US3219563A - Multi-electrolytic cell comprising a plurality of diaphragm-free unit cells and the use of same for preparing alkali metal chlorates - Google Patents

Multi-electrolytic cell comprising a plurality of diaphragm-free unit cells and the use of same for preparing alkali metal chlorates Download PDF

Info

Publication number
US3219563A
US3219563A US114354A US11435461A US3219563A US 3219563 A US3219563 A US 3219563A US 114354 A US114354 A US 114354A US 11435461 A US11435461 A US 11435461A US 3219563 A US3219563 A US 3219563A
Authority
US
United States
Prior art keywords
cell
anode
cathode
unit
alkali metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US114354A
Inventor
Collins John Hardie
Edwards George Ernest
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Imperial Chemical Industries Ltd
Original Assignee
Imperial Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Imperial Chemical Industries Ltd filed Critical Imperial Chemical Industries Ltd
Application granted granted Critical
Publication of US3219563A publication Critical patent/US3219563A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/26Chlorine; Compounds thereof
    • C25B1/265Chlorates
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material

Definitions

  • the present invention relates to improvements in or relating to mold-electrolytic cells. More particularly it relates to multi-electroiytic cells, comprising a plurality of unit electrolytic cells, for the manufacture of alkali metal chlorates from aqueous solutions of alkali metal chlorides.
  • the pH of the electrolyte in cells producing chlorates is relatively high so that oxidation of the graphite by discharge of hydroxyl ions is severe.
  • High rates of wear lead not only to heavy replacement costs for anodes but also to progressively increasing cell voltage, because of the increasing anode-cathode gap, and thus to excessive energy consumption.
  • the maximum anode current density achievable with an acceptable rate of anode wear is limited to about 1.5 kA/m. even when steps are taken to cool the cell and when cooling is not resorted to the anode current density may be as low as 0.2-0.5 kA/m.
  • the anode in each unit cell of the multielectrolytic cell may be, inter alia, a layer of a platinum metal, namely ruthenium, rhodium, palladium, osmium, iridium or platinum, or an alloy of two or more of such metals, which is on one side of each titanium metal sheet partition.
  • the cathode should comprise a layer of a platinum metal, which may be applied to the titanium metal sheet by any of the methods disclosed in the aforementioned British application, since we have found that a platinum metal cathode layer minimises the cell voltage needed and does not sutter from the corrosion found with iron and steel cathode layers when the cell is taken off load. It is also preferred that the anode layer of the platinum metal in each unit cell should be electrolytically deposited on the titanium surface since such an electrolytically deposited layer of the platinum metal provides the lowest and most stable cell voltage.
  • the gap between anode and cathode may advantageously be made very narrow, suitably about 3 mm., thus further assisting in the reduction of cell voltage.
  • alkali metal chlorate is produced by electrolysis of alkali metal chloride solution according to the present invention a current density approximately 3-14 times greater than in prior art chlorate cells fitted with graphite, magnetite or platinum anodes may be employed at high energy efficiency.
  • a current density approximately 3-14 times greater than in prior art chlorate cells fitted with graphite, magnetite or platinum anodes may be employed at high energy efficiency.
  • the energy consumption is at least as low as in the prior art low-current-density chlorate cells.
  • anode is a layer of a platinum metal on one side of the titanium metal sheet separator and there is no diaphragm between anode and cathode, which is characterised in that the current density employed is at least 2 lcA/m. and preferably between 2 and 4 kA/mP.
  • a platinum metal is meant a noble metal of the platinum group or an alloy of two or more such metals as defined in British application Serial No. 845,043.
  • electrolysis may be carried out continuously, an aqueous solution containing alkali metal chloride being passed through the cell at high temperature, suitably 7080' C., and the eflluent liquors may be cooled or concentrated to promote crystallisation of the chlorate produced in the cell. It is preferred to have a small concentration of a chromate in the liquor fed to the cell, suitably 2-10 g./l. of an alkali metal chromate, in order to promote chlorate production as is known in the art.
  • An especially advantageous meth od which is made possible because of the high electrolyte temperatures which can be employed in the present process, is to operate the cell in conjunction with a continuous crystallisation and resaturation system, whereby the chlorate is recovered without recourse to evaporation and simply by cooling the cell efiiuent liquor, and the liquor is subsequently resaturated with alkali metal chloride and reheated for return to the cell.
  • the temperature at which resaturation is carried out will depend on the solubility relations of the salts involved. For example, when manufacturing sodium chlorate the resaturation with sodium chloride is best carried out at elevated temperature, suitably about 70 C.
  • the crystalliser may be operated at about 20 C.
  • resaturation must be carried out at a lower temperature because of the steeper solubility curve for potassium chloride, otherwise on cooling the cell effluent liquor for crystallisation of potassium chlorate sufficient potassium chloride may still be present in solution to deposit this salt along with the chlorate in the crystalliser.
  • the potassium salt it is convenient to carry out resaturation at the crystalliser temperature, suitably about 20 C., and then to reheat the resaturated liquor before return to the cell. Heat may be conserved by operating the cooling/ crystallising-resaturation/ reheating cycle on the heat-exchanger principle.
  • FIG. 1 shows schematically (not to scale) in vertical cross section one form of multielectrolytic cell according to the invention.
  • FIG. 2 shows one arrangement of apparatus suitable for carrying out the process according to the invention for the manufacture of sodium chlorate on the aforementioned continuous resaturation principle.
  • the multielectrolytic cell is shown as comprising seven unit electrolytic cells 1 but it must be understood that it may comprise a smaller or larger number of unit cells.
  • the multielectrolytic cell has titanium end plates 2 and 3, and between each pair of unit cells 1 are titanium sheet metal partitions 4.
  • Anodes are thin layers of a platinum metal carried on the internal surface of end plate 2 and on one face of each of titanium partitions 4.
  • Cathodes 6 are preferably thin layers of a platinum metal on the internal surface of end plate 3. and on the face of each of the titanium partitions 4 opposite to the anodes.
  • Cathode layers 6 may however be layers of iron or steel or may be omitted entirely so that the bare titanium faces of end plate 3 and partitions 4 form. the working cathode surfaces.
  • the anodes 5 and cathodes 6 are spaced apart at a distance of approximately 3 mm. from each other by insulating separators 7 and 8 placed between the ends of each pair of titanium sheets, the whole assembly of sheets and insulating separators being held together in a liquorand gas-tight manner by clamping means (not shown).
  • Channels 9, passing through the lower set of insulating separators 7, are used for feeding electrolyte to each unit cell, and channels 10, passing through the upper set of insulating separators 8, are used for removing the electrolyte and hydrogen gas from each unit cell.
  • the electrolyte may alternatively be fed to and removed from the unit cells in some other manner, for example through channels cut in the titanium end plates 2 and 3 and titanium partitions 4 near the bottom and top respectively.
  • 11 and 12 are current leads to the anodic and cathodic titanium end plates 2 and 3 respectively.
  • FIG. 2 is a multielectrolytic cell of the type shown in FIG. 1 comprising, in the case shown, seven unit electrolytic cells 1.
  • feed electrolyte is saturated with sodium chloride at a temperature of approximately 70 C. in saturator 14 and passes continuously from 14 by lines 9 to each of the unit cells 1, where sodium chlorate and hydrogen are produced by electrolysis.
  • Spent electrolyte leaves unit cells 1 by lines together with the hydrogen evolved in the cells.
  • Hydrogen is removed at 15 and spent electrolyte passes along line 16, is cooled in heat exchanger 17 and then flows through crystalliser 18, where sodium chlorate crystals are deposited.
  • Line 21 is provided for a secondary flow of spent electrolyte from the cells 1 to the saturator 14 without passing through the crystalliser as a means of adjusting the chloride/ chlorate content of the electrolyte entering and leaving the cells.
  • the flow through line 21 is controlled by valve 22. It Will be understood from the foregoing discussion that the apparatus shown in FIG. 2 may also be employed for the continuous production of potassium chlorate provided that the heating means are repositioned so that the saturator works at low temperature and the saturated electrolyte is afterwards heated before being fed to the cells.
  • the following table illustrates the efficient production of sodium and potassium chlorates by the process according to the invention.
  • the anodes were electrodeposited layers of platinum and the cathodes were layers of platinum deposited by the painting and firing process as practised in the ceramic industry.
  • a process for the manufacture of alkali metal chlorate by the electrolysis of an aqueous solution of alkali metal chloride which comprises uses a multi-electrolytic cell having a plurality of diaphragm-free unit electrolytic cells, each of said cells having an anode and a cathode with the cells arranged so that a partition carries the anode of each cell and the cathode of the next cell, said partition comprising an inert titanium metal sheet separating the anode of one unit electrolytic cell from the cathode of an adjacent unit electrolytic cell, the anode in each unit cell comprising a layer of a platinum metal on one side of the titanium metal and the cathode in said unit cell comprising a layer of a metal selected from the group consisting of a platinum metal, iron and steel on the side of the next titanium metal sheet opposed to the anode of said unit cell, and employing an anode current density of at least 2 kA/m.
  • a process for the manufacture of alkali metal chlorate by the electrolysis of an aqueous solution of alkali metal chloride which comprises employing an anode current density of at least 2 kA/m. in a diaphragm-free, multielectrolytic cell, said cell comprising a plurality of diaphragm-free unit electrolytic cells, each such unit cell having an anode and a cathode, the unit cells being so arranged that a partition carries the anode of each unit cell and the cathode of the next cell, said partition comprising an inert titanium metal sheet, the anode of each cell comprising a layer of a platinum metal on one side of the titanium separating sheet and the cathode of said unit cell being the bare titanium face of the next titanium metal sheet facing the anode in said unit cell and carrying the anode for the adjacent unit cell.
  • a multielectrolytic cell comprising a plurality of diaphragm-free unit electrolytic cells, each of said cells having an anode and a cathode with the cells arranged so that a partition carries the anode of each cell and the cathode of the next cell, said partition comprising an inert titanium metal sheet separating the anode of one unit electrolytic cell from the cathode of an adjacent unit electrolytic cell but in electrical conducting relationship with respect to both the anode and the cathode carried thereby, the anode in each unit cell comprising a layer of a platinum metal on one side of the titanium metal sheet and the cathode in said unit cell comprising a layer of a metal selected from the group consisting of a platinum metal, iron and steel on the side of the next titanium metal sheet opposed to the anode of said unit cell.
  • a multielectrolytic cell comprising a plurality of diaphragm-free unit electrolytic cells, each of said cells having an anode and a cathode with the cells arranged so that a partition carries the anode of each cell and the cathode of the next cell, said partition comprising an inert titanium metal sheet separating the anode of one unit electrolytic cell from the cathode of an adjacent unit electrolytic cell but in electrical conducting relationship with respect to both the anode and the cathode carried thereby, the anode in each unit cell comprising a layer of a platinum metal on one side of the titanium metal sheet and the cathode in said unit cell comprising a layer of a platinum metal on the side of the next titanium metal sheet opposed to the anode of said unit cell.

Description

Nov. 23, 1965 J. H. COLLINS ETAL 3,219,563
MULTI-ELEGTROLYTIC CELL COMPRISING A PLURALIIY OF DIAPHRAGM-FREE UNIT CELLS AND THE USE OF SAME FOR PREPARING ALKALI METAL GHLORATES Filed June 2, 1961 2 Sheets-Sheet 1 1o 10 !O \o 10 1o 10 4 s i a f e 1 s i a i s 8 l l i i I I2 n T o q s b b b b 9 Q 9 9 q 9 q INYENTORS J55 HAR 0/5 COLL l/vs Gzoaas E mmsvi EDWARDS ATTORNEYS 1965 J. H. COLLINS ET AL 3,219,563
MULTI-ELECTROLYTIG CELL COMPRISING A PLURALITY OF DIAPHRAGM-FREE UNIT CELLS AND THE USE OF SAME FOR PREPARING ALKALI METAL CHLQRATES Filed June 2, 1961 2 Sheets-Sheet 2 nmab zroas JB/nv HARD/E CoLLl/vs GEORGE ERA/E57: [Tow/mos HMIWVM ATTORNEYS United States Patent 3,219,563 MULTl-ELECTROLYTIC CELL CGMPRISING A PLURALITY 6F DIAPHRAGM-FREE UNTT (IELLS AND THE USE 0F SAME FOR PREPARING AL- KALE METAL CHLQRATES John Hardie Collins and George Ernest Edwards, Widnes,
England, assignors to Imperial Chemical Industries Limited, London, England, a corporation of Great Britain Filed June 2, 1961, Ser. No. 114,354
Claims priority, application Great Britain, June 22, 1960,
12 Claims. (Cl. 204-95) This application is a continuation-in-part of Serial No. 796,856, filed March 3, 1959.
The present invention relates to improvements in or relating to mold-electrolytic cells. More particularly it relates to multi-electroiytic cells, comprising a plurality of unit electrolytic cells, for the manufacture of alkali metal chlorates from aqueous solutions of alkali metal chlorides.
It is known to produce chlorates of alkali metals by electrolysis of alkali metal chloride solutions in single unit cells in which the anodes are of graphite, the cathode is of iron or steel and there is no diaphragm between the anodes and the cathodes. Blocks of magnetite and sheets of plat num have also been employed as anode materials but because the maximum current density possible with magnetite is low and because of the prohibitively high capital cost of platinum sheet anodes, graphite anodes are almost universally employed. The use of graphite anodes, however, imposes heavy costs upon the process because of the high rate of anode wear. The pH of the electrolyte in cells producing chlorates is relatively high so that oxidation of the graphite by discharge of hydroxyl ions is severe. High rates of wear lead not only to heavy replacement costs for anodes but also to progressively increasing cell voltage, because of the increasing anode-cathode gap, and thus to excessive energy consumption. Furthermore, the maximum anode current density achievable with an acceptable rate of anode wear is limited to about 1.5 kA/m. even when steps are taken to cool the cell and when cooling is not resorted to the anode current density may be as low as 0.2-0.5 kA/m.
In British application Serial No. 845,043 there is described and claimed a multielectrolytic cell adaptable for the production of chlorine, a hypochlorite or a chlorate from aqueous solutions of an alkali metal chloride and comprising a plurality of unit electrolytic cells and where in an inert partition separates the anode of one unit electrolytic cell from the cathode of an adjacent unit electrolytic cell, characterised in that the inert partition is an electroconducting chemically inert partition of titanium metal sheet. It is also stated in the said British application that in each unit cell of the multielectrolytic cell the anode may be, inter alia, a layer of a platinum metal, namely ruthenium, rhodium, palladium, osmium, iridium or platinum, or an alloy of two or more of such metals, which is on one side of each titanium metal sheet partition.
We have now found that when a multielectrolytic cell comprising a plurality of unit electrolytic cells as claimed in British application Serial No. 845,043 and in which there is no diaphragm between each pair of anodes and cathodes is employed for the production of an alkali metal chlorate by electrolysis of aqueous solutions of an alkali metal chloride, a surprisingly high current density can be used economically when the anode in each unit electrolytic cell is a layer of a platinum metal on one side of the titanium metal sheet. This is especially so when the cathode in each unit electrolytic cell of the multielectrolytic cell is bare titanium as described in British application Serial No. 845,043 or is a layer of a platinum metal or of iron or of steel on the face of the next titanium metal sheet Patented Nov. 23, 1965 opposed to the anode. It is preferred, however, that the cathode should comprise a layer of a platinum metal, which may be applied to the titanium metal sheet by any of the methods disclosed in the aforementioned British application, since we have found that a platinum metal cathode layer minimises the cell voltage needed and does not sutter from the corrosion found with iron and steel cathode layers when the cell is taken off load. It is also preferred that the anode layer of the platinum metal in each unit cell should be electrolytically deposited on the titanium surface since such an electrolytically deposited layer of the platinum metal provides the lowest and most stable cell voltage. We have furthermore found that when alkali metal chlorate is produced in multielectroly-tic cells of the type herein described the gap between anode and cathode may advantageously be made very narrow, suitably about 3 mm., thus further assisting in the reduction of cell voltage.
We have found that when alkali metal chlorate is produced by electrolysis of alkali metal chloride solution according to the present invention a current density approximately 3-14 times greater than in prior art chlorate cells fitted with graphite, magnetite or platinum anodes may be employed at high energy efficiency. For example in a multielectrolytic cell working according to the present invention at a current density of approximately 3.5 kA/m. the energy consumption is at least as low as in the prior art low-current-density chlorate cells.
According to the present invention therefore, there is provided a modification of that form of the multielectrolytic cell claimed in British application Serial No. 845,043 in which there is no diaphragm between anode and cathode in each unit cell, especially useful for the production of an alkali metal chlorate from aqueous solutions of an alkali metal chloride, wherein the anode in each unit electrolytic cell is a layer of a platinum metal on one side of the titanium metal sheet partition and the cathode is a layer of a platinum metal or of iron or of steel on the face of the next titanium metal sheet partition opposed to the anode.
Further, there is provided a process for the manufacture of an alkali metal chlorate by the electrolysis of an aqueous solution of an alkali metal chloride using that form of the multielectrolytic cell claimed in British application Serial No. 845,043 wherein in each unit cell the anode is a layer of a platinum metal on one side of the titanium metal sheet separator and there is no diaphragm between anode and cathode, which is characterised in that the current density employed is at least 2 lcA/m. and preferably between 2 and 4 kA/mP.
By the term a platinum metal is meant a noble metal of the platinum group or an alloy of two or more such metals as defined in British application Serial No. 845,043.
In carrying out the process according to the invention, electrolysis may be carried out continuously, an aqueous solution containing alkali metal chloride being passed through the cell at high temperature, suitably 7080' C., and the eflluent liquors may be cooled or concentrated to promote crystallisation of the chlorate produced in the cell. It is preferred to have a small concentration of a chromate in the liquor fed to the cell, suitably 2-10 g./l. of an alkali metal chromate, in order to promote chlorate production as is known in the art. An especially advantageous meth od, which is made possible because of the high electrolyte temperatures which can be employed in the present process, is to operate the cell in conjunction with a continuous crystallisation and resaturation system, whereby the chlorate is recovered without recourse to evaporation and simply by cooling the cell efiiuent liquor, and the liquor is subsequently resaturated with alkali metal chloride and reheated for return to the cell. The temperature at which resaturation is carried out will depend on the solubility relations of the salts involved. For example, when manufacturing sodium chlorate the resaturation with sodium chloride is best carried out at elevated temperature, suitably about 70 C. in order to achieve the maximum solubility of the chloride, and the crystalliser may be operated at about 20 C. On the other hand, when manufacturing potassium chlorate, resaturation must be carried out at a lower temperature because of the steeper solubility curve for potassium chloride, otherwise on cooling the cell effluent liquor for crystallisation of potassium chlorate sufficient potassium chloride may still be present in solution to deposit this salt along with the chlorate in the crystalliser. In the case of the potassium salt it is convenient to carry out resaturation at the crystalliser temperature, suitably about 20 C., and then to reheat the resaturated liquor before return to the cell. Heat may be conserved by operating the cooling/ crystallising-resaturation/ reheating cycle on the heat-exchanger principle.
By way of example the invention will be further discussed with reference to the drawings accompanying the provisional specification. FIG. 1 shows schematically (not to scale) in vertical cross section one form of multielectrolytic cell according to the invention. FIG. 2 shows one arrangement of apparatus suitable for carrying out the process according to the invention for the manufacture of sodium chlorate on the aforementioned continuous resaturation principle.
In FIG. 1 the multielectrolytic cell is shown as comprising seven unit electrolytic cells 1 but it must be understood that it may comprise a smaller or larger number of unit cells. The multielectrolytic cell has titanium end plates 2 and 3, and between each pair of unit cells 1 are titanium sheet metal partitions 4. Anodes are thin layers of a platinum metal carried on the internal surface of end plate 2 and on one face of each of titanium partitions 4. Cathodes 6 are preferably thin layers of a platinum metal on the internal surface of end plate 3. and on the face of each of the titanium partitions 4 opposite to the anodes. Cathode layers 6 may however be layers of iron or steel or may be omitted entirely so that the bare titanium faces of end plate 3 and partitions 4 form. the working cathode surfaces. The anodes 5 and cathodes 6 are spaced apart at a distance of approximately 3 mm. from each other by insulating separators 7 and 8 placed between the ends of each pair of titanium sheets, the whole assembly of sheets and insulating separators being held together in a liquorand gas-tight manner by clamping means (not shown). Channels 9, passing through the lower set of insulating separators 7, are used for feeding electrolyte to each unit cell, and channels 10, passing through the upper set of insulating separators 8, are used for removing the electrolyte and hydrogen gas from each unit cell. The electrolyte may alternatively be fed to and removed from the unit cells in some other manner, for example through channels cut in the titanium end plates 2 and 3 and titanium partitions 4 near the bottom and top respectively. 11 and 12 are current leads to the anodic and cathodic titanium end plates 2 and 3 respectively.
In FIG. 2, 13 is a multielectrolytic cell of the type shown in FIG. 1 comprising, in the case shown, seven unit electrolytic cells 1. In the manufacture of sodium chlorate using the apparatus of FIG. 2, feed electrolyte is saturated with sodium chloride at a temperature of approximately 70 C. in saturator 14 and passes continuously from 14 by lines 9 to each of the unit cells 1, where sodium chlorate and hydrogen are produced by electrolysis. Spent electrolyte leaves unit cells 1 by lines together with the hydrogen evolved in the cells. Hydrogen is removed at 15 and spent electrolyte passes along line 16, is cooled in heat exchanger 17 and then flows through crystalliser 18, where sodium chlorate crystals are deposited. Mother liquor leaves crystalliser 18 by line 19, is reheated partly in heat exchanger 17 and then in heater 20 and returned to saturator 14. Line 21 is provided for a secondary flow of spent electrolyte from the cells 1 to the saturator 14 without passing through the crystalliser as a means of adjusting the chloride/ chlorate content of the electrolyte entering and leaving the cells. The flow through line 21 is controlled by valve 22. It Will be understood from the foregoing discussion that the apparatus shown in FIG. 2 may also be employed for the continuous production of potassium chlorate provided that the heating means are repositioned so that the saturator works at low temperature and the saturated electrolyte is afterwards heated before being fed to the cells.
The following table illustrates the efficient production of sodium and potassium chlorates by the process according to the invention. In the multielectrolytic cell employed the anodes were electrodeposited layers of platinum and the cathodes were layers of platinum deposited by the painting and firing process as practised in the ceramic industry.
What we claim is:
1. A process for the manufacture of alkali metal chlorate by the electrolysis of an aqueous solution of alkali metal chloride which comprises uses a multi-electrolytic cell having a plurality of diaphragm-free unit electrolytic cells, each of said cells having an anode and a cathode with the cells arranged so that a partition carries the anode of each cell and the cathode of the next cell, said partition comprising an inert titanium metal sheet separating the anode of one unit electrolytic cell from the cathode of an adjacent unit electrolytic cell, the anode in each unit cell comprising a layer of a platinum metal on one side of the titanium metal and the cathode in said unit cell comprising a layer of a metal selected from the group consisting of a platinum metal, iron and steel on the side of the next titanium metal sheet opposed to the anode of said unit cell, and employing an anode current density of at least 2 kA/m.
2. A process according to claim 1, wherein the cell is operated at an electrolyte temperature of 7080 C.
3. A process according to claim 2, wherein electrolyte is continuously passed through the electrolytic cell and alkali metal chlorate is obtained from the effluent liquor by cooling said liquor and separating alkali metal chlorate crystals from the cooled mother liquor.
4. A process according to claim 3 wherein the cell effluent liquor is cooled to approximately 20 C. before separating alkali metal chlorate crystals from the cooled mother liquor.
5. A process for the manufacture of sodium chlorate according to claim 3, wherein the mother liquor after separation of sodium chlorate crystals therefrom is reheated to approximately 70 C., saturated with sodium chloride at that temperature, and then returned to the cell.
6. A process for the manufacture of potassium chlo rate according to claim 3, wherein the mother liquor after separation of potassium chlorate crystals therefrom is saturated at its existing temperature with potassium chloride and is then reheated to approximately 70 C. and returned to the cell.
7. A process according to claim 1 wherein the cathode is a layer of platinum and the anode current density is between 2 and 4 kA/m.
8. A process for the manufacture of alkali metal chlorate by the electrolysis of an aqueous solution of alkali metal chloride which comprises employing an anode current density of at least 2 kA/m. in a diaphragm-free, multielectrolytic cell, said cell comprising a plurality of diaphragm-free unit electrolytic cells, each such unit cell having an anode and a cathode, the unit cells being so arranged that a partition carries the anode of each unit cell and the cathode of the next cell, said partition comprising an inert titanium metal sheet, the anode of each cell comprising a layer of a platinum metal on one side of the titanium separating sheet and the cathode of said unit cell being the bare titanium face of the next titanium metal sheet facing the anode in said unit cell and carrying the anode for the adjacent unit cell.
9. A process according to claim 8 wherein the anode current density is between 2 and 4 kA/m.
10. A multielectrolytic cell comprising a plurality of diaphragm-free unit electrolytic cells, each of said cells having an anode and a cathode with the cells arranged so that a partition carries the anode of each cell and the cathode of the next cell, said partition comprising an inert titanium metal sheet separating the anode of one unit electrolytic cell from the cathode of an adjacent unit electrolytic cell but in electrical conducting relationship with respect to both the anode and the cathode carried thereby, the anode in each unit cell comprising a layer of a platinum metal on one side of the titanium metal sheet and the cathode in said unit cell comprising a layer of a metal selected from the group consisting of a platinum metal, iron and steel on the side of the next titanium metal sheet opposed to the anode of said unit cell.
11. A multielectrolytic cell comprising a plurality of diaphragm-free unit electrolytic cells, each of said cells having an anode and a cathode with the cells arranged so that a partition carries the anode of each cell and the cathode of the next cell, said partition comprising an inert titanium metal sheet separating the anode of one unit electrolytic cell from the cathode of an adjacent unit electrolytic cell but in electrical conducting relationship with respect to both the anode and the cathode carried thereby, the anode in each unit cell comprising a layer of a platinum metal on one side of the titanium metal sheet and the cathode in said unit cell comprising a layer of a platinum metal on the side of the next titanium metal sheet opposed to the anode of said unit cell.
12. A multielectrolytic cell according to claim 11 wherein the anode and cathode in each unit cell are separated by a gap of about 3 mm.
References Cited by the Examiner UNITED STATES PATENTS 665,426 1/1901 Gibbs 204- 1,023,545 4/1912 Bates et a1. 2O4-95 2,511,516 6/ 1950 Schumacher 204--95 2,628,935 2/1953 Earnest et al. 20495 2,765,201 7/ 1956 Muller 204-95 2,813,825 11/1957 Miller et al. 20495 3,043,757 7/1962 Holmes 20495 FOREIGN PATENTS 569,500 1/1959 Belgium. 845,043 2/ 1959 Great Britain.
JOHN H. MACK, Primary Examiner.
JOHN R. SPECK, MURRAY TllLMAN, WINSTON A. DOUGLAS, Examiners.

Claims (1)

1. A PROCESS FOR THE MANUFACTURE OF ALKALI METAL CHLORATE BY THE ELECTROLYSIS OF AN AQUEOUS SOLUTION OF ALKALI METAL CHLORIDE WHICH COMPRISES USES A MULTI-ELECTROLYTIC CELL HAVING A PLURALITY OF DIAPHRAGM-FREE UNIT ELECTROLYTIC CELLS, EACH OF SAID CELLS HAVING AN ANODE AND A CATHODE WITH THE CELLS ARRANGED SO THAT A PARTITION CARRIES THE ANODE OF EACH CELL AND THE CATHODE OF THE NEXT CELL, SAID PARTITION COMPRISING AN INERT TITANIUM METAL SHEET SEPARATING THE ANODE OF ONE UNIT ELECTROLYTIC CELL FROM THE CATHODE OF AN ADJACENT UNIT ELECTROLYTIC CELL, THE ANODE IN EACH UNIT CELL COMPRISING A LAYER OF A PLATINUM METAL ON ONE SIDE OF THE TITANIUM METAL AND THE CATHODE IN SAID UNIT CELL COMPRISING A LAYER OF A METAL SELECTED FROM THE GROUP CONSISTING OF A PLATINUM METAL, IRON AND STEEL ON THE SIDE OF THE NEXT TITANIUM METAL SHEET OPPOSED TO THE ANODE OF SAID UNIT CELL, AND EMPLOYING AN ANODE CURRENT DENSITY OF AT LEAST 2 KA/M.2.
US114354A 1960-06-22 1961-06-02 Multi-electrolytic cell comprising a plurality of diaphragm-free unit cells and the use of same for preparing alkali metal chlorates Expired - Lifetime US3219563A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB21851/60A GB905749A (en) 1960-06-22 1960-06-22 Improvements in or relating to multi-electrolytic cells

Publications (1)

Publication Number Publication Date
US3219563A true US3219563A (en) 1965-11-23

Family

ID=10169886

Family Applications (1)

Application Number Title Priority Date Filing Date
US114354A Expired - Lifetime US3219563A (en) 1960-06-22 1961-06-02 Multi-electrolytic cell comprising a plurality of diaphragm-free unit cells and the use of same for preparing alkali metal chlorates

Country Status (7)

Country Link
US (1) US3219563A (en)
CH (1) CH457375A (en)
ES (1) ES268425A1 (en)
FR (2) FR1220408A (en)
GB (1) GB905749A (en)
NL (2) NL129923C (en)
SE (1) SE316748B (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3324024A (en) * 1961-08-10 1967-06-06 Staveley Iron & Chemical Compa Cell for making alkali metal chlorates
US3463722A (en) * 1964-04-24 1969-08-26 Chemech Eng Ltd Electrolysis system for chlorate manufacture
US3464901A (en) * 1965-11-30 1969-09-02 Hooker Chemical Corp Production of chlorates
US3539486A (en) * 1966-09-14 1970-11-10 Krebs & Co Ag Method of electrolytically producing alkaline chlorates
US3919059A (en) * 1973-03-01 1975-11-11 Ppg Industries Inc Electrolytic cell
US3974058A (en) * 1974-09-16 1976-08-10 Basf Wyandotte Corporation Ruthenium coated cathodes
US4123339A (en) * 1975-02-07 1978-10-31 Andco Industries, Inc. Method and apparatus for electrochemical contaminant removal from liquid media
US4124480A (en) * 1976-02-17 1978-11-07 Paterson Candy International, Limited Bipolar cell
US4839004A (en) * 1987-02-27 1989-06-13 Castellini, S.P.A. Method and an apparatus for cold sterilization of surgical instruments, in particular dental surgery instruments
CN1042842C (en) * 1993-05-31 1999-04-07 谭秉彝 Method for prodn. of sodium chlorate by enclosed circulation of non-evaporating mother liquor

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3113918A (en) * 1959-06-03 1963-12-10 Evans David Johnson Electrolytic apparatus
US3103484A (en) * 1959-10-10 1963-09-10 Anodes for electrolytic chlorine
US3483568A (en) * 1966-12-12 1969-12-16 Continental Copper & Steel Ind Electrolytic metal extraction
DE2148337A1 (en) * 1971-09-28 1973-04-05 Uhde Gmbh Friedrich BIPOLAR MULTIPLE ELECTROLYSIS CELL WITH DIAPHRAGMA
CN102421941B (en) * 2009-05-15 2015-04-08 阿克佐诺贝尔化学国际公司 Activation of cathode

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE569500A (en) * 1957-07-17
US665426A (en) * 1895-09-09 1901-01-08 Nat Electrolytic Company Art of obtaining chlorates by electrolysis.
US1023545A (en) * 1911-06-12 1912-04-16 Harry H Bates Electrolytic process.
US2511516A (en) * 1945-10-31 1950-06-13 Western Electrochemical Compan Process for making sodium chlorate
US2628935A (en) * 1946-06-05 1953-02-17 Pennsylvania Salt Mfg Co Electrolytic production of chlorates
US2765201A (en) * 1953-03-16 1956-10-02 Clay E Phillips Ceiling jacks
US2813825A (en) * 1955-12-14 1957-11-19 Pennsalt Chemicals Corp Method of producing perchlorates
GB845043A (en) * 1958-03-18 1960-08-17 Ici Ltd Improvements in or relating to multi-electrolytic cells
US3043757A (en) * 1959-07-08 1962-07-10 Olin Mathieson Electrolytic production of sodium chlorate

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US665426A (en) * 1895-09-09 1901-01-08 Nat Electrolytic Company Art of obtaining chlorates by electrolysis.
US1023545A (en) * 1911-06-12 1912-04-16 Harry H Bates Electrolytic process.
US2511516A (en) * 1945-10-31 1950-06-13 Western Electrochemical Compan Process for making sodium chlorate
US2628935A (en) * 1946-06-05 1953-02-17 Pennsylvania Salt Mfg Co Electrolytic production of chlorates
US2765201A (en) * 1953-03-16 1956-10-02 Clay E Phillips Ceiling jacks
US2813825A (en) * 1955-12-14 1957-11-19 Pennsalt Chemicals Corp Method of producing perchlorates
BE569500A (en) * 1957-07-17
GB845043A (en) * 1958-03-18 1960-08-17 Ici Ltd Improvements in or relating to multi-electrolytic cells
US3043757A (en) * 1959-07-08 1962-07-10 Olin Mathieson Electrolytic production of sodium chlorate

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3324024A (en) * 1961-08-10 1967-06-06 Staveley Iron & Chemical Compa Cell for making alkali metal chlorates
US3463722A (en) * 1964-04-24 1969-08-26 Chemech Eng Ltd Electrolysis system for chlorate manufacture
US3464901A (en) * 1965-11-30 1969-09-02 Hooker Chemical Corp Production of chlorates
US3539486A (en) * 1966-09-14 1970-11-10 Krebs & Co Ag Method of electrolytically producing alkaline chlorates
US3919059A (en) * 1973-03-01 1975-11-11 Ppg Industries Inc Electrolytic cell
US3974058A (en) * 1974-09-16 1976-08-10 Basf Wyandotte Corporation Ruthenium coated cathodes
US4123339A (en) * 1975-02-07 1978-10-31 Andco Industries, Inc. Method and apparatus for electrochemical contaminant removal from liquid media
US4124480A (en) * 1976-02-17 1978-11-07 Paterson Candy International, Limited Bipolar cell
US4839004A (en) * 1987-02-27 1989-06-13 Castellini, S.P.A. Method and an apparatus for cold sterilization of surgical instruments, in particular dental surgery instruments
CN1042842C (en) * 1993-05-31 1999-04-07 谭秉彝 Method for prodn. of sodium chlorate by enclosed circulation of non-evaporating mother liquor

Also Published As

Publication number Publication date
NL266134A (en) 1964-07-10
FR80106E (en) 1963-03-15
CH457375A (en) 1968-06-15
SE316748B (en) 1969-11-03
DE1417787A1 (en) 1968-10-10
FR1220408A (en) 1960-05-24
NL129923C (en) 1970-11-16
DE1417787B2 (en) 1972-07-20
GB905749A (en) 1962-09-12
ES268425A1 (en) 1961-12-16

Similar Documents

Publication Publication Date Title
US3219563A (en) Multi-electrolytic cell comprising a plurality of diaphragm-free unit cells and the use of same for preparing alkali metal chlorates
RU2025544C1 (en) Filter-press electrolyzer
US3598715A (en) Electrolytic cell
KR910001139B1 (en) Eletrolytic process and electrolytic cell for preparation of roganic compounds
JPS6315354B2 (en)
US3539486A (en) Method of electrolytically producing alkaline chlorates
SU1291029A3 (en) Bipolar electrode
WO2018131493A1 (en) Method of producing ammonium persulfate
NO140427B (en) PROCEDURES FOR THE PREPARATION OF ANTIBIOTICS 1-N- (L - (-) - ALFA-HYDROXY-GAMMA-AMINOBUTYRYL) -XK-62-2 OR ACID ADDITIONAL SALTS THEREOF
JP7163841B2 (en) Method for producing ammonium persulfate
US4647351A (en) Process for generating chlorine and caustic soda using a membrane electrolysis cell coupled to a membrane alkaline fuel cell
CA1073846A (en) Electrolysis method and apparatus
CN102828205A (en) Novel metal electro-deposition refining technology
US4256550A (en) Method for producing vitamin B1 and its intermediate
EP3161185B1 (en) Narrow gap, undivided electrolysis cell
US3043757A (en) Electrolytic production of sodium chlorate
US3809629A (en) Process and apparatus for the production of alkali metal chlorates
WO1980001575A1 (en) Electrochemical apparatus and process for manufacturing halates
US4147600A (en) Electrolytic method of producing concentrated hydroxide solutions
CA1134779A (en) Electrolysis cell
US3948748A (en) Apparatus for the production of alkali metal chlorates
US3553088A (en) Method of producing alkali metal chlorate
RU1836493C (en) Method of production of chlorine dioxide
JP5344278B2 (en) Indium metal production method and apparatus
SU1741612A3 (en) Process for producing sodium bichromate of chromic acid