 5% by weight smaller than 3.7 mm and max. 5% by weight greater than 14 mm; at fraction size 0 max. 5% by weight less than 0.6 mm and max. 5 wt% greater than 4.6 mm; at fraction size F max. 5 wt .-% less than 0.1 mm and max. 5 wt .-% are greater than 0.8 mm.
  • Described is also classified polycrystalline silicon granules, classified at least in the two size classes Siebzielkorn and Siebunterkorn, wherein a selectivity between Siebzielkorn and Siebunterkorn is more than 0.86.
  • Classified polycrystalline silicon granules preferably have the following impurities with metals on the surface: Fe: ⁇ 800 pptw, more preferably ⁇ 400 pptw; Cr: ⁇ 100 pptw, more preferably ⁇ 60 pptw; Ni: ⁇ 100 pptw, more preferably ⁇ 50 pptw; Na: ⁇ 100 pptw, more preferably ⁇ 50 pptw; Cu: ⁇ 20 pptw, more preferably ⁇ 10 pptw; Zn: ⁇ 2000 pptw, more preferably ⁇ 1000 pptw.
  • Classified polycrystalline silicon granules preferably have a surface carbon contamination of less than 10 ppmw, more preferably less than 5 ppmw.
  • Classified polycrystalline silicon granules preferably have a surface particulate contamination of less than 10 ppmw, more preferably we niger than 5 ppmw, on. Fine dust is defined as silicon particles with a size of less than 10 ⁇ m.
  • Example 1 and Comparative Example 2 relate to classifying polycrystalline silicon fragments into fractions 2, 1, 0, and F.
  • Example 3 and Comparative Example 4 relate to classifying polycrystalline silicon granules (sieve grain size 0.75 - 4 mm).
  • Table 1a shows the essential parameters of the screening machine.
  • Table 1a shows the essential parameters of the screening machine.
  • Table 1a ⁇ / b> Wire width b [mm] 600 Sieve length l [mm] 1600 Frequency n [Hz] 25 Speed [rpm] 1500 Angular velocity ⁇ [1 / s] 157.1 Amplitude [mm] 3 Amplitude r [mm] 1.5 Screen inclination ⁇ [°] 0 Throwing angle ⁇ [°] 50
  • Table 1b shows which sieve set was used in the example. Three sieve decks with different sieve mesh sizes were used. ⁇ b> Table 1b ⁇ / b> Mesh size [mm] material Deck 1 9 polyurethane Deck 2 1.9 polyamide Deck 3 0.3 polyamide
  • Table 1c shows the composition of the screen coverings.
  • element polyurethane Polyamide: Al [ppmw] 17 0.7 Ca [ppmw] 14 9.1 Cr [ppmw] ⁇ 0.2 0.3 Fe [ppmw] 0.7
  • Table 1f shows the contaminants of the classified fragments with surface metals, carbon, dopants and particulate matter.
  • Table 1f shows the contaminants of the classified fragments with surface metals, carbon, dopants and particulate matter.
  • Table 1f ⁇ / b> Metals, carbon, dopants, particulate matter
  • Fraction size 2 Break size 1
  • Table 2a shows the essential parameters of the screening machine used for this purpose.
  • Table 2a ⁇ / b> Wire width b [mm] 600 Length l [mg] 1600 Frequency n [Hz] 20 Speed [rpm] 1200 Angular velocity ⁇ [1 / s] 125.7 Amplitude [mm] 2.4 Amplitude r [mm] 1.2 Screen inclination ⁇ [°] 0 Throwing angle ⁇ [°] 45 Screening number Kv [-] 1.4 Throughput [kg / h] 700 N 2 sealing gas [Nm 3 / h] NN
  • Table 2b shows which sieve set was used in Comparative Example 2 .
  • Three sieve decks with different sieve mesh sizes were used.
  • Table 2c shows the composition of the screen coverings used.
  • Table 2c shows the composition of the screen coverings used.
  • the overlap is significantly higher than in example 1. This is due to the changed parameters of the screening machine, in particular to the lower sieve index.
  • Table 2f shows the contaminants of the classified fragments with surface metals, carbon, dopants and particulate matter.
  • Table 2f shows the contaminants of the classified fragments with surface metals, carbon, dopants and particulate matter.
  • Table 2f ⁇ / b> surface contamination
  • Fraction size 2 Break size 1 Fraction size 0 Fracture size F Fe [pptw] 200 340 1640 19800 Cr [pptw] 30 50 310 11000 Ni [pptw] ⁇ 10 40 180 6800 Na [pptw] 40 50 480 7900 Zn [pptw] 20 30 360 6100 Al [pptw] 70 120 160 8400 Cu [pptw] ⁇ 10 20 60 ⁇ 5000 Mg [pptw] ⁇ 10 30 80 9700 Ti [pptw] ⁇ 10 40 160 ⁇ 5000 W [pptw] 1640 5830 60700 1067000 K [pptw] 10 30 140 ⁇ 5000 Ag [pptw] ⁇ 10 ⁇ 10 ⁇ 10 ⁇ 5000 Ca [pptw
  • the impurities are consistently higher than in Example 1. This shows the influence of the composition of the Siebbeläge on the surface contamination of the fragments after classification.
  • Table 3a shows the essential parameters of the screening machine.
  • Table 3b shows which sieve set was used in Example 3 . Three sieve decks with different sieve mesh sizes were used. ⁇ b> Table 3b ⁇ / b> Mesh size [mm] material Deck 1 9 polyurethane Deck 2 4.0 polyamide Deck 3 0.75 polyamide
  • Table 3c shows the composition of the screen coverings.
  • polyurethane Polyamide: Al [ppmw] 17.1 ⁇ 0.2 Ca [ppmw] 11.3 18.6 Cr [ppmw] ⁇ 0.2 ⁇ 0.2 Fe [ppmw] 0.6 0.3 K [ppmw] 0.9 NN Mg [ppmw] 0.3 0.2 Na [ppmw] 0.4 0.9 P [ppmw] 53.2 ⁇ 20 Sn [ppmw] 5.8 NN Ti [ppmw] 560 ⁇ 0.2 Zn [ppmw] 7.5 ⁇ 0.2 B, Ba, Cd, Co, Cu, Li, Mn, Mo, Ni, Sr, V [ppmw] ⁇ 0.2 ⁇ 0.2 As, Be, Bi, Pb, Sb, W [ppmw] ⁇ 0.2 NN
  • Table 3f shows the contaminants of the sized granules with surface metals, carbon, dopants and particulate matter.
  • Table 3f ⁇ / b> Surface metals: Sieve undersize ( ⁇ 0.75 mm) Screen grain (0.75 - 4 mm) Sieber grain (4 - 9 mm) Fe [pptw] 1700 860 380 Cr [pptw] 150 100 80 Ni [pptw] 120 80 40 Na [pptw] 390 230 150 Zn [pptw] 2620 2120 1530 Al [pptw] 260 150 140 Cu [pptw] 40 25 15 Mg [pptw] 120 70 60 Ti [pptw] 210 90 90 W [pptw] 60 50 ⁇ 10 K [pptw] 70 45 40 Ca [pptw] 580 360 320 Mo, As, Sn, Ag, Co, V, Pb, Zr [pptw] ⁇ 10 ⁇ 10 C [ppbw] 564 252 204 B [ppta] 27
  • Table 4a shows the essential parameters of the screening machine.
  • Table 4a shows the essential parameters of the screening machine.
  • Table 4a ⁇ / b> Wire width b [mm] 500 Sieve length l [mm] 1100 Frequency: n [Hz] 20 Speed [rpm] 1200 Angular velocity w [1 / s] 125.7 Amplitude [mm] 2.6 Amplitude r [mm] 1.3 Screen inclination ⁇ [°] 3 Throwing angle ⁇ [°] 40
  • Table 4b shows which sieve set was used in Comparative Example 4 . Three sieve decks with different sieve mesh sizes were used. ⁇ b> Table 4b ⁇ / b> Mesh size [mm] material Deck 1 9 polyurethane Deck 2 4.0 polyamide Deck 3 0.75 polyamide
  • Table 4c shows the composition of the screen coverings used.
  • Table 4c shows the composition of the screen coverings used.
  • Table 4f shows the contaminants of the sized granules with surface metals, carbon, dopants and particulate matter.
  • Table 4f ⁇ / b> Surface metals: Sieve undersize ( ⁇ 0.75 mm) Screen grain (0.75 - 4 mm) Sieber grain (4 - 9 mm) Fe [pptw] 3500 1490 720 Cr [pptw] 270 210 140 Ni [pptw] 300 150 80 Na [pptw] 750 530 520 Zn [pptw] 3270 2610 2230 Al [pptw] 360 220 170 Cu [pptw] 70 60 30 Mg [pptw] 610 320 130 Ti [pptw] 340 120 130 W [pptw] 50 50 ⁇ 10 K [pptw] 210 170 110 Ca [pptw] 2520 810 720 sn 40 30 ⁇ 10 Mo, As, Ag, Co, V, Pb, Zr [pptw] ⁇ 10 ⁇ 10 ⁇ 10 C [ppbw
  • the impurities are consistently higher than in example 3.
  • the determination of the dopant concentrations is carried out according to ASTM F1389-00 on monocrystalline samples.
  • the determination of the metal impurities is carried out according to ASTM 1724-01 with ICP-MS.
  • the fine dust measurement takes place as in DE 10 2010 039 754 A1 described.
  • the particle sizes are determined by means of dynamic image analysis according to ISO 13322-2 (measuring range: 30 ⁇ m - 30 mm, type of analysis: dry measurement of powders and granules).

Landscapes

  • Silicon Compounds (AREA)
  • Combined Means For Separation Of Solids (AREA)

Description

Die Erfindung bezieht sich auf ein Verfahren zum Klassieren von Polysilicium.The invention relates to a method for classifying polysilicon.

Polykristallines Silicium (kurz: Polysilicium) dient als Ausgangsmaterial zur Herstellung von einkristallinem Silicium für Halbleiter nach dem Czochralski(CZ)- oder Zonenschmelz(FZ)-Verfahren, sowie zur Herstellung von ein- oder multikristallinem Silicium nach verschiedenen Zieh- und Gieß-Verfahren zur Produktion von Solarzellen für die Photovoltaik.Polycrystalline silicon (polysilicon in short) serves as a starting material for the production of monocrystalline silicon for semiconductors according to the Czochralski (CZ) or zone melting (FZ) method, as well as for the production of monocrystalline or multicrystalline silicon by various drawing and casting method Production of solar cells for photovoltaics.

Polykristallines Silicium wird in der Regel mittels des Siemens-Verfahrens hergestellt. Bei diesem Verfahren werden in einem glockenförmigem Reaktor ("SiemensReaktor") Trägerkörper, üblicherweise dünne Filamentstäbe aus Silicium, durch direkten Stromdurchgang erhitzt und ein Reaktionsgas enthaltend Wasserstoff und eine oder mehrere siliciumhaltige Komponenten eingeleitet. Üblicherweise wird als siliciumhaltige Komponente Trichlorsilan (SiHCl3, TCS) oder eine Mischung von Trichlorsilan mit Dichlorsilan (SiH2Cl2, DCS) und/oder mit Tetrachlorsilan (SiCl4, STC) eingesetzt. Seltener, aber auch im industriellen Maßstab wird Silan (SiH4) verwendet. Die Filamentstäbe stecken senkrecht in am Reaktorboden befindlichen Elektroden, über die der Anschluss an die Stromversorgung erfolgt. An den erhitzten Filamentstäben und der waagrechten Brücke scheidet sich hochreines Polysilicium ab, wodurch deren Durchmesser mit der Zeit wächst. Nach Abkühlung der Stäbe wird die Reaktorglocke geöffnet und die Stäbe werden per Hand oder mit Hilfe von speziellen Vorrichtungen, sogenannten Ausbauhilfen zur Weiterverarbeitung bzw. zur zwischenzeitlichen Lagerung entnommen. Für die meisten Anwendungen werden polykristalline Siliciumstäbe auf kleine Bruchstücke gebrochen, welche üblicherweise anschließend nach Größen klassiert werden.Polycrystalline silicon is usually produced by means of the Siemens process. In this method, in a bell-shaped reactor ("Siemens reactor") carrier body, usually thin filament rods made of silicon, heated by direct passage of current and a reaction gas containing hydrogen and one or more silicon-containing components introduced. Usually, the silicon-containing component used is trichlorosilane (SiHCl 3 , TCS) or a mixture of trichlorosilane with dichlorosilane (SiH 2 Cl 2 , DCS) and / or with tetrachlorosilane (SiCl 4 , STC). More rarely, but also on an industrial scale silane (SiH 4) is used. The filament rods are mounted vertically in electrodes located at the bottom of the reactor, via which the connection to the power supply takes place. High-purity polysilicon deposits on the heated filament rods and the horizontal bridge, increasing their diameter over time. After cooling the rods, the reactor bell is opened and the rods are removed by hand or with the help of special devices, so-called removal aids for further processing or for temporary storage. For most applications, polycrystalline silicon rods are broken down into small fragments, which are usually subsequently sized.

Polykristallines Siliciumgranulat oder kurz Polysiliciumgranulat ist eine Alternative zum im Siemens-Verfahren hergestellten Polysilicium. Während das Polysilicium im Siemens-Verfahren als zylindrischer Siliciumstab anfällt, der vor seiner Weiterverarbeitung zeit- und kostenaufwändig zu Bruchstücken zerkleinert und ggf. wiederum gereinigt werden muss, besitzt Polysiliciumgranulat Schüttguteigenschaften und kann direkt als Rohmaterial z.B. zur Einkristallerzeugung für die Photovoltaik- und Elektronikindustrie eingesetzt werden. Polysiliciumgranulat wird in einem Wirbelschichtreaktor produziert. Dies geschieht durch Fluidisierung von Siliciumpartikeln mittels einer Gasströmung in einer Wirbelschicht, wobei diese über eine Heizvorrichtung auf hohe Temperaturen aufgeheizt wird. Durch Zugabe eines siliciumhaltigen Reaktionsgases erfolgt eine Pyrolysereaktion an der heißen Partikeloberfläche. Dabei scheidet sich elementares Silicium auf den Siliciumpartikeln ab und die einzelnen Partikel wachsen im Durchmesser an. Durch den regelmäßigen Abzug von angewachsenen Partikeln und Zugabe kleinerer Siliciumpartikel als Keimpartikel kann das Verfahren kontinuierlich mit allen damit verbundenen Vorteilen betrieben werden. Als siliciumhaltiges Eduktgas können Silicium-Halogenverbindungen (z.B. Chlorsilane oder Bromsilane), Monosilan (SiH4), sowie Mischungen dieser Gase mit Wasserstoff zum Einsatz kommen.Polycrystalline silicon granules or polysilicon granules for short is an alternative to the polysilicon produced in the Siemens process. While the polysilicon obtained in the Siemens process as a cylindrical silicon rod, the time-consuming and costly crushed before further processing into fragments and, if necessary, must be cleaned again, polysilicon granules bulk material properties and can be used directly as a raw material for example for single crystal production for the photovoltaic and electronics industry , Polysilicon granules are produced in a fluidized bed reactor. This is done by fluidization of silicon particles by means of a gas flow in a fluidized bed, which is heated by a heater to high temperatures. By addition of a silicon-containing reaction gas a pyrolysis reaction takes place on the hot particle surface. Here, elemental silicon is deposited on the silicon particles and the individual particles grow in diameter. By the regular withdrawal of grown particles and addition of smaller silicon particles as seed particles, the process can be operated continuously with all the associated advantages. Silicon-containing compounds (for example chlorosilanes or bromosilanes), monosilane (SiH 4 ) and mixtures of these gases with hydrogen can be used as the silicon-containing educt gas.

Das polykristalline Siliciumgranulat wird nach dessen Herstellung mittels einer Siebanlage in zwei oder mehr Fraktionen geteilt.
Die kleinste Siebfraktion (Siebunterkorn) kann anschließend in einer Mahlanlage zu Keimpartikeln verarbeitet und dem Reaktor zugegeben werden.
Die Siebzielfraktion wird üblicherweise verpackt.
The polycrystalline silicon granules are divided after its preparation by means of a sieve in two or more fractions.
The smallest sieve fraction (Siebunterkorn) can then be processed in a grinding plant to seed particles and added to the reactor.
The screening target fraction is usually packed.

US 2009081108 A1 offenbart eine Werkbank zum manuellen Sortieren von polykristallinem Silicium nach Größe und Qualität. Dabei ist ein lonisationssystem implementiert, um durch aktive Luftionisation elektrostatische Ladungen zu neutralisieren. Ionisatoren durchsetzen die Reinraumluft derart mit Ionen, dass statische Ladungen an Isolatoren und ungeerdeten Leitern abgebaut werden. US 2009081108 A1 discloses a workbench for manually sorting polycrystalline silicon by size and quality. An ionization system is implemented to neutralize electrostatic charges by active air ionization. Ionizers penetrate the clean room air with ions in such a way that static charges on insulators and ungrounded conductors are dissipated.

Üblicherweise werden Siebmaschinen eingesetzt, um polykristallines Silicium nach der Zerkleinerung in unterschiedliche Größenklassen zu sortieren bzw. zu klassieren.Usually screening machines are used to sort or classify polycrystalline silicon after comminution into different size classes.

Eine Siebmaschine ist allgemein eine Maschine zum Sieben, also der Trennung (Separation) von Feststoffgemischen nach Korngrößen.A screening machine is generally a machine for screening, ie the separation (separation) of solid mixtures to particle sizes.

Nach Bewegungscharakteristik wird zwischen Planschwingsiebmaschinen und Wurfsiebmaschinen unterschieden.According to the movement characteristics, a distinction is made between planing vibrating screens and throwing machines.

Der Antrieb der Siebmaschinen erfolgt meist elektromagnetisch bzw. durch Unwuchtmotoren oder -getriebe.The drive of the screening machines is usually electromagnetic or by unbalance motors or gearbox.

Die Bewegung des Siebbelags dient dem Weitertransport des Aufgabeguts in Sieblängsrichtung und dem Durchtritt der Feinfraktion durch die Maschenöffnungen.The movement of the Siebbelags serves the further transport of the feedstock in Sieblängsrichtung and the passage of the fine fraction through the mesh openings.

Im Gegensatz zu Planschwingsiebmaschinen tritt bei Wurfsiebmaschinen neben der horizontalen auch eine vertikale Siebbeschleunigung auf.In contrast to Planschwangsiebmaschinen occurs in throwing machines in addition to the horizontal and a vertical Siebbeschleunigung.

Bei den Wurfsiebmaschinen überlagern sich vertikale Wurfbewegungen mit leichten Drehbewegungen. Dies führt dazu, dass sich das Probengut über die gesamte Fläche des Siebbodens verteilt und die Partikel gleichzeitig eine Beschleunigung in vertikale Richtung erfahren (hochgeworfen werden). In der Luft können sie freie Drehungen durchführen und werden beim Zurückfallen auf das Sieb mit den Maschen des Siebgewebes verglichen. Sind die Partikel kleiner als diese, so passieren sie das Sieb, sind sie größer, werden sie erneut hochgeworfen. Die Drehbewegung stellt dabei sicher, dass sie beim nächsten Auftreffen auf dem Siebgewebe eine andere Orientierung haben und so vielleicht doch durch eine Maschenöffnung gelangen.In the litter screening machines, vertical throwing motions overlap with slight turning movements. As a result, the sample material spreads over the entire surface of the sieve bottom and at the same time the particles experience an acceleration in a vertical direction (thrown up). In the air they can make free turns and are compared with the mesh of the screen fabric when falling back on the screen. If the particles are smaller than these, they pass through the sieve, they are larger, they are thrown up again. The rotational movement ensures that they have a different orientation on the next sieve on the mesh and so maybe pass through a mesh opening.

Bei Plansiebmaschinen vollzieht der Siebturm eine horizontal kreisende Bewegung in einer Ebene. Hierdurch behalten die Partikel auf dem Siebgewebe größtenteils ihre Orientierung bei. Plansiebmaschinen werden vorzugsweise für nadel-, plättchenförmige, längliche oder faserige Siebgüter eingesetzt, bei denen ein Hochwerfen des Probengutes nicht zwingend von Vorteil ist.In planing sifters, the sieve tower completes a horizontal circular movement in one plane. As a result, the particles on the screen fabric largely retain their orientation. Planeting machines are preferably used for needle-shaped, platelet-shaped, elongated or fibrous screening goods, in which a throwing up of the sample is not necessarily beneficial.

Eine spezielle Art ist die Mehrdecksiebmaschine, die gleichzeitig mehrere Korngrößen fraktionieren kann. Sie sind konzipiert für eine Vielzahl scharfer Trennungen im Mittelbis Feinstkornbereich.A special type is the Mehrdecksiebmaschine, which can fractionate several grain sizes simultaneously. They are designed for a large number of sharp separations in the mid to ultra-fine grain range.

Das Antriebsprinzip beruht bei Mehrdeck-Plansiebmaschinen auf zwei gegenläufig arbeitenden Unwuchtmotoren, die eine lineare Schwingung erzeugen. Das Siebgut bewegt sich geradlinig über die horizontale Trennfläche. Dabei arbeitet die Maschine mit geringer Schwingbeschleunigung.The drive principle is based on two-deck planer on two counter-rotating unbalance motors that produce a linear vibration. The screen material moves in a straight line over the horizontal separating surface. The machine works with low vibration acceleration.

Durch ein Baukastensystem können eine Vielzahl von Siebdecks zu einem Siebstapel zusammengestellt werden. Somit können im Bedarfsfall unterschiedliche Körnungen in einer einzigen Maschine hergestellt werden, ohne dass Siebbeläge gewechselt werden müssen. Durch mehrfache Wiederholung gleicher Siebdeckfolgen kann dem Siebgut viel Siebfläche angeboten werden.Through a modular system, a variety of screening decks can be assembled into a stack of sieves. Thus, if necessary, different grain sizes can be produced in a single machine, without having to change screen coverings. By repeated repetition of the same Siebdeckfolgen the screening material can be offered much screen area.

US 8021483 B2 offenbart eine Vorrichtung zum Sortieren polykristalliner Siliciumstücke enthaltend eine Schwingungsmotoranordnung und einen Stufenbodenklassierer, befestigt an der Schwingungsmotoranordnung. Die Schwingungsmotoranordnung sorgt dafür, dass sich die Siliciumstücke über einen ersten Boden enthaltend Nuten bewegen. In einem Wirbelschichtbereich wird Staub durch einen Luftstrom durch eine perforierte Platte entfernt. In einem profilierten Bereich des ersten Bodens setzen sich die Siliciumstücke in Löchern von Nuten ab oder verbleiben auf Kämmen der Nuten. US 8021483 B2 discloses an apparatus for sorting polycrystalline silicon pieces including a vibratory motor assembly and a step bottom classifier attached to the vibratory motor assembly. The vibratory motor assembly causes the pieces of silicon to move over a first bottom containing grooves. In a fluidized bed area, dust is removed by a stream of air through a perforated plate. In a profiled area of the first floor, the pieces of silicon settle in holes of grooves or remain on ridges of the grooves.

Am Ende des ersten Bodens fallen Siliciumstücke, die kleiner als ein Spalt sind, durch diesen auf ein Transportband. Größere Siliciumstücke bewegen sich über den Spalt hinweg und fallen auf den zweiten Boden. Die Teile der Vorrichtung, die mit den polykristallinen Siliciumstücken in Kontakt kommen, bestehen aus Materialien, die eine Verunreinigung von Silicium minimieren. Als Beispiele sind genannt Wolframcarbid, PE, PP, PFA, PU, PVDF, PTFE, Silicium und Keramik.At the end of the first bottom, pieces of silicon smaller than a gap fall through it onto a conveyor belt. Larger pieces of silicon move across the gap and fall to the second floor. The parts of the device that come in contact with the polycrystalline silicon pieces are made of materials that minimize contamination of silicon. Examples are tungsten carbide, PE, PP, PFA, PU, PVDF, PTFE, silicon and ceramics.

US 2007235574 A1 offenbart eine Vorrichtung zum Zerkleinern und Sortieren von polykristallinem Silicium, umfassend eine Aufgabeeinrichtung für einen Polysilicium-Grobbruch in eine Brecheranlage, die Brecheranlage, und eine Sortieranlage zum Klassieren des Polysilicium-Bruchs, wobei die Vorrichtung mit einer Steuerung versehen ist, die eine variable Einstellung mindestens eines Brechparameters in der Brecheranlage und/oder mindestens eines Sortierparameters in der Sortieranlage ermöglicht. Besonders bevorzugt besteht die Sortieranlage aus einer mehrstufigen mechanischen Siebanlage und einer mehrstufigen optoelektronischen Trennanlage. Bevorzugt werden Schwingsiebmaschinen, die über einen Unwuchtmotor angetrieben werden, eingesetzt. Als Siebbelag sind Maschen- und Lochsiebe bevorzugt. US 2007235574 A1 discloses a device for crushing and sorting polycrystalline silicon, comprising a polysilicon rough-cut feeder in a crusher, the crusher, and a polysilicon-collapse classifier, the device being provided with a controller having at least one variable setting a crushing parameter in the crusher and / or at least one sorting parameter in the sorting system allows. Particularly preferably, the sorting plant consists of a multi-stage mechanical screening plant and a multi-stage optoelectronic separation plant. Preference Schwingsiebmaschinen that are driven by an unbalance motor used. As Siebbelag mesh and perforated sieves are preferred.

Die Siebstufen können hintereinander oder auch in einer anderen Struktur, wie z. B. einer Baumstruktur, angeordnet sein. Bevorzugt sind die Siebe in drei Stufen in einer Baumstruktur angeordnet.
Der von Feinanteilen befreite Polysilicium-Bruch wird vorzugsweise mittels optoelektronischer Trennanlage sortiert. Die Sortierung des Polysilicium-Bruchs kann nach allen Kriterien, die Stand der Technik in der Bildbearbeitung sind, erfolgen. Sie erfolgt vorzugsweise nach ein bis drei der Kriterien ausgewählt aus der Gruppe Länge, Fläche, Form, Morphologie, Farbe und Gewicht der Polysilicium-Bruchstücke, besonders bevorzugt Länge und Fläche.
The screening levels can be successively or in another structure, such. B. a tree structure, be arranged. Preferably, the sieves are arranged in three stages in a tree structure.
The freed from fines polysilicon fraction is preferably sorted by means of optoelectronic separation plant. Sorting of polysilicon fracture can be done according to all criteria that are state of the art in image processing. It is preferably carried out according to one to three of the criteria selected from the group length, area, shape, morphology, color and weight of polysilicon fragments, particularly preferably length and area.

Dies ermöglicht die Herstellung folgender Fraktionen:

  • Fraktion 0: Bruchgrößen mit einer Verteilung von ca. 0 bis 3 mm
  • Fraktion 1: Bruchgrößen mit einer Verteilung von ca. 1 mm bis 10 mm
  • Fraktion 2: Bruchgrößen mit einer Verteilung von ca. 10 mm bis 40 mm
  • Fraktion 3: Bruchgrößen mit einer Verteilung von ca. 25 mm bis 65 mm
  • Fraktion 4: Bruchgrößen mit einer Verteilung von ca. 50 mm bis 110 mm
  • Fraktion 5: Bruchgrößen mit einer Verteilung von ca. > 90 mm bis 250 mm
This allows the preparation of the following fractions:
  • Fraction 0: fraction sizes with a distribution of about 0 to 3 mm
  • Fraction 1: fraction sizes with a distribution of about 1 mm to 10 mm
  • Fraction 2: fraction sizes with a distribution of about 10 mm to 40 mm
  • Fraction 3: fraction sizes with a distribution of about 25 mm to 65 mm
  • Fraction 4: fraction sizes with a distribution of approx. 50 mm to 110 mm
  • Fraction 5: fraction sizes with a distribution of approx.> 90 mm to 250 mm

Über die exakte Verteilung der Bruchgrößen innerhalb der Fraktionen macht US 2007235574 A1 keine Angaben. DE3811091A1 offenbart ein Verfahren zum mechanischen Klassieren von polykristallinem Siliciumbruch, wobei der Siliciumbruch sich auf einem oder mehreren Sieben, jeweils umfassend einen Siebbelag aus polykristallinem Silicium, befinden, wodurch der Siliciumbruch in verschiedene Größenklassen getrennt wird.About the exact distribution of fractions within the fractions makes US 2007235574 A1 not specified. DE3811091A1 discloses a method of mechanically classifying polycrystalline silicon fracture, wherein the silicon fracture is on one or more screens, each comprising a polycrystalline silicon screen, whereby the silicon fraction is separated into various size classes.

US 5165548 A offenbart eine Vorrichtung zum größenmäßigen Separieren von für Halbleiteranwendungen geeigneten Siliciumstücken, mit einem zylindrischen Sieb, das mit einer Vorrichtung zum Drehen des zylindrischen Siebes verbunden ist, wobei die mit den Siliciumstücken in Berührung kommenden Oberflächen des Siebes im Wesentlichen aus für Halbleiteranwendungen geeignetem Silicium bestehen. US 5165548 A discloses an apparatus for size separating silicon pieces suitable for semiconductor applications, comprising a cylindrical screen connected to a device for rotating the cylindrical screen, wherein the surfaces of the screen contacting the silicon pieces consist essentially of silicon suitable for semiconductor applications.

US 7959008 B2 beansprucht ein Verfahren zum Aussieben von ersten Partikeln aus einem erste und zweite Partikel umfassenden Granulat durch Fördern des Granulats entlang einer vorzugsweise von einer Vibrationseinrichtung ausgehenden ersten Siebfläche, wobei die ersten Partikel ein Aspektverhältnis a1 mit a1 > n:1 und n = 2, 3, > 3, insbesondere mit a1 > 3:1, und die zweiten Partikel eine Dimensionierung aufweisen, die ein Hindurchfallen durch die Maschen der ersten Siebfläche ermöglicht, dadurch gekennzeichnet, dass das Granulat entlang der Siebfläche zwischen dieser und einer sich entlang der Siebfläche erstreckenden Abdeckung gefördert wird und dass durch die Abdeckung bedingt die ersten Partikel mit ihren Längsachsen entlang der Siebfläche verlaufend ausgerichtet werden, wobei Längenerstreckung eines jeden ersten Partikels grösser als Maschenweite des die erste Siebfläche bildenden Siebs ist und Längenerstreckung der zweiten Partikel gleich oder kleiner als die Maschenweite ist. US 7959008 B2 claims a method for sifting out first particles of granules comprising first and second particles by conveying the granules along a first screen surface, preferably starting from a vibration device, wherein the first particles have an aspect ratio a1 with a1> n: 1 and n = 2, 3, > 3, in particular with a1> 3: 1, and the second particles have a dimensioning which allows them to pass through the meshes of the first screen surface, characterized in that the granules are conveyed along the screen surface between this and a cover extending along the screen surface and that due to the cover the first particles are aligned with their longitudinal axes running along the screen surface, wherein the longitudinal extent of each first particle is greater than the mesh size of the screen forming the first screen surface and the longitudinal extent of the second particles is equal to or smaller than the mesh size.

EP 1454679 B1 beschreibt eine Siebvorrichtung mit einem ersten Schwingkörper, welcher mit ersten Querträgern versehen ist, und einem zweiten Schwingkörper, welcher mit zweiten Querträgern versehen ist, welche erste und zweite Querträger alternierend angeordnet sind und Einspannvorrichtungen aufweisen, so dass elastische Siebbeläge zwischen je einem ersten und je einem zweiten Querträger einspannbar sind, und einer Antriebseinheit, welche mit dem ersten Schwingkörper direkt gekoppelt ist und über welche der erste Schwingkörper zwangsgeführt ist, so dass die eingespannten elastischen Siebbeläge zwischen einer gestreckten und einer gestauchten Lage hin und her bewegt werden, wobei der zweite Schwingkörper gegenüber dem ersten Schwingkörper zwangsgeführt ist. EP 1454679 B1 describes a screening device with a first oscillating body, which is provided with first cross members, and a second oscillating body, which is provided with second cross members, which first and second cross members are arranged alternately and have clamping devices, so that elastic Siebbeläge between a first and one each second cross member are clamped, and a drive unit which is directly coupled to the first oscillating body and over which the first oscillating body is positively guided, so that the clamped elastic Siebbeläge between a stretched and a compressed position are moved back and forth, the second oscillating body opposite the first oscillating body is forcibly guided.

In US 6375011 B1 wird ein Verfahren zur Förderung von Siliciumbruch vorgeschlagen, bei dem die Siliciumbruchstücke über eine aus Reinstsilicium gefertigte Förderfläche eines Schwingförderers geführt werden. Dabei werden scharfkantige Siliciumbruchstücke verrundet, wenn sie auf der schwingenden Förderfläche eines Schwingförderers gefördert werden. Die spezifischen Oberflächen der Siliciumbruchstücke werden reduziert, oberflächlich anhaftende Kontaminationen werden abgeschliffen.In US 6375011 B1 For example, there is proposed a method for promoting silicon fracture in which the silicon fragments are passed over a conveying surface of a vibrating conveyor made of hyperpure silicon. In this case, sharp-edged silicon fragments are rounded when they are conveyed on the vibrating conveyor surface of a vibrating conveyor. The specific surfaces of the silicon fragments are reduced, superficial adhering contaminations are abraded.

Der durch eine erste Schwingfördereinheit verrundete Siliciumbruch kann über eine zweite Schwingfördereinheit geführt werden. Deren Förderfläche besteht aus parallel angeordneten Reinstsiliciumplatten, die über seitliche Befestigungsvorrichtungen fixiert sind. Die Reinstsiliciumplatten weisen Durchtrittsöffnungen, beispielsweise in Form von Durchbrüchen auf. Die Förderränder, die als seitliche Begrenzung der Förderflächen dienen, sind ebenfalls aus Reinstsiliciumplatten gefertigt und werden beispielsweise durch Niederhalter fixiert. Die aus Reinstsiliciumplatten gefertigten Förderflächen werden durch Stahlplatten und gegebenenfalls Dämpfungsmatten gestützt.The rounded by a first vibratory conveyor unit silicon break can via a second vibratory conveyor unit are performed. Their conveying surface consists of parallel arranged hyperpure silicon plates, which are fixed by lateral fastening devices. The hyperpure silicon plates have through openings, for example in the form of openings. The conveyor edges, which serve as a lateral boundary of the conveyor surfaces, are also made of hyperpure silicon plates and are fixed, for example, by hold-down. The conveyor surfaces made of hyperpure silicon slabs are supported by steel plates and optionally damping mats.

US 2012052297 A1 offenbart ein Verfahren zur Herstellung von polykristallinem Silicium, umfassend Brechen von an Dünnstäben in einem Siemensreaktor abgeschiedenem polykristallinem Silicium in Bruchstücke, Klassieren der Bruchstücke in Größenklassen von etwa 0,5 mm bis grösser als 45 mm, Behandlung der Siliciumbruchstücke mittels Druckluft oder Trockeneis, um Silicium staub ohne chemische Nassreinigung von den Bruchstücken zu entfernen. Das polykristallinen Silicium wird folgendermaßen klassiert: Bruchgröße 0 (BG0) in mm: ca. 0.5 bis 5; Bruchgröße 1 (BG1) in mm: ca. 3 bis 15; Bruchgröße 2 (BG2) in mm: ca. 10 bis 40; Bruchgröße 3 (BG3) in mm: ca. 20 bis 60; Bruchgröße 4 (BG4) in mm: ca. > 45; wobei jeweils mindestens 90 Gew.-% der Bruchfraktion innerhalb des genannten Größenbereiches liegen. Dies entspricht der Spezifikation der verschiedenen Bruchgrößen, in die das Silicium klassiert werden soll. Über das tatsächliche Ergebnis der Klassifizierung bzw. Sortierung des Siliciums und die Größenverteilungen innerhalb der einzelnen Größenklassen gibt die Anmeldung keine Auskunft. US 2012052297 A1 discloses a process for the production of polycrystalline silicon, comprising breaking into broken pieces of polycrystalline silicon deposited on thin rods in a Siemens reactor, classifying the fragments into size classes of about 0.5 mm to greater than 45 mm, treating the silicon fragments by means of compressed air or dry ice to form silicon Remove dust from the debris without chemical wet cleaning. The polycrystalline silicon is classified as follows: fraction size 0 (BG0) in mm: about 0.5 to 5; Break size 1 (BG1) in mm: approx. 3 to 15; Fracture size 2 (BG2) in mm: approx. 10 to 40; Crack size 3 (BG3) in mm: approx. 20 to 60; Fracture size 4 (BG4) in mm: approx.>45; in each case at least 90% by weight of the fracture fraction being within the stated size range. This corresponds to the specification of the different fraction sizes into which the silicon is to be classified. The application gives no information on the actual result of the classification or sorting of the silicon and the size distributions within the individual size classes.

US 2009120848 A1 beschreibt eine Vorrichtung, die eine flexible Klassierung von gebrochenem polykristallinem Silicium ermöglicht, dadurch gekennzeichnet, dass sie eine mechanische Siebanlage und eine optoelektronische Sortieranlage umfasst, wobei der Polybruch durch die mechanische Siebanlage in einen Silicium-Feinanteil und einen Silicium-Restanteil getrennt wird und der Silicium-Restanteil über eine optoelektronische Sortieranlagen in weitere Fraktionen aufgetrennt wird.
Die mechanische Siebanlage ist vorzugsweise eine Schwingsiebmaschine ist, die über einen Unwuchtmotor angetrieben wird.
US 2009120848 A1 describes a device which allows a flexible classification of broken polycrystalline silicon, characterized in that it comprises a mechanical sieve and an optoelectronic sorting system, wherein the poly-break is separated by the mechanical sieve into a silicon fines and a silicon remainder and the silicon -Restanteil is separated via an optoelectronic sorting in other fractions.
The mechanical screen is preferably a vibrating screen, which is driven by an unbalance motor.

Beim mechanischen Klassieren durch Sieben mittels Schwingsiebmaschinen gemäß Stand der Technik entsteht am Siebbelag Materialverschleiß, der in das Produkt eingetragen wird. Dadurch kommt es zu Verunreinigung des Polysiliciums mit im Siebbelag enthaltenen Bestandteilen.During mechanical classifying by sieving using vibrating screening machines according to the state of the art, material wear arises on the sieve lining and is introduced into the product. This leads to contamination of the polysilicon with components contained in the screen coating.

Außerdem ist im Stand der Technik nachteilig, dass die Fraktionen, in die das Polysilicium klassiert wird, sich deutlich überlappen.In addition, it is disadvantageous in the prior art that the fractions into which the polysilicon is classified clearly overlap.

Im Stand der Technik wurde bereits bei den Spezifikationen ein gewisser Überlapp in Kauf genommen.In the prior art, some overlap was already accepted in the specifications.

Bei US 2012052297 A1 beträgt der Überlapp zwischen Bruchgröße 2 und Bruchgröße 1 max. 5 mm, zwischen Bruchgröße 1 und Bruchgröße 0 max. 2 mm. Dies betrifft die Spezifikation, nach der klassiert werden soll. Die tatsächliche Verteilung der Bruchgrößen weicht in der Regel davon ab.at US 2012052297 A1 the overlap between fraction size 2 and fraction size 1 is max. 5 mm, between fraction size 1 and fraction size 0 max. 2 mm. This concerns the specification to classify. The actual distribution of fraction sizes usually deviates from this.

Gemäß US 2007235574 A1 beträgt der Überlapp zwischen einer Fraktion 1 und einer Fraktion 0 ebenfalls max. 2mm.According to US 2007235574 A1 If the overlap between a fraction 1 and a fraction 0 is also max. 2mm.

Vor allem bei den Fraktionen mit kleineren Bruchstückgrößen von 30 mm oder weniger ist ein solcher Überlapp unerwünscht.Especially in the fractions with smaller fragment sizes of 30 mm or less, such an overlap is undesirable.

Aus dieser Problematik ergab sich die Aufgabenstellung der Erfindung.From this problem, the task of the invention resulted.

Die Aufgabe der Erfindung wird gelöst durch ein Verfahren zum mechanischen Klassieren von polykristallinem Siliciumbruch oder -granulat mit einer Schwingsiebmaschine, wobei Siliciumbruch oder -granulat sich auf einem oder mehreren Sieben jeweils umfassend einen Siebbelag befinden, die derart in Schwingungen versetzt werden, dass der Siliciumbruch oder das Siliciumgranulat eine Bewegung ausführen, wodurch der Siliciumbruch oder das Siliciumgranulat in verschiedene Größenklassen getrennt werden, dadurch gekennzeichnet, dass die Siebkennziffer (Kv) größer oder gleich 1,6 und kleiner oder gleich 3,0 beträgt, und eine Wurfsiebmaschine verwendet wird. Die Siebkennziffer ist dabei definiert als Verhältnis der durch die Siebbewegung erzeugten Beschleunigung zur Gravitationsbeschleunigung vertikal zur Siebebene: K v = r * ω 2 * sin α + β / g * cos β ,

Figure imgb0001
wobei

  • r: Schwingamplitude;
  • ω: Winkelgeschwindigkeit;
  • α: Wurfwinkel ;
  • β Siebneigungswinkel;
  • g: Gravitationskonstante.
The object of the invention is achieved by a method for mechanically classifying polycrystalline silicon fracture or granules with a vibrating screen, wherein silicon fracture or granules are on one or more screens each comprising a screen lining, which are vibrated such that the silicon break or the silicon granules make a movement whereby the silicon or silicon granules are separated into different size classes, characterized in that the sieving index (K v ) is greater than or equal to 1.6 and less than or equal to 3.0, and a litter screening machine is used. The sieve index is defined as the ratio of the acceleration generated by the sieve movement to the gravitational acceleration vertical to the sieve plane: K v = r * ω 2 * sin α + β / G * cos β .
Figure imgb0001
in which
  • r: oscillation amplitude;
  • ω: angular velocity;
  • α: throw angle;
  • β screen tilt angle;
  • g: gravitational constant.

Sie gibt an, wie stark ein Gegenstand relativ zur Fallbeschleunigung g der Erde vertikal im Maximum beschleunigt.It indicates how strongly an object accelerates vertically at maximum relative to the gravitational acceleration g of the earth.

Ist die Siebkennziffer < 1, so herrscht reine Gleitbewegung (ohne Wurfbewegung), da die resultierende Vertikalbeschleunigung kleiner als die Fallbeschleunigung ist.If the sieving index is <1, then there is pure sliding movement (without throwing motion), since the resulting vertical acceleration is smaller than the falling acceleration.

Für eine Wurfbewegung muss die Siebkennziffer > 1 sein.For a throwing motion, the sieving index must be> 1.

Es hat sich überraschenderweise gezeigt, dass sowohl bei Verfahren mit einer Siebkennziffer von kleiner als 0,6 als auch bei Verfahren mit einer Siebkennziffer von größer als 9,0 deutlich schlechtere Siebergebnisse resultieren als im erfindungsgemäßen Bereich von 1,6 - 3,0.It has surprisingly been found that significantly worse sieving results both in processes with a sieving index of less than 0.6 and in processes with a sieve index of greater than 9.0 than in the inventive range of 1.6-3.0.

Besonders bevorzugt handelt es sich bei der Bewegung von Siliciumbruch oder - granulat um eine Wurfbewegung, wobei die Siebkennziffer 1,6 bis 3,0 beträgt. Es hat sich gezeigt, dass dadurch nochmals verbesserte Siebergebnisse, insbesondere eine noch höhere Trennschärfe zwischen den verschiedenen Größenklassen erzielt werden.The movement of silicon fracture or granulate is particularly preferably a throwing movement, the sieving index being 1.6 to 3.0. It has been shown that this results in even improved screening results, in particular an even higher selectivity between the different size classes.

Die Schwingamplitude beträgt vorzugsweise 0,5 bis 8 mm, besonders bevorzugt 1 bis 4 mm.The oscillation amplitude is preferably 0.5 to 8 mm, particularly preferably 1 to 4 mm.

Die Drehzahl ω/2π liegt vorzugsweise bei 400 bis 2000 U/min, besonders bevorzugt bei 600 bis 1500 U/min.The rotational speed ω / 2π is preferably 400 to 2000 rpm, more preferably 600 to 1500 rpm.

Der Wurfwinkel beträgt vorzugsweise 30 bis 60°, besonders bevorzugt 40 bis 50°.The throwing angle is preferably 30 to 60 °, particularly preferably 40 to 50 °.

Der Siebneigungswinkel gegenüber der Waagerechten beträgt vorzugsweise 0 bis 15°, besonders bevorzugt 0 bis 10°.The screen tilt angle with respect to the horizontal is preferably 0 to 15 °, particularly preferably 0 to 10 °.

Die Siebmaschine umfasst vorzugsweise einen Zuführbereich, in dem das Siebgut aufgegeben wird und einen Austragsbereich, in dem klassiertes Siebgut abgeführt wird.The screening machine preferably comprises a feed area in which the screenings are fed and a discharge area in which classified screenings are removed.

Vorzugsweise nimmt die Größe der Sieb-Öffnungen in Richtung Austrag zu. Fraktionen/Bruchgrößen werden dabei vorzugsweise über hintereinander angeordnete Austräge getrennt.Preferably, the size of the sieve openings increases in the direction of discharge. Fractions / break sizes are preferably separated by successively arranged discharges.

Vorzugsweise umfasst die Siebmaschine untereinander angeordnete Siebdecks. Dies hat den Vorteil, dass große Bruchstücke nicht feinmaschige Siebbeläge beschädigen können. Vorzugsweise werden dabei Fraktionen/Bruchgrößen über untereinander angeordnete Austräge getrennt.Preferably, the screening machine comprises mutually arranged screen decks. This has the advantage that large fragments can not damage fine mesh screen coverings. Preferably, fractions / break sizes are separated by discharges arranged one below the other.

Vorzugsweise umfasst die Siebmaschine ein Rahmen-Sieb-System. Dies ermöglicht einen schnellen Siebwechsel. Auch die Überwachung etwaiger Kontaminationen wird erleichtert.Preferably, the screening machine comprises a frame-sieve system. This allows a quick screen change. Also, the monitoring of any contamination is facilitated.

Ein solches Rahmen-Sieb-System sieht vor, dass Siebbeläge auf Rahmen geschraubt, geklebt, gesteckt oder vergossen werden, dass die Rahmen aus verschleißfestem Kunststoff (bevorzugt PP, PE, PU), ggf. mit Stahlarmierung, bestehen oder zumindest mit verschleißfestem Kunststoff ausgekleidet sind. Vorzugsweise sind die Rahmen durch vertikales Verspannen abgedichtet. Damit können Kontamination und Materialverlust vermieden werden.Such a frame-sieve system provides that screen coverings are screwed to the frame, glued, plugged or potted, that the frame made of wear-resistant plastic (preferably PP, PE, PU), possibly with steel reinforcement, or at least lined with wear-resistant plastic are. Preferably, the frames are sealed by vertical clamping. This can avoid contamination and material loss.

Es ist bevorzugt, Siebbeläge aus besonders verschleißfesten Kunststoffen einzusetzen, nämlich Elastomere mit einer Härte von größer als 65 Shore A, besonders bevorzugt mit einer Härte von größer als 80 Shore A. Die Shore-Härte ist in den Normen DIN 53505 und DIN 7868 festgelegt. Dabei können ein oder mehrere Siebbeläge oder deren Oberflächen aus einem solchen Elastomer bestehen.It is preferred to use screen linings made of particularly wear-resistant plastics, namely elastomers having a hardness greater than 65 Shore A, more preferably having a hardness greater than 80 Shore A. The Shore hardness is specified in the standards DIN 53505 and DIN 7868. In this case, one or more screen coverings or their surfaces may consist of such an elastomer.

Sowohl ein oder mehrere Siebbeläge oder deren Oberflächen als auch alle produktberührenden Bauteile und Auskleidungen bestehen vorzugsweise aus Kunststoffen mit einer Gesamtverunreinigung (Metalle, Dotierstoffe) von kleiner als 2000 ppmw, bevorzugt kleiner als 500 ppmw und besonders bevorzugt kleiner als 100 ppmw.Both one or more screen coverings or their surfaces as well as all product-contacting components and linings are preferably made of plastics with a total contamination (metals, dopants) of less than 2000 ppmw, preferably less than 500 ppmw and more preferably less than 100 ppmw.

Die maximale Verunreinigung der Kunststoffe mit den Elementen Al, Ca, P, Ti, Sn und Zn sollte dabei weniger als 100 ppmw, besonders bevorzugt weniger als 20 ppmw betragen.The maximum contamination of the plastics with the elements Al, Ca, P, Ti, Sn and Zn should be less than 100 ppmw, more preferably less than 20 ppmw.

Die maximale Verunreinigung der Kunststoffe mit den Elementen Cr, Fe, Mg, As, Co, Cu, Mo, Sb und W, sollte dabei weniger als 10 ppmw, besonders bevorzugt weniger als 0,2 ppmw betragen.
Die Bestimmung der Verunreinigungen erfolgt mittels ICP-MS (Massenspektrometrie mit induktiv gekoppeltem Plasma).
The maximum contamination of the plastics with the elements Cr, Fe, Mg, As, Co, Cu, Mo, Sb and W should be less than 10 ppmw, more preferably less than 0.2 ppmw.
The determination of the impurities is carried out by means of ICP-MS (mass spectrometry with inductively coupled plasma).

Vorzugsweise umfassen die Siebbeläge aus Kunststoffen eine Armierung oder Füllung aus Metallen, Glasfaser, Kohlefaser, Keramik oder Composit-Werkstoffen zur Versteifung.The screen coverings of plastics preferably comprise a reinforcement or filling of metals, glass fiber, carbon fiber, ceramic or composite materials for stiffening.

Vorzugsweise wird das Siebgut entstaubt. Durch die mechanische Siebung wird der Großteil des auf dem Schüttgut anhaftenden Feinstaubes auf den einzelnen Siebdecks mobilisiert. Dieser Effekt wird in der Erfindung genutzt, um das Schüttgut während des Siebprozesses zu entstauben.Preferably, the screenings are dedusted. The mechanical sieving mobilizes most of the fine dust adhering to the bulk material on the individual screen decks. This effect is used in the invention to dedust the bulk material during the screening process.

Wichtig ist hierbei, dass durch eine entsprechende Gasführung der freigewordene Feinstaub in einen Abgasweg abtransportiert wird, damit er nicht wieder ins Produkt gelangen kann.It is important in this case that the freed fine dust is transported away in an exhaust passage by a corresponding gas guide, so he can not get back into the product.

Die Gasführung kann entweder durch eine Absaugung oder durch eine Gasspülung erzeugt werden.The gas flow can be generated either by a suction or by a gas purging.

Als Sichtgas eignen sich gereinigte Luft, Stickstoff oder andere inerte Gase.
In der Siebmaschine soll dabei eine Gasgeschwindigkeit von 0,05 bis 0,5 m/s, besonders bevorzugt von 0,2 bis 0,3 m/s vorliegen.
Suitable visual gases are purified air, nitrogen or other inert gases.
In the screening machine, a gas velocity of 0.05 to 0.5 m / s, more preferably 0.2 to 0.3 m / s should be present.

Eine Gasgeschwindigkeit von 0,2 m/s kann beispielsweise mit einem Gasdurchsatz oder einer Absaugleistung von etwa 720 Nm3/h pro m2 Siebfläche eingestellt werden.A gas velocity of 0.2 m / s can be set, for example, with a gas throughput or an extraction capacity of about 720 Nm 3 / h per m 2 of screen area.

Als Feinstaub werden Partikel, die kleiner als 10 µm sind, verstanden.As fine dust particles are understood that are smaller than 10 microns.

Neben der Entstaubung in der Siebmaschine wird optional eine Entstaubung mittels Gegenstrom-Windsichtung in den Abzugsleitungen der einzelnen Siebfraktionen durchgeführt.In addition to dedusting in the screening machine, dedusting by means of countercurrent air classification in the discharge lines of the individual sieve fractions is optionally carried out.

Dabei wird im unteren Bereich der Abzugsleitungen das Sichtgas eingespeist und im oberen Bereich unmittelbar vor der Siebmaschine das staubbeladene Abgas abgeführt. Als Sichtgas kommen wieder die oben genannten Medien in Frage.In this case, the classifying gas is fed into the lower area of the flue ducts and the dust-laden exhaust gas is discharged in the upper area immediately in front of the screening machine. As a sight gas again the above media come into question.

Der Vorteil dieser Entstaubungsmethode liegt darin, dass der Sichtstrom an die Partikelgröße der Siebfraktion angepasst werden kann. Bei einer groben Siebfraktion kann beispielsweise ein hoher Sichtstrom eingestellt werden, ohne dass feines Produkt mit ausgetragen wird. Dadurch erhält man ein sehr gutes Entstaubungsergebnis und den gewünschten niedrigen Feinstaubanteil im Produkt.The advantage of this dedusting method is that the visual flow can be adapted to the particle size of the sieve fraction. With a coarse sieve fraction, for example, a high visual flow can be set without fine product being carried along. This gives a very good dedusting and the desired low particulate matter in the product.

Vorzugweise wird die Drehzahl zeitweise erhöht bis auf 4000 U/min, um die Siebbeläge von Steckkorn zu befreien. Zu diesem Zweck kann alternativ auch die Schwingamplitude zeitweise auf bis zu 15 mm erhöht werden.Preferably, the speed is temporarily increased up to 4000 rev / min, to free the screen coverings of Steckkorn. For this purpose, alternatively, the oscillation amplitude can be temporarily increased to up to 15 mm.

Ebenso ist es bevorzugt, Freischlagkugeln aus Kunststoff oder Reinstsilicium zu verwenden, um die Siebbeläge von Steckkorn zu befreien.Likewise, it is preferred to use free-blow balls made of plastic or hyperpure silicon in order to free the screen coverings from sticking grain.

Vorzugsweise nimmt die Schwingamplitude zum Austrag hin ab. Besonders bevorzugt ist das Verhältnis der Schwingamplitude am Austrag bis zu 50% geringer als am Eintritt. Es hat sich gezeigt, dass dadurch sowohl Verschleiß als auch Produktkontamination weiter reduziert werden können.Preferably, the oscillation amplitude decreases towards the discharge. Particularly preferably, the ratio of the vibration amplitude at the discharge is up to 50% less than at the inlet. It has been shown that both wear and product contamination can be further reduced.

Als Antriebsart für die Siebmaschine kommen Linear-, Kreis- oder Ellipsenschwinger in Frage. Der Antrieb sieht vorzugsweise eine vertikale Beschleunigungskomponente vor, um Siebverschleiß zu reduzieren und Steckkorn zu vermeiden.As a drive for the screening machine come linear, circular or elliptical oscillator in question. The drive preferably provides a vertical acceleration component to reduce screen wear and to avoid pinch.

Es ist bevorzugt, bestimmte Formen der Sieb-Öffnungen zu verwenden.
Als vorteilhaft haben sich rechteckige Öffnungen erwiesen. Es zeigt sich geringerer Verschleiß infolge kleinerer Kontaktflächen. Steck-/Klemmkorn kann leichter vermieden werden.
It is preferable to use certain shapes of the sieve openings.
As advantageous rectangular openings have been found. It shows less wear due to smaller contact surfaces. Plug / clamp grain can be avoided more easily.

Runde Öffnungen führen dagegen zu einer höheren Trennschärfe bzgl. der Partikelgröße.By contrast, round openings lead to a higher selectivity with regard to the particle size.

Quadratische Öffnungen sind ebenfalls bevorzugt. Mit ihnen lassen sich Vorteile von rechteckigen und runden Öffnungen kombinieren.Square openings are also preferred. With them advantages of rectangular and round openings can be combined.

Vorzugsweise sind der Siebtrog und die Siebauslässe innen vollständig mit Silicium oder mit einem thermoplastischen oder elastomeren Kunststoff ausgekleidet.Preferably, the screening tray and the Siebauslässe inside are completely lined with silicon or with a thermoplastic or elastomeric plastic.

Stahlgrundkörper der Siebmaschine sind vorzugsweise mit verschweißten PP-Auskleidungssegmenten versehen. Bevorzugt ist auch die Verwendung von Innenauskleidungen aus PU.Steel body of the screening machine are preferably provided with welded PP lining segments. Preference is also the use of interior linings made of PU.

Als Seitenauskleidungen haben sich stahlarmierten PU-Gussteilen als besonders geeignet erwiesen.As side linings, steel-reinforced PU castings have proven to be particularly suitable.

Zum Fixieren der Siebrahmen kommen vorzugsweise Schnellspannvorrichtungen zum Einsatz.For fixing the screen frame preferably quick release devices are used.

Es ist auch bevorzugt, als Siebbelag Silicium-Loch-Leisten zu verwenden. Es können ein oder mehrere Siebbeläge so ausgestaltet sein. Dabei handelt es sich vorzugsweise um mit Lochungen versehene Vierkantstäbe aus Reinstsilicium.It is also preferable to use silicon hole strips as the screen covering. One or more screen coverings can be designed in this way. These are preferably perforated square rods made of hyperpure silicon.

Diese weisen vorzugsweise wenigstens teilweise eine konische Lochform auf, d.h. die Querschnittsfläche ist oben kleiner als unten. Dies trägt zur Vermeidung von Steckkorn bei.These preferably have at least in part a conical hole shape, i. the cross-sectional area is smaller at the top than at the bottom. This contributes to avoiding pinch.

Der Konus weist vorzugsweise einen Winkel von 1 bis 20°, besonders bevorzugt 1 bis 5° auf.The cone preferably has an angle of 1 to 20 °, particularly preferably 1 to 5 °.

Vorzugsweise ist an der oberen Sieboberseite eine Kantenverrundung der Löcher mit einem Radius von 0,1 bis 2 mm vorgesehen, um Ausbrüchen und Verschleiß, welche zur Verschlechterung der Trennschärfe führen würden, zu vermeiden.Preferably, an edge rounding of the holes with a radius of 0.1 to 2 mm is provided on the upper Sieboberseite to avoid breakouts and wear, which would lead to a deterioration of the selectivity.

Vorzugsweise ist jeweils nur der untere Teil des Lochs konisch und der obere Teil zylindrisch, damit das Loch infolge von Verschleiß nicht zu schnell aufgeweitet wird.Preferably, only the lower part of the hole is conical and the upper part is cylindrical, so that the hole is not expanded too quickly due to wear.

Vorzugsweise sind Kunststoff-ummantelte Metallstützleisten zur Stabilisierung bei Bruch der Si-Leisten, zur Vermeidung von Kontamination und zur Sicherung gegen Lösen von Bruchstücken bei Leistenbruch vorgesehen.Plastic-sheathed metal support strips are preferably provided for stabilization in the event of breakage of the Si strips, in order to avoid contamination and to secure against loosening of fragments in case of inguinal hernia.

Vorzugsweise werden einzelne Si-Leisten mit Hartmetall-Abschlussleisten ausgestattet, die horizontal oder vertikal verspannt werden. Somit ist ein kostengünstiger Austausch einzelner Leisten je nach Verschleiß möglich. Beim verwendeten Hartmetall handelt es sich vorzugsweise um WC, SiC, SiN oder TiN.Preferably, individual Si strips are provided with hard metal end strips, which are braced horizontally or vertically. Thus, a cost-effective replacement of individual strips is possible depending on the wear. The hard metal used is preferably WC, SiC, SiN or TiN.

Vorzugsweise ist das Si-Lochsieb auf eine Unterlage gelegt, geklebt oder verschraubt. Dies ermöglicht eine höhere Festigkeit, es sind größere Flächen und die Verwendung dünnerer oder dickerer Siebe möglich. Bruch lässt sich leichter vermeiden.Preferably, the Si perforated screen is placed on a base, glued or screwed. This allows higher strength, larger areas and the use of thinner or thicker screens possible. Breakage is easier to avoid.

Es ist ganz besonders bevorzugt, sowohl Si-Lochsiebe als auch Siebe aus Kunststoff oder Siebe mit einem Kunststoffbelag zu verwenden.It is particularly preferred to use both Si perforated sieves and sieves made of plastic or sieves with a plastic covering.

Vorzugsweise wird als erster Siebschnitt ein Si-Loch-Sieb mit einem Lochdurchmesser von 5 mm bis 50 mm verwendet. Dabei können die großen Bruchstücke Klemmkörner abreinigen und somit ein Verstopfen verhindern.Preferably, a Si-hole sieve with a hole diameter of 5 mm to 50 mm is used as the first sieve cut. The large fragments can clean the sprue grains and thus prevent clogging.

Zur weiteren Trennung der Feinfraktionen werden ein oder mehrere Siebe aus Kunststoff oder mit Kunststoffbelägen verwendet.For further separation of the fine fractions one or more screens made of plastic or plastic coverings are used.

Vorzugsweise wird für Siliciumbruch mit Partikelgrößen von größer als 15 mm (max. Partikellänge) ein zusätzliches Vorsieb mit einem Kunststoff-Belag und mit einem Maschenverhältnis zum darunterliegenden Siebdeck von 1,5:1 bis 10:1 verwendet. Dadurch kann der Kunststoff-Verschleiß auf dem unteren Siebdeck reduziert werden. Die Auslässe beider Siebdecks werden zusammengeführt. Das Vorsiebdeck hat vorzugsweise eine geringere Siebspannung. Dies dient der Verschleißminimierung.Preferably, for silicon fracture with particle sizes greater than 15 mm (max particle length), an additional pre-screen with a plastic coating and with a mesh ratio to the underlying screen deck of from 1.5: 1 to 10: 1 is used. This can reduce the plastic wear on the lower screen deck. The outlets of both screen decks are merged. The Vorsiebdeck preferably has a lower wire tension. This serves to minimize wear.

Das erfindungsgemäße Verfahren (Wurfbewegung, Siebkennziffer 1,6-3.0) führt zu polykristallinen Siliciumbruchstücken mit einer scharfen Korngrößenverteilung ohne großen Überlapp bzw. zu mit einer hohen Trennschärfe klassiertem polykristallinem Siliciumgranulat, was so im Stand der Technik bislang nicht realisierbar war.The method according to the invention (throwing motion, screen index number 1.6-3.0) leads to polycrystalline silicon fragments having a sharp particle size distribution without large overlap or to polycrystalline silicon granules classified with a high selectivity, which was not possible in the prior art.

Beschrieben sind auch klassierte polykristalline Siliciumbruchstücke, gekennzeichnet durch eine Korngrößenklassierung in Bruchgrößenklassen 2, 1, 0 und F, wobei für die Bruchstücke gilt, dass bei Bruchgröße 2 max. 5 Gew.-% kleiner als 11 mm und max. 5 Gew.-% größer als 27 mm; bei Bruchgröße 1 max. 5 Gew.-% kleiner als 3,7 mm und max. 5 Gew.-% größer als 14 mm; bei Bruchgröße 0 max. 5 Gew.-% kleiner als 0,6 mm und max. 5 Gew.-% größer als 4,6 mm; bei Bruchgröße F max. 5 Gew.-% kleiner als 0,1 mm und max. 5 Gew.-% größer als 0,8 mm sind.Classified polycrystalline silicon fragments are also described, characterized by a particle size classification in fractional size classes 2, 1, 0 and F, whereby it applies for the fragments that at fraction size 2 max. 5% by weight smaller than 11 mm and max. 5% by weight greater than 27 mm; at fraction size 1 max. 5% by weight smaller than 3.7 mm and max. 5% by weight greater than 14 mm; at fraction size 0 max. 5% by weight less than 0.6 mm and max. 5 wt% greater than 4.6 mm; at fraction size F max. 5 wt .-% less than 0.1 mm and max. 5 wt .-% are greater than 0.8 mm.

Die Bruchgröße ist jeweils als längste Entfernung zweier Punkte auf der Oberfläche eines Silicium-Bruchstücks (=max. Länge) definiert.The fracture size is defined in each case as the longest distance of two points on the surface of a silicon fragment (= maximum length).

Es ergibt sich:

  • Bruchgröße F (BG F) in mm: 0,1 bis 0,8;
  • Bruchgröße 0 (BG 0) in mm: 0,6 bis 4,6;
  • Bruchgröße 1 (BG 1) in mm: 3,7 bis 14;
  • Bruchgröße 2 (BG 2) in mm: 11 bis 27.
It follows:
  • Fracture size F (BG F) in mm: 0.1 to 0.8;
  • Fracture size 0 (BG 0) in mm: 0.6 to 4.6;
  • Fracture size 1 (BG 1) in mm: 3.7 to 14;
  • Break size 2 (BG 2) in mm: 11 to 27.

Dabei liegen jeweils mindestens 90 Gew.-% der Bruchfraktion innerhalb des genannten Größenbereiches.In each case at least 90% by weight of the fracture fraction are within the stated size range.

Daraus ergibt sich ein Überlappungsbereich des 5 Gew.-%-Quantils der groben Bruchgröße zum 95 Gew.-%-Quantil der feinen Bruchgröße von:

  • Bruchgröße 2 zu Bruchgröße 1: max. 3 mm;
  • Bruchgröße 1 zu Bruchgröße 0: max. 0,9 mm;
  • Bruchgröße 0 zu Bruchgröße F: max. 0,2 mm.
This results in an overlap range of the 5% by weight quantile of the coarse fraction size to the 95% by weight quantile of the fine fraction size of:
  • Breakage size 2 to breakage size 1: max. 3 mm;
  • Break size 1 to breakage size 0: max. 0.9 mm;
  • Fraction size 0 to fraction size F: max. 0.2 mm.

Die polykristallinen Siliciumbruchstücke mit der verbesserten Korngrößenklassierung weisen vorzugsweise eine sehr niedrige Oberflächenkontamination auf:

  • Wolfram (W):
    • Bruchgröße 1 ≤ 100000 pptw, besonders bevorzugt ≤ 20000 pptw;
    • Bruchgröße 0 ≤ 1000000 pptw, besonders bevorzugt ≤ 200000 pptw;
    • Bruchgröße F ≤ 10000000 pptw, besonders bevorzugt ≤ 2000000 pptw;
  • Kobalt (Co):
    • Bruchgröße 2 ≤ 5000 pptw, besonders bevorzugt ≤ 500 pptw;
    • Bruchgröße 1 ≤ 50000 pptw, besonders bevorzugt ≤ 5000 pptw;
    • Bruchgröße 0 ≤ 500000 pptw, besonders bevorzugt ≤ 50000 pptw;
    • Bruchgröße F ≤ 5000000 pptw, besonders bevorzugt ≤ 500000 pptw;
  • Eisen (Fe):
    • Bruchgröße 2 ≤ 50000 pptw, besonders bevorzugt ≤ 1000 pptw;
    • Bruchgröße 1 ≤ 500000 pptw, besonders bevorzugt ≤ 10000 pptw;
    • Bruchgröße 0 ≤ 5000000 pptw, besonders bevorzugt ≤ 100000 pptw;
    • Bruchgröße F ≤ 50000000 pptw, besonders bevorzugt ≤ 1000000 pptw;
  • Kohlenstoff (C):
    • Bruchgröße 2 ≤ 1 ppmw, besonders bevorzugt ≤ 0,2 ppmw;
    • Bruchgröße 1 ≤ 10 ppmw, besonders bevorzugt ≤ 2 ppmw;
    • Bruchgröße 0 ≤ 100 ppmw, besonders bevorzugt ≤ 20 ppmw;
    • Bruchgröße F ≤ 1000 ppmw, besonders bevorzugt ≤ 200 ppmw;
  • Cr, Ni, Na, Zn, Al, Cu, Mg, Ti, K, Ag, Ca, Mo je Einzelelement:
    • Bruchgröße 2 ≤ 1000 pptw, besonders bevorzugt ≤ 100 pptw;
    • Bruchgröße 1 ≤ 2000 pptw, besonders bevorzugt ≤ 200 pptw;
    • Bruchgröße 0 ≤ 10000 pptw, besonders bevorzugt ≤ 1000 pptw;
    • Bruchgröße F ≤ 100000 pptw, besonders bevorzugt ≤ 10000 pptw;
  • Feinstaub (Siliciumpartikel mit einer Größe von weniger als 10 µm):
    • Bruchgröße 2 ≤ 5 ppmw, besonders bevorzugt ≤ 2 ppmw;
    • Bruchgröße 1≤ 15 ppmw, besonders bevorzugt ≤ 5 ppmw;
    • Bruchgröße ≤ 25 ppmw, besonders bevorzugt ≤ 10 ppmw;
    • Bruchgröße F ≤ 50 ppmw, besonders bevorzugt ≤ 20 ppmw.
The polycrystalline silicon fragments having the improved grain size classification preferably have a very low surface contamination:
  • Tungsten (W):
    • Fracture size 1 ≤ 100,000 pptw, more preferably ≤ 20000 pptw;
    • Crack size 0 ≤ 1000000 pptw, more preferably ≤ 200000 pptw;
    • Fracture size F ≤ 10000000 pptw, more preferably ≤ 2000000 pptw;
  • Cobalt (Co):
    • Fraction size 2 ≤ 5000 pptw, more preferably ≤ 500 pptw;
    • Fracture size 1 ≤ 50000 pptw, more preferably ≤ 5000 pptw;
    • Fraction size 0 ≤ 500,000 pptw, more preferably ≤ 50,000 pptw;
    • Fracture size F ≤ 5000000 pptw, more preferably ≤ 500000 pptw;
  • Iron (Fe):
    • Crack size 2 ≤ 50000 pptw, more preferably ≤ 1000 pptw;
    • Crack size 1 ≤ 500,000 pptw, more preferably ≤ 10000 pptw;
    • Fraction size 0 ≤ 5000000 pptw, more preferably ≤ 100000 pptw;
    • Fracture size F ≤ 50,000,000 pptw, more preferably ≤ 1000000 pptw;
  • Carbon (C):
    • Fraction size 2 ≦ 1 ppmw, more preferably ≦ 0.2 ppmw;
    • Fraction size 1 ≦ 10 ppmw, more preferably ≦ 2 ppmw;
    • Fraction size 0 ≦ 100 ppmw, more preferably ≦ 20 ppmw;
    • Fracture size F ≦ 1000 ppmw, more preferably ≦ 200 ppmw;
  • Cr, Ni, Na, Zn, Al, Cu, Mg, Ti, K, Ag, Ca, Mo per single element:
    • Crack size 2 ≤ 1000 pptw, more preferably ≤ 100 pptw;
    • Fracture size 1 ≤ 2000 pptw, more preferably ≤ 200 pptw;
    • Fraction size 0 ≤ 10000 pptw, more preferably ≤ 1000 pptw;
    • Fracture size F ≦ 100000 pptw, more preferably ≦ 10000 pptw;
  • Particulate matter (silicon particles less than 10 μm in size):
    • Fraction size 2 ≦ 5 ppmw, more preferably ≦ 2 ppmw;
    • Fracture size 1 ≦ 15 ppmw, more preferably ≦ 5 ppmw;
    • Crack size ≤ 25 ppmw, more preferably ≤ 10 ppmw;
    • Fraction size F ≦ 50 ppmw, more preferably ≦ 20 ppmw.

Beschrieben ist auch klassiertes polykristallines Siliciumgranulat, klassiert wenigstens in die zwei Größenklassen Siebzielkorn und Siebunterkorn, wobei eine Trennschärfe zwischen Siebzielkorn und Siebunterkorn mehr als 0,86 beträgt.Described is also classified polycrystalline silicon granules, classified at least in the two size classes Siebzielkorn and Siebunterkorn, wherein a selectivity between Siebzielkorn and Siebunterkorn is more than 0.86.

Vorzugsweise handelt es sich um klassiertes polykristallines Siliciumgranulat, klassiert in Siebzielkorn, Siebunterkorn und Sieboberkorn, wobei eine Trennschärfe zwischen Siebzielkorn und Siebunterkorn und zwischen Siebzielkorn und Sieboberkorn jeweils mehr als 0,86 beträgt.It is preferably classified polycrystalline silicon granules, classified in Siebzielkorn, Siebunterkorn and Sieboberkorn, wherein a selectivity between Siebzielkorn and Siebunterkorn and between Siebzielkorn and Sieboberkorn is more than 0.86.

Klassiertes polykristallines Siliciumgranulat weist vorzugsweise folgende Verunreinigungen mit Metallen an der Oberfläche auf: Fe: < 800 pptw, besonders bevorzugt < 400 pptw; Cr: < 100 pptw, besonders bevorzugt < 60 pptw; Ni: < 100 pptw, besonders bevorzugt < 50 pptw; Na: < 100 pptw, besonders bevorzugt < 50 pptw; Cu: < 20 pptw, besonders bevorzugt < 10 pptw; Zn: < 2000 pptw, besonders bevorzugt < 1000 pptw.Classified polycrystalline silicon granules preferably have the following impurities with metals on the surface: Fe: <800 pptw, more preferably <400 pptw; Cr: <100 pptw, more preferably <60 pptw; Ni: <100 pptw, more preferably <50 pptw; Na: <100 pptw, more preferably <50 pptw; Cu: <20 pptw, more preferably <10 pptw; Zn: <2000 pptw, more preferably <1000 pptw.

Klassiertes polykristallines Siliciumgranulat weist vorzugsweise eine Verunreinigung mit Kohlenstoff an der Oberfläche von weniger als 10 ppmw, besonders bevorzugt weniger als 5 ppmw, auf.Classified polycrystalline silicon granules preferably have a surface carbon contamination of less than 10 ppmw, more preferably less than 5 ppmw.

Klassiertes polykristallines Siliciumgranulat weist vorzugsweise eine Verunreinigung mit Feinstaub an der Oberfläche von weniger als 10 ppmw, besonders bevorzugt we niger als 5 ppmw, auf. Feinstaub ist definiert als Siliciumpartikel mit einer Größe von weniger als 10 µm.Classified polycrystalline silicon granules preferably have a surface particulate contamination of less than 10 ppmw, more preferably we niger than 5 ppmw, on. Fine dust is defined as silicon particles with a size of less than 10 μm.

Beispiele und VergleichsbeispieleExamples and Comparative Examples

Die Vorteile der Erfindung werden nachfolgend anhand von Beispielen und Vergleichsbeispielen gezeigt.The advantages of the invention are shown below with reference to examples and comparative examples.

Beispiel 1 und Vergleichsbeispiel 2 beziehen sich auf das Klassieren von polykristallinen Siliciumbruchstücken in die Bruchgrößen 2, 1, 0 und F. Example 1 and Comparative Example 2 relate to classifying polycrystalline silicon fragments into fractions 2, 1, 0, and F.

Beispiel 3 und Vergleichsbeispiel 4 beziehen sich auf das Klassieren von polykristallinem Siliciumgranulat (Siebzielkorn 0,75 - 4 mm). Example 3 and Comparative Example 4 relate to classifying polycrystalline silicon granules (sieve grain size 0.75 - 4 mm).

Beispiel 1example 1

Tabelle 1a zeigt die wesentlichen Parameter der Siebmaschine. Tabelle 1a Siebbreite b [mm] 600 Sieblänge l [mm] 1600 Frequenz n [Hz] 25 Drehzahl [U/min] 1500 Winkelgeschwindigkeit ω [1/s] 157,1 Schwingweite [mm] 3 Amplitude r [mm] 1,5 Siebneigung β [°] 0 Wurfwinkel α [°] 50 Siebkennziffer Kv [-] 2,9 Durchsatz [kp/h] 700 N2-Sichtgas[Nm3/h] 50 Table 1a shows the essential parameters of the screening machine. <b> Table 1a </ b> Wire width b [mm] 600 Sieve length l [mm] 1600 Frequency n [Hz] 25 Speed [rpm] 1500 Angular velocity ω [1 / s] 157.1 Amplitude [mm] 3 Amplitude r [mm] 1.5 Screen inclination β [°] 0 Throwing angle α [°] 50 Screening number Kv [-] 2.9 Throughput [kp / h] 700 N 2 sealing gas [Nm 3 / h] 50

Tabelle 1b zeigt, welcher Siebsatz im Beispiel zum Einsatz kam. Es wurden drei Siebdecks mit unterschiedlichen Maschenweiten der Siebe verwendet. Tabelle 1b Maschenweite [mm] Material Deck 1 9 Polyurethan Deck 2 1,9 Polyamid Deck 3 0,3 Polyamid Table 1b shows which sieve set was used in the example. Three sieve decks with different sieve mesh sizes were used. <b> Table 1b </ b> Mesh size [mm] material Deck 1 9 polyurethane Deck 2 1.9 polyamide Deck 3 0.3 polyamide

Tabelle 1c zeigt die Zusammensetzung der Siebbeläge. Tabelle 1c Element Polyurethan: Polyamid: Al [ppmw] 17 0,7 Ca [ppmw] 14 9,1 Cr [ppmw] < 0,2 0,3 Fe [ppmw] 0,7 0,9 K [ppmw] 0,7 < 0,2 Mg [ppmw] 0,4 0,2 Na [ppmw] 0,3 0,6 P [ppmw] 63 < 20 Sn [ppmw] 5,4 < 0,2 Ti [ppmw] 570 0,2 Zn [ppmw] 8,5 < 0,2 As, B, Ba, Cd, Co, Cu, Li, Mn, Mo, Ni, Sr, V [ppmw] < 0,2 < 0,2 Be, Bi, Pb, Sb, W [ppmw] < 0,2 < 0,2 Table 1c shows the composition of the screen coverings. <b> Table 1c </ b> element polyurethane: Polyamide: Al [ppmw] 17 0.7 Ca [ppmw] 14 9.1 Cr [ppmw] <0.2 0.3 Fe [ppmw] 0.7 0.9 K [ppmw] 0.7 <0.2 Mg [ppmw] 0.4 0.2 Na [ppmw] 0.3 0.6 P [ppmw] 63 <20 Sn [ppmw] 5.4 <0.2 Ti [ppmw] 570 0.2 Zn [ppmw] 8.5 <0.2 As, B, Ba, Cd, Co, Cu, Li, Mn, Mo, Ni, Sr, V [ppmw] <0.2 <0.2 Be, Bi, Pb, Sb, W [ppmw] <0.2 <0.2

Die dabei erzielten Siebergebnisse in Hinblick auf die Korngrößenverteilung sind in den Tabellen 1d und 1e dargestellt. Tabelle 1d Bruchgröße 2 Bruchgröße 1 Bruchgröße 0 Bruchgröße F 5Gew.-%-Längenquantil: [mm] 11,3 3,9 0,65 0,12 95Gew.-%-Längenquantil: [mm] 26,7 13,9 4,4 0,72 Tabelle 1e BG 2/1 BG1/0 BG0/F Überlapp 5Gew.-% / 95Gew.-% [mm] 2,6 0,5 0,07 The sieving results achieved with regard to the particle size distribution are shown in Tables 1d and 1e . <b> Table 1d </ b> Fraction size 2 Break size 1 Fraction size 0 Fracture size F 5% by weight - length quantile: [mm] 11.3 3.9 0.65 0.12 95% by weight - length quantile: [mm] 26.7 13.9 4.4 0.72 BG 2/1 BG1 / 0 Size 0 / F Overlap 5% by weight / 95% by weight [mm] 2.6 0.5 0.07

Tabelle 1f zeigt die Verunreinigungen der klassierten Bruchstücke mit Oberflächenmetallen, Kohlenstoff, Dotierstoffen und Feinstaub. Tabelle 1f Metalle, Kohlenstoff, Dotierstoffe, Feinstaub Bruchgröße 2 Bruchgröße 1 Bruchgröße 0 Bruchgröße F Fe [pptw] 80 170 1200 12800 Cr [pptw] 10 60 270 7300 Ni [pptw] <10 10 110 5400 Na [pptw] 20 40 430 6300 Zn [pptw] <10 40 210 5000 Al [pptw] 30 80 40 6200 Cu [pptw] <10 <10 30 <5000 Mg [pptw] <10 20 70 5600 Ti [pptw] <10 20 170 <5000 W [pptw] 1500 6340 57600 969000 K [pptw] 20 10 160 <5000 Ag [pptw] <10 <10 <10 <5000 Ca [pptw] 60 110 350 <5000 Co [pptw] 270 730 9300 135000 V [pptw] <10 10 130 <5000 Pb [pptw] <10 <10 90 <5000 Zr [pptw] <10 <10 860 <5000 Mo, As, Be, Bi, Cd, In, Li, Mn, Sn [pptw] <10 <10 <10 <5000 C [ppbw] 72 278 896 5857 B [pptw] 6 15 41 106 P [pptw] 35 131 208 574 As [pptw] 3 7 15 51 Feinstaub (< 10 µm) [ppmw] 1,9 3,8 8,4 17,2 Table 1f shows the contaminants of the classified fragments with surface metals, carbon, dopants and particulate matter. <b> Table 1f </ b> Metals, carbon, dopants, particulate matter Fraction size 2 Break size 1 Fraction size 0 Fracture size F Fe [pptw] 80 170 1200 12800 Cr [pptw] 10 60 270 7300 Ni [pptw] <10 10 110 5400 Na [pptw] 20 40 430 6300 Zn [pptw] <10 40 210 5000 Al [pptw] 30 80 40 6200 Cu [pptw] <10 <10 30 <5000 Mg [pptw] <10 20 70 5600 Ti [pptw] <10 20 170 <5000 W [pptw] 1500 6340 57600 969000 K [pptw] 20 10 160 <5000 Ag [pptw] <10 <10 <10 <5000 Ca [pptw] 60 110 350 <5000 Co [pptw] 270 730 9300 135000 V [pptw] <10 10 130 <5000 Pb [pptw] <10 <10 90 <5000 Zr [pptw] <10 <10 860 <5000 Mo, As, Be, Bi, Cd, In, Li, Mn, Sn [pptw] <10 <10 <10 <5000 C [ppbw] 72 278 896 5857 B [pptw] 6 15 41 106 P [pptw] 35 131 208 574 As [pptw] 3 7 15 51 Fine dust (<10 μm) [ppmw] 1.9 3.8 8.4 17.2

Vergleichsbeispiel 2Comparative Example 2

Tabelle 2a zeigt die wesentlichen Parameter der hierfür verwendeten Siebmaschine. Tabelle 2a Siebbreite b [mm] 600 Sieblänge l [mg] 1600 Frequenz n [Hz] 20 Drehzahl [U/min] 1200 Winkelgeschwindigkeit ω [1/s] 125,7 Schwingweite [mm] 2,4 Amplitude r [mm] 1,2 Siebneigung β [°] 0 Wurfwinkel α [°] 45 Siebkennziffer Kv [-] 1,4 Durchsatz [kg/h] 700 N2-Sichtgas[Nm3/h] NN Table 2a shows the essential parameters of the screening machine used for this purpose. <b> Table 2a </ b> Wire width b [mm] 600 Length l [mg] 1600 Frequency n [Hz] 20 Speed [rpm] 1200 Angular velocity ω [1 / s] 125.7 Amplitude [mm] 2.4 Amplitude r [mm] 1.2 Screen inclination β [°] 0 Throwing angle α [°] 45 Screening number Kv [-] 1.4 Throughput [kg / h] 700 N 2 sealing gas [Nm 3 / h] NN

Tabelle 2b zeigt, welcher Siebsatz im Vergleichsbeispiel 2 zum Einsatz kam. Es wurden drei Siebdecks mit unterschiedlichen Maschenweiten der Siebe verwendet. Tabelle 2b Maschenweite [mm] Material Deck 1 9 Polyurethan Deck 2 1,9 Polyamid Deck 3 0,3 Polyamid Table 2b shows which sieve set was used in Comparative Example 2 . Three sieve decks with different sieve mesh sizes were used. <b> Table 2b </ b> Mesh size [mm] material Deck 1 9 polyurethane Deck 2 1.9 polyamide Deck 3 0.3 polyamide

Tabelle 2c zeigt die Zusammensetzung der verwendeten Siebbeläge. Tabelle 2c Element Polyurethan: Polyamid: Al [ppmw] 43 2,3 Ca [ppmw] 35 44 Cr [ppmw] < 0,2 2,0 Fe [ppmw] 4,5 4,7 K [ppmw] 5,1 0,6 Mg [ppmw] 2,6 0,8 Na [ppmw] 3,8 6,1 P [ppmw] 114 28 Sn [ppmw] 18 1,1 Ti [ppmw] 1220 0,7 Zn [ppmw] 19 1,5 Ni [ppmw] 1,2 0,8 Cu [ppmw] 0,8 0,6 B [ppmw] 4,4 1,9 As, B, Ba, Cd, Co, Li, Mn, Mo, Sr, V [ppmw] < 0,2 < 0,2 Be, Bi, Pb, Sb, W [ppmw] < 0,2 < 0,2 Table 2c shows the composition of the screen coverings used. <b> Table 2c </ b> element polyurethane: Polyamide: Al [ppmw] 43 2.3 Ca [ppmw] 35 44 Cr [ppmw] <0.2 2.0 Fe [ppmw] 4.5 4.7 K [ppmw] 5.1 0.6 Mg [ppmw] 2.6 0.8 Na [ppmw] 3.8 6.1 P [ppmw] 114 28 Sn [ppmw] 18 1.1 Ti [ppmw] 1220 0.7 Zn [ppmw] 19 1.5 Ni [ppmw] 1.2 0.8 Cu [ppmw] 0.8 0.6 B [ppmw] 4.4 1.9 As, B, Ba, Cd, Co, Li, Mn, Mo, Sr, V [ppmw] <0.2 <0.2 Be, Bi, Pb, Sb, W [ppmw] <0.2 <0.2

Die dabei erzielten Siebergebnisse in Hinblick auf die Korngrößenverteilung sind in den Tabellen 2d und 2e dargestellt. Tabelle 2d Bruchgröße 2 Bruchgröße 1 Bruchgröße 0 Bruchgröße F 5Gew.-%-Längenquantil [mm] 10 3 0,5 0,11 95Gew.-%-Längenquantil [mm] 40 15 5 0,81 Tabelle 2e BG 2/1 BG1/0 BG0/F Überlapp 5Gew.-% / 95Gew.-% [mm] 5 2 0,31 The sieving results obtained with regard to the particle size distribution are shown in Tables 2d and 2e . <b> Table 2d </ b> Fraction size 2 Break size 1 Fraction size 0 Fracture size F 5% by weight - length quantile [mm] 10 3 0.5 0.11 95% by weight - length quantum [mm] 40 15 5 0.81 BG 2/1 BG1 / 0 Size 0 / F Overlap 5% by weight / 95% by weight [mm] 5 2 0.31

Der Überlapp ist deutlich höher als bei Beispiel 1. Dies ist auf die veränderten Parameter der Siebmaschine, insbesondere auf die niedrigere Siebkennziffer zurückzuführen.The overlap is significantly higher than in example 1. This is due to the changed parameters of the screening machine, in particular to the lower sieve index.

Tabelle 2f zeigt die Verunreinigungen der klassierten Bruchstücke mit Oberflächenmetallen, Kohlenstoff, Dotierstoffen und Feinstaub. Tabelle 2f Oberflächenkontaminationen Bruchgröße 2 Bruchgröße 1 Bruchgröße 0 Bruchgröße F Fe [pptw] 200 340 1640 19800 Cr [pptw] 30 50 310 11000 Ni [pptw] <10 40 180 6800 Na [pptw] 40 50 480 7900 Zn [pptw] 20 30 360 6100 Al [pptw] 70 120 160 8400 Cu [pptw] <10 20 60 <5000 Mg [pptw] <10 30 80 9700 Ti [pptw] <10 40 160 <5000 W [pptw] 1640 5830 60700 1067000 K [pptw] 10 30 140 <5000 Ag [pptw] <10 <10 <10 <5000 Ca [pptw] 50 130 380 <5000 Co [pptw] 300 790 11300 12800 V [pptw] <10 <10 100 <5000 Pb [pptw] <10 20 80 <5000 Zr [pptw] <10 <10 670 <5000 Mo, As, Be, Bi, Cd, In, Li, Mn, Sn [pptw] <10 <10 <10 <5000 C [ppbw] 103 387 1431 7299 B [pptw] 6 16 48 133 P[pptw] 32 164 216 614 As [pptw] 2 8 22 60 Feinstaub [ppmw] 4,8 11,5 19,3 44,2 Table 2f shows the contaminants of the classified fragments with surface metals, carbon, dopants and particulate matter. <b> Table 2f </ b> surface contamination Fraction size 2 Break size 1 Fraction size 0 Fracture size F Fe [pptw] 200 340 1640 19800 Cr [pptw] 30 50 310 11000 Ni [pptw] <10 40 180 6800 Na [pptw] 40 50 480 7900 Zn [pptw] 20 30 360 6100 Al [pptw] 70 120 160 8400 Cu [pptw] <10 20 60 <5000 Mg [pptw] <10 30 80 9700 Ti [pptw] <10 40 160 <5000 W [pptw] 1640 5830 60700 1067000 K [pptw] 10 30 140 <5000 Ag [pptw] <10 <10 <10 <5000 Ca [pptw] 50 130 380 <5000 Co [pptw] 300 790 11300 12800 V [pptw] <10 <10 100 <5000 Pb [pptw] <10 20 80 <5000 Zr [pptw] <10 <10 670 <5000 Mo, As, Be, Bi, Cd, In, Li, Mn, Sn [pptw] <10 <10 <10 <5000 C [ppbw] 103 387 1431 7299 B [pptw] 6 16 48 133 P [pptw] 32 164 216 614 As [pptw] 2 8th 22 60 Fine dust [ppmw] 4.8 11.5 19.3 44.2

Die Verunreinigungen sind durchweg höher als bei Beispiel 1. Dies zeigt den Einfluss der Zusammensetzung der Siebbeläge auf die oberflächliche Kontamination der Bruchstücke nach Klassierung.The impurities are consistently higher than in Example 1. This shows the influence of the composition of the Siebbeläge on the surface contamination of the fragments after classification.

Beispiel 3Example 3

Tabelle 3a zeigt die wesentlichen Parameter der Siebmaschine. Tabelle 3a Siebbreite b [mm] 500 Sieblänge l [mm] 1100 Frequenz n [Hz] 24,3 Drehzahl [U/min] 1460 Winkelgeschwindigkeit ω [1/s] 152,9 Schwingweite [mm] 2,4 Amplitude r [mm] 1,2 Siebneigung β [°] 3 Wurfwinkel α [°] 40 Siebkennziffer Kv [-] 1,95 Si-Durchsatz [kg/h] 1000 N2-Sichtgas [Nm3/h] 55 Table 3a shows the essential parameters of the screening machine. <b> Table 3a </ b> Wire width b [mm] 500 Sieve length l [mm] 1100 Frequency n [Hz] 24.3 Speed [rpm] 1460 Angular velocity ω [1 / s] 152.9 Amplitude [mm] 2.4 Amplitude r [mm] 1.2 Screen inclination β [°] 3 Throwing angle α [°] 40 Screening number Kv [-] 1.95 Si throughput [kg / h] 1000 N 2 sealing gas [Nm 3 / h] 55

Tabelle 3b zeigt, welcher Siebsatz im Beispiel 3 zum Einsatz kam. Es wurden drei Siebdecks mit unterschiedlichen Maschenweiten der Siebe verwendet. Tabelle 3b Maschenweite [mm] Material Deck 1 9 Polyurethan Deck 2 4,0 Polyamid Deck 3 0,75 Polyamid Table 3b shows which sieve set was used in Example 3 . Three sieve decks with different sieve mesh sizes were used. <b> Table 3b </ b> Mesh size [mm] material Deck 1 9 polyurethane Deck 2 4.0 polyamide Deck 3 0.75 polyamide

Tabelle 3c zeigt die Zusammensetzung der Siebbeläge. Tabelle 3c Element: Polyurethan: Polyamid: Al [ppmw] 17,1 < 0,2 Ca [ppmw] 11,3 18,6 Cr [ppmw] < 0,2 < 0,2 Fe [ppmw] 0,6 0,3 K [ppmw] 0,9 NN Mg [ppmw] 0,3 0,2 Na [ppmw] 0,4 0,9 P [ppmw] 53,2 < 20 Sn [ppmw] 5,8 NN Ti [ppmw] 560 < 0,2 Zn [ppmw] 7,5 < 0,2 B, Ba, Cd, Co, Cu, Li, Mn, Mo, Ni, Sr, V [ppmw] < 0,2 < 0,2 As, Be, Bi, Pb, Sb, W [ppmw] < 0,2 NN Table 3c shows the composition of the screen coverings. <b> Table 3c </ b> Element: polyurethane: Polyamide: Al [ppmw] 17.1 <0.2 Ca [ppmw] 11.3 18.6 Cr [ppmw] <0.2 <0.2 Fe [ppmw] 0.6 0.3 K [ppmw] 0.9 NN Mg [ppmw] 0.3 0.2 Na [ppmw] 0.4 0.9 P [ppmw] 53.2 <20 Sn [ppmw] 5.8 NN Ti [ppmw] 560 <0.2 Zn [ppmw] 7.5 <0.2 B, Ba, Cd, Co, Cu, Li, Mn, Mo, Ni, Sr, V [ppmw] <0.2 <0.2 As, Be, Bi, Pb, Sb, W [ppmw] <0.2 NN

Die dabei erzielten Siebergebnisse in Hinblick auf die Korngrößenverteilung sind in den Tabellen 3d und 3e dargestellt. Tabelle 3d Siebunterkorn (< 0,75 mm) Siebzielkorn (0,75 - 4 mm) Sieboberkorn (4 - 9 mm) Abfall (> 9 mm) 5Gew.-%-Quantil [mm] 0,35 0,81 3,61 NN 95Gew.-%-Quantil [mm] 0,79 2,86 7,68 NN Tabelle 3e Siebzielkorn/ Siebunterkorn Sieboberkorn/ Siebzielkorn Trennschärfe [-] 0,862 0,876 The sieving results obtained with regard to the particle size distribution are shown in Tables 3d and 3e . <b> Table 3d </ b> Sieve undersize (<0.75 mm) Screen grain (0.75 - 4 mm) Sieber grain (4 - 9 mm) Waste (> 9 mm) 5% by weight - quantile [mm] 0.35 0.81 3.61 NN 95% by weight - quantile [mm] 0.79 2.86 7.68 NN Screen grain / Siebunterkorn Siebenberg grain / sieve grain Selectivity [-] 0.862 0.876

Tabelle 3f zeigt die Verunreinigungen des klassierten Granulats mit Oberflächenmetallen, Kohlenstoff, Dotierstoffen und Feinstaub. Tabelle 3f Oberflächenmetalle: Siebunterkorn (< 0,75 mm) Siebzielkorn (0,75 - 4 mm) Sieboberkorn (4 - 9 mm) Fe [pptw] 1700 860 380 Cr [pptw] 150 100 80 Ni [pptw] 120 80 40 Na [pptw] 390 230 150 Zn [pptw] 2620 2120 1530 Al [pptw] 260 150 140 Cu [pptw] 40 25 15 Mg [pptw] 120 70 60 Ti [pptw] 210 90 90 W [pptw] 60 50 <10 K [pptw] 70 45 40 Ca [pptw] 580 360 320 Mo, As, Sn, Ag, Co, V, Pb, Zr [pptw] <10 <10 <10 C [ppbw] 564 252 204 B [ppta] 27 25 23 P [ppta] 123 120 114 As [ppta] 8 6 6 Feinstaub [ppmw] NN 3,6 NN Table 3f shows the contaminants of the sized granules with surface metals, carbon, dopants and particulate matter. <b> Table 3f </ b> Surface metals: Sieve undersize (<0.75 mm) Screen grain (0.75 - 4 mm) Sieber grain (4 - 9 mm) Fe [pptw] 1700 860 380 Cr [pptw] 150 100 80 Ni [pptw] 120 80 40 Na [pptw] 390 230 150 Zn [pptw] 2620 2120 1530 Al [pptw] 260 150 140 Cu [pptw] 40 25 15 Mg [pptw] 120 70 60 Ti [pptw] 210 90 90 W [pptw] 60 50 <10 K [pptw] 70 45 40 Ca [pptw] 580 360 320 Mo, As, Sn, Ag, Co, V, Pb, Zr [pptw] <10 <10 <10 C [ppbw] 564 252 204 B [ppta] 27 25 23 P [ppta] 123 120 114 As [ppta] 8th 6 6 Fine dust [ppmw] NN 3.6 NN

Vergleichsbeispiel 4Comparative Example 4

Tabelle 4a zeigt die wesentlichen Parameter der Siebmaschine. Tabelle 4a Siebbreite b [mm] 500 Sieblänge l [mm] 1100 Frequenz: n [Hz] 20 Drehzahl [U/min] 1200 Winkelgeschwindigkeit w [1/s] 125,7 Schwingweite [mm] 2,6 Amplitude r [mm] 1,3 Siebneigung β [°] 3 Wurfwinkel α [°] 40 Siebkennziffer Kv [-] 1,4 Si-Durchsatz [kg/h] 1000 N2-Sichtgas [Nm3/h] 45 Table 4a shows the essential parameters of the screening machine. <b> Table 4a </ b> Wire width b [mm] 500 Sieve length l [mm] 1100 Frequency: n [Hz] 20 Speed [rpm] 1200 Angular velocity w [1 / s] 125.7 Amplitude [mm] 2.6 Amplitude r [mm] 1.3 Screen inclination β [°] 3 Throwing angle α [°] 40 Screening number Kv [-] 1.4 Si throughput [kg / h] 1000 N 2 sealing gas [Nm 3 / h] 45

Tabelle 4b zeigt, welcher Siebsatz im Vergleichsbeispiel 4 zum Einsatz kam. Es wurden drei Siebdecks mit unterschiedlichen Maschenweiten der Siebe verwendet. Tabelle 4b Maschenweite [mm] Material Deck 1 9 Polyurethan Deck 2 4,0 Polyamid Deck 3 0,75 Polyamid Table 4b shows which sieve set was used in Comparative Example 4 . Three sieve decks with different sieve mesh sizes were used. <b> Table 4b </ b> Mesh size [mm] material Deck 1 9 polyurethane Deck 2 4.0 polyamide Deck 3 0.75 polyamide

Tabelle 4c zeigt die Zusammensetzung der verwendeten Siebbeläge. Tabelle 4c Element Polyurethan: Polyamid: Al [ppmw] 57,2 1,3 Ca [ppmw] 45,2 32,5 Cr [ppmw] 1,5 1,3 Fe [ppmw] 14,0 3,1 K [ppmw] 6,5 0,4 Mg [ppmw] 3,6 1,4 Na [ppmw] 9,5 11,1 P [ppmw] 180 25,1 Sn [ppmw] 12,5 0,6 Ti [ppmw] 1400 0,3 Zn [ppmw] 25,3 5,8 Ni [ppmw] 0,7 0,6 Cu [ppmw] 0,5 0,3 B [ppmw] 5,3 0,4 Ba, Cd, Co, Li, Mn, Mo, Sr, V, s, Be, Bi, Pb, Sb, W [ppmw] < 0,2 < 0,2 Table 4c shows the composition of the screen coverings used. <b> Table 4c </ b> element polyurethane: Polyamide: Al [ppmw] 57.2 1.3 Ca [ppmw] 45.2 32.5 Cr [ppmw] 1.5 1.3 Fe [ppmw] 14.0 3.1 K [ppmw] 6.5 0.4 Mg [ppmw] 3.6 1.4 Na [ppmw] 9.5 11.1 P [ppmw] 180 25.1 Sn [ppmw] 12.5 0.6 Ti [ppmw] 1400 0.3 Zn [ppmw] 25.3 5.8 Ni [ppmw] 0.7 0.6 Cu [ppmw] 0.5 0.3 B [ppmw] 5.3 0.4 Ba, Cd, Co, Li, Mn, Mo, Sr, V, s, Be, Bi, Pb, Sb, W [ppmw] <0.2 <0.2

Die dabei erzielten Siebergebnisse in Hinblick auf die Korngrößenverteilung sind in den Tabellen 4d und 4e dargestellt. Tabelle 4d Siebunterkorn (< 0,75 mm) Siebzielkorn (0,75 - 4 mm) Sieboberkorn (4 - 9 mm) Abfall (> 9 mm) 5Gew.-%-Quantil: [mm] 0,38 0,74 3,56 NN 95Gew.-%- Quantil: [mm] 0,78 2,63 7, 30 NN Tabelle 4e Siebzielkorn/ Siebunterkorn Sieboberkorn/ Siebzielkorn Trennschärfe [-] 0,803 0,874 The sieving results achieved with regard to the particle size distribution are shown in Tables 4d and 4e . <b> Table 4d </ b> Sieve undersize (<0.75 mm) Screen grain (0.75 - 4 mm) Sieber grain (4 - 9 mm) Waste (> 9 mm) 5% by weight - quantile: [mm] 0.38 0.74 3.56 NN 95% by weight - quantile: [mm] 0.78 2.63 7, 30 NN Screen grain / Siebunterkorn Siebenberg grain / sieve grain Selectivity [-] 0.803 0,874

Die Trennschärfe bei Siebzielkorn/Siebunterkorn ist schlechter als bei Beispiel 3. Dies ist auf die gegenüber Beispiel 3 niedrigere Siebkennziffer zurückzuführen.The selectivity of Siebzielkorn / Siebunterkorn is worse than in Example 3. This is due to the comparison with Example 3 lower Siebkennziffer.

Tabelle 4f zeigt die Verunreinigungen des klassierten Granulats mit Oberflächenmetallen, Kohlenstoff, Dotierstoffen und Feinstaub. Tabelle 4f Oberflächenmetalle: Siebunterkorn (< 0,75 mm) Siebzielkorn (0,75 - 4 mm) Sieboberkorn (4 - 9 mm) Fe [pptw] 3500 1490 720 Cr[pptw] 270 210 140 Ni[pptw] 300 150 80 Na[pptw] 750 530 520 Zn[pptw] 3270 2610 2230 Al[pptw] 360 220 170 Cu[pptw] 70 60 30 Mg[pptw] 610 320 130 Ti[pptw] 340 120 130 W [pptw] 50 50 <10 K[pptw] 210 170 110 Ca[pptw] 2520 810 720 Sn 40 30 < 10 Mo, As, Ag, Co, V, Pb, Zr [pptw] <10 <10 <10 C [ppbw] 728 311 292 P [ppta] 202 148 133 As[ppta] 15 11 8 Feinstaub [ppmw] NN 8,3 NN Table 4f shows the contaminants of the sized granules with surface metals, carbon, dopants and particulate matter. <b> Table 4f </ b> Surface metals: Sieve undersize (<0.75 mm) Screen grain (0.75 - 4 mm) Sieber grain (4 - 9 mm) Fe [pptw] 3500 1490 720 Cr [pptw] 270 210 140 Ni [pptw] 300 150 80 Na [pptw] 750 530 520 Zn [pptw] 3270 2610 2230 Al [pptw] 360 220 170 Cu [pptw] 70 60 30 Mg [pptw] 610 320 130 Ti [pptw] 340 120 130 W [pptw] 50 50 <10 K [pptw] 210 170 110 Ca [pptw] 2520 810 720 sn 40 30 <10 Mo, As, Ag, Co, V, Pb, Zr [pptw] <10 <10 <10 C [ppbw] 728 311 292 P [ppta] 202 148 133 As [ppta] 15 11 8th Fine dust [ppmw] NN 8.3 NN

Die Verunreinigungen sind durchweg höher als bei Beispiel 3. The impurities are consistently higher than in example 3.

Es kamen folgende Messmethoden zur Bestimmung der angegebenen Parameter zum Einsatz.The following measuring methods were used to determine the specified parameters.

Die Bestimmung der Kontamination mit Kohlenstoff erfolgt mittels eines automatischen Analysators. Dies ist detailliert beschrieben in der noch nicht veröffentlichten US-Anmeldung mit der Anmeldenummer 13/772,756 sowie in der deutschen Anmeldung mit dem Aktenzeichen 102012202640.1 .The determination of carbon contamination is carried out by means of an automatic analyzer. This is described in detail in the not yet published US application with the application number 13 / 772,756 and in the German application with the file number 102012202640.1.

Die Bestimmung der Dotierstoffkonzentrationen (Bor, Phosphor, As) erfolgt nach ASTM F1389-00 an monokristallinen Proben.The determination of the dopant concentrations (boron, phosphorus, As) is carried out according to ASTM F1389-00 on monocrystalline samples.

Die Bestimmung der Metallverunreinigungen erfolgt nach ASTM 1724-01 mit ICP-MS.The determination of the metal impurities is carried out according to ASTM 1724-01 with ICP-MS.

Die Feinstaubmessung erfolgt wie in DE 10 2010 039 754 A1 beschrieben.The fine dust measurement takes place as in DE 10 2010 039 754 A1 described.

Die Partikelgrößen (minimale Sehne) werden mittels dynamischer Bildanalyse nach ISO 13322-2 bestimmt (Messbereich: 30 µm - 30 mm, Art der Analyse: Trockenmessung von Pulvern und Granulaten).The particle sizes (minimal tendon) are determined by means of dynamic image analysis according to ISO 13322-2 (measuring range: 30 μm - 30 mm, type of analysis: dry measurement of powders and granules).

Claims (8)

  1. Method for mechanically classifying polycrystalline silicon chunks or granules with a vibratory screening machine, by setting silicon chunks or granules present on one or more screens each comprising a screen lining in vibration such that the silicon chunks or silicon granules perform a movement which causes the silicon chunks or silicon granules to be separated into various size classes, characterized in that a gravity screening machine is used and the screening index (Kv) is greater than or equal to 1.6 and less than or equal to 3.0, wherein the screening index (Kv) is defined as the ratio of the acceleration generated by the screening motion to the acceleration due to gravity vertical to the screening plane, and by the following formula: K v = r * ω 2 * sin α + β / g * cos β ;
    Figure imgb0003
    where
    r: amplitude of vibration;
    ω: angular velocity;
    α: throwing angle;
    β angle of screen inclination;
    g: gravitational constant.
  2. Method according to Claim 1, wherein the motion of chunk silicon or granular silicon is characterized by an amplitude of vibration of 0.5 to 8 mm, a speed of rotation of 400 to 2000 rpm and a throwing angle of 30 to 60° relative to a screen plane, with the screen plane inclined by an angle of 0 to 15° relative to the horizontal.
  3. Method according to either of Claims 1 and 2, wherein the screening machine comprises a plurality of screen decks arranged one on top of another.
  4. Method according to any of Claims 1 to 3, wherein the screen linings are each secured on a frame of plastic or a frame comprising a plastic lining.
  5. Method according to any of Claims 1 to 4, wherein one or more of the screen linings consist of an elastomer having a Shore A hardness of greater than 65 or have a surface composed of an elastomer having a Shore A hardness of greater than 65.
  6. Method according to any of Claims 1 to 5, wherein one or more of the screen linings or the surfaces of one or more of the screen linings and all the further components and linings thereof that come into contact with the chunk silicon or granular silicon consist of plastics having a total contamination of less than 2000 ppmw.
  7. Method according to any of Claims 1 to 4, wherein perforated silicon fillets are used in one or more of the screen linings, the holes at least in part having a conical shape.
  8. Method according to any of Claims 1 to 7, wherein both perforated silicon fillets and plastic are used as screen linings, which uses a screen with a perforated Si fillet at least in a first screening step.
EP14752593.5A 2013-09-09 2014-08-07 Classification of polycrystalline silicon Active EP3043929B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013218003.9A DE102013218003A1 (en) 2013-09-09 2013-09-09 Classifying polysilicon
PCT/EP2014/067032 WO2015032584A1 (en) 2013-09-09 2014-08-07 Classifying of polysilicon

Publications (2)

Publication Number Publication Date
EP3043929A1 EP3043929A1 (en) 2016-07-20
EP3043929B1 true EP3043929B1 (en) 2017-10-04

Family

ID=51357919

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14752593.5A Active EP3043929B1 (en) 2013-09-09 2014-08-07 Classification of polycrystalline silicon

Country Status (11)

Country Link
US (2) US10589318B2 (en)
EP (1) EP3043929B1 (en)
JP (1) JP6290423B2 (en)
KR (1) KR101789607B1 (en)
CN (1) CN105612011B (en)
CA (1) CA2923110C (en)
DE (1) DE102013218003A1 (en)
MY (1) MY188174A (en)
NO (1) NO2960429T3 (en)
TW (1) TWI577459B (en)
WO (1) WO2015032584A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015206849A1 (en) * 2015-04-16 2016-10-20 Wacker Chemie Ag Apparatus and method for classifying and dedusting polysilicon granules
BR102016017233B1 (en) * 2015-07-23 2021-06-22 Cnh Industrial America Llc cleaning system for an agricultural combine harvester
US9682404B1 (en) * 2016-05-05 2017-06-20 Rec Silicon Inc Method and apparatus for separating fine particulate material from a mixture of coarse particulate material and fine particulate material
WO2021121558A1 (en) * 2019-12-17 2021-06-24 Wacker Chemie Ag Method for producing and classifying polycrystalline silicon
CN111359869A (en) * 2020-02-26 2020-07-03 江苏鑫华半导体材料科技有限公司 Electronic grade polycrystalline silicon screening device and method
WO2022123080A2 (en) 2020-12-11 2022-06-16 Zadient Technologies SAS Method and device for producing a sic solid material
JP2024510689A (en) 2021-03-24 2024-03-11 ワッカー ケミー アクチエンゲゼルシャフト Transport container for silicone pieces
WO2023222787A1 (en) 2022-05-18 2023-11-23 Zadient Technologies SAS METHOD FOR PRODUCING AT LEAST ONE CRACK-FREE SiC PIECE
WO2024061466A1 (en) 2022-09-22 2024-03-28 Wacker Chemie Ag Production of silicon particles having a reduced surface metal content
DE102023102854B3 (en) 2023-02-06 2024-05-02 Alztec GmbH Device and method for flexible classification of poly- and/or monocrystalline silicon

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3857751A (en) * 1971-11-15 1974-12-31 Tufdura Ltd Composite sheet capable of withstanding impingement by particulate materials
US4107035A (en) * 1977-05-02 1978-08-15 The Young Industries, Inc. Three-plane balance gyro sifter
US4544102A (en) * 1982-04-09 1985-10-01 Penn Virginia Corporation Differential rate screening
EP0094741B1 (en) * 1982-04-09 1990-02-07 William F. Hahn Differential rate screening
JPS59147679A (en) * 1983-02-10 1984-08-24 ユ−オ−ピ−・インコ−ポレイテツド Anti-wear screen
JPS59166878A (en) 1983-03-11 1984-09-20 Advantest Corp Light source for testing image pickup device
JPS59166878U (en) * 1983-04-25 1984-11-08 近畿工業株式会社 vibrating sieve machine
SE435585B (en) * 1983-05-16 1984-10-08 Kmw Mekan Ab screening device
DE3811091A1 (en) 1988-03-31 1989-10-12 Heliotronic Gmbh METHOD FOR COMMANDING LOW CONTAMINATION OF SOLID, PIECE OF SILICONE
US5165548A (en) 1990-04-23 1992-11-24 Hemlock Semiconductor Corporation Rotary silicon screen
DE4218283A1 (en) * 1992-05-27 1993-12-02 Wacker Chemitronic Process for the contamination-free comminution of semiconductor material, in particular silicon
DE19719698A1 (en) * 1997-05-09 1998-11-12 Wacker Chemie Gmbh Optoelectronic classifying device
JP3189764B2 (en) * 1997-09-29 2001-07-16 住友金属工業株式会社 Dissolution method of silicon single crystal raw material
JP3603142B2 (en) * 1997-12-17 2004-12-22 株式会社トクヤマ Sorting device
DE19914998A1 (en) 1999-04-01 2000-10-12 Wacker Chemie Gmbh Vibratory conveyor and method for promoting silicon breakage
EP1553214B1 (en) * 2002-02-20 2011-11-23 Hemlock Semiconductor Corporation Flowable chips and methods for using them
US8021483B2 (en) 2002-02-20 2011-09-20 Hemlock Semiconductor Corporation Flowable chips and methods for the preparation and use of same, and apparatus for use in the methods
US6874713B2 (en) * 2002-08-22 2005-04-05 Dow Corning Corporation Method and apparatus for improving silicon processing efficiency
AT411874B (en) 2003-03-07 2004-07-26 Statec Anlagentechnik Gmbh Sieve for classification of bulk grains has first motor-driven sieve panel located over a second directly driven sieve panel
DE102005039118A1 (en) * 2005-08-18 2007-02-22 Wacker Chemie Ag Method and device for comminuting silicon
DE102006016324A1 (en) * 2006-04-06 2007-10-25 Wacker Chemie Ag Apparatus and method for flexibly classifying polycrystalline silicon fragments
DE102006016323A1 (en) 2006-04-06 2007-10-11 Wacker Chemie Ag Method and apparatus for chopping and sorting polysilicon
DE102007027110A1 (en) * 2007-06-13 2008-12-18 Wacker Chemie Ag Method and apparatus for packaging polycrystalline silicon breakage
EP2036856B1 (en) 2007-09-04 2018-09-12 Mitsubishi Materials Corporation Clean bench and method of producing raw material for single crystal silicon
DE102007052473A1 (en) 2007-11-02 2009-05-07 Schott Solar Gmbh Method and device for screening out particles
CN201300122Y (en) * 2008-09-30 2009-09-02 鞍山重型矿山机器股份有限公司 Amplitude increasing ellipse banana screen
ES2389634T3 (en) * 2009-07-16 2012-10-29 Technische Universitat Bergakademie Freiberg Procedure and device for the selective classification of particles according to their size
DE102010039754B4 (en) 2010-08-25 2013-06-06 Wacker Chemie Ag Method for determining the concentration of particulate matter in bulk silicon materials
DE102010039752A1 (en) 2010-08-25 2012-03-01 Wacker Chemie Ag Polycrystalline silicon and process for its preparation
DE102012202640A1 (en) 2012-02-21 2013-08-22 Wacker Chemie Ag Polycrystalline silicon fragment and method of cleaning polycrystalline silicon fragments
DE102012208473A1 (en) * 2012-05-21 2013-11-21 Wacker Chemie Ag Polycrystalline silicon
WO2014066893A1 (en) * 2012-10-26 2014-05-01 M-I L.L.C. Shaker with automatic motion

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
TW201509548A (en) 2015-03-16
EP3043929A1 (en) 2016-07-20
MY188174A (en) 2021-11-24
CN105612011A (en) 2016-05-25
WO2015032584A1 (en) 2015-03-12
NO2960429T3 (en) 2017-12-23
DE102013218003A1 (en) 2015-03-12
US20160214141A1 (en) 2016-07-28
KR101789607B1 (en) 2017-10-25
CN105612011B (en) 2018-10-26
KR20160047580A (en) 2016-05-02
JP6290423B2 (en) 2018-03-07
US10589318B2 (en) 2020-03-17
CA2923110C (en) 2017-11-07
JP2016534873A (en) 2016-11-10
US20180169704A1 (en) 2018-06-21
TWI577459B (en) 2017-04-11
CA2923110A1 (en) 2015-03-12

Similar Documents

Publication Publication Date Title
EP3043929B1 (en) Classification of polycrystalline silicon
EP3283237B1 (en) Device and method for classifying and dedusting polysilicon granular material
EP1645333B1 (en) Device and method for low-contaminating, automatic breaking of silicon fragments
WO2014053295A1 (en) Device and method for sizing polydisperse feedstock
EP3310499B1 (en) Process for the mechanical classifying of polysilicon
DE112010005677B4 (en) Device for the pneumatic vacuum sifting of bulk goods
DE102010039752A1 (en) Polycrystalline silicon and process for its preparation
WO2016139084A1 (en) Method of conveying and fractionating granular polysilicon in a conveying channel and corresponding apparatus
EP3554723B1 (en) Separating device for polycrystalline silicon
EP4200085B1 (en) Screen plate for a separating device for classifying bulk material
DE102023102854B3 (en) Device and method for flexible classification of poly- and/or monocrystalline silicon
AT513285B1 (en) Apparatus / method for classifying polydisperse feedstock
AT402029B (en) Dry preparation process and apparatus for separating material agglomerates in accordance with the difference in weight of the material components
CN111359869A (en) Electronic grade polycrystalline silicon screening device and method
DE102009032052A1 (en) Scattering machine with at least one flow resistance and a method for operating the spreader with a flow resistance
EP2347833A1 (en) Emptying system with adjustable material bed strength
EP0678491A1 (en) Device and process for the separation of the heavy and light fractions from composted materials
DE29618532U1 (en) Device for carrying out a dry preparation process for separating material batches
DE102009032074A1 (en) A method for cleaning a flow resistance in a spreader and a device for cleaning a flow resistance

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160308

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170330

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 933514

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014005701

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20171004

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20171004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180204

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180105

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180104

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014005701

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

26N No opposition filed

Effective date: 20180705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180831

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180807

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180831

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180831

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180831

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180807

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20190829

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171004

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 933514

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200807

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230502

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20230824

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230821

Year of fee payment: 10