EP3039703B1 - Disjoncteur haute tension à isolation gazeuse - Google Patents

Disjoncteur haute tension à isolation gazeuse Download PDF

Info

Publication number
EP3039703B1
EP3039703B1 EP14747655.0A EP14747655A EP3039703B1 EP 3039703 B1 EP3039703 B1 EP 3039703B1 EP 14747655 A EP14747655 A EP 14747655A EP 3039703 B1 EP3039703 B1 EP 3039703B1
Authority
EP
European Patent Office
Prior art keywords
contact
section
constriction
guided
flow cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14747655.0A
Other languages
German (de)
English (en)
Other versions
EP3039703A2 (fr
Inventor
Arthouros Iordanidis
Martin Seeger
Vincent Dousset
Bernardo Galletti
Emmanouil Panousis
Joerg Lehmann
Franceso PISU
Mahesh DHOTRE
Daniel Over
Lukas Zehnder
Stefan Arndt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Schweiz AG
Original Assignee
ABB Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Schweiz AG filed Critical ABB Schweiz AG
Publication of EP3039703A2 publication Critical patent/EP3039703A2/fr
Application granted granted Critical
Publication of EP3039703B1 publication Critical patent/EP3039703B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/7015Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid characterised by flow directing elements associated with contacts
    • H01H33/7023Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid characterised by flow directing elements associated with contacts characterised by an insulating tubular gas flow enhancing nozzle
    • H01H33/703Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid characterised by flow directing elements associated with contacts characterised by an insulating tubular gas flow enhancing nozzle having special gas flow directing elements, e.g. grooves, extensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/12Contacts characterised by the manner in which co-operating contacts engage
    • H01H1/36Contacts characterised by the manner in which co-operating contacts engage by sliding
    • H01H1/38Plug-and-socket contacts
    • H01H1/385Contact arrangements for high voltage gas blast circuit breakers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/88Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts
    • H01H33/90Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism
    • H01H33/91Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism the arc-extinguishing fluid being air or gas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/30Means for extinguishing or preventing arc between current-carrying parts
    • H01H9/302Means for extinguishing or preventing arc between current-carrying parts wherein arc-extinguishing gas is evolved from stationary parts

Definitions

  • the present invention relates to a gas-insulated high voltage switch according to the preamble of claim 1.
  • the switch of the type mentioned allows in the rated voltage range of about 10 kV up to several hundred kV, such as 123 kV or 365 kV, switching off high, generally up to 63 kA, amounting short-circuit currents.
  • the switch includes an insulating gas-filled housing and a housing enclosed in the contact arrangement, in coaxial arrangement two along an axis relative to each other movable arcing contacts, namely a contact tulip and a contact pin, and two insulating nozzles, which are held in the axial direction with distance from each other, and of in which the first has a first flow channel guided along the axis with a first constriction and the second one has a second flow channel with a second constriction guided along the axis.
  • the contact tulip is arranged in a downstream of the first constriction arranged outflow portion of the first flow channel.
  • the contact pin In the on position of the contact pin is retracted in an electrically conductive manner in a constriction of the contact tulip.
  • the contact pin When switched off, the contact pin is moved along the axis. In this case, an arc zone is formed and the first and subsequently the second constriction are released. At a stagnation point formed in the arc zone then branch off two oppositely directed quenching gas flows, of which the first is guided through the first and the second through the second flow channel.
  • the two constrictions In order to facilitate the passage of the contact pin through the constrictions of the two insulating nozzles, the two constrictions generally each have a typically smaller internal diameter than the outer diameter of the contact pin.
  • the inner diameter of a constriction of the contact tulip with open switch typically extends by a few millimeters, so as to achieve an inner diameter corresponding to the outer diameter of the contact pin. Therefore, the inner diameter of the contact tulip with the switch open is several, typically 4 to 6 millimeters, smaller than the inner diameter of the constriction of each of the two insulating nozzles.
  • the contact tulip generally has a ring of contact fingers, the free ends rest with the switch closed to form contact force on the contact pin and spring radially inward with the switch open forming the constriction, the effective flow cross-section of the contact tulip next to the flow cross-section of its constriction even the flow cross sections formed by slots between the contact fingers.
  • the interrupting a current a switching arc receiving arc zone is limited in the axial direction of the two arcing contacts and in the radial direction of the two insulating nozzles. Arc plasma formed by the switching arc in the high-current phase of the current to be cut-off is guided into the arc zone as the current approaches a zero crossing as quenching gas for blowing the switching arc.
  • the breaking capacity of a high-voltage switch equipped with this switching chamber which is determined by the dielectric strength of the switching chamber, depends on the density of the extinguishing gas, ie on the pressure and temperature of the extinguishing gas acting in the arc zone. If unwanted density fluctuations occur in this gas when the arc is extinguished, this may possibly lead to undesirable restrike.
  • the pressure in the subvolume and thus also downstream of the auxiliary insulating nozzle can reach values which impair the thermal switching behavior of the switch when large currents are interrupted.
  • This switch has a contact tulip surrounded by a Isolierwhisdüse, a heating volume for receiving arc-heated quenching gas and a pressure relief valve.
  • the pressure relief valve is used to limit the pressure of the quenching gas in a arc zone receiving the switching arc by opening a discharge channel opening into an expansion space.
  • the valve body of the pressure relief valve is designed as an axially aligned sleeve.
  • This sleeve is loaded with the differential pressure, which forms when opening the switch between a arranged upstream of the pressure relief valve portion of the discharge channel and a piston-cylinder compression chamber of a device for generating a small amount of additional extinguishing gas.
  • Opening and holding open the pressure relief valve is achieved when the gas pressure in the channel section is higher than in the compression chamber.
  • the gas pressure downstream of the Isolieragisdüse then reaches values that affect the thermal switching behavior of the switch.
  • DE 102 26 044 A1 describes a compressed gas switch with a surrounded by a cylindrical cover contact tulip.
  • the cover together with an insulating nozzle, delimits a gas storage space divided by a dividing wall into two partial spaces, which serves to provide arc-extinguished extinguishing gas.
  • An in EP 1 630 841 B1 described switch has a favorable for an interruption of currents of different size and different behavior design of the Isolierdüse with a large diameter relative to the cylindrical constriction.
  • EP 0 836 209 B1 describes a circuit breaker suitable for interrupting high currents in the medium voltage range.
  • This switch contains a switching point and a heating volume.
  • the heating volume is guided coaxially about two Abbrandcardan whatsoeveren the switch point displaceable relative to each other along the axis.
  • the heating volume is connected to the arc zone via a radially oriented channel.
  • the channel is bounded by two axially aligned caps, at least one of which is made of a temperature resistant insulating material.
  • Each cap receives one of two contact tulips of the two consumable contact assemblies. These contact assemblies are electrically connected to each other when the switch is closed via a contact pin displaceable along the axis.
  • a switching arc which is initially active on a first of the two contact tulips and the tip of the contact pin is transferred from the contact pin to the second contact tulip.
  • the switching arc can then blow when the current approaches a zero crossing with quenching gas from the heating volume and the current is interrupted.
  • An in EP 0 228 099 B1 Published high-voltage switch has a substantially axially symmetrical arcing contact arrangement with a contact tulip and a contact pin and with two axially spaced apart from each other insulating nozzles.
  • the contact tulip is slotted and has by axially guided slots on separate contact fingers, which form a narrowing of the contact tulip with open switch with their free ends.
  • At the side facing away from the free ends of the contact fingers approach of the slots on the contact tulip openings are provided which during the Disconnect Generate negative pressure in a zone where a switching arc is formed on the contact tulip, and which withdraw heat from this zone.
  • DE 199 02 835 A1 is a high-voltage circuit breaker shown with an axially aligned flow channel for axially downwardly feasible extinguishing gas.
  • This channel is bounded radially outward by an unspecified Isolierwhisdüse and a contact tulip 3.
  • the switch further has an annular space which is bounded radially inwardly from the contact tulip 3 and radially outward from the insulating auxiliary nozzle.
  • the annulus begins at the top of the contact tulip and continues down to the bottom of the contact tulip. Function and dimensioning of this annulus are not described.
  • US 4,393,291 describes a compressed gas switch, in which two annular arcing contacts 4, 7 and a surrounding the two contacts with the switch closed, electrically insulating opening 11 are arranged coaxially.
  • the object is to provide a gas-insulated high voltage switch of the type mentioned above, which is characterized by a good breaking capacity and high reliability.
  • a gas-insulated high-voltage switch of the aforementioned type is provided with an insulating gas-filled housing and a housing arrangement enclosed in the contact arrangement, in coaxial arrangement two along one axis relative to each other movable arcing contacts, one of which is formed as a first contact tulip and a second contact pin, as well as two insulating nozzles, which are held in the axial direction at a distance from each other, and of which the first one guided along the axis of the first flow channel having a first constriction and the second one guided along the axis second flow channel having a second constriction.
  • the first contact tulip is arranged in a downstream of the first constriction arranged outflow portion of the first flow channel, the contact pin is retracted in the on position in a contact pin electrically contacting the constriction of the first contact tulip and the contact pin when switched along the axis displaceable, wherein under education an arc zone initially the first and then the second constriction is releasable, and turn off when turning off a stagnation point formed in the arc zone two oppositely directed quenching gas flows, of which the first through the first and the second can be guided through the second flow channel in an exhaust space.
  • the sum of the flow cross sections of the constriction of the contact tulip and a third constriction arranged in the outflow section is greater than the flow cross section of the first constriction, wherein the constriction of the first contact tulip a first partial flow of the first quenching gas flow and through the third constriction parallel to the first partial flow directed, the remaining part of the first quenching gas flow receiving second partial flow is feasible.
  • the switch according to the invention it is ensured that by suitable dimensioning of the flow cross sections of the constrictions of the first insulating nozzle and of the first contact tulip and the third constriction arranged in the outflow channel of the first insulating nozzle, a backflow of the first extinguishing gas flow at the one considerably smaller flow cross section than the constriction of the first insulating nozzle having constriction of the contact tulip is avoided. Therefore, a high flow rate of the first quenching gas flow is achieved when switching off in the inventive switch downstream of the constriction of the first insulating.
  • a flow cross section of an axially aligned annular gap guided around the axis, which is bounded radially inwardly by a slit-shaped end of the first contact tulip and radially outward by the first insulating nozzle, is advantageously greater than the sum of the first and the second flow cross-section.
  • the pressure and thus the density of the extinguishing gas when switched off in the loaded with strong electric fields space between the lateral surface of the first contact tulip and the first insulating against the pressure and the density of the interior of the first Contact tulip located extinguishing gas comparatively high.
  • the dielectric strength of the switch and thus the switching capacity and the reliability of the switch are additionally increased when you turn off.
  • the second contact tulip By suitable arrangement and design of the second contact tulip in the outflow of the second insulating nozzle, the dielectric reconsolidation of the separation distance and thus the breaking capacity and the reliability of the switch are improved. In addition, even after several shutdowns and a resulting increase in the diameter of the second constriction as a result of material erosion, the pressure build-up in a further shutdown process is reduced only in a permissible manner. This is due to the fact that the second contact tulip with respect to the second insulating nozzle has a negligible material erosion and thus ensures a dielectrically advantageous pressure build-up in the second constriction during the shutdown process. At the same time, the second contact tulip can serve for easy tapping of the switch current at one of the two current connections of the switch.
  • the flow cross section of the second contact tulip is advantageously smaller than the flow cross section of an annular channel formed after release of the second contact tulip between the second contact tulip and the contact pin.
  • the flow cross-section according to (d ') can be greater than the sum of the flow cross sections according to (c') and to (e ').
  • the second constriction along the axis may be cylindrical and have a diameter which is smaller than its axial extent.
  • the extinguishing geometry in the region of the two base points of the switching arc is mirror-symmetrical, the switching capability of this switch can be well predetermined.
  • the switch can also be provided with an outer shield, which is guided around the second insulating nozzle in the region of the outflow channel and above all serves to control the electric field in the region of critical triple points, but also to shield the electric field acting on the second tulip.
  • the first contact tulip may be fixed to an end of a hollow contact carrier guided into the first flow channel, a connecting channel may be formed in the contact carrier, and may extend outwardly from the first insulating nozzle and from the first contact tulip inwardly limited, annularly guided around the axis partial volume of the first flow channel via the connecting channel to be connected to the interior of the contact carrier.
  • the first contact tulip and the first insulating nozzle may each be formed as a commercially available, standardized component.
  • the contact carrier in a coaxial arrangement, an inner tube and an outer sleeve, which carries the first insulating, having a guided through the sleeve first portion of the connecting channel may contain at least two parallel-connected sub-channels and may be a second portion of the connecting channel be guided the wall of the pipe.
  • the contact carrier may further comprise a screw for fixing the sleeve on the tube and an annular guided around the axis groove, which connects the first and the second portion of the connecting channel with each other.
  • the sleeve may be integrally formed and set one end of the first contact tulip with a force applied by the screw clamping force on an end face of the tube.
  • the sleeve can have two sleeve parts connected to each other by axially guided screws, and both sleeve parts can fix one end of the first contact tulip to the contact carrier with a clamping force applied by the axially guided screws.
  • FIGS. 1 to 7 illustrated four embodiments of a high voltage switch are constructed with respect to an axis A substantially axially symmetrical and each contain only in the embodiments according to the FIGS. 1 . 6 and 7 illustrated metal or electrically insulating housing 10, which is filled with a compressed insulating gas, typically based on sulfur hexafluoride, nitrogen, carbon dioxide, air or mixtures of these gases with each other.
  • the housing accommodates a contact arrangement, which contains in a coaxial arrangement two arc contacts 20 and 30 and two insulating nozzles 40 and 50 and one only in the FIGS. 1 . 6 and 7 Further recorded by the housing elements such as control valves, two power connections and two the pressure chamber 60, the two insulating nozzles 40, 50 and the two arcing contacts 20, 30 coaxially surrounding rated current contacts of the contact arrangement are not shown ,
  • the arc contact 20 is designed as a contact tulip and is integrated in one end of a metal contact carrier, not shown, designed as a tube.
  • the arcing contact 30 is designed as a contact pin aligned along the axis A.
  • the contact tulip 20 has a concentrically guided about the axis A ring of substantially axially parallel contact fingers 21.
  • the contact fingers 21 each have a free end 22 which, when the switch is closed (see. Figure 6 ) resiliently rests on one end 31 of the contact pin 30 with the formation of contact force and upon opening of the switch after the separation of the two contacts 20, 30 springs inwards, whereby the contact finger ring forms a constriction of the contact tulip 20 with a flow cross section A K.
  • the contact fingers 21 are held by axially extending slots 23 from each other at a distance in the wreath.
  • the contact tulip 20 and the contact pin 30 are formed of a material having a high spring force at the same time high electrical conductivity, such as typically a copper-chromium-zirconium alloy.
  • the ends 22 of the contact fingers resp. the end 31 of the contact pin is formed of a resistant to the action of switching arcs, electrically conductive material, such as typically a tungsten-copper alloy.
  • the contact tulip 20, the two insulating nozzles 40 and 50 and the pressure chamber 60 are part of a unit B, which is displaceable by a switch drive D in the direction of the axis A to the right or to the left.
  • the contact pin 30 is part of a second unit C, which may be fixed or to allow for an opposite double movement of the two units but also movable.
  • FIGS. 1 . 4 to 7 two opposite end faces of the two insulating nozzles 40 and 50 from each other held at a distance and thus limit a predominantly radially aligned and annularly guided around the axis A mouth portion 61 of the heating channel 62.
  • the heating channel 62 is only in the FIGS. 1 . 6 and 7 shown and connects the pressure chamber 60 when turned off with an at the beginning of the Ausschaltvorgangs of the contact tulip 20 and then free end 31 of the contact pin 30 axially limited arc zone L.
  • the two insulating nozzles 40 and 50 contain in opposite directions along the axis A guided in each case one at the mouth portion 61st attaching flow channel 41 respectively. 51.
  • An annular constriction 42 forms a minimum flow cross-section A n of the flow channel 41.
  • a cylindrical constriction 52 forms a minimum flow cross-section A n 'of the flow channel 51.
  • the two insulating nozzles 40 and 50 are made of a material which gives off the action of a switching arc S quenching gas, in particular polytetrafluoroethylene (PTFE).
  • PTFE polytetrafluoroethylene
  • the contact tulip 20 is arranged downstream of the constriction 42 in the outflow section 43 of the flow channel 41.
  • the only in the two FIGS. 1 . 6 and 7 shown pressure chamber 60 is formed as a heating volume.
  • the heating volume stores when opening the switch compressed quenching gas, which is generated in a high-current phase of a current to be interrupted burning in the arc zone L switching arc S and which flows in the current zero passage from the pressure chamber 60 via the heating channel 62 in opposite directions in the two flow channels 41, 51 ,
  • the heating volume may be connected via a control valve to a compression space of a controlled by the stroke of the unit B piston-cylinder compression device of the pressure chamber 60.
  • the heating volume may also be integrated into the compression space of the piston-cylinder compression device controlled by the stroke of the unit B to form the pressure chamber 60.
  • the contact pin 30 is retracted into the contact tulip 20 and contact the arc-solid ends 22 of the now resiliently spread contact fingers 21, the contact pin 30 with a defined contact force in an electrically conductive manner.
  • the contact tulip 20 and the contact pin 30 are permanently connected to one of the two power terminals of the switch. In these embodiments, therefore, with the contact assembly closed, the switch conducts current flowing in a circuit which extends from one of the two power terminals of the switch via the contact tulip 20 and the contact pin 30 to the other of the two power terminals of the switch.
  • the assembly B is moved by the drive D to the left.
  • the contact tulip 20 and the contact pin 30 separate from each other to form a bounded by the ends 22 of the contact fingers 21 and the end 31 of the contact pin 30 separating line and is the on the ends 22, 31 fussende from Fig.1 apparent switching arc S pulled.
  • This switching arc is located in the through the constrictions 42 and 52 radially and axially by the contact tulip 20 and the contact pin 30 arc space L and generates by interaction with the insulating material of the nozzles 40 and 50 compressed arc plasma.
  • the pressure in the arc zone L is generally higher than in the formed as a heating volume portion of the pressure chamber 60 in which cool insulating gas is stored, which initially has only the pressure prevailing in the housing 10 filling pressure.
  • the contact pin 30 releases the mouth portion 61, therefore, a portion of the arc plasma flows into the heating volume and mixes there with the already existing cool insulating gas to a relative to the filling pressure over-pressure having extinguishing gas.
  • quenching gas flow L 0 flows as quenching gas flow L 0 over the Mouth portion 61 in the radial direction in the arc zone L.
  • two oppositely directed quenching gas flows L 1 and L 2 form .
  • the quenching gas flow L 1 is guided via the flow channel 41 and thus through the constriction 42 into an exhaust space 11 located inside the housing 10.
  • the quenching gas flow L 2 is guided via the flow channel 51 into the exhaust space 11.
  • the two extinguishing gas flows blow over the switching arc until it is extinguished in the current zero crossing and the current to be disconnected is interrupted.
  • the flow cross section increases continuously, whereby the hot arc plasma is conveyed at high speed through the constriction 52 and the outflow cross section 53 in dielectrically uncritical regions.
  • the contact tulip 20 is disposed downstream of the constriction 42.
  • the sum of the flow cross section A K of the constriction of the contact tulip 20 and a subsequently defined flow cross section A ⁇ should be greater than the flow cross section A n of the constriction 42 of the insulating 40.
  • a ⁇ the flow cross-section of a further constriction arranged in the outflow section 43 of the flow channel 41.
  • the distance between the stagnation point SP and the contact tulip 20 may advantageously be in the range between 15 to 35 mm, without adversely affecting the dielectric reconsolidation of the separation path and thus also the switching capacity of the switch.
  • the unslotted end of the contact tulip 20 is spaced from the insulating nozzle 40 by the gas outlet having the flow cross-section A 3 .
  • the flow cross section A ⁇ of the further constriction is determined by the flow cross sections A s, ax , A s, rad and A 3 , if A 3 is smaller than A 2 .
  • the flow cross section A 2 of the axially aligned annular space is greater than the sum of the flow cross sections A s, rad + A 3 .
  • the pressure of the extinguishing gas outside the contact tulip 20 can be kept comparatively high in a dielectrically advantageous manner.
  • the contact pin 30 is connected via a contact tulip 80 with one of the two power connections.
  • the contact tulip 80 is arranged in the outflow section 53 and is constructed analogously to the contact tulip 20.
  • the contact tulip 80 has a concentric around the Axis A guided wreath of largely axially parallel contact fingers 81.
  • the contact fingers 81 each contain a free end 82, which when the switch is closed (see. Figure 6 ) resiliently rests on the lateral surface of the contact pin 30 with the formation of contact force.
  • the ends 82 Upon opening the switch feathers after separating the two contacts 30, 80, the ends 82 inwardly, whereby the contact finger ring forms a constriction of the contact tulip 80 with a flow cross-section A ' K.
  • the contact fingers 81 are held by axially extending slots 83 from each other at a distance in the garland.
  • a flow cross-section A ' s, ax for a gas which flows axially against the crown of the contact fingers 81 and a flow cross-section A' s, rad is formed through a slot 83 for a gas flowing radially from outside to inside this ring.
  • the switch will conduct current in a circuit extending from one of the two power terminals via the contact tulip 20, the contact pin 30, and the contact tulip 80 to the other of the two power terminals.
  • the contact pin 30 therefore bridges in the switch-on one of the axial distance of the two contact tulips 20 and 80 certain separation distance whose dielectric strength after clearing the switching arc S sufficient to the recurrent voltage even with particularly critical switching operations, such as the interruption of a capacitive current or a heavy short-circuit current or when switching off in phase opposition, to keep free from re-ignition.
  • the assembly B is moved by the drive D to the left.
  • the contact tulip 20 and the contact pin 30 separate from each other and, in accordance with the previously described embodiments, a switching arc S is drawn on the ends 22 of the contact fingers 21 and the end 31 of the contact pin 30.
  • This switching arc is located in the first through the constrictions 42 and 52 radially and axially by the contact tulip 20 and the contact pin 30 arc space L, thereby generating by interaction with the insulating material of the nozzle 40 compressed arc plasma.
  • This plasma is first passed through the contact tulip 20 in the enclosed by the housing 10 exhaust space 11.
  • the contact pin 30 also releases the constriction of the contact tulip 80, which is determined by the arc-fixed ends 82 of the now radially inwardly spring-loaded contact fingers 81.
  • the base of the switching arc S held on the free end 31 of the contact pin 30 is transmitted to the ends 82 of the contact fingers 81, so that the current to be disconnected now flows in a circuit determined by the two contact tulips 20, 80 and the switching arc.
  • a part of the arc plasma now flows through the constriction of the contact tulip 80 having a flow cross-section A ' k into the exhaust space 11.
  • the contact tulip 80 is disposed downstream of the constriction 52.
  • the sum of the flow cross section A ' K of the constriction of the contact tulip 80 and a subsequently defined flow cross-section A' ⁇ should be greater than the flow cross-section A ' n the constriction 52 of the insulating 50th
  • the flow cross section A ' ⁇ is the flow cross section of a further constriction arranged in the outflow section 53 of the flow channel 51.
  • the pressure of the extinguishing gas outside the contact tulip 80 can be kept relatively high in a dielectrically advantageous manner.
  • the flow cross section A ' K of the contact tulip 80 is chosen to be smaller than the flow cross section A' 4 of an annular channel formed between the contact tulip 80 and the contact pin 30 after release of the constriction of the contact tulip 80, then it is ensured that the arc plasma continues rapidly out of the arc zone L in FIG dielectrically uncritical areas is conveyed.
  • the shield 70 is guided in the region of the Abströmabitess 53 annularly around the insulating nozzle 50 and serves mainly the control of the electrical Field in the range of critical triple points, which are located in particular in the region of the arc-fixed ends 82 of the contact fingers 81, as well as the shielding of the force acting on the contact tulip 80 electric field.
  • the contact tulip 80 By suitable arrangement and design of the contact tulip 80 in the outflow channel 53, the dielectric reconsolidation of the separation path and thus the switching capacity of the inventive switch after the FIGS. 6 and 7 improved. In addition, even after several shutdowns and a resulting increase in the diameter of the constriction 52 as a result of material erosion, the pressure build-up in a further shutdown process only decreases in a permissible manner.
  • the contact tulip 80 indeed has a negligible material erosion relative to the insulating nozzle 50 and thus ensures a dielectrically advantageous pressure build-up in the constriction 52 during shutdown. At the same time, the contact tulip 80 can serve for easy tapping of the switch current to one of the two current connections of the switch.
  • the contact tulip 20 is attached to a guided into the flow channel 41 of the insulating nozzle 40 end of a hollow contact carrier 90.
  • a connecting channel 91 is formed in the contact carrier 90.
  • A radially from the insulating nozzle 40 radially outwardly and from the contact tulip 20 radially inwardly limited, annularly about the axis A.
  • the guided partial volume 46 of the flow channel 41 of the insulating nozzle 40 is connected to the interior of the hollow contact carrier 90 via the connecting channel 91.
  • the contact carrier 90 has an inner tube 92 and an outer sleeve 93 in a coaxial arrangement.
  • the sleeve carries the insulating nozzle 40, which is obviously inserted positively with a remote from the constriction 42 foot end in one end of the sleeve 93.
  • a guided in the sleeve 93 section 91a of the connecting channel 91 includes at least two mutually parallel and circumferentially uniform around the axis A distributed sub-channels 91a '. These sub-channels connect the sub-volume 46 with a ring 94 guided around the axis A groove 94, which also forms a portion of the connecting channel 91.
  • a guided in the tube 92 portion 91 b of the connecting channel 91 has a plurality of the wall of the tube 12 through openings and connects the interior of the tube 92 with the annular groove 94 and thus also the interior of the tube 92 via the annular groove 94 and the sub-channels 91 a 'with the Partial volume 46.
  • the contact carrier 90 further has a screw connection 95 which fixes the sleeve 93 on the tube 92.
  • the connecting channel 91 serves to guide at least part of the quenching gas flow L 12 . Is the sum of the flow cross sections of the constriction of the contact tulip 20, the connecting channel 91 and the slots 23 between the optional contact fingers 21 (see, eg FIGS.
  • the quenching gas flow L 1 is strongly accelerated in the downstream of the bottleneck 42 outflow section 43 of the flow channel 41 and can exceed the sound velocity of the quenching gas very much depending on the duration and size of the current to be disconnected .
  • the strongly accelerated extinguishing gas causes a considerable improvement in the dielectric strength and thus also in the thermal switching capacity of the switch.
  • the extinguishing gas flow L 12 is guided from the partial volume 46 through the connecting channel 91 formed in the contact carrier 90 into the interior of the contact carrier 90 and thus into the exhaust space. It therefore eliminates the mechanical strength of the contact arrangement impairing structural measures, as in the Insulating nozzle 40 guided bypass channel 44 or as through holes in the contact tulip 20th
  • the sleeve 93 is integrally formed and is a non-slotted formed end of the contact tulip 20 with a force applied by the screw 95 and transmitted by the sleeve 93 clamping force on an end face of the tube 92 fixed. Since the sleeve 93 and the tube 92 are twisted against each other during the clamping of the contact tulip 20, the annular groove 94 prevents throttling of the extinguishing gas flow L 12 during the transition from the parallel partial channels 91a 'into the openings of the tube 12 forming the channel section 91b.
  • the sleeve 93 has two axially guided by screws 96 (only in Figure 10 shown) sleeve parts 93a and 93b interconnected on.
  • the sleeve part 93 a protrudes to the right beyond the foot end of the contact tulip 20.
  • the protruding portion of the sleeve portion 93a and the insulating nozzle 40 limit the partial volume 46 radially outward.
  • a part of the channel portion 91a is formed, which includes a first portion of the parallel-guided sub-channels 91a '.
  • a radially outward-pointing outlet formed in the projecting portion of the sleeve 93 guides the quenching gas flow L 12 from the sub-volume 46 into the channel portion 91a.
  • the sleeve part 93b a part of the channel portion 91a is formed, which contains the annular groove 94 and a second portion of the parallel-guided sub-channels 91a '.
  • the sleeve part 93b is fastened by means of the screw connection 95 to the tube 92 of the contact carrier 90.

Claims (12)

  1. Commutateur à haute tension isolé par du gaz avec un boîtier (10) rempli de gaz isolant et avec un bloc de contacts inséré dans le boîtier, lequel commutateur à haute tension contient, dans une disposition coaxiale :
    - deux contacts d'arc (20, 30) mobiles l'un vis-à-vis de l'autre le long d'un axe (A), dont un premier est conçu sous la forme d'une première tulipe de contact (20) et dont un deuxième est conçu sous la forme d'une broche de contact (30) ; et
    - deux douilles isolantes (40, 50) qui sont maintenues à une certaine distance l'une de l'autre dans la direction axiale, et dont la première (40) présente un premier canal de flux (41), guidé le long de l'axe (A), avec un premier rétrécissement (42) et dont la deuxième (50) présente un deuxième canal de flux (51), guidé le long de l'axe (A), avec un deuxième rétrécissement (52) ; pour lequel la première tulipe de contact (20) est disposée dans une section de sortie du flux (43) du premier canal de flux (41), laquelle est disposée en aval du premier rétrécissement (42) ;
    pour lequel la broche de contact (30) est insérée dans un rétrécissement de la première tulipe de contact (20), lequel met en contact la broche de contact (30) de manière électriquement conductrice, dans la position de commutation d'une part, et pour lequel la broche de contact peut être coulissée le long de l'axe (A) lors de la mise hors tension, d'autre part, dans lequel le premier rétrécissement (42), dans un premier temps, et le deuxième rétrécissement (52), dans un second temps, peuvent être libérés en formant une zone de l'arc électrique (L) ; et
    pour lequel, lors de la mise hors tension, deux flux de gaz d'extinction (L1, L2) bifurquent dans des directions opposées depuis un point de stagnation (SP) formé dans la zone de l'arc électrique (L), dont le premier flux de gaz d'extinction (L1) peut être guidé à travers le premier canal de flux (41) et dont le deuxième flux de gaz d'extinction (L2) peut être guidé à travers le deuxième canal de flux (51) ;
    dans lequel la somme des sections transversales de flux (AK, AΣ) du rétrécissement de la première tulipe de contact (20), d'un troisième rétrécissement disposé dans la section de sortie du flux (43) et/ou d'un canal de dérivation (44), qui bifurque au niveau de la section de sortie du flux (43), est supérieure à la section transversale de flux (An) du premier rétrécissement (42) ; dans lequel un premier flux partiel (L11) du premier flux de gaz d'extinction (L1) peut être guidé à travers le rétrécissement de la première tulipe de contact (20), et un deuxième flux partiel (L12), lequel est orienté de manière parallèle par rapport au premier flux partiel (L11) et lequel reçoit la part restante du premier flux de gaz d'extinction (L1), peut être guidé à travers le troisième rétrécissement et/ou à travers le canal de dérivation (44) ;
    dans lequel la tulipe de contact (20) présente une couronne de languettes de contact (21), laquelle couronne est guidée de manière symétrique autour de l'axe (A), et lesquelles languettes de contact sont orientées de manière axiale et forment, avec des extrémités (22) qui se trouvent à l'état libre, le rétrécissement de la tulipe de contact (20) lors de la mise hors tension ; dans lequel la section transversale de flux (AΣ) du troisième rétrécissement est formée par au moins deux des sections transversales de flux qui sont énumérées ci-dessous :
    (a) une section transversale de flux (A1) d'une fente annulaire, laquelle est guidée autour de l'axe (A), laquelle est orientée de manière radiale vers l'extérieur et laquelle est délimitée de manière axiale par une surface en forme de bague de la première douille isolante (40), laquelle surface s'étend de manière radiale vers l'extérieur depuis le premier rétrécissement (42), d'une part, et laquelle fente annulaire est également délimitée par une extrémité de la première tulipe de contact (20), laquelle extrémité est exécutée en étant fendue et orientée en direction du premier rétrécissement (42), d'autre part ;
    (b) une section transversale de flux (As, ax), laquelle est formée par la somme des sections transversales de flux qui forment, sur la libre extrémité de la première tulipe de contact (20), des rainures (23) guidées entre respectivement deux des languettes de contact (21) qui sont placées de manière consécutive dans la couronne ;
    (c) une section transversale de flux (As, rad), laquelle est formée par la somme des sections transversales de flux qui forment, sur la surface de la gaine de la première tulipe de contact (20), des rainures (23) guidées entre respectivement deux des languettes de contact (21) qui sont placées de manière consécutive dans la couronne ;
    (d) une section transversale de flux (A2) d'une fente annulaire, laquelle est guidée autour de l'axe (A), laquelle est orientée de manière axiale et laquelle fente annulaire est délimitée de manière radiale vers l'intérieur par une extrémité de la première tulipe de contact (20), laquelle extrémité est exécutée en étant fendue, ainsi que de manière radiale vers l'extérieur par la première douille isolante (40) ; et
    (e) une section transversale de flux (A3) d'une sortie de gaz en forme de bague et guidée autour de l'axe (A), laquelle sortie de gaz est disposée au niveau d'une section de la première tulipe de contact (20), laquelle section se trouve à l'opposé de l'extrémité qui est conçue de manière fendue ; caractérisé en ce que la section transversale de flux (A2) en direction de (d) est supérieure à la somme des sections transversales de flux (As, rad, A3) en direction de (c) et en direction de (e) .
  2. Commutateur selon la revendication 1, caractérisé en ce que le canal de dérivation (44) est guidé à travers un dispositif de blocage (45) qui empêche la formation du deuxième flux partiel (L22) dans le canal de dérivation (44), au début de la mise hors tension.
  3. Commutateur selon l'une des revendications 1 et 2, caractérisé en ce que un troisième contact d'arc, lequel est conçu sous la forme de la deuxième tulipe de contact (80), est disposé dans une section de sortie du flux (53) du deuxième canal de flux (51), laquelle section de sortie du flux est disposée en aval du deuxième rétrécissement (52) ; et en ce que la somme des sections transversales de flux (A'K, A'Σ) d'un rétrécissement de la deuxième tulipe de contact (80) et d'un quatrième rétrécissement, lequel est disposé dans la section de sortie de flux (53) du deuxième canal de flux (51), est supérieure à la section transversale de flux (A'n) du deuxième rétrécissement (52) ; dans lequel un premier flux partiel (L21) du deuxième flux de gaz d'extinction (L2) peut être guidé à travers le rétrécissement de la deuxième tulipe de contact (80), et un deuxième flux partiel (L22), lequel est orienté de manière parallèle par rapport au premier flux partiel (L21) et lequel reçoit la part restante du deuxième flux de gaz d'extinction (L2), peut être guidé à travers le quatrième rétrécissement ;
    dans lequel la deuxième tulipe de contact (80) présente une couronne de languettes de contact (81), laquelle couronne est guidée de manière symétrique autour de l'axe (A), et lesquelles languettes de contact sont orientées de manière axiale et forment, avec des extrémités (82) qui se trouvent à l'état libre, le rétrécissement de la deuxième tulipe de contact (80) lors de la mise hors tension ; et en ce que la section transversale de flux (A'Σ) du quatrième rétrécissement est formée par au moins deux des sections transversales de flux qui sont énumérées ci-dessous :
    (a') une section transversale de flux (A'1) d'une fente annulaire, laquelle est guidée autour de l'axe, laquelle est orientée de manière radiale vers l'extérieur et laquelle est délimitée de manière axiale par une surface en forme de bague de la deuxième douille isolante (50), laquelle surface s'étend de manière radiale vers l'extérieur depuis le deuxième rétrécissement (52), d'une part, et laquelle fente annulaire est également délimitée par une extrémité de la deuxième tulipe de contact (80), laquelle extrémité est exécutée en étant fendue et orientée en direction du deuxième rétrécissement (52), d'autre part ;
    (b') une section transversale de flux (A's, ax), laquelle est formée par la somme des sections transversales de flux qui forment, sur la libre extrémité de la deuxième tulipe de contact (80), des rainures (83) guidées entre respectivement deux des languettes de contact (81) qui sont placées de manière consécutive dans la couronne ;
    (c') une section transversale de flux (A's, rad), laquelle est formée par la somme des sections transversales de flux qui forment, sur la surface de la gaine de la deuxième tulipe de contact (80), des rainures (83) guidées entre respectivement deux des languettes de contact (81) qui sont placées de manière consécutive dans la couronne ;
    (d') une section transversale de flux (A'2) d'une fente annulaire, laquelle est guidée autour l'axe (A), laquelle est orientée de manière axiale et laquelle fente annulaire est délimitée de manière radiale vers l'intérieur par une extrémité de la deuxième tulipe de contact (80), laquelle extrémité est exécutée en étant fendue, ainsi que de manière radiale vers l'extérieur par la deuxième douille isolante (50) ; et
    (e') une section transversale de flux (A3') d'une sortie de gaz en forme de bague et guidée autour de l'axe (A), laquelle sortie de gaz est disposée au niveau d'une section de la deuxième tulipe de contact (80), laquelle section se trouve à l'opposé de l'extrémité qui est conçue de manière fendue.
  4. Commutateur selon la revendication 3, caractérisé en ce que la section transversale de flux (A'K) de la deuxième tulipe de contact (80) est inférieure à la section transversale de flux (A'4) d'un canal annulaire qui se trouve entre la deuxième tulipe de contact (80) et la broche de contact (30) et qui est formé après la libération de la deuxième tulipe de contact (80).
  5. Commutateur selon la revendication 3 ou 4, caractérisé en ce que la section transversale de flux (A'2) en direction de (d') est supérieure à la somme des sections transversales de flux (A's, rad, A'3) en direction de (c') et en direction de (e').
  6. Commutateur selon l'une des revendications 3 à 5, caractérisé en ce que le deuxième rétrécissement (52) est étendu en forme de cylindre le long de l'axe (A) et présente un diamètre qui est inférieur à son extension axiale ; et en ce que le diamètre et l'extension axiale sont coordonnés de telle sorte l'un par rapport à l'autre que la vitesse moyenne du deuxième flux de gaz d'extinction (L2) entre le point de stagnation (SP) et l'extrémité du deuxième rétrécissement (52), laquelle se trouve à l'opposé du point de stagnation, atteint presque la vitesse du son.
  7. Commutateur selon l'une des revendications 3 à 6, caractérisé en ce que un blindage (70) externe est prévu, lequel est enroulé en forme de bague autour de la deuxième douille isolante (80), dans la zone du deuxième canal de sortie (81).
  8. Commutateur selon l'une des revendications 1 à 7, caractérisé en ce que la première tulipe de contact (20) est fixée à une extrémité d'un support de contact (90) creux, laquelle extrémité est guidée dans le premier canal de flux (41) ; en ce que un canal de jonction (91) est moulé dans le support de contact (90) ; et en ce que un volume partiel (46) du premier canal de flux (41) communique avec l'intérieur du support de contact (90) par l'intermédiaire du canal de jonction (91), lequel volume partiel est guidé en forme de bague autour de l'axe (A) et lequel est délimité vers l'extérieur par la première douille isolante (40), ainsi que vers l'intérieur par la première tulipe de contact (20).
  9. Commutateur selon la revendication 8, caractérisé en ce que le support de contact (90) présente, dans une disposition coaxiale, un tube (92) intérieur et une enveloppe (93) extérieure, laquelle supporte la première douille isolante (40) ; en ce que une première section (91a) du canal de jonction (91), laquelle est guidée à travers l'enveloppe, contient au moins deux canaux partiels (91a') qui sont installés en parallèle ; et en ce que une deuxième section (91b) du canal de jonction est guidée à travers la paroi du tube (12).
  10. Commutateur selon la revendication 9, caractérisé en ce que le support de contact (90) présente en outre un raccord à vis (95), lequel est destiné à la fixation de l'enveloppe (93) sur le tube (92), ainsi qu'une gorge (94) guidée en forme de bague autour de l'axe (A), laquelle gorge relie l'une à l'autre la première section (91a) et la deuxième section (91b) du canal de jonction (91) .
  11. Commutateur selon la revendication 10, caractérisé en ce que l'enveloppe (93) est conçue d'une seule pièce et fixe une extrémité de la première tulipe de contact (20) sur une surface frontale du tube (92), au moyen d'une force de serrage appliquée par le raccord à vis (95) .
  12. Commutateur selon la revendication 10, caractérisé en ce que l'enveloppe (90) présente deux parties d'enveloppe (93a, 93b) qui sont reliées entre elles par des vis (96) guidées de manière axiale ; et en ce que les deux parties d'enveloppe fixent une extrémité de la première tulipe de contact (20) au support de contact (90), au moyen d'une force de serrage appliquée par les vis (96) guidées de manière axiale.
EP14747655.0A 2013-08-28 2014-08-05 Disjoncteur haute tension à isolation gazeuse Active EP3039703B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102013109336 2013-08-28
DE102014105392 2014-04-15
PCT/EP2014/066797 WO2015028264A2 (fr) 2013-08-28 2014-08-05 Disjoncteur haute tension à isolation gazeuse

Publications (2)

Publication Number Publication Date
EP3039703A2 EP3039703A2 (fr) 2016-07-06
EP3039703B1 true EP3039703B1 (fr) 2018-05-02

Family

ID=51266342

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14747655.0A Active EP3039703B1 (fr) 2013-08-28 2014-08-05 Disjoncteur haute tension à isolation gazeuse

Country Status (2)

Country Link
EP (1) EP3039703B1 (fr)
WO (1) WO2015028264A2 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202015106610U1 (de) 2015-12-04 2016-01-11 Abb Technology Ag Kontakttulpe für einen gasisolierten Hochspannungsschalter und Hochspannungsschalter mit dieser Kontakttulpe
EP3576125B1 (fr) * 2018-05-30 2021-02-17 ABB Power Grids Switzerland AG Disjoncteur haute tension

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4393291A (en) * 1979-10-12 1983-07-12 Brush Switchgear Limited Gas blast interrupters
FR2596575B1 (fr) * 1986-03-26 1988-05-20 Alsthom Disjoncteur a gaz dielectrique sous pression
DE10226044A1 (de) * 2002-06-12 2003-12-24 Alstom Druckgasschalter
CN101828242B (zh) * 2007-10-16 2013-03-13 Abb研究有限公司 带有由溢流阀控制的减压通道的气体绝缘的高压功率开关

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3039703A2 (fr) 2016-07-06
WO2015028264A2 (fr) 2015-03-05
WO2015028264A3 (fr) 2015-06-11

Similar Documents

Publication Publication Date Title
WO2006002560A1 (fr) Ampoule sous vide et ensemble de contacts pour un disjoncteur a vide
EP2198443A1 (fr) Disjoncteur haute tension isolé par gaz et doté d'un canal de délestage commandé par une soupape de surcourant
EP0016983B1 (fr) Disjoncteur à gaz comprimé autopneumatique
DE19809088C1 (de) Hochspannungsleistungsschalter mit einer Isolierstoffdüse
DE3107525C2 (de) Druckgas-Leistungsschalter
EP1226597B1 (fr) Disjoncteur a gaz comprime
EP2316122B1 (fr) Disjoncteur haute tension comprenant un trajet de coupure
WO2016151002A1 (fr) Buse isolante et dispositif de commutation électrique pourvu dune buse isolante
EP3039703B1 (fr) Disjoncteur haute tension à isolation gazeuse
EP2309526B1 (fr) Commutateur de puissance avec des branches de courant nominal parallèles
EP2387057B1 (fr) Commutateur à haute tension isolé du gaz
DE3341930C2 (de) Druckgasschalter
EP0743665B1 (fr) Disjoncteur
EP0290950B1 (fr) Disjoncteur à gaz comprimé
WO2009124582A1 (fr) Disjoncteur haute tension à isolation gazeuse
DE202015106610U1 (de) Kontakttulpe für einen gasisolierten Hochspannungsschalter und Hochspannungsschalter mit dieser Kontakttulpe
EP0817228B1 (fr) Sectionneur de puissance
DE532553C (de) Schalter mit Lichtbogenloeschung durch stroemendes Druckgas
EP3803931B1 (fr) Commutateur à isolation gazeuse
DE3833564A1 (de) Druckgasschalter
EP2087498B1 (fr) Disjoncteur haute tension à arc de coupure tournant
EP0069694A2 (fr) Système de contact pour disjoncteur à gaz comprimé
WO2016124175A1 (fr) Disjoncteur
DE2703550C2 (de) Elektrischer Schalter
DE3140466A1 (de) "hochspannungsleistungsschalter"

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160208

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DHOTRE, MAHESH

Inventor name: PISU, FRANCESO

Inventor name: IORDANIDIS, ARTHOUROS

Inventor name: PANOUSIS, EMMANOUIL

Inventor name: ZEHNDER, LUKAS

Inventor name: LEHMANN, JOERG

Inventor name: OVER, DANIEL

Inventor name: DOUSSET, VINCENT

Inventor name: GALLETTI, BERNARDO

Inventor name: SEEGER, MARTIN

Inventor name: ARNDT, STEFAN

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170406

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ABB SCHWEIZ AG

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502014008164

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H01H0033950000

Ipc: H01H0033700000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H01H 33/70 20060101AFI20171024BHEP

Ipc: H01H 1/38 20060101ALI20171024BHEP

Ipc: H01H 9/30 20060101ALN20171024BHEP

Ipc: H01H 33/91 20060101ALN20171024BHEP

INTG Intention to grant announced

Effective date: 20171115

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 996108

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014008164

Country of ref document: DE

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180502

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180802

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180802

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180803

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014008164

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20190205

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180805

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180831

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180831

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180502

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180902

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 996108

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190805

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502014008164

Country of ref document: DE

Owner name: HITACHI ENERGY SWITZERLAND AG, CH

Free format text: FORMER OWNER: ABB SCHWEIZ AG, BADEN, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 502014008164

Country of ref document: DE

Owner name: HITACHI ENERGY LTD, CH

Free format text: FORMER OWNER: ABB SCHWEIZ AG, BADEN, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 502014008164

Country of ref document: DE

Owner name: ABB POWER GRIDS SWITZERLAND AG, CH

Free format text: FORMER OWNER: ABB SCHWEIZ AG, BADEN, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502014008164

Country of ref document: DE

Owner name: HITACHI ENERGY SWITZERLAND AG, CH

Free format text: FORMER OWNER: ABB POWER GRIDS SWITZERLAND AG, BADEN, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 502014008164

Country of ref document: DE

Owner name: HITACHI ENERGY LTD, CH

Free format text: FORMER OWNER: ABB POWER GRIDS SWITZERLAND AG, BADEN, CH

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230527

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230825

Year of fee payment: 10

Ref country code: DE

Payment date: 20230821

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502014008164

Country of ref document: DE

Representative=s name: DENNEMEYER & ASSOCIATES S.A., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502014008164

Country of ref document: DE

Owner name: HITACHI ENERGY LTD, CH

Free format text: FORMER OWNER: HITACHI ENERGY SWITZERLAND AG, BADEN, CH