EP3033443B1 - Schmelzsalz-elektrolysevorrichtung und -verfahren - Google Patents

Schmelzsalz-elektrolysevorrichtung und -verfahren Download PDF

Info

Publication number
EP3033443B1
EP3033443B1 EP14836690.9A EP14836690A EP3033443B1 EP 3033443 B1 EP3033443 B1 EP 3033443B1 EP 14836690 A EP14836690 A EP 14836690A EP 3033443 B1 EP3033443 B1 EP 3033443B1
Authority
EP
European Patent Office
Prior art keywords
metal
cell
anode
alkaline earth
anodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP14836690.9A
Other languages
English (en)
French (fr)
Other versions
EP3033443A2 (de
Inventor
David Steyn Van Vuuren
Dewald TERBLANCHE
Eugene SWANEPOEL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Council for Scientific and Industrial Research CSIR
Original Assignee
Council for Scientific and Industrial Research CSIR
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Council for Scientific and Industrial Research CSIR filed Critical Council for Scientific and Industrial Research CSIR
Publication of EP3033443A2 publication Critical patent/EP3033443A2/de
Application granted granted Critical
Publication of EP3033443B1 publication Critical patent/EP3033443B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/04Electrolytic production, recovery or refining of metals by electrolysis of melts of magnesium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/02Electrolytic production, recovery or refining of metals by electrolysis of melts of alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/005Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells of cells for the electrolysis of melts
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/02Electrodes; Connections thereof
    • C25C7/025Electrodes; Connections thereof used in cells for the electrolysis of melts

Definitions

  • the invention relates to alkali and alkaline earth metal production through electrolysis of molten chloride salts thereof.
  • alkali metals such as metallic lithium and sodium and an alkaline earth metal such a magnesium
  • an alkaline earth metal such as magnesium
  • electricity ca 35 kWh/kg Li, 11 kWh/kg sodium and 11 kWh/kg magnesium.
  • the overall energy efficiency of monopolar electrolysis cells currently in use is only about 40% to 50%.
  • a further consequence of using cylindrical anodes is that when the diameter of the anode is increased in order to increase the effective surface area of the anode available for electrolysis, the cross sectional area of the anode increases with the square of the diameter of the anode while the periphery increases only linearly. This is an important consideration since graphite, which is used as anode is a very good conductor of heat but not such a good conductor of electricity. In order to carry the necessary current without causing excessive electrical potential losses, the anodes must have a relatively large cross sectional area. Unfortunately this results in a lot of heat loss through the anode.
  • the cell consists basically of up to 8 cylindrical graphite anodes that protrude through the bottom of the cell body into the cell.
  • Around each anode is a cylindrically shaped diaphragm made of steel mesh, a perforated plate or a slotted steel plate.
  • the steel cathodes are normally connected to the power source of the cell through connections protruding through the side walls of the cell.
  • annular metal collector made of steel that has the function to collect the bulk of the molten metal product that is produced at the cathodes and that floats upwards into the collector from where it is taken out of the cell.
  • the diaphragms are normally connected and supported by the metal collector.
  • a chlorine collector or hood made of a high nickel alloy or of refractory lined steel. All the chlorine produced at the anodes is collected in this hood before it flows out of the cell.
  • the brick-lined cell is divided into four to six compartments by semi-submerged refractory partition walls labelled semi walls.
  • Three to five water- or air-cooled graphite anode plates are installed and tightly sealed in the refractory cover of the cell.
  • the semi walls on each side of the anodes separate the magnesium metal and the chlorine gas.
  • Steel cathode plates are installed through the cell cover or through the sidewalls in the cathode compartments.
  • the sequence of electrodes in the cells is: cathode, anode, cathode, cathode, anode, cathode, cathode anode etc.
  • the design of the cell is such that the flow of electrolyte caused by the chlorine bubbles produced at the anodes is upwards along the anode face, over the cathode into the space below the magnesium collection zone above the zone between the cathodes, downward behind the cathodes and then finally below the cathodes back into the space between a cathode and anode.
  • the design may result in the flow of electrolyte from the space between the electrodes over or through the cathode into a metal collection zone. Small chlorine bubbles may be entrained in this flow and end in the metal collection zone of the cell which is undesirable.
  • (a-c-a) n represents the arrangement wherein the sequence of anodes and cathodes of anode-cathode-anode are repeated n number of times, as required anode, cathode, anode, anode, cathode, anode, anode, cathode, anode, and so on.
  • the alkali metal, M is typically lithium or sodium.
  • the alkaline earth metal M ae is typically magnesium.
  • Diaphragms which may be made of steel mesh, perforated plate, or slotted plates may be installed between each pair of opposed anodes and cathodes.
  • a metal collector assembly may be installed above each cathode to collect molten alkali metal or alkaline earth metal that floats to the top of the electrolyte from where it is withdrawn from the cell.
  • the metal collector assembly may be electrically isolated from both the anodes and cathode of an anode-cathode-anode set while the metal collector assembly and the diaphragms are electrically connected to each other.
  • Both the metal collector assembly and the diaphragms may be cathodically protected by molten alkali metal or alkaline earth metal collected in the assembly for example, by molten Li, Na and/or Mg.
  • chlorine gas produced at the anode or anodes may cause circulation of a molten electrolyte used in the cell upwards along the face of the anode surface in the spaces between each anode and opposing cathode, over the active anode body, then downwards behind the anode body before turning around to flow upwards again over the face of the anode (or anodes).
  • Chlorine produced at the anodes may disengage from the circulating electrolyte at the top of the molten electrolyte above the active electrolysis zones between the anodes and cathodes.
  • the chlorine thus produced in the head space above the electrolyte is withdrawn from the cell and may be used for various purposes.
  • a particular configuration of the apparatus is to install the cathodes through the bottom of the cell and the anodes through the side or opposing sides of the cell. However, it is also feasible to install the cathodes and anodes through the other faces of the cell, including the top of the cell.
  • the electrochemical cell may be lined with chlorine resistant refractory or be made of metal, provided that the metal exposed to chlorine gas in the head space of the cell is sufficiently resistant to attack by chlorine, e.g. nickel or a high nickel containing alloy.
  • Suitable feed means may be installed to feed the salt to be electrolysed into the electrochemical cell and suitable withdrawal means may be provided to withdraw the alkali or alkaline earth metal and chlorine produced in the cell from the cell.
  • suitable heaters may be provided to preheat the electrochemical cell to melt the electrolyte inventory in the cell before commencing electrolysis.
  • a suitable direct current power source may be supplied to provide the electrical potential and current required for the reaction.
  • a process for the production of alkali metals and alkaline earth metals from the molten salts thereof by electrolysis said method including
  • the process may include maintaining the metallic alkali metal or alkaline earth metal under an inert atmosphere during extraction thereof.
  • the molten alkali metal or alkaline earth metal salt may be a sodium, lithium or a magnesium salt.
  • the sodium salt may be NaCl in which case the electrolyte may contain NaCl, CaCl 2 , and BaCl 2 allowing the cell to be operated at temperatures from about 550 to 700°C.
  • the lithium salt may be LiCl in which case the electrolyte may consist predominantly of a mixture of KCl and LiCl allowing the cell to be operated at temperatures from about 400 to 500°C.
  • the magnesium salt may be MgCl 2 in which case the electrolyte may consist predominantly of a mixture of KCl, NaCl, CaCl 2 , BaCl 2 and MgCl 2 allowing the cell to be operated at temperatures from about 660 to 800°C.
  • the alkali metal or alkaline earth metal may be recovered at a temperature above its melting point, in liquid form.
  • the alkali metal or alkaline earth metal may be recovered at a temperature below the melting point of the alkali metal or alkaline earth metal salt from which the alkali metal or alkaline earth metal is recovered.
  • chlorine produced at the anodes may disengage from the circulating electrolyte at the top of the molten electrolyte above the active electrolysis zones between the anodes and cathodes.
  • the chlorine thus produced in the head space above the electrolyte may be withdrawn from the cell and may be used for various purposes.
  • the anodes of the cell may be installed to protrude through the bottom, side or top of the cell whereas the cathodes may be Installed to protrude through the bottom or the side of the cell.
  • Figure 1 shows a vertical cross sectional schematic through the first example of an operating electrochemical cell of the invention where the anodes protrude through two opposing sides of the cell and the cathodes of the cell protrude through the bottom of the cell.
  • Figure 2 shows a horizontal section schematic viewed from the top of the construction of the electrochemical cell shown in Figure 1 .
  • the cell (1) may have a shell (24) that may be constructed from steel.
  • the cell may have a removable lid (11).
  • the cell may have a refractory lining (10) that serves to protect the shell of the cell against the hot molten electrolyte inside the cell, to limit thermally induced stresses caused by temperature increases of the shell, and to limit heat losses from the cell.
  • Four planar anodes (19) and two planar cathodes (23) of the cell (1) are shown in Figure 1 .
  • the anodes and cathodes are arranged in the following order: anode-cathode-anode-anode-cathode-anode, or (a-c-a) 2 ,
  • Each cathode is separated from the opposing pair of anodes by a diaphragm (20) and a metal collector (18) is positioned above each cathode to collect the molten alkali metal or alkaline earth metal (17) that is produced on the surfaces of the cathode.
  • the molten alkali metal or alkaline earth metal (17) has a lower density than the electrolyte (15) and therefore floats into the metal collector (18).
  • the piping to remove the molten metal from the metal collector is not shown in Figure 1 .
  • the alkali metal or alkaline earth metal salt feed (14) to the cell is introduced into a feed vessel (13) where it is dissolved in electrolyte that is circulated from and back to the cell via hot pipe lines (21) between the feed vessel (13) and the cell.
  • the cathodes (23) protrude through the shell (24) and refractory lining (10) of the cell through the bottom of the cell.
  • the mounting (22) of each cathode serves to position the cathode, to insulate it from the shell (24) and also to cool the cathode (23) as dictated by the thermal design requirements of the cell. Details of the mounting are not shown, since means to achieve the mentioned objectives are well-known in the field.
  • Chlorine is produced on the surfaces of the anodes (19) and rises as gas bubbles (16) towards the surface of the electrolyte bath where it disengages from the electrolyte and exits the cell through an exit port (12).
  • the alkaline earth metal is Mg.
  • the gas bubbles (16) form predominantly on the vertical surfaces of the anodes (19) on the sides opposing the vertical surfaces of the cathodes (23). Whereas virtually no bubbles are formed on the vertical surfaces of the anodes on the opposite sides of the anodes, the bulk density of the electrolyte/bubble mixture in the spaces between the anodes and the diaphragm (20) is lower than the bulk density of the electrolyte in the space (25) between two opposing anodes and also to that of the electrolyte in the space between the anodes and the inner surface of the refractory lining (10).
  • Some electrolyte therefore flows through each diaphragm in the upper part of the diaphragm towards the cathode, then downwards and lastly back through the diaphragm (20) in the lower part of the diaphragm towards the anode (19) opposite the specific diaphragm (20).
  • Such flow is essential to replenish the alkali metal or alkaline earth metal cations that are reduced to metal on the cathode (23) surfaces but if such flow is too high, chlorine bubbles may pass through the diaphragm (20) and eventually rise into the metal collectors (18) where it reacts undesirably with the collected molten metal.
  • the electrolyte flow around the anodes (19) are significantly increased relative to the circulating electrolyte flow through the diaphragms (20).
  • FIG 2 it is shown how four units of anode-cathode-anode assemblies can be installed in a single cell with two assemblies on each side of the cell when the anodes (19) protrude through two opposing side walls of the cell and the cathodes (23) protrude through the bottom of the cell. Also shown are anode mountings (26) that similarly to the cathode mountings (22) shown in Figure 1 serve to position the anodes, to insulate the anodes from the shell (24) and to cool the anodes. Details of the anode mountings (26) are not shown.
  • Figure 3 and Figure 4 illustrate diagrammatically the design of a second example of a cell designed in accordance with the invention where the anodes protrude through the bottom and the cathodes through a side wall of the cell.
  • Figure 3 shows a vertical cross sectional schematic through an operating electrochemical cell and
  • Figure 4 shows a vertical cross section through the construction and one of the anodes of the cell at a 90° angle relative to the cross section shown in Figure 3 .
  • slots (27) or other suitable flow channel are provided in the anodes.
  • the circulation is caused by the same density differences as described in the first example.
  • FIG. 4 The installation of the anodes (19) through the bottom of the cell and the cathodes (23) through a side wall of the cell is illustrated in Figure 4 .
  • the slots (27) through the anodes are also shown and a diaphragm (20) behind the anode,
  • a metal collector (18) is positioned on top of the cathode (23) and the shown diaphragm (20) and it may typically be sloped to direct the flow of molten metal towards the top of the collector from where it is withdrawn through pipe work that is not shown.
  • circulation of the electrolyte from the anode surface to the metal collection zone in the current planar electrode arrangements causes mixing of and back reaction of such chlorine with the molten metal in the metal collection zone.
  • LiCl and NaCl in particular have melting points that are substantially higher than the melting points of the electrolytes used with the result that solid salt is deposited in the metal collection zone that can cause blockages of the molten metal withdrawal lines.
  • MgCl 2 also has a higher melting point than the electrolyte, but the difference is substantially less. Many Mg cells actually operate above the melting point of MgCl 2 that is ca 714°C.
  • the electrochemical cell design of the invention causes a large molten electrolyte flow pattern upwards along the face of the anode surface, over the active anode body, then downwards behind the anode body before turning around to flow upwards again over the face of the anode (or anodes),
  • planar anodes and cathodes are used which enhances up-scaling of the cell and also increases the packing density of electrodes in the cell.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)

Claims (15)

  1. Vorrichtung zur Herstellung eines Metalls aus metallischen Alkalimetallen, M, und Erdalkalimetallen, Mae, aus deren geschmolzenen Salzen, wobei die Vorrichtung dadurch gekennzeichnet ist, dass sie wenigstens eine elektrochemische Zelle mit planaren Anoden und in der folgenden Reihenfolge (a-c-a)n installierten Kathoden aufweist, um elektrolytisch Alkali- oder Erdalkalimetalle aus deren jeweiligen Chloridsalzen herzustellen, wobei n die Anzahl der Wiederholungen der Anoden-Kathoden-Anoden Reihenfolge darstellt, und wobei eine Metallkollektoranordnung oberhalb jeder Kathode angebracht ist, um geschmolzenes Alkalimetall oder Erdalkalimetall aufzufangen, das zur Oberfläche des Elektrolyten hin treibt, von wo aus es aus der Zelle abgezogen wird.
  2. Vorrichtung gemäß Anspruch 1, worin das Alkalimetall M aus Lithium und Natrium ausgewählt ist, und das Erdalkalimetall Mae Magnesium ist.
  3. Vorrichtung gemäß Anspruch 1 oder 2, worin aus Stahlgeflecht, Lochblech oder geschlitzten Platten hergestellte Trennwände zwischen jedem Paar einander gegenüberliegender Anoden und Kathoden angebracht sind.
  4. Vorrichtung gemäß Anspruch 1, worin die Metallkollektoranordnung elektrisch sowohl von den Anoden als auch der Kathode einer Anoden-Kathoden-Anoden Anordnung isoliert ist, während die Metallkollektoranordnung und die Trennwände elektrisch miteinander verbunden sind.
  5. Vorrichtung gemäß Anspruch 3 oder 4, worin sowohl die Metallkollektoranordnung als auch die Trennwände kathodisch durch geschmolzenes, in der Anordnung angesammeltes Alkalimetall oder Erdalkalimetall geschützt sind.
  6. Vorrichtung gemäß einem der vorhergehenden Ansprüche, worin die elektrochemische Zelle mit chlorbeständigem feuerfestem Material ausgekleidet ist oder aus Metall besteht, vorausgesetzt, dass das dem Chlorgas ausgesetzte Metall im Kopfraum der Zelle ausreichend resistent gegen einen Chlorangriff ist.
  7. Vorrichtung gemäß einem der vorhergehenden Ansprüche, worin eine Gleichstromquelle vorgesehen ist, um das für die Reaktion erforderliche elektrische Potential und den Strom zur Verfügung zu stellen.
  8. Verfahren zur Herstellung von Metall, ausgewählt aus Alkalimetallen und Erdalkalimetallen durch Elektrolyse aus deren geschmolzenen Chloridsalzen, wobei das Verfahren dadurch gekennzeichnet ist, dass
    - drei oder mehr Elektroden in einer (a-c-a)n Anordnung in einer Elektrolysezelle angeordnet sind, wobei n die Anzahl der Wiederholungen der Anoden-Kathoden-Anoden Elektrodenreihenfolge darstellt;
    - ein elektrisches Potential zwischen den Elektroden aufrechterhalten wird, das für die elektrolytische Zersetzung des Alkali- oder Erdalkalimetallsalzes in der Elektrolysezelle ausreicht;
    - das geschmolzene Alkalimetall- oder Erdalkalimetallsalz der Elektrolysezelle zugeführt wird;
    - dem an der Anode erzeugten Gas ermöglicht wird, die Zirkulation des in der Zelle eingesetzten geschmolzenen Elektrolyten nach oben entlang der Seitenfläche der Anodenoberfläche in den Bereichen zwischen jeder Anode und gegenüberliegenden Kathode über den aktiven Anodenkörper hinweg zu bewirken; und von dort aus dann abwärts hinter dem Anodenkörper, um vor einer Umkehr wieder nach oben über die Seitenfläche der Anode (oder Anoden) zu fließen;
    - dem metallischen Alkalimetall oder dem Erdalkalimetall ermöglicht wird, durch Dichte vom geschmolzenen Elektrolyten abgeschieden und somit gewonnen zu werden; und
    - das metallische Alkalimetall oder Erdalkalimetall während deren Extraktion unter einer inerten Atmosphäre zu bewahren.
  9. Verfahren gemäß Anspruch 8, worin das geschmolzene Alkalimetall oder Erdalkalimetallsalz aus Natrium, Lithium oder einem Magnesiumsalz ausgewählt ist.
  10. Verfahren gemäß Anspruch 9, worin das Natriumsalz NaCl ist, in welchem Fall der Elektrolyt NaCl, CaCl2 und BaCl2 enthält, was es der Zelle ermöglicht, bei Temperaturen von etwa 550 bis 700° betrieben zu werden.
  11. Verfahren gemäß Anspruch 9, worin das Lithiumsalz LiCI ist, in welchem Fall der Elektrolyt überwiegend aus einem Gemisch von KCl und LiCI besteht, was es der Zelle ermöglicht, bei Temperaturen von etwa 400 bis 500° betrieben zu werden.
  12. Verfahren gemäß Anspruch 9, worin das Magnesiumsalz MgCl2 ist, in welchem Fall der Elektrolyt überwiegend aus einem Gemisch von KCl, NaCl, CaCl2, BaCl2 und MgCl2 besteht, was es der Zelle ermöglicht, bei Temperaturen von etwa 660 bis 800° betrieben zu werden.
  13. Verfahren gemäß einem der Ansprüche 8 bis 12, worin das Alkalimetall oder Erdalkalimetall bei einer über dem Schmelzpunkt liegenden Temperatur in flüssiger Form gewonnen wird.
  14. Verfahren gemäß einem der Ansprüche 8 bis 12, worin das Alkalimetall oder Erdalkalimetall bei einer Temperatur gewonnen wird, die unter dem Schmelzpunkt des Alkalimetall- oder Erdalkalimetallsalzes liegt, aus dem das Alkalimetall oder Erdalkalimetall gewonnen wird.
  15. Verfahren gemäß einem der Ansprüche 8 bis 14, worin das an den Anoden erzeugte Chlor aus dem zirkulierenden Elektrolyt an der Oberfläche des geschmolzenen Elektrolyten oberhalb der aktiven Elektrolysezonen zwischen den Anoden und Kathoden freigesetzt wird.
EP14836690.9A 2013-08-16 2014-08-15 Schmelzsalz-elektrolysevorrichtung und -verfahren Not-in-force EP3033443B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ZA201306171 2013-08-16
PCT/ZA2014/000038 WO2015024030A2 (en) 2013-08-16 2014-08-15 Molten salt electrolysis apparatus and process

Publications (2)

Publication Number Publication Date
EP3033443A2 EP3033443A2 (de) 2016-06-22
EP3033443B1 true EP3033443B1 (de) 2018-03-28

Family

ID=52468831

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14836690.9A Not-in-force EP3033443B1 (de) 2013-08-16 2014-08-15 Schmelzsalz-elektrolysevorrichtung und -verfahren

Country Status (3)

Country Link
US (1) US20160215405A1 (de)
EP (1) EP3033443B1 (de)
WO (1) WO2015024030A2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020053478A1 (en) * 2018-09-11 2020-03-19 Tercosys Oy Energy management method and arrangement
DE102022000153A1 (de) 2022-01-17 2023-07-20 KS iPR UG (haftungsbeschränkt) Elektrolyt membran zur trennung von wasserdampf in wasserstoff und sauerstoff mit hilfe von elektrischer energie und/oder erzeugung von elektrischer energie mit hilfe von wasserstoff und sauerstoff durch eine lithiierte eisenoxid - eisen redoxreaktion in einem flüssigen carbonatsalz

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1501756A (en) 1922-08-18 1924-07-15 Roessler & Hasslacher Chemical Electrolytic process and cell
DE1558726B2 (de) 1951-01-28 1973-09-06 Elektrolysierzelle
US3544444A (en) 1967-05-19 1970-12-01 Du Pont Fused salt electrolysis cell having anode with tapered well therein
US5904821A (en) 1997-07-25 1999-05-18 E. I. Du Pont De Nemours And Company Fused chloride salt electrolysis cell
US6497807B1 (en) * 1998-02-11 2002-12-24 Northwest Aluminum Technologies Electrolyte treatment for aluminum reduction
US6827828B2 (en) * 2001-03-29 2004-12-07 Honeywell International Inc. Mixed metal materials
CN101709485B (zh) * 2009-12-18 2012-07-04 中国铝业股份有限公司 一种采用惰性阳极生产原铝的铝电解槽

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020053478A1 (en) * 2018-09-11 2020-03-19 Tercosys Oy Energy management method and arrangement
US11873565B2 (en) 2018-09-11 2024-01-16 Tercosys Oy Energy management method and arrangement
DE102022000153A1 (de) 2022-01-17 2023-07-20 KS iPR UG (haftungsbeschränkt) Elektrolyt membran zur trennung von wasserdampf in wasserstoff und sauerstoff mit hilfe von elektrischer energie und/oder erzeugung von elektrischer energie mit hilfe von wasserstoff und sauerstoff durch eine lithiierte eisenoxid - eisen redoxreaktion in einem flüssigen carbonatsalz

Also Published As

Publication number Publication date
WO2015024030A3 (en) 2015-07-23
US20160215405A1 (en) 2016-07-28
WO2015024030A2 (en) 2015-02-19
EP3033443A2 (de) 2016-06-22

Similar Documents

Publication Publication Date Title
US5904821A (en) Fused chloride salt electrolysis cell
JP6501886B2 (ja) 溶融塩電解槽、およびそれを用いた金属マグネシウムの製造方法並びにスポンジチタンの製造方法
JP2016510362A (ja) HClを生成する水素ガス拡散陽極の集成装置
EP3033443B1 (de) Schmelzsalz-elektrolysevorrichtung und -verfahren
US3219563A (en) Multi-electrolytic cell comprising a plurality of diaphragm-free unit cells and the use of same for preparing alkali metal chlorates
US7470354B2 (en) Utilisation of oxygen evolving anode for Hall-Hèroult cells and design thereof
US4882017A (en) Method and apparatus for making light metal-alkali metal master alloy using alkali metal-containing scrap
JPS61186489A (ja) アルカリ金属または土金属の溶融塩化物電解装置
CN103540958A (zh) 设置有吊挂隔墙的铝电解槽
US4133727A (en) Method for extracting heat from a chamber containing a molten salt
US6800191B2 (en) Electrolytic cell for producing aluminum employing planar anodes
EP2142476B1 (de) Verfahren und reaktor zur herstellung von hochreinem silicium
JPH0211676B2 (de)
JP7206160B2 (ja) 溶融塩電解槽及びこれを用いた金属の製造方法。
JP4557565B2 (ja) 電解装置
EP0181544A1 (de) Apparat für die Elektrolyse von geschmolzenen Salzen
US1408142A (en) Electrolytic apparatus
NO124841B (de)
JP7333223B2 (ja) 溶融塩電解槽、溶融塩固化層の形成方法、金属の製造方法
RU2176291C1 (ru) Электролизер для получения магния
CN112912545A (zh) 制备镁和氯气的方法及用于实施该方法的电解池
RU2425913C1 (ru) Способ получения магния и диоксида углерода из оксидно-фторидных расплавов в биполярном электролизере
JPH0111722Y2 (de)
RU2234559C1 (ru) Электролизёр для получения сплавов щелочноземельных металлов
van Vuuren et al. Fundamental differences between magnesium and alkali metal electrowinning

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160122

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20171026

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SWANEPOEL, EUGENE

Inventor name: TERBLANCHE, DEWALD

Inventor name: VAN VUUREN, DAVID STEYN

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 983517

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014023140

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180328

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180328

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180328

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180628

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180328

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180628

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180328

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180328

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180328

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180328

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180328

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180328

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180328

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180328

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180328

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180328

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180328

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180328

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180814

Year of fee payment: 5

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 983517

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180730

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014023140

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180328

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180328

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602014023140

Country of ref document: DE

26N No opposition filed

Effective date: 20190103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180328

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180831

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180815

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180831

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190301

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180831

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180328

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180328

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180328

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190815