EP3038114B1 - Aluminiumlegierung für Leadframes - Google Patents

Aluminiumlegierung für Leadframes Download PDF

Info

Publication number
EP3038114B1
EP3038114B1 EP14199944.1A EP14199944A EP3038114B1 EP 3038114 B1 EP3038114 B1 EP 3038114B1 EP 14199944 A EP14199944 A EP 14199944A EP 3038114 B1 EP3038114 B1 EP 3038114B1
Authority
EP
European Patent Office
Prior art keywords
strip
electrical
stamped
foil
components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14199944.1A
Other languages
English (en)
French (fr)
Other versions
EP3038114A1 (de
Inventor
Volker Denkmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Speira GmbH
Original Assignee
Hydro Aluminium Rolled Products GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hydro Aluminium Rolled Products GmbH filed Critical Hydro Aluminium Rolled Products GmbH
Priority to EP14199944.1A priority Critical patent/EP3038114B1/de
Priority to TW104139695A priority patent/TWI591787B/zh
Priority to PCT/EP2015/079401 priority patent/WO2016102210A1/de
Priority to SG11201704987PA priority patent/SG11201704987PA/en
Publication of EP3038114A1 publication Critical patent/EP3038114A1/de
Application granted granted Critical
Publication of EP3038114B1 publication Critical patent/EP3038114B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/023Alloys based on aluminium

Definitions

  • the invention relates to the use of an AA6XXX aluminum alloy for electrical connections of electrical components of an electrical circuit or semiconductor devices, a stamped part for electrical connections of electrical components of an electrical circuit or semiconductor devices, a method for producing the stamped parts and a method for producing an electrical circuit or a semiconductor device using the stamped parts.
  • lead frames lead frames
  • stamped metal lattice To provide electrical connections of electrical components in electrical circuits or semiconductor devices so-called lead frames (lead frames) or stamped metal lattice are used.
  • metal stamping grids are used in motor vehicles to connect components of an electrical circuit to one another as closely as possible, without the need for additional cable connections.
  • These stamped grids are usually made of a copper alloy and not only serve to conduct the electrical current between the components, but also take over the removal of heat from the electrical components.
  • the thickness of the stamped grid is for example 0.2 mm to 2 mm.
  • Corresponding stamped grid are also often used for power electronics to provide the lowest possible electrical resistance at higher currents.
  • Semiconductor components also have in their housings electrical connections of electrical components, which are provided by so-called leadframes.
  • leadframes According to the leadframes are connected at thicknesses in the range of a maximum of 0.3 mm, preferably at most 0.2 mm with the respective semiconductor devices and encapsulated in a housing.
  • a semiconductor chip are electrically conductively connected to the leadframe.
  • die bonding This process is referred to as "die bonding."
  • the electrical connection of the leadframes to the semiconductor chips takes place via bonding wires with diameters in the range of 15 ⁇ m to 100 ⁇ m via "wire bonding", in which the bonding wires are often ultrasonically welded on the substrate.
  • the housing of the semiconductor component is cast and thermally cured, for example, by a transfer molding method
  • Typical semiconductor components are, for example, integrated circuits so-called ICs which are electrically connected to other electrical components via external contacts belonging to the leadframe can be.
  • the leadframe is subjected to heating to temperatures of more than 150 ° C up to a maximum of 380 ° C ,
  • Punching grid and leadframes are usually made of copper or a copper alloy.
  • the copper alloy CuNi2.5SiZn can be considered which satisfies the properties required for mass production of semiconductor devices in terms of tensile strength, yield strength, electrical conductivity, thermal conductivity, thermal expansion and hardness of the alloy.
  • the aluminum alloys of the AA3003 type are used according to the US patent.
  • the present invention has the object, for electrical connections of electrical components of an electrical circuit or of semiconductor devices to propose an aluminum alloy with which the previously known from the prior art problems can be solved.
  • the above-described object is achieved in that the aluminum alloy has a composition of the type EN AW 6016.
  • an electrical circuit or semiconductor devices In simulation anneals which mimic the process steps for the production of electrical connections of electrical semiconductor components, an electrical circuit or semiconductor devices has been found that these can be used to thermosetting the above-mentioned aluminum alloy types and thus can provide the copper alloy with similar mechanical, thermal and electrical properties.
  • the values for the yield strength of the abovementioned aluminum alloys in state T6, ie after heat aging, are very close to the yield strength values of the previously preferred copper alloys, so that the use of the abovementioned specific aluminum alloy types for the provision of electrical connections of electrical components to an electrical Circuit or semiconductor devices is made possible. All three types of aluminum alloys have particularly good electrical conductivities in the hot-stored state T6.
  • the EN AW 6016 aluminum alloy achieves even higher tensile strength and yield strength values than EN AW 6063 aluminum alloy. In particular, it has a higher T6 hardness than the type alloy EN AW 6063.
  • the aluminum alloy is preferably used as a stamped part, as a stamped leadframe or as a stamped grid for the electrical connection of the electrical components or semiconductor components. Due to the hardenability of EN AW 6060, EN AW 6063 or EN AW 6016 aluminum alloys, it is initially possible to produce the stamped parts in a soft, well-formed state, for example in the T4 state, so that stamping and forming can be performed easily and with little wear can be done on the punching tools. By means of heat treatments, in the case of the abovementioned alloys, the strength and yield values can be adapted to the downstream process steps for the provision of electrical circuits or the production of semiconductor components. For this purpose, the process steps which include a heat treatment, can be used.
  • an aluminum strip, an aluminum foil or a sheet of the aluminum alloys in the state T4 for the preparation of Stamped parts used.
  • the state T4 is achieved by solution-annealing the aluminum alloy strip, sheet or sheet produced after cold rolling and then quenching it so that as many alloy constituents as possible remain in solid solution in the aluminum matrix and provide a highly deformable material. During punching, not only low wear but also the high degree of deformation can be used.
  • the above-described object is achieved by a stamped part for an electrical connection of electrical components of an electrical circuit or semiconductor components in that the stamped part is made at least partially of an aluminum alloy of the type EN AW 6060, EN AW 6063 or EN AW 6016 exists.
  • the aluminum alloys mentioned in particular in the state T6 after a hot aging, have the mechanical, electrical and thermal properties necessary for providing an electrical connection of electrical components of an electrical circuit or of semiconductor components.
  • a softening of the aluminum alloy does not take place in the heat load until the completion of the electrical circuit or the semiconductor device.
  • corresponding punched parts can be produced more cost-effectively than stamped parts consisting of a copper alloy, since the aluminum strips to be punched can be easily shaped in the condition T4 and the wear on the punching tools remains low.
  • the stamped parts are produced from an aluminum alloy foil with a thickness of 20 ⁇ m to 200 ⁇ m or from an aluminum alloy band with a thickness of 200 ⁇ m to 2 mm
  • leadframes and stamped grids can be provided with regard to the different electrical properties, which are suitable for use in semiconductor components but also have custom dimensions in electrical circuits.
  • the stamped parts are preferably made of a Aluminum alloy tape produced with a thickness of 200 microns to 2mm.
  • leadframes intermediate sizes of, for example, 80 ⁇ m to 300 ⁇ m or 250 ⁇ m, which have a preferred range for the thickness of the strips or foils from which the leadframes are made, are preferred.
  • the aluminum alloy of the stamped part is, after the production of the electrical circuit or of the semiconductor component, at least partially in a thermoset state and / or in state T6.
  • the thermal aging properties of the preferred aluminum alloys of the type EN AW 6063 or EN AW 6016 mean that the mechanical, electrical and also thermal properties required for the use of the semiconductor components or the electrical circuits enable the use as lead frames or electrical connections for electrical components.
  • the stamped parts are at least partially surface-treated, in particular coated.
  • surface treatments for example, anodization, plating or galvanizing in question.
  • Anodization for example, significantly increases the resistance to oxidation of the aluminum.
  • Other coatings, a copper coating or gold coatings allow the use of specific manufacturing techniques, such as ultrasonic wire bonding.
  • the stamped part is a leadframe of a semiconductor component or stamped grid of an electrical circuit.
  • Leadframes are usually produced in progressive dies at high speed from a band-shaped base material, for example from an aluminum strip.
  • punched grids can also be honored as individual parts Leadframes differ from the punched grids on the one hand due to the lower thicknesses;
  • the support frame is usually cut off by a final stamping step after the semiconductor component has been produced, whereas in a printed circuit board the stamped grid is usually completely part of the printed circuit board electric circuit is. Both versions of the stamped part therefore allow a particularly high degree of automation of the manufacturing process while reducing the raw material prices of the base material.
  • the stamped parts can benefit from the very good forming behavior of the aluminum alloy material, so that high-precision stamping processes and forming processes can be used to provide leadframes and leadframes.
  • the foil or the sheet in state T4 cold aging and / or hot aging is carried out before further processing.
  • cold aging and / or thermal aging for example, a very specific state of the band, the film or the sheet can be adjusted, or the stampings produced therefrom, so that the production of electrical circuits or semiconductor devices can be done at high speed.
  • others can Hardened states are used, for example, a state T5, starting from the state T4 specific tensile strength values or yield limit values, which are adapted to the processing, are used to finally reach the maximum strength in the state T6 after a further heat treatment.
  • the strip can be produced by continuous casting of a casting belt and the casting belt by hot or cold rolling to a final thickness of 20 .mu.m to 200 .mu.m to the film or to a final thickness of 0.2 mm to 2 mm to the tape to be rolled.
  • the object indicated above is achieved by a fourth teaching of the invention by producing an electrical circuit or a semiconductor component using punched parts according to the invention. Due to the aluminum alloy used, the stamped parts, in particular stamped grid or leadframes, have the necessary mechanical, electrical and also thermal properties. In addition, the costs for producing corresponding electrical circuits or semiconductor devices can be further reduced due to the lower raw material costs for the leadframes or leadframes.
  • the stamped parts are preferably subjected to at least one surface treatment, for example plating, anodization, electroplating or coating.
  • a surface treatment for example plating, anodization, electroplating or coating.
  • specific areas of the stamped parts can be adapted to the respective task.
  • a coating with ultrasound-bondable surface enables the use of ultrasound wire or wirebonding for making electrical contact with the semiconductor chip with the leadframe.
  • Other needs may include, for example, coating with a solder or anticorrosion layer.
  • a surface treatment by coating with an insulating material or a treatment for further corrosion protection.
  • the method is configured in that the stamped parts before, during or after their processing to an electrical circuit or a semiconductor device heat treatment steps are subjected to the curing of the aluminum alloy.
  • the aluminum alloys EN AW 6063 and EN AW 6016 are characterized by the fact that different tempering conditions, different strengths and hardnesses can be provided. In this respect, the degree of curing of the aluminum alloy can be tailored specifically to the properties of the manufacturing process.
  • Fig. 1 in a plan view, a leadframe 1, which can be used for the production of semiconductor devices, in particular integrated circuits.
  • the typical structure of the leadframe 1 for so-called ICs (integrated circuits) has different areas, which must have different properties.
  • the connection contacts 3 are arranged after production outside the housing or package of the semiconductor device and are used for electrically contacting the semiconductor device with the contacts of an electrical circuit.
  • the connection points should have a certain mechanical strength in order to be processed automatically via automatic placement machines.
  • the so-called "die pad” 2 (chip pad) is used to attach the semiconductor chip.
  • the leadframe 1 is made of aluminum alloy EN AW 6060, EN AW 6063 or EN AW 6016.
  • the thickness of the leadframe is preferably 0.08 mm to 0.25 or at most 0.3 mm.
  • the area of the chip pad and in particular the contact points 4 of the leadframe to be contacted via a wire bonding method can be selectively coated. For example, for wire bonding, a specific gold coating may be provided which enables the ultrasonic wire bonding process.
  • the chip pad 2 with a thermally highly conductive coating, via which the chip can also be glued to the chip pad.
  • a stamping process is carried out via a progressive compound tool at high speed, which leads to the geometry of the leadframe like them Fig. 1 shows leads. It has been found that especially aluminum alloys of the type EN AW 6060, EN AW 6063 and EN AW 6016 in the condition T4 are particularly well suited to undergo corresponding punching processes. They are characterized by good formability and high formability and punchability.
  • Fig. 2 shows a detail of an embodiment of a stamped grid 5, which can also be made of an aluminum alloy of the type EN AW 6060, EN AW 6063 or EN AW 6016.
  • the punched grid 5 has significantly larger structures than the leadframe 1 and serves for contacting electrical components of an electrical circuit, for example an ABS or ESP control of a motor vehicle. Punching grid 5 are also used for electrical connection of lighting elements in the motor vehicle. In addition, there are also other applications of stamped gratings for providing electrical connections of electrical components, which are positioned on the lead frames 5 and contacted with them.
  • the contacting is usually carried out by a Lot compiler or by the use of conductive and curable adhesives.
  • leadframes 1 as well as lead frames 5 serve to remove heat from the components of the electrical circuit and thus also to provide thermal connections of the components of an electrical circuit or in the semiconductor component.
  • All three aluminum alloys EN AW 6060, EN AW 6063 and EN AW 6016 are characterized by moderate to low Mg contents, low upper limits for the copper and manganese contents as well as moderate iron contents.
  • the thermal and electrical conductivity properties of the aluminum alloys, even in the hot-aged state, as well as the mechanical properties necessary for use as electrical connection of electrical circuit components or semiconductor devices, are attributed to the combination of selection of these alloy components.
  • the EN AW 6016 aluminum alloy has an excess of silicon compared to the EN AW 6063 aluminum alloy and can thus provide higher strengths than the aluminum alloy EN AW 6036, for example in the T6 state.
  • the EN AW 6063 aluminum alloy in the T6 temper ie after aging, has a yield strength which is at least in the region of the yield strength of the preferred CuNi2.5SiZn copper alloy of 250 MPa.
  • the electrical conductivity is 52% above the copper alloy indicated in Table 1, where% -IACS as unit is the conductivity expressed as a percentage of the conductivity of pure annealed copper (corresponding to 100% IACS) and a conductivity of 58 M S / m corresponds.
  • T5 can also be provided via the tempering state of the alloy, as described here with the example of the aluminum alloy of the type EN AW 6063, so that corresponding specific values for the tensile strength, yield strength and also Vickers hardness can be provided by the tempering state.
  • the tempering states of the aluminum alloys of the type EN AW 6063 and EN AW 6016 can in this respect be adapted specifically to requirements of the production process of electrical circuits or semiconductor components in order to provide optimum process conditions.
  • the aluminum alloys of the present invention are brought into the condition T4 provided by solution annealing and quenching of a cold-rolled aluminum alloy ribbon.
  • state T4 have the Aluminum alloys of the type EN AW 6060, EN AW 6063 and EN AW 6016 have a particularly high formability and enable a precise punching process of the stamped parts.
  • the comparative alloys of the type EN AW 5182 or EN AW 3004 are subjected to softening by heat treatments during the production of electrical circuits or semiconductor components, so that the soft annealed states 0 are indicated here.
  • an EN AW 3004 alloy has significantly lower mechanical strength values and hardness values than the reference copper alloy CuNi2.5SiZn.
  • the alloy EN AW 5182 reaches the strength values.
  • Their significantly lower electrical conductivity shows that it is not suitable as a substitute for the copper alloy usually used.
  • Fig. 3 shows a schematic representation of the various process steps for producing electrical connections of components of an electrical circuit or of semiconductor components.
  • an aluminum strip or an aluminum foil is first produced from one of the two aluminum alloys according to the invention, type EN AW 6060, EN AW 6063 or EN AW 6016.
  • the preparation is carried out in process step A either by discontinuous casting of a rolling bar, homogenizing the rolling ingot, hot rolling of the rolling ingot to a hot strip and cold rolling of the hot strip with or without intermediate annealing at final thickness, wherein the strip has a final thickness of 0.2 mm to 2 mm or the film has a final thickness of 20 microns to 200 microns.
  • final thicknesses 0.10 mm to 0.30 mm are used.
  • continuous casting to provide a casting line followed by hot rolling and cold rolling with or without intermediate annealing may also be used to form an aluminum strip having a final thickness of 0.2 mm to provide 2 mm or an aluminum alloy foil with a final thickness of 20 microns to 200 microns.
  • step B the heat treatment of the tape or film produced is performed by annealing the tape or film followed by quenching.
  • the state T4 is set in the aluminum alloy strip or in the aluminum alloy foil.
  • method step C the punching of the leadframe, of the stamped grid or of the stamped parts takes place from the film or the strip.
  • the final method step D is dependent on whether a stamped grid or a leadframe is produced.
  • the heat treatments of the leadframe can take place during the "molding" and the "post-mold curing” step. so that this is in the state T6 at the end of the process step D and can provide the corresponding mechanical properties.
  • the stamped grid and the leadframe can also be subjected to a hot or cold aging process with a parallel method step E in order to provide the necessary mechanical properties directly in the production process D.
  • step D surface treatment steps can also be carried out in order to prepare specific regions of the stamped grid or of the leadframe for the respective technical use, for example "chip bonding", “wire bonding” or soldering process.
  • the leadframes and leadframes are used for the provision of power electronics, since the conductivity values of the aluminum alloys are above the previously used copper alloys.
  • Other uses are, for example, the provision of stamped grids for the electronics in a motor vehicle or in machine controls or the like to avoid cable connections.
  • the stamped grid for example, the printed conductors of a circuit board (not shown here) provide. Some of the stamped grid are also directly equipped with components and soldered, so that can be done by the soldering a curing in the state T6 of the alloy.
  • the alloy variants EN AW 6060, EN AW 6063 or EN AW 6016 according to the invention provide particularly high strengths in state T6 with good corrosion resistance and improved electrical conductivity in relation to the copper alloy conventionally used.
  • Table 1 alloy temper R m [MPa] R p0.2 [MPa] Conductivity [% IACS] Thermal conductivity [W / mK] Thermal expansion 10 -6 [m / K] Hardness [HV] CuNi2.5SiZn R360 360 - 430 250 43 185 17 100-130 EN AW 3004 0 170 60 42 160 23.2 46 EN AW 5182 0 280 110 31 126 23.8 75 EN AW 6063 0 100 50 57.5 218 23.5 55 EN AW 6063 T4 160 90 49.5 197 23.5 50 EN AW 6063 T5 215 175 55.5 209 23.5 65 EN AW 6063 T6 245 210 52 201 23.5 80 EN AW 6016 T6 280 235 46 to 49.5 190

Description

  • Die Erfindung betrifft die Verwendung einer AA6XXX Aluminiumlegierung für elektrische Verbindungen von elektrischen Bauelementen einer elektrischen Schaltung oder von Halbleiterbauelementen, ein Stanzteil für eine elektrische Verbindungen von elektrischen Bauelementen einer elektrischen Schaltung oder Halbleiterbauelementen, ein Verfahren zur Herstellung der Stanzteile sowie ein Verfahren zur Herstellung einer elektrischen Schaltung oder eines Halbleiterbauelements unter Verwendung der Stanzteile.
  • Zur Bereitstellung von elektrischen Verbindungen von elektrischen Bauelementen in elektrischen Schaltungen oder Halbleiterbauelementen werden sogenannte Leadframes (Leiterrahmen) oder auch Stanzgitter aus Metall verwendet. Beispielsweise werden in Kraftfahrzeugen metallische Stanzgitter verwendet, um auf möglichst engem Raum Bauelemente einer elektrischen Schaltung miteinander zu verbinden, ohne dass zusätzliche Kabelverbindungen notwendig sind. Diese Stanzgitter werden üblicherweise aus einer Kupferlegierung hergestellt und dienen nicht nur zur Leitung des elektrischen Stroms zwischen den Bauelementen, sondern übernehmen auch den Abtransport von Wärme aus den elektrischen Bauelementen. Die Dicke der Stanzgitter beträgt beispielsweise 0,2 mm bis 2mm. Entsprechende Stanzgitter werden häufig auch für Leistungselektronik verwendet, um einen möglichst geringen elektrischen Widerstand bei größeren Stromstärken bereitzustellen.
  • Halbleiterbauelemente weisen in ihren Gehäusen ebenfalls elektrische Verbindungen von elektrischen Bauelementen auf, welche durch sogenannte Leadframes bereitgestellt werden. Entsprechend der Leadframes werden bei Dicken im Bereich von maximal 0,3 mm, vorzugsweise maximal 0,2 mm mit den jeweiligen Halbleiterbauelementen verbunden und in einem Gehäuse verkapselt. Hierzu muss zunächst ein Halbleiterchip mit dem Leadframe elektrisch leitfähig verbunden werden. Dieser Prozess wird als Die-Bonding" bezeichnet. Das elektrische Verbinden der Leadframes mit den Halbleiterchips erfolgt über Bonddrähte mit Durchmessern im Bereich von 15 µm bis 100 µm über das "Wire-Bonding", bei welchem die Bonddrähte oft unter Verwendung eines Ultraschallschweißens auf dem Halbleiterchip selbst und auf dem Leadframe geschweißt werden. Anschließend wird beispielsweise durch ein Transfer-Mold-Verfahren das Gehäuse des Halbleiterbauelementes gegossen und thermisch ausgehärtet. Typische Halbleiterbauelemente sind beispielsweise integrierte Schaltungen sogenannte ICs, welche über äußere zum Leadframe gehörende Kontakte mit weiteren elektrischen Bauelementen elektrisch verbunden werden können.
  • Beim "Die-Bonding", "Wire-Bonding" und "Molding" sowie beim Aushärten des Gehäuses, dem sogenannten "Post-Mold-Curing" wird das Leadframe einer Erwärmung auf Temperaturen von mehr als 150°C bis maximal 380°C ausgesetzt.
  • Stanzgitter und Leadframes werden üblicherweise aus Kupfer oder eine Kupferlegierung hergestellt. Als eine bekannte Kupferlegierung kann beispielsweise die Kupferlegierung CuNi2,5SiZn angesehen werden, welche in Bezug auf die Zugfestigkeit, Streckgrenze, elektrische Leitfähigkeit, thermische Leitfähigkeit, thermische Ausdehnung und sowie die Härte der Legierung die für Massenfertigung von Halbleiterbauelementen geforderten Eigenschaften erfüllt.
  • Nachteilig bei den verwendeten Kupferlegierungen ist aber, dass der Rohstoffpreis für das Edelmetall Kupfer sehr hoch ist. Außerdem unterliegen die Stanzwerkzeuge aufgrund der recht hohen Festigkeit der Kupferlegierung erhöhtem Verschleiß, was ebenfalls zu höheren Kosten in der Produktion führt. Daher wurde bereits in der Vergangenheit Aluminium als Ersatzwerkstoff für diese Anwendungen in Betracht gezogen. Aus dem US-Patent US 5,066,368 ist die Verwendung eines Leadframes bestehend aus einer Aluminiumlegierung vom Typ AA3XXX und AA6XXX bekannt.
  • Bevorzugt werden gemäß dem US-Patent die Aluminiumlegierungen vom Typ AA3003 verwendet.
  • Aus der internationalen Patentanmeldung WO 92/04729 ist bekannt, durch eine Beschichtung des Leadframes eine verbesserte Haftung des gegossenen Gehäuses eines Halbleiterbauelementes am Leadframe zu erreichen, wobei auch die internationale Patentanmeldung eine Aluminiumlegierung vom Typ AA3003 für die Leadframes bevorzugt.
  • Die bevorzugten Aluminiumlegierungstypen AA3003 aber auch die Versuche mit Aluminiumlegierungen vom Typ AA5000 scheiterten insbesondere an zu stark abweichenden mechanischen Eigenschaften nach der Herstellung von beispielsweise Halbleiterbauelementen. So kommt es zu Entfestigungsvorgängen in AA3000er und AA5000er Werkstoffen aufgrund der Wärmebehandlung beim Die-Bonding, Wire-Bonding oder Molding und Post-Mold-Curing. Darüber hinaus war bisher auch die elektrische Leitfähigkeit bei hoch magnesiumhaltigen 5000er Aluminiumlegierungen nicht ausreichend hoch.
  • Hiervon ausgehend liegt der vorliegenden Erfindung die Aufgabe zugrunde, für elektrische Verbindungen von elektrischen Bauelementen einer elektrischen Schaltung oder von Halbleiterbauelementen eine Aluminiumlegierung vorzuschlagen, mit welcher die bisher aus dem Stand der Technik bekannten Probleme gelöst werden können.
  • Gemäß einer ersten Lehre der vorliegenden Erfindung wird die oben aufgezeigte Aufgabe dadurch gelöst, dass die Aluminiumlegierung eine Zusammensetzung vom Typ EN AW 6016 aufweist.
  • Bei Simulationsglühungen, welche die Prozessschritte zur Herstellung von elektrischen Verbindungen von elektrischen Halbleiterbauelementen, einer elektrischen Schaltung oder von Halbleiterbauelementen nachahmen, wurde festgestellt, dass diese zu einer Warmaushärtung der oben genannten Aluminiumlegierungstypen verwendet werden können und damit der Kupferlegierung ähnliche mechanische, thermische und elektrische Eigenschaften bereitstellen können. Insbesondere die Werte für die Streckgrenze der oben genannten Aluminiumlegierungen liegen im Zustand T6, also nach einer Warmauslagerung, sehr nahe an den Streckgrenzwerten der bisher bevorzugt verwendeten Kupferlegierungen, sodass die Verwendung der oben genannten spezifischen Aluminiumlegierungstypen für die Bereitstellung von elektrischen Verbindungen von elektrischen Bauelementen einer elektrischen Schaltung oder von Halbleiterbauelementen ermöglicht wird. Alle drei Aluminiumlegierungstypen weisen besonders gute elektrische Leitfähigkeiten im warmausgelagerten Zustand T6 auf. Es zeigte sich zudem, dass die Aluminiumlegierung vom Typ EN AW 6016 noch höhere Werte in Bezug auf die Zugfestigkeit und die Streckgrenze erreicht als die Aluminiumlegierung vom Typ EN AW 6063. Sie weist insbesondere auch eine größere Härte im Zustand T6 auf als die Legierung vom Typ EN AW 6063.
  • Vorzugweise wird die Aluminiumlegierung als Stanzteil, als gestanztes Leadframe oder als Stanzgitter für die elektrische Verbindung der elektrischen Bauelemente oder Halbleiterbauelemente verwendet. Aufgrund der Aushärtbarkeit der Aluminiumlegierungen vom Typ EN AW 6060, EN AW 6063 oder EN AW 6016 besteht die Möglichkeit, die Stanzteile zunächst in einem weichen, gut umformbaren Zustand, beispielsweise im Zustand T4, herzustellen, sodass das Stanzen und Umformen problemlos und mit geringem Verschleiß an den Stanzwerkzeugen erfolgen kann. Durch Wärmebehandlungen kann bei den genannten Legierungen die Festigkeits- und die Streckgrenzwerte an die nachgelagerten Prozessschritte zur Bereitstellung von elektrischen Schaltungen oder die Herstellung von Halbleiterbauelementen angepasst werden. Hierzu können auch die Prozessschritte, welche eine Wärmebehandlung beinhalten, genutzt werden.
  • Gemäß einer weiteren Ausgestaltung wird ein Aluminiumband, eine Aluminiumfolie oder ein Blech aus den Aluminiumlegierungen im Zustand T4 zur Herstellung der Stanzteile verwendet. Der Zustand T4 wird dadurch erreicht, dass das hergestellte Aluminiumlegierungsband, -folie oder -blech nach dem Kaltwalzen lösungsgeglüht und anschließend abgeschreckt wird, sodass möglichst viele Legierungsbestandteile in fester Lösung in der Aluminiummatrix verbleiben und einen hoch umformbaren Werkstoff zur Verfügung stellen. Bei dem Stanzen kann neben einem geringen Verschleiß auch der hohe Umformgrad genutzt werden.
  • Gemäß einer zweiten Lehre der vorliegenden Erfindung wird die oben aufgezeigte Aufgabe durch ein Stanzteil für eine elektrische Verbindung von elektrischen Bauelementen einer elektrischen Schaltung oder Halbleiterbauelementen dadurch gelöst, dass das Stanzteil zumindest teilweise aus einer Aluminiumlegierung vom Typ EN AW 6060, EN AW 6063 oder EN AW 6016 besteht.
  • Wie bereits oben ausgeführt, weisen die genannten Aluminiumlegierungen insbesondere im Zustand T6 nach einer Warmauslagerung die für die Bereitstellung einer elektrischen Verbindung von elektrischen Bauelementen einer elektrischen Schaltung oder von Halbleiterbauelementen notwendigen mechanischen, elektrischen und thermischen Eigenschaften auf. Eine Entfestigung der Aluminiumlegierung findet bei der Wärmebelastung bis zur Fertigstellung der elektrischen Schaltung bzw. des Halbleiterbauelements nicht statt. Darüber hinaus lassen sich entsprechende Stanzteile kostengünstiger als Stanzteile bestehend aus einer Kupferlegierung herstellen, da die zu stanzenden Aluminiumbänder im Zustand T4 leicht umgeformt werden können und der Verschleiß an den Stanzwerkzeugen gering bleibt.
  • Werden die Stanzteile aus einer Aluminiumlegierungsfolie mit einer Dicke von 20 µm bis 200 µm oder aus einem Aluminiumlegierungsband mit einer Dicke von 200 µm bis 2 mm hergestellt, können in Bezug auf die unterschiedlichen elektrischen Eigenschaften Leadframes und Stanzgitter bereitgestellt werden, welche für den Einsatz in Halbleiterbauelementen aber auch in elektrischen Schaltungen maßgeschneiderte Abmessungen aufweisen. Für elektrische Schaltungen mit höheren Leistungen und damit höheren Strömen werden die Stanzteile bevorzugt aus einem Aluminiumlegierungsband mit einer Dicke von 200 µm bis 2mm hergestellt. Bevorzugt sind bei Leadframes allerdings auch Zwischengrößen beispielsweise von 80 µm bis 300 µm bzw. 250 µm, welche einen bevorzugten Bereich für die Dicke der Bänder bzw. Folien, aus welchen die Leadframes hergestellt sind, aufweisen.
  • Gemäß einer Ausgestaltung des Stanzteils ist die Aluminiumlegierung des Stanzteils nach der Herstellung der elektrischen Schaltung oder des Halbleiterbauelements zumindest bereichsweise in einem warm ausgehärteten Zustand und/oder im Zustand T6. Die Warmauslagerungseigenschaften der bevorzugten Aluminiumlegierungen vom Typ EN AW 6063 oder EN AW 6016 führen dazu, dass die für den Einsatz der Halbleiterbauelemente bzw. der elektrischen Schaltungen notwendigen mechanischen, elektrischen und auch thermischen Eigenschaften den Einsatz als Leadframes bzw. elektrische Verbindungen für elektrische Bauelemente ermöglichen.
  • Bevorzugt werden die Stanzteile zumindest bereichsweise oberflächenbehandelt, insbesondere beschichtet. Als Oberflächenbehandlungen kommen beispielsweise Eloxierungen, Plattierungen oder Galvanisierungen in Frage. Eine Eloxierung erhöht beispielsweise die Beständigkeit gegen Oxidation des Aluminiums deutlich. Andere Beschichtungen, eine Kupferbeschichtung oder auch Goldbeschichtungen ermöglichen die Verwendung von spezifischen Fertigungstechniken, beispielsweise das Ultraschall-Wire-Bonding.
  • Vorzugweise ist das Stanzteil ein Leadframe eines Halbleiterbauelementes oder Stanzgitter einer elektrischen Schaltung. Leadframes werden üblicherweise in Folgeverbundwerkzeugen mit hoher Geschwindigkeit aus einem bandförmigen Grundwerkstoff, beispielsweise aus einem Aluminiumband hergestellt. Stanzgitter können dagegen auch als Einzelteile ehrgestellt werden Leadframes unterscheiden sich von den Stanzgittern einerseits durch die geringeren Dicken; andererseits wird bei Leadframes der Trägerrahmen üblicherweise durch einen abschließenden Stanzschritt nach der Herstellung des Halbleiterbauelementes abgetrennt, wohingegen das Stanzgitter üblicherweise in einer Leiterplatte vollständig Teil der elektrischen Schaltung wird. Beide Ausprägungen des Stanzteils ermöglichen daher eine besonders hohe Automatisierung des Herstellprozesses bei gleichzeitiger Reduktion der Rohstoffpreise des Grundwerkstoffs.
  • Gemäß einer weiteren Lehre der vorliegenden Erfindung wird die oben aufgezeigte Aufgabe durch ein Verfahren zur Herstellung von Stanzteilen für elektrische Verbindungen von Bauelementen einer elektrischen Schaltung oder von Halbleiterbauelementen mit den folgenden Schritten gelöst:
    • Bereitstellen eines Bandes, einer Folie oder einer Blechs bestehend aus einer Aluminiumlegierung vom Typ EN AW 6060, EN AW 6063 oder EN AW 6016 nach Anspruch 4,
    • Lösungsglühen und Abschrecken des Bandes, der Folie oder des Blechs derart, dass das Band, die Folie oder das Blech im Zustand T4 vorliegt,
    • Stanzen des Bandes, der Folie oder des Blechs zur Bereitstellung von elektrischen n Verbindungen von Bauelementen einer elektrischen Schaltung.
  • Wie bereits zuvor ausgeführt, können im Zustand T4 die Stanzteile von dem sehr guten Umformverhalten des Aluminiumlegierungswerkstoffs profitieren, sodass hochpräzise Stanzprozesse und Umformprozesse genutzt werden können, um Leadframes und Stanzgitter bereitzustellen.
  • Vorzugsweise wird nach dem Stanzen des Bandes, der Folie oder des Blechs im Zustand T4 eine Kaltauslagerung und/oder eine Warmauslagerung vor der Weiterverarbeitung durchgeführt. Durch diese Kaltauslagerung und/oder Warmauslagerung kann beispielsweise ein ganz spezifischer Zustand des Bandes, der Folie oder des Blechs eingestellt werden, bzw. der daraus hergestellten Stanzteile, sodass die Fertigung von elektrischen Schaltungen oder Halbleiterbauelementen mit hoher Geschwindigkeit erfolgen kann. Beispielsweise können andere Aushärtungszustände genutzt werden, beispielsweise ein Zustand T5, um ausgehend von dem Zustand T4 spezifische Zugfestigkeitswerte bzw. Streckgrenzwerte, welche auf die Verarbeitung abgestimmt sind, genutzt werden, um abschließend erst die maximale Festigkeit im Zustand T6 nach einer weiteren Wärmebehandlung zu erreichen.
  • Gemäß einer nächsten Ausgestaltung des Verfahrens wird das Band, die Folie oder das Blech mit einem Verfahren, welches die folgenden Verfahrensschritte aufweist, hergestellt:
    • diskontinuierliches Gießen eines Barrens, vorzugsweise im DC-Verfahren (direct chill),
    • homogenisierendes Walbarrens
    • Warmwalzen des Walzbarrens und
    • Kaltwalzen des Warmbandes mit oder ohne Zwischenglühung an Enddicke, wobei das Band auf eine Enddicke von 0,2 mm bis 2 mm und die Folie auf eine Enddicke von 20 µm bis 200 µm gewalzt wird.
  • Alternativ zum diskontinuierlichen Gießen kann gemäß einer weiteren Ausgestaltung das Band durch kontinuierliches Gießen eines Gießbandes hergestellt werden und das Gießband durch Warm- oder Kaltwalzen auf eine Enddicke von 20 µm bis 200 µm zur Folie oder auf eine Enddicke 0,2 mm bis 2 mm zum Band gewalzt werden.
  • Beide Verfahrensschritte, das diskontinuierliche Gießen eines Walzbarrens mit seinen entsprechenden Verfahrensschritten sowie das kontinuierliche Gießen eines Gießbandes und den weiteren Verfahrensschritten zur Herstellung einer Folie oder eines Bandes ermöglichen es, aus dem erfindungsgemäßen Aluminiumlegierungswerkstoff Stanzteile mit hoher Wirtschaftlichkeit herzustellen, welche den Anforderungen für die Bereitstellung von elektrischen Verbindungen von Bauelementen einer elektrischen Schaltung oder von Halbleiterbauelementen genügen.
  • Schließlich wird die oben aufgezeigte Aufgabe durch eine vierte Lehre der Erfindung durch eine Herstellung einer elektrischen Schaltung oder eines Halbleiterbauelementes unter Verwendung von erfindungsgemäßen Stanzteilen gelöst. Die Stanzteile, insbesondere Stanzgitter oder Leadframes weisen aufgrund der verwendeten Aluminiumlegierung die notwendigen mechanischen, elektrischen und auch thermischen Eigenschaften auf. Darüber hinaus können die Kosten zur Herstellung entsprechender elektrischer Schaltungen oder Halbleiterbauelemente aufgrund der geringeren Rohstoffkosten für die Leadframes oder Stanzgitter weiter gesenkt werden.
  • Vorzugsweise werden die Stanzteile während der Herstellung einer elektrischen Schaltung oder eines Halbleiterbauelementes bereichsweise mindestens einer Oberflächenbehandlung, beispielsweise einem Plattieren, Anodisieren, Galvanisieren oder Beschichten unterzogen. Durch diese Oberflächenbehandlung können spezifische Bereiche der Stanzteile an die jeweilige Aufgabe angepasst werden. Beispielsweise ermöglicht eine Beschichtung mit ultraschallbondfähiger Oberfläche die Verwendung von Ultraschalldraht bzw. Wirebondern zur elektrischen Kontaktierung des Halbleiterchips mit dem Leadframe. Andere Bedürfnisse können beispielsweise die Beschichtung mit einem Weichlot oder einer Korrosionsschutzschicht darstellen. Gleichzeitig kann auch eine Oberflächenbehandlung durch Beschichtung mit einem Isolationsmaterial erfolgen oder eine Behandlung zum weiteren Korrosionsschutz.
  • Weiter bevorzugt wird das Verfahren dadurch ausgestaltet, dass die Stanzteile vor, während oder nach deren Verarbeitung zu einer elektrischen Schaltung oder einem Halbleiterbauelement Wärmebehandlungsschritten zur Aushärtung der Aluminiumlegierung unterzogen werden. Die Aluminiumlegierungen vom Typ EN AW 6063 und EN AW 6016 zeichnen sich dadurch aus, dass verschiedene TemperZustände, unterschiedliche Festigkeiten und Härten bereitstellen können. Insofern kann der Aushärtegrad der Aluminiumlegierung spezifisch auf die Eigenschaften des Herstellverfahrens abgestellt werden.
  • Im Weiteren soll anhand von Ausführungsbeispielen in Verbindung mit der Zeichnung die Erfindung näher erläutert werden.
  • In den Zeichnungen zeigt
  • Fig. 1
    ein erstes Ausführungsbeispiel einer typischen Konfiguration eines Leadframes,
    Fig. 2
    ein weiteres Ausführungsbeispiel eines Stanzteils in Form eines Stanzgitters, einer elektrischen Schaltung und
    Fig. 3
    eine schematische Darstellung der Verfahrensschritte zur Herstellung von elektrischen Schaltungen oder Halbleiterbauelementen.
  • Zunächst zeigt Fig. 1 in einer Draufsicht ein Leadframe 1, welches zur Herstellung von Halbleiterbauelementen, insbesondere integrierten Schaltungen genutzt werden kann. Der typische Aufbau des Leadframes 1 für sogenannte IC's (integrierte Schaltungen) weist verschiedene Bereiche auf, welche unterschiedliche Eigenschaften besitzen müssen. So sind die Anschlusskontakte 3 nach der Herstellung außerhalb des Gehäuses oder Packages des Halbleiterbauelementes angeordnet und dienen zum elektrischen Kontaktieren des Halbleiterbauelementes mit den Kontakten einer elektrischen Schaltung. Die Anschlussstellen sollten eine gewisse mechanische Festigkeit aufweisen, um auch automatisch über Bestückungsautomaten verarbeitet zu werden.
  • Das sogenannte "Die-Pad" 2 (Chip-Pad) dient zur Befestigung des Halbleiterchips. Das Leadframe 1 ist aus einer Aluminiumlegierung vom Typ EN AW 6060, EN AW 6063 oder EN AW 6016 hergestellt. Die Dicke des Leadframes beträgt vorzugsweise 0,08 mm bis 0,25 oder maximal 0,3 mm. Der Bereich des Chip-Pads und insbesondere der über ein Draht-Bond-Verfahren zu kontaktierenden Kontaktstellen 4 des Leadframes können selektiv beschichtet werden. Beispielsweise kann für das Draht-Bonden eine spezifische Goldbeschichtung vorgesehen sein, welche das Ultraschall-Draht-Bondverfahren ermöglicht.
  • Darüber hinaus besteht die Möglichkeit, das Chip-Pad 2 mit einer thermisch hochleitfähigen Beschichtung zu versehen, über welche der Chip auch mit dem Chip-Pad verklebt werden kann. Bei der Herstellung des Leadframes 1 wird über ein Folgeverbundwerkzeug mit hoher Geschwindigkeit ein Stanzprozess durchgeführt, welcher zur Geometrie des Leadframes wie sie Fig. 1 zeigt, führt. Es hat sich herausgestellt, dass insbesondere Aluminiumlegierungen vom Typ EN AW 6060, EN AW 6063 und EN AW 6016 im Zustand T4 besonders gut geeignet sind, entsprechende Stanzprozesse zu durchlaufen. Sie zeichnen sich besonders durch gute Umformbarkeit und eine hohe Formbarkeit und Stanzbarkeit aus.
  • Fig. 2 zeigt ausschnittsweise ein Ausführungsbeispiel eines Stanzgitters 5, welches ebenfalls aus einer Aluminiumlegierung vom Typ EN AW 6060, EN AW 6063 oder EN AW 6016 hergestellt werden kann. Das Stanzgitter 5 weist deutlich größere Strukturen als das Leadframe 1 auf und dient zur Kontaktierung von elektrischen Bauelementen einer elektrischen Schaltung, beispielsweise einer ABS- oder ESP-Steuerung eines Kraftfahrzeugs. Stanzgitter 5 werden auch zur elektrischen Verbindung von Beleuchtungselementen im Kraftfahrzeug eingesetzt. Darüber hinaus gibt es auch weitere Anwendungen von Stanzgittern zur Bereitstellung von elektrischen Verbindungen von elektrischen Bauelementen, welche auf den Stanzgittern 5 positioniert und mit diesen kontaktiert werden.
  • Die Kontaktierung erfolgt üblicherweise über ein Lotverfahren oder durch die Verwendung von leitfähigen und aushärtbaren Klebstoffen. Neben den elektrischen Verbindungen dienen sowohl Leadframes 1 als auch Stanzgitter 5 zum Abtransport von Wärme aus den Bauelementen der elektrischen Schaltung und damit auch zur Bereitstellung von thermischen Verbindungen der Bauelemente einer elektrischen Schaltung oder im Halbleiterbauelement.
  • Die in den Figuren 1 und 2 dargestellten elektrischen Verbindungen von elektrischen Bauelementen einer elektrischen Schaltung oder von Halbleiterbauelementen in Form von Leadframes oder Stanzgittern werden erfindungsgemäß aus einer Aluminiumlegierung vom Typ EN AW 6060, Typ EN AW 6063 oder EN AW 6016 hergestellt.
  • Die Aluminiumlegierung vom Typ EN AW 6060 weist folgende Legierungsbestandteile in Gew.-% auf: 0,30 % Si 0,6 %
    Figure imgb0001
    0,10 % Fe 0,30 % ,
    Figure imgb0002
    • Cu max. 0,10 %,
    • Mn max. 0,10 %,
    0,35 % Mg 0,6 % ,
    Figure imgb0003
    • Cr max. 0,05 %,
    • Zn max. 0,15 %,
    • Ti max. 0,10 %,
    • Rest Al und unvermeidbare Verunreinigungen einzeln max. 0,05 Gew.-% in Summe max. 0,15 Gew.-%.
  • Die Aluminiumlegierung vom Typ EN AW 6063 weist folgende Legierungsbestandteile in Gew.-% auf: 0,20 % Si 0,6 %
    Figure imgb0004
    • Fe max. 0,35 %,
    • Cu max. 0,10 %,
    • Mn max. 0,10 %,
    0,45 % Mg 0,9 % ,
    Figure imgb0005
    • Cr max. 0,10 %,
    • Zn max. 0,10 %,
    • Ti max. 0,10 %,
    • Rest Al und unvermeidbare Verunreinigungen einzeln max. 0,05 Gew.-% in Summe max. 0,15 Gew.-%.
  • Die Aluminiumlegierung vom Typ EN AW 6016 weist die folgende Legierungszusammensetzung in Gew.-% auf: 1,0 % Si 1,5 % ,
    Figure imgb0006
    • Fe max. 0,50 %,
    • Cu max. 0,20 %,
    • Mn max. 0,20 %,
    0,25 % Mg 0,6 % ,
    Figure imgb0007
    • Cr max. 0,10 %,
    • Zn max. 0,20 %,
    • Ti max. 0,15 %,
    • Rest Al und unvermeidbare Verunreinigungen einzeln max. 0,05 Gew.-% in Summe max. 0,15 Gew.-%.
  • Alle drei Aluminiumlegierungen EN AW 6060, EN AW 6063 und EN AW 6016 zeichnen sich durch moderate bis geringe Mg-Gehalte, geringe Obergrenzen für die Kupfer- und Mangangehalte sowie moderate Eisengehalte auf. Die Eigenschaften hinsichtlich der thermischen und elektrischen Leitfähigkeit der Aluminiumlegierungen auch im warmausgelagerten Zustand sowie die in Bezug auf die Verwendung als elektrische Verbindung von Bauelementen einer elektrischen Schaltung oder von Halbleiterbauelementen notwendigen mechanischen Eigenschaften werden auf die Kombination der Auswahl dieser Legierungskomponenten zurückgeführt.
  • Von dem Aluminiumlegierungstyp EN AW 6060 wurden zwar bisher keine Messungen hinsichtlich der elektrischen Leitfähigkeit im warmausgelagerten Zustand durchgeführt, es wird aber davon ausgegangen, dass aufgrund der Legierungszusammensetzung ähnlich gute Werte erzielt werden, wie die nachfolgend dargestellten Werte für die Aluminiumlegierung vom Typ EN AW 6063 und EN AW 6016.
  • Alle genannten Messungen wurden gemäß der jeweiligen EN-Norm durchgeführt.
  • Die Aluminiumlegierung vom Typ EN AW 6016 weist im Vergleich zur Aluminiumlegierung vom Typ EN AW 6063 einen Überschuss an Silizium auf und kann insofern höhere Festigkeiten als die Aluminiumlegierung vom Typ EN AW 6036 beispielsweise im Zustand T6 zur Verfügung stellen.
  • Wie die Tabelle 1 zeigt, weist die Aluminiumlegierung vom Typ EN AW 6063 im Temperzustand T6, also nach einem Warmauslagern, eine Streckgrenze auf, welche zumindest im Bereich der Streckgrenze der bevorzugten Kupferlegierung CuNi2.5SiZn von 250 MPa liegt. Darüber hinaus liegt die elektrische Leitfähigkeit bei 52 % oberhalb der in Tabelle 1 angegebenen Kupferlegierung, wobei %-IACS als Einheit die Leitfähigkeit als Prozentwert der Leitfähigkeit von reinem, geglühten Kupfer (entsprechend 100 % IACS) ausgedrückt wird und einer Leitfähigkeit von 58 MS/m entspricht.
  • Über den Temperzustand der Legierung, wie hier am Beispiel der Aluminiumlegierung vom Typ EN AW 6063, können auch Zwischenwerte, wie beispielsweise T5 bereitgestellt werden, so dass entsprechende spezifische Werte für die Zugfestigkeit, Streckgrenze und auch Vickershärte durch den Temperzustand bereitgestellt werden können. Die Temperzustände der Aluminiumlegierungen vom Typ EN AW 6063 und EN AW 6016 können insofern spezifisch an Anforderungen des Fertigungsprozess von elektrischen Schaltungen oder Halbleiterbauelementen angepasst werden, um optimale Prozessbedingungen zur Verfügung zu stellen.
  • Bevorzugt werden die erfindungsgemäßen Aluminiumlegierungen in den Zustand T4 gebracht, welcher durch Lösungsglühen und Abschrecken eines kaltgewalzten Aluminiumlegierungsbandes bereitgestellt wird. Im Zustand T4 besitzen die Aluminiumlegierungen vom Typ EN AW 6060, EN AW 6063 und EN AW 6016 eine besonders hohe Umformbarkeit und ermöglichen einen präzisen Stanzvorgang der Stanzteile.
  • In Tabelle 1 ist darüber hinaus zu erkennen, dass die Zugfestigkeitswerte, die Streckgrenzwerte und auch die elektrische Leitfähigkeit der Aluminiumlegierung vom Typ EN AW 6016 nahezu identisch sind mit den Werten, welche für die Kupferlegierung CuNi2.5SiZn im Temperzustand R360 erreicht werden. Die Aluminiumlegierung EN AW 6016 ist daher im Zustand T6 besonders gut als Ersatz für die bisher verwendete Kupferlegierung geeignet.
  • Die Vergleichslegierungen vom Typ EN AW 5182 oder EN AW 3004 werden durch Wärmebehandlungen bei der Herstellung elektrischer Schaltungen oder Halbleiterbauelemente einer Entfestigung unterworfen, so dass hier die weichgeglühten Zustände 0 angegeben sind. Wie zu erkennen ist, weist eine Legierung vom Typ EN AW 3004 deutlich geringere mechanische Festigkeitswerte und Härtewerte auf, als die Referenzkupferlegierung CuNi2.5SiZn. Die Legierung EN AW 5182 reicht zwar an die Festigkeitswerte heran. Ihre deutlich geringere elektrische Leitfähigkeit zeigt jedoch, dass sie als Ersatz für die üblicherweise eingesetzte Kupferlegierung nicht geeignet ist.
  • Fig. 3 zeigt in einer schematischen Darstellung die verschiedenen Verfahrensschritte zur Herstellung elektrischer r Verbindungen von Bauelementen einer elektrischen Schaltung oder von Halbleiterbauelementen. Im Herstellschritt A wird zunächst ein Aluminiumband oder eine Aluminiumfolie aus einer der beiden erfindungsgemäßen Aluminiumlegierungen vom Typ EN AW 6060, EN AW 6063 oder EN AW 6016 hergestellt. Die Herstellung erfolgt im Verfahrensschritt A entweder durch diskontinuierliches Gießen eines Walzbarrens, Homogenisieren des Walzbarrens, Warmwalzen des Walzbarrens zu einem Warmband und Kaltwalzen des Warmbandes mit oder ohne Zwischenglühung an Enddicke, wobei das Band eine Enddicke von 0,2 mm bis 2 mm oder die Folie eine Enddicke von 20 µm bis 200 µm aufweist. Bevorzugt werden Enddicken von 0,10 mm bis 0,30 mm verwendet.
  • Alternativ zur Bereitstellung des Bandes durch Gießen eines Walzbarrens, vorzugweise im Direkt-Chill-Verfahren, kann auch ein kontinuierliches Gießen zur Bereitstellung eines Gießbandes mit anschließendem Warmwalzen und Kaltwalzen mit oder ohne Zwischenglühung genutzt werden, um ein Aluminiumband mit einer Enddicke von 0,2 mm bis 2 mm oder eine Aluminiumlegierungsfolie mit einer Enddicke von 20 µm bis 200 µm bereitzustellen.
  • Im Verfahrensschritt B gemäß dem Ausführungsbeispiel aus Fig. 3 wird die Wärmebehandlung des hergestellten Bandes oder der Folie durch Glühen des Bandes oder der Folie mit einem anschließenden Abschrecken durchgeführt. Hierdurch wird der Zustand T4 im Aluminiumlegierungsband bzw. im der Aluminiumlegierungsfolie eingestellt. Anschließend erfolgt im Verfahrensschritt C das Stanzen des Leadframes, des Stanzgitters bzw. der Stanzteile aus der Folie oder dem Band.
  • Der abschließende Verfahrensschritt D ist abhängig davon, ob ein Stanzgitter oder ein Leadframe hergestellt wird. In Verfahrensschritt D können beispielsweise bei der Herstellung eines Leadframes durch das Chip-Bonden, das Draht-Bonden und das Herstellen des Gehäuses des Halbleiterbauelementes während des "Molding"- und des "Post-Mold-Curing-"Schritts die Wärmebehandlungen des Leadframes erfolgen, sodass dieses am Ende des Verfahrensschrittes D im Zustand T6 vorliegt und die entsprechenden mechanischen Eigenschaften bereitstellen kann.
  • Gleiches gilt auch sofern ein hergestellte Stanzgitter bei der Herstellung von elektrischen Verbindungen von Bauelementen einer elektrischen Schaltung, beispielsweise Lötverfahren oder einem Umspritzen mit Kunststoff unterzogen werden, wobei ein Wärmeeintrag in die Stanzgitter 5 erfolgt.
  • Alternativ oder kumulativ dazu kann aber auch das Stanzgitter als auch das Leadframe mit einem parallelen Verfahrensschritt E beispielsweise einer Warm oder auch Kaltauslagerung unterzogen werden, um unmittelbar im Herstellprozess D die notwendigen mechanischen Eigenschaften bereitzustellen.
  • Im Verfahrensschritt D können darüber hinaus auch Oberflächenbehandlungsschritte erfolgen, um bestimmte Bereiche des Stanzgitters oder des Leadframes für die jeweilige technische Verwendung, beispielsweise "Chip-Bonding", "Draht-Bonding" oder Lötprozess vorzubereiten.
  • Besonders bevorzugt werden die Stanzgitter und Leadframes für die Bereitstellung von Leistungselektronik verwendet, da die Leitfähigkeitswerte der Aluminiumlegierungen oberhalb der bisher verwendeten Kupferlegierungen liegt. Weitere Verwendungen sind beispielsweise die Bereitstellung von Stanzgittern für die Elektronik in einem Kraftfahrzeug oder in Maschinensteuerungen oder dergleichen zur Vermeidung von Kabelanbindungen.
  • Das Stanzgitter kann beispielsweise die Leiterbahnen einer Leiterplatte (hier nicht dargestellt) bereitstellen. Teilweise werden die Stanzgitter auch unmittelbar mit Bauelementen bestückt und verlötet, so dass durch das Lötverfahren eine Aushärtung in den Zustand T6 der Legierung erfolgen kann.
  • Anders als andere AA6xxx Legierungen stellen die erfindungsgemäßen Legierungsvarianten EN AW 6060, EN AW 6063 oder EN AW 6016 besonders hohe Festigkeiten im Zustand T6 bei guter Korrosionsbeständigkeit und verbesserter elektrischer Leitfähigkeit im Verhältnis zur üblicherweise verwendeten Kupferlegierung zur Verfügung. Tabelle 1
    Legierung Temperzustand Rm [MPa] Rp0,2 [MPa] Elektr. Leitfähigkeit [% IACS] Wärmeleitfähigkeit [W/mK] Thermische Ausdehnung 10-6 [m/K] Härte [HV]
    CuNi2.5SiZn R360 360 - 430 250 43 185 17 100-130
    EN AW 3004 0 170 60 42 160 23,2 46
    EN AW 5182 0 280 110 31 126 23,8 75
    EN AW 6063 0 100 50 57,5 218 23,5 55
    EN AW 6063 T4 160 90 49,5 197 23,5 50
    EN AW 6063 T5 215 175 55,5 209 23,5 65
    EN AW 6063 T6 245 210 52 201 23,5 80
    EN AW 6016 T6 280 235 46-49,5 190 23,5 85

Claims (14)

  1. Verwendung einer AA6xxx Aluminiumlegierung für elektrische Verbindungen von elektrischen Bauelementen einer elektrischen Schaltung oder von Halbleiterbauelementen,
    dadurch gekennzeichnet, dass
    die Aluminiumlegierung eine Zusammensetzung vom EN AW 6016 aufweist.
  2. Verwendung nach Anspruch 1,
    dadurch gekennzeichnet, dass
    die Aluminiumlegierung als Stanzteil, als gestanztes Leadframe (1) oder als Stanzgitter (5) für die elektrische Verbindung der elektrischen Bauelemente oder Halbleiterbauelemente verwendet wird.
  3. Verwendung nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass
    ein Aluminiumband, eine Aluminiumfolie oder ein Blech aus der Aluminiumlegierungen im Zustand T4 zur Herstellung der Stanzteile verwendet wird.
  4. Stanzteil für eine elektrische Verbindung von elektrischen Bauelementen einer elektrischen Schaltung oder Halbleiterbauelementen,
    dadurch gekennzeichnet, dass
    das Stanzteil zumindest teilweise aus einer Aluminiumlegierung vom Typ EN AW 6060, EN AW 6063 oder vom Typ EN AW 6016 besteht.
  5. Stanzteil nach Anspruch 4,
    dadurch gekennzeichnet, dass
    das Stanzteil aus einer Aluminiumlegierungsfolie mit einer Dicke von 20 µm bis 200 µm oder einem Aluminiumlegierungsband mit einer Dicke von 200 µm bis 2 mm hergestellt ist und optional den Zustand T4 aufweist.
  6. Stanzteil nach Anspruch 4 oder 5,
    dadurch gekennzeichnet, dass
    die Aluminiumlegierung des Stanzteils nach der Herstellung der elektrischen Schaltung oder des Halbleiterbauelementes zumindest bereichsweise einen warmausgehärteten Zustand aufweist und/oder bereichsweise im Zustand T6 ist.
  7. Stanzteil nach einem der Ansprüche 4 bis 6,
    dadurch gekennzeichnet, dass
    das Stanzteil ein Leadframe (1) eines Halbleiterbauelementes oder ein Stanzgitter (5) einer elektrischen Schaltung ist.
  8. Verfahren zur Herstellung von Stanzteilen für elektrische Verbindungen von Bauelementen einer elektrischen Schaltung oder von Halbleiterbauelementen nach Anspruch 4 mit den folgenden Schritten,
    - Bereitstellen eines Bandes, einer Folie oder eines Blechs bestehend aus einer Aluminiumlegierung nach Anspruch 4,
    - Lösungsglühen des Bandes, der Folie oder des Blechs und Abschrecken, derart dass das Band, die Folie oder das Blech im Zustand T4 vorliegt,
    - Stanzen des Bandes, der Folie oder des Blechs zur Bereitstellung von elektrischen Verbindungen von Bauelementen einer elektrischen Schaltung.
  9. Verfahren nach Anspruch 8,
    dadurch gekennzeichnet, dass
    nach dem Stanzen des Bandes, der Folie oder des Blechs im Zustand T4 eine Kaltauslagerung und/oder eine Warmauslagerung vor der Weiterverarbeitung erfolgt.
  10. Verfahren nach Anspruch 8 oder 9,
    dadurch gekennzeichnet, dass
    das Band, die Folie oder das Blech mit einem Verfahren aufweisend die folgenden Verfahrensschritte hergestellt wird:
    - diskontinuierliches Gießen eines Walzbarrens,
    - Homogenisieren des Walzbarrens,
    - Warmwalzen des Walzbarrens zu einem Warmband und
    - Kaltwalzen des Warmbandes mit oder ohne Zwischenglühung an Enddicke, wobei das Band auf eine Enddicke von 0,2 mm bis 2 mm und die Folie auf eine Enddicke 20 µm bis 200 µm gewalzt wird.
  11. Verfahren nach einem der Ansprüche 8 bis 10,
    dadurch gekennzeichnet, dass
    das alternativ zum diskontinuierlichen Gießen durch kontinuierliches Gießen ein Gießband hergestellt wird und das Gießband durch Warm- oder Kaltwalzen auf eine Enddicke von 20 µm bis 200 µm zur Folie oder auf eine Enddicke von 0,2 mm bis 2 mm zum Band gewalzt wird.
  12. Verfahren zur Herstellung einer elektrischen Schaltung oder eines Halbleiterbauelementes unter Verwendung von Stanzteilen nach einem der Ansprüche 4 bis 7.
  13. Verfahren nach Anspruch 12,
    dadurch gekennzeichnet, dass
    die Stanzteile bereichsweise mindestens einer Oberflächenbehandlung unterzogen werden.
  14. Verfahren nach Anspruch 12 oder 13,
    dadurch gekennzeichnet, dass
    die Stanzteile vor/während oder nach deren Verarbeitung zu einer elektrischen Schaltung oder einem Halbleiterbauelement Wärmebehandlungsschritten zur Aushärtung der Aluminiumlegierung unterzogen werden.
EP14199944.1A 2014-12-23 2014-12-23 Aluminiumlegierung für Leadframes Active EP3038114B1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14199944.1A EP3038114B1 (de) 2014-12-23 2014-12-23 Aluminiumlegierung für Leadframes
TW104139695A TWI591787B (zh) 2014-12-23 2015-11-27 Lead frame with aluminum alloy
PCT/EP2015/079401 WO2016102210A1 (de) 2014-12-23 2015-12-11 Aluminiumlegierung für leadframes
SG11201704987PA SG11201704987PA (en) 2014-12-23 2015-12-11 Aluminium alloy for lead frames

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP14199944.1A EP3038114B1 (de) 2014-12-23 2014-12-23 Aluminiumlegierung für Leadframes

Publications (2)

Publication Number Publication Date
EP3038114A1 EP3038114A1 (de) 2016-06-29
EP3038114B1 true EP3038114B1 (de) 2019-02-06

Family

ID=52146310

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14199944.1A Active EP3038114B1 (de) 2014-12-23 2014-12-23 Aluminiumlegierung für Leadframes

Country Status (4)

Country Link
EP (1) EP3038114B1 (de)
SG (1) SG11201704987PA (de)
TW (1) TWI591787B (de)
WO (1) WO2016102210A1 (de)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3356276A (en) * 1965-03-08 1967-12-05 Reynolds Metals Co Extruded composite conductor rails
US5066368A (en) 1990-08-17 1991-11-19 Olin Corporation Process for producing black integrally colored anodized aluminum components
US5122858A (en) 1990-09-10 1992-06-16 Olin Corporation Lead frame having polymer coated surface portions
EP1201779B1 (de) * 2000-10-27 2006-03-08 Alcan Technology & Management AG Verfahren zur Herstellung von einem elektrischen Leiter aus einer Aluminiumlegierung
JP5558639B1 (ja) * 2012-10-11 2014-07-23 株式会社Uacj バスバー用板状導電体及びそれよりなるバスバー
CN203162592U (zh) * 2012-12-05 2013-08-28 许小云 一种led模组点光源
CN103231002B (zh) * 2013-04-19 2015-02-18 亚超特工业有限公司 锻造模具及应用于电子装置的金属外壳的成型方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
TWI591787B (zh) 2017-07-11
TW201626528A (zh) 2016-07-16
SG11201704987PA (en) 2017-07-28
EP3038114A1 (de) 2016-06-29
WO2016102210A1 (de) 2016-06-30

Similar Documents

Publication Publication Date Title
EP3386934B1 (de) Kupfer-keramik-substrat, kupferhalbzeug zur herstellung eines kupfer-keramik-substrats und verfahren zur herstellung eines kupfer-keramik-substrats
DE102006010760B4 (de) Kupferlegierung und Verfahren zur Herstellung derselben
DE112015006049T5 (de) Halbleiterbauteil und verfahren zum herstellen eines halbleiterbauteils
DE102009002065A1 (de) Modul mit stabiler Lötverbindung
DE102014213564A1 (de) Halbleitervorrichtung und Verfahren zu ihrer Herstellung
DE102006002452A1 (de) Halbleitervorrichtung und Verfahren zu ihrer Herstellung
DE102012222791A1 (de) Verfahren zur Kontaktierung eines Halbleiters und Halbleiterbauelement mit erhöhter Stabilität gegenüber thermomechanischen Einflüssen
DE112017000184T5 (de) Lotverbindung
DE102012111654B4 (de) Verfahren zur Herstellung eines elektronischen Bauelements
DE69133422T2 (de) Leiterrahmen und diesen verwendende halbleiter verpackung
DE102009034483A1 (de) Bleifreie Hochtemperaturverbindung für die AVT in der Elektronik
DE102005052563A1 (de) Halbleiterchip, Halbleiterbauteil und Verfahren zu deren Herstellung
DE112017003925T5 (de) Leistungs-Halbleiterelement
DE102014111908A1 (de) Hybrid-Leadframe und Verfahren zum Herstellen desselben
DE102006005271B4 (de) Halbleitervorrichtung unter Verwendung einer Lötlegierung und Verfahren zum Herstellen einer Halbleitervorrichtung
DE3530736C2 (de)
DE3613594C2 (de)
DE102019119233B4 (de) Selektive Beschichtung von Halbleitergehäuse­Leitungen: Gehauste Halbleitervorrichtung und Verfahren zu ihrer Bildung
DE102011001063B4 (de) Integrierter Schaltkreis mit einem direkt an ein Pad gebondeten Bonddraht, Leistungsmodul und Verfahren zur Herstellung des integrierten Schaltkreises
EP3038114B1 (de) Aluminiumlegierung für Leadframes
DE102010001666A1 (de) Elektrisches oder elektronisches Verbundbauteil
EP3768654B1 (de) Kupfer-keramik-substrat
DE112014006349T5 (de) Bond-Material, Bond-Verfahren und Halbleitervorrichtung für elektrische Energie
EP2092806B1 (de) Verfahren zur herstellung einer leiterplatte mit additiven und integrierten und mittels ultraschall kontaktierten kupferelementen
WO2017140574A1 (de) Verfahren zur herstellung einer substratplatte, substratplatte, verfahren zur herstellung eines halbleitermoduls und halbleitermodul

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20161227

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180710

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20181112

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1095400

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014010755

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190206

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190606

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190506

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190606

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190506

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014010755

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20191107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191223

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191223

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1095400

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20141223

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502014010755

Country of ref document: DE

Owner name: SPEIRA GMBH, DE

Free format text: FORMER OWNER: HYDRO ALUMINIUM ROLLED PRODUCTS GMBH, 41515 GREVENBROICH, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230519

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231221

Year of fee payment: 10

Ref country code: FR

Payment date: 20231220

Year of fee payment: 10

Ref country code: DE

Payment date: 20231220

Year of fee payment: 10