US3483568A - Electrolytic metal extraction - Google Patents

Electrolytic metal extraction Download PDF

Info

Publication number
US3483568A
US3483568A US611198A US3483568DA US3483568A US 3483568 A US3483568 A US 3483568A US 611198 A US611198 A US 611198A US 3483568D A US3483568D A US 3483568DA US 3483568 A US3483568 A US 3483568A
Authority
US
United States
Prior art keywords
electrolyte
cathode
ions
copper
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US611198A
Inventor
Allen K Andersen
Vsevolod Archipov
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Copper and Steel Industries Inc
Original Assignee
Continental Copper and Steel Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Copper and Steel Industries Inc filed Critical Continental Copper and Steel Industries Inc
Application granted granted Critical
Publication of US3483568A publication Critical patent/US3483568A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions

Definitions

  • FIG. 1 A first figure.
  • This invention broadly relates to the art of metal extraction and more particularly to extraction of metals by electroseparation.
  • one of the methods utilized for such separation is the electrolytic process. This includes the steps of first dissolving the ore and thereafter electrolyzing the resulting solution in a container having anode and cathode electrodes partially immersed in the solution. A difference of potential is maintained between the anode and cathode electrode to supply an electric current to the solution to cause ions of the desired metal to be reduced from the ionized state to a neutral state and to deposit on the cathode electrode or electrodes.
  • the electrolyte progressively becomes depleted in the valued metal sought and the ratio of impurities to valued metal continuously increases thereby making the conditions of electroseparation less ideal as the solution progresses through the cell to the point where electrical current efiiciencies are substantially reduced, the product cathode deteriorates in chemical and physical quality, and finally the cell ceases to produce a useful product.
  • This phenomena fundamentally limits both the maximum impurity content of the incoming fresh electrolyte or of the soluble/corrodable anodes and the number of anode-cathode units that may be arranged in a cell.
  • Another object of the present invention is to provide a process and apparatus by means of which pure metal can be extracted from solutions of very impure and low grade ores without requiring any preliminary processing or purifying.
  • An advantage obtained by the persent invention is the general benefit derived by economic extraction of pure metal from solutions of low grade and impure ores.
  • Still another advantage obtained by the present invention is that higher current densities may be used for the extraction of various metals, including copper, than those current densities which were able to be used heretofore.
  • FIG. 1 is a simplified cross-sectional view of one embodiment of the present invention showing an electrolytic tank construction according to the invention and used for carrying out the electrowinning process of the invention;
  • FIG. 2 is a cross-sectional end view of the tank of FIG. 1;
  • FIG. 3 is an enlarged cross-sectional view of one section of the tank of FIG. 1;
  • FIG. 4 is an enlarged cross-sectional view of flowcontrolling holes in the false bottom of the tank of FIGS. 1-3;
  • FIG. 5 is a simplified cross-sectional view of another embodiment of the present invention showing an electrolytic tank constructed according to the invention and usable to carry out the process of the invention;
  • FIG. 6 is a cross-sectional end view of the tank of FIG. 5;
  • FIG. 7 is an enlarged cross-sectional view of one section of the tank of FIG. 5.
  • FIG. 8 is an enlarged cross-sectional view of flowcontrolling holes in the pipes placed along the bottom of the tank of FIGS. 5-7.
  • FIG. 1 there is shown a particular cell construction which has been found to be very advantageously usable in following the process of the present invention.
  • the tank 11 is provided with a lower channel 12.
  • the tank contains several anodes 13 constructed for the illustrative production of copper, of 6% antimony in lead and a plurality of cathodes 14 constructed of reagent grade copper heavy foil,
  • eleven anodes and ten cathodes spaced apart and all comprising fiat sheets parallel to each other.
  • anodes and cathodes of different shapes and in difierent amounts may be utilized for the extraction of metal under varying conditions.
  • the lower edge of each of the illustrated sheets 13 and 14 is spaced from the false bottom 12 to permit the electrolyte to flow between the lower edges of the sheets and the upper surface of the false bottom.
  • a copperbearing feed solution is either pumped or is gravity fed into an inlet pipe 15.
  • the electrolyte is withdrawn from the other end of the tank 11 through an outlet pipe 16 and is pumped by a suitable pump 17 through a rotameter 18 into the false bottom inlet 19 of the cell.
  • the electrolyte travels between the true bottom of the cell 11 and the false bottom 12 and up through a plurality of small ports 20 located adjacent to and beneath each of the anodes 13.
  • the anodes and cathodes are wired to their respective bus bars, of which only the bus bar 22 is shown, running along and over the top of the cell 11. It is not necessary that these bus bars be located overhead, as conventional means of electrical contact are adequate.
  • the liquor which is also referred to as the spent electrolyte, flows, out of the cell 11 by way of an outlet pipe 23 in quantities equal to the feed input less the evaporative losses.
  • FIG. 3 illustrates a novel fiow pattern of the present invention.
  • the recirculating electrolyte provides a complete circulation path around each cathode 14. Thereafter, the electrolyte flows underneath the anodes and cathodes and out toward the right as indicated by the flow arrows.
  • inlet ports 20 One pair of inlet ports 20 is shown in greater detail in FIG. 4. As may be seen, the upper ends of the inlet ports 20 are countersunk in order to produce a desired flow pattern of the electrolyte. Of course other means may be used to obtain the necessary flow pattern.
  • This invention is not limited to use of a specific form of electrolytic tank and another form of tank as illustrated in FIGS. 5 through 8 may be utilized. Wherever possible the same numbers have been utilized to identify similar portions of the tank construction.
  • a conventional tank 11 contains several anodes 13 and cathodes 14 constructed as described in connection with the tank illustrated in FIG. 1.
  • An inlet pipe 24 and outlet pipes 25 are set along the bottom of the tank.
  • the metal-bearing feed solution or liquor is recirculated by means of a suitable pump 17 in the direction of the arrows through a metering device 18 and into the inlet pipe 24.
  • the solution then travels up through a plurality of small ports or openings 26 which are disposed adjacent to and beneath the anodes 13.
  • the flow is directed up to the surface and progresses downwardly along each cathode surface to a plurality of small outlet ports 27 provided in the outlet pipes 25.
  • the outlet ports are located adjacent to and beneath each of the cathodes 14.
  • the anodes and cathodes are wired to their respective bus bars exemplified by bus bar 22.
  • the liquor flows out of the cell from the outlet pipes 25 in quantities equal to the feed input less the evaporative losses.
  • FIG. 8 shows the detail of one of the pipes 24 which is illustrated with the ports, 26, countersunk. It will be understood that this construction eliminates any interference of the flow of the solution which might otherwise be caused by metal burrs or fragments which remain after drilling the holes.
  • the ports may be of any desired construction.
  • the present invention includes the discovery of the phenomena and unanticipated results which occur by directing the electrolyte along a predetermined path through a cell utilizing a predetermined electrolyte flow velocity between the anodes and the cathodes.
  • a process for recovering high purity metals from solutions whose impurities were such that it would be impractical to attempt to recover the desired metals therefrom.
  • the use of the process prevents the build-up in concentration of undesirable ions at the anode and cathode surfaces of an electrolysis cell while, at the same time, enables the concentration of the desired ions of the solution-electrode interface to remain sufficiently high to achieve their practical neutralization and discharge.
  • the fluid flow characteristics of the ion-pregnant solution at the solution-electrode interface are controlled in such a manner that the desired metal can be plated in high purity form from a solution containing high concentrations of undesirable ions as impurities without neutralizing the undesirable ions or providing impractical or uneconomic means for their control or prior elimination from the solution.
  • the circulation pattern located between the individual anode-cathode pairs which controls the quality of the cathode product produced is related to the flow characteristics of the electrolyte entering the anode-cathode area. Consequently, it is possible to establish a relationship between these entry flow characteristics and the quality of the cathode product produced. By control of these entry flow characteristics it is thereby possible to recover metals from solutions without any expensive and most times impossible pre-purification processing.
  • the fluid flow characteristics of the electrolyte using the process of the present invention may be measured by means of a Reynolds number.
  • the Reynolds number is a pure dimensionless number and is calculated by means of the following equation.
  • V velocity at the entrained port in the cross-section measured in feet/second
  • the Reynolds number utilized depends upon such measurable factors as the size of the inlet port, the velocity of the flow of the liquid in the point of entry, both taken in conjunction with the density of the electrolyte and its viscosity. This number is calculated from the foregoing equation as shown by the following:
  • the diameter of the port is A
  • the velocity in the entrance port is 0.21 ft./sec.
  • the density of the electrolyte is 79.4
  • the viscosity of the electrolyte is 0.00289 and the impurity consists of aluminum or the like
  • the Reynolds number is 60 and the excellent results of extracting pure copper are obtained.
  • the diameter of the port is the velocity in the entrance port is 1.84 ft./sec.
  • the density of the electrolyte is 79.4
  • the viscosity of the electrolyte is 0.00289
  • the impurity comprises ferric ions
  • the Reynolds number is 526 and the results are excellent
  • the velocity in the inlet port is 7.41 'ft./sec.
  • the density of the electrolyte 79.4 the viscosity of the electrolyte is 0.00289 and the impurity comprises ferric ions
  • the Reynolds number is 1060, and the results are excellent.
  • the diameter in the inlet port is the velocity of the inlet port is 0.115 ft./sec.
  • the density of the electrolyte is 79.4
  • the viscosity of the electrolyte is 0.00289 and the impurity comprises ferric ions
  • the Reynolds number is 66, and the results are good.
  • the diameter of the port is & the velocity in the inlet port is 29.55 ft./sec.; the density of the electrolyte is 79.4, the viscosity of the electrolyte is 0.00289, and the impurity comprises ferric ions, the Reynolds number is 1055, and the results are excellent.
  • the diameter of the port is the velocity in the inlet port is 0.46 ft./sec.
  • the density of the electrolyte is 79.4
  • the viscosity of the electrolyte is 0.00289 and the impurity comprises ferric ions
  • the Reynolds number is 263, and the results are excellent.
  • the diameter of the port is the velocity in the inlet port is 22.3
  • the density of the electrolyte is 79.4
  • the viscosity of the electrolyte is 0.00289
  • the impurities comprise ferric ions, chloride ions and aluminum and the Reynolds number is approximately 1917 and the results are good.
  • the diameter of the port is the velocity of the inlet port is 14.32 ft./sec.
  • the density of the electrolyte is 71.26
  • the viscosity of the electrolyte is 0.00163
  • the impurity comprises ferric ions, manganese ions, and chloride ions
  • the Reynolds number is 6521.2, and the results are excellent.
  • the illustrative examples refer to cells of a size ranging from a 3 inch electrolyte depth to a 3 foot electrolyte depth.
  • the Reynolds numbers will accordingly change depending upon the solution depth.
  • Table I shows the results of tests in which an exemplary metal, viz copper, was attempted to be extracted from an impure electrolyte solution using the processes of the prior art and compares those results with the results obtained using the processes of the present invention.
  • Electrolyte Circulating Fluid Characteristics Electrolyte Circulating Fluid Characteristics Using the Process of the Prior Art in a Cell Having 11 Anodes and 10 Cathodes and a Flow gate of Approximately 10 gal. per min. per sq.
  • the inlet port is 24.3 ft./sec.
  • the density of the electrolyte is 73.13
  • the viscosity of the electrolyte is 000237
  • the impurity comprises ferric ions and chloride ions
  • the Reynolds number is 9763.2 and the results are excellent.
  • the diameter of the port is & the velocity of the inlet port is 17.4 ft./sec.
  • the density of the electrolyte is 73.13
  • the viscosity of the electrolyte is 0.00237
  • the impurity comprises ferric ions and chloride ions
  • the Reynolds number is 9787.3, and the results are excellent.
  • the diameter of the port is the velocity of the inlet port is 17.4 ft./sec.
  • the density of the electrolyte is 72.38
  • the viscosity of the electrolyte is 0.00190
  • the impurity comprises ferric ions and chloride ions
  • the Reynolds number is 12,083.1 and the results are excellent.
  • the diameter of the port is the velocity of the inlet port is 26.8 ft./sec.
  • the density of the electrolyte is 71.26
  • the viscosity of the electrolyte is 0.00163
  • the impurity comprises ferric ions and chloride ions
  • impurities include gypsum and silica as well as nitrate concentrations of up to 1 g./l.
  • the process of the present invention does not require the use of the expensive electroseparating aids as is necessary when using the processes of the prior art.
  • 99.95% copper is obtained from the very impure solutions as set forth in Table I. Indicative of the small amount of impurities remaining in the copper is the result of the impurity analysis which are set forth in Table II below.
  • a current efliciency of 85% is considered a favorable economic lower limit for the production of copper.
  • the etermination of this efficiency is based on the fact that one Faraday would theoretically produce one gram equivalent weight of copper if the efficiency were 100%. It has been found that a cell constructed and operated in accordance with this invention will operate with an efiiciency of at least 85% even in the presence of abnormally high concentrations of manganese, aluminum sulfate, chloride ions, nitrate ions or other impurities in the electrolyte solution,
  • the normal maximum concentration of ferric ions of the prior art is about 2.02.5 g./l. with the present invention pure metal may be extracted with ferric ion concentrations at least twice as high. In many cases this permits the dissolved-ore copper to be run directly into the cell Without any preliminary diminution of the ferric ions.
  • Examples 6 and 7 show that the efiiciency of the present invention is still better than 85% even with quite high concentrations of ferric ions. In Example 7, not only the ferric ions but also the manganese and nitrate ions are present in high concentration without driving the efliciency of operations below 85%.
  • Typical operating conditions according to the present invention include an electrolyte temperature of 5055 C. which may be held within this range by suitable heaters or other means.
  • the circulating rates that have been used in practice vary from the 1.0 to 4 gal. per min. in a cell having a total electrolyte volume of 2.1 gal. and a cathode-to-cathode center spacing of 5 inches.
  • The'conductivity, and hence the voltage, of the cell may be held in the proper range by adding suflicient H to'maintain a free acid concentration of approximately 30 g./l.
  • the ferric concentrations reach levels higher than 4 g./l.
  • the circulating rate is increased from the normal 0.6 gal. per min. to approximately 0.9 gal. per min. which, in this embodiment, represents a Reynolds number of approximately 400 in a '7 in. diameter port.
  • No additives of any kind need be employed, although it may be desirable to use cover oil to prevent excessive evaporation and an acid-oil to prevent
  • the cell illustrated has produced pure copper at a rate of approximately 1 lb. per kilowatt hour of DC electrical power.
  • a much larger copper drop in the electrolyte solution is feasible, for example, a drop to 8 g./l. as compared with the conventional 13 g./l.
  • This copper drop may be used with approximately the same efficiencies and power consumption rates as are now obtainable using conventional techniques.
  • the process and techniques of the present invention have resulted in metal deposits of good quality from solutions whose impurity concentrations were such that recovery would heretofore have been considered electrolytically impossible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

Dec. 16, 1969 Filed Dec llll A. K, ANDERSEN ET AL ELECTROLYTI C METAL EXTRACT TON 2 Sheets-She'e1 FIG. 4
FIG. 1
FIG; 3
INVENTORS ALLEN K. AMEN VSEVOLOD ARCHIPOV ATTORNEYS Dec, 16, HQGQ ANDERSEN ET AL 3,483,558
ELECTROLYTIC METAL EXTRACTION 2 Sheets-Shea Filed Dec. 12, 1966 /N VE N 70 25 w mp Mn w K NA 10 0 Nm EV E W Mum M .14
United States Patent M 3,483,568 ELECTROLYTIC METAL EXTRACTION Allen K. Andersen, Arvada, Colo., and Vsevolod Archipov, Decatur, Ala., assignors to Continental Copper and Steel Industries, Inc., New York, N.Y., a corporation of New York Continuation-impart of application Ser. No. 530,147,
Feb. 25, 1966. This application Dec. 12, 1966, Ser.
Int. Cl. C22d 1/00; BOlk 3/00 US. Cl. 204105 3 Claims ABSTRACT OF THE DISCLOSURE A process and apparatus for the electroseparation of a metal from an impure solution containing such metal which comprises passing said impure solution successively across an anode and then across a cathode. The rate at which the solution fiows past the anode and cathode is adjusted so as to give a maximum electrolytic extraction of the desired metal.
This application is a continuation-in-part of application Ser. No. 530,147, filed Feb. 25, 1966 and now abandoned.
This invention broadly relates to the art of metal extraction and more particularly to extraction of metals by electroseparation.
In extracting metals from ore it has been customary after dressing the ore to further process the metal by means of fire refining, hydrometallurgy, and by the use of chemical reagents. However, with the depletion of the reserves of metallic ore of relative high purity, additional processing has been necessary in order to remove the large amount of impurities which remain after the preliminary processing. conventionally, one of the methods utilized for such separation is the electrolytic process. This includes the steps of first dissolving the ore and thereafter electrolyzing the resulting solution in a container having anode and cathode electrodes partially immersed in the solution. A difference of potential is maintained between the anode and cathode electrode to supply an electric current to the solution to cause ions of the desired metal to be reduced from the ionized state to a neutral state and to deposit on the cathode electrode or electrodes.
In conventional electroseparation processes, including electrowinning and electrorefining, the flow of fresh electrolyte is from one end of the container or cell to the other end past a series of anodes and cathodes with spent electrolyte being withdrawn from the opposite end of cell from the introduction of fresh electrolyte. It may be readily understood that the chemistry and physical characteristics of the electrolyte are changing continuously during its passage through the cell since the valued metal is being continuously removed from the electrolyte as it passes each series of anodes and cathodes. Consequently, the electrolyte progressively becomes depleted in the valued metal sought and the ratio of impurities to valued metal continuously increases thereby making the conditions of electroseparation less ideal as the solution progresses through the cell to the point where electrical current efiiciencies are substantially reduced, the product cathode deteriorates in chemical and physical quality, and finally the cell ceases to produce a useful product. This phenomena fundamentally limits both the maximum impurity content of the incoming fresh electrolyte or of the soluble/corrodable anodes and the number of anode-cathode units that may be arranged in a cell.
When using low grade ores of great impurity, which presently constitute the bulk of the worlds known reserves, it was virtually impossible to utilize the electro- Patented Dec. 16, 1969 separation processes without first purifying the solution. Unless such prepurifiication took place, the metal deposited on the cathode was impure and not usable. The costs attendant upon purifying the solution made the process impractical from an economic standpoint.
It is therefore an object of the present invention to provide a process and apparatus which utilizes electroseparation to extract pure metals from very impure and low grade ores.
Another object of the present invention is to provide a process and apparatus by means of which pure metal can be extracted from solutions of very impure and low grade ores without requiring any preliminary processing or purifying.
It is a further object of the present invention to provide a process and apparatus by which the pure metal may be extracted from solutions of very impure and low grade ores in a simple, efficient and yet extremely economic manner.
An advantage obtained by the persent invention is the general benefit derived by economic extraction of pure metal from solutions of low grade and impure ores.
Still another advantage obtained by the present invention is that higher current densities may be used for the extraction of various metals, including copper, than those current densities which were able to be used heretofore.
Other objects and advantages are apparent in the following specification taken in conjunction with the accompanying drawings. It is to be understood that the drawings and descriptions are merely illustrative and are in no way intended to limit the scope of the invention.
In the drawings:
FIG. 1 is a simplified cross-sectional view of one embodiment of the present invention showing an electrolytic tank construction according to the invention and used for carrying out the electrowinning process of the invention;
FIG. 2 is a cross-sectional end view of the tank of FIG. 1;
FIG. 3 is an enlarged cross-sectional view of one section of the tank of FIG. 1;
FIG. 4 is an enlarged cross-sectional view of flowcontrolling holes in the false bottom of the tank of FIGS. 1-3;
FIG. 5 is a simplified cross-sectional view of another embodiment of the present invention showing an electrolytic tank constructed according to the invention and usable to carry out the process of the invention;
FIG. 6 is a cross-sectional end view of the tank of FIG. 5;
FIG. 7 is an enlarged cross-sectional view of one section of the tank of FIG. 5; and
FIG. 8 is an enlarged cross-sectional view of flowcontrolling holes in the pipes placed along the bottom of the tank of FIGS. 5-7.
For illustrative purposes the invention will be described in connection with the extraction of copper from a copper feed solution. This has been done only to demonstrate the invention which may be equally effectively utilized for the extraction of other metals such as zinc, nickel, chromium, etc.
In FIG. 1 there is shown a particular cell construction which has been found to be very advantageously usable in following the process of the present invention. The tank 11 is provided with a lower channel 12. The tank contains several anodes 13 constructed for the illustrative production of copper, of 6% antimony in lead and a plurality of cathodes 14 constructed of reagent grade copper heavy foil, In the tank 11 there are shown eleven anodes and ten cathodes spaced apart and all comprising fiat sheets parallel to each other. Obviously, anodes and cathodes of different shapes and in difierent amounts may be utilized for the extraction of metal under varying conditions. The lower edge of each of the illustrated sheets 13 and 14 is spaced from the false bottom 12 to permit the electrolyte to flow between the lower edges of the sheets and the upper surface of the false bottom.
To extract copper using the cell illustrated, a copperbearing feed solution is either pumped or is gravity fed into an inlet pipe 15. The electrolyte is withdrawn from the other end of the tank 11 through an outlet pipe 16 and is pumped by a suitable pump 17 through a rotameter 18 into the false bottom inlet 19 of the cell. The electrolyte travels between the true bottom of the cell 11 and the false bottom 12 and up through a plurality of small ports 20 located adjacent to and beneath each of the anodes 13.
The anodes and cathodes are wired to their respective bus bars, of which only the bus bar 22 is shown, running along and over the top of the cell 11. It is not necessary that these bus bars be located overhead, as conventional means of electrical contact are adequate. The liquor, which is also referred to as the spent electrolyte, flows, out of the cell 11 by way of an outlet pipe 23 in quantities equal to the feed input less the evaporative losses.
FIG. 3 illustrates a novel fiow pattern of the present invention. The recirculating electrolyte provides a complete circulation path around each cathode 14. Thereafter, the electrolyte flows underneath the anodes and cathodes and out toward the right as indicated by the flow arrows.
One pair of inlet ports 20 is shown in greater detail in FIG. 4. As may be seen, the upper ends of the inlet ports 20 are countersunk in order to produce a desired flow pattern of the electrolyte. Of course other means may be used to obtain the necessary flow pattern.
This invention is not limited to use of a specific form of electrolytic tank and another form of tank as illustrated in FIGS. 5 through 8 may be utilized. Wherever possible the same numbers have been utilized to identify similar portions of the tank construction.
As shown, a conventional tank 11 contains several anodes 13 and cathodes 14 constructed as described in connection with the tank illustrated in FIG. 1. An inlet pipe 24 and outlet pipes 25 are set along the bottom of the tank. In this construction the lower edge of each of the electrodes 13 and 14 is spaced from the flow controlling inlet and outlet pipes 24 and 25 so that the electrolyte flow in the area of the cathode surfaces is substantially free from turbulence. The metal-bearing feed solution or liquor is recirculated by means of a suitable pump 17 in the direction of the arrows through a metering device 18 and into the inlet pipe 24. The solution then travels up through a plurality of small ports or openings 26 which are disposed adjacent to and beneath the anodes 13. As shown, the flow is directed up to the surface and progresses downwardly along each cathode surface to a plurality of small outlet ports 27 provided in the outlet pipes 25. The outlet ports are located adjacent to and beneath each of the cathodes 14. As indicated with reference to FIGS. 1-4, the anodes and cathodes are wired to their respective bus bars exemplified by bus bar 22. The liquor flows out of the cell from the outlet pipes 25 in quantities equal to the feed input less the evaporative losses.
FIG. 8 shows the detail of one of the pipes 24 which is illustrated with the ports, 26, countersunk. It will be understood that this construction eliminates any interference of the flow of the solution which might otherwise be caused by metal burrs or fragments which remain after drilling the holes. However, the ports may be of any desired construction.
The present invention includes the discovery of the phenomena and unanticipated results which occur by directing the electrolyte along a predetermined path through a cell utilizing a predetermined electrolyte flow velocity between the anodes and the cathodes.
A process is provided for recovering high purity metals from solutions whose impurities were such that it would be impractical to attempt to recover the desired metals therefrom. The use of the process prevents the build-up in concentration of undesirable ions at the anode and cathode surfaces of an electrolysis cell while, at the same time, enables the concentration of the desired ions of the solution-electrode interface to remain sufficiently high to achieve their practical neutralization and discharge. Specifically, the fluid flow characteristics of the ion-pregnant solution at the solution-electrode interface are controlled in such a manner that the desired metal can be plated in high purity form from a solution containing high concentrations of undesirable ions as impurities without neutralizing the undesirable ions or providing impractical or uneconomic means for their control or prior elimination from the solution.
More specifically we have discovered that the circulation pattern located between the individual anode-cathode pairs which controls the quality of the cathode product produced is related to the flow characteristics of the electrolyte entering the anode-cathode area. Consequently, it is possible to establish a relationship between these entry flow characteristics and the quality of the cathode product produced. By control of these entry flow characteristics it is thereby possible to recover metals from solutions without any expensive and most times impossible pre-purification processing.
The fluid flow characteristics of the electrolyte using the process of the present invention may be measured by means of a Reynolds number. The Reynolds number is a pure dimensionless number and is calculated by means of the following equation.
Reynolds number=D V,,/; where:
V=velocity at the entrained port in the cross-section measured in feet/second D=diameter of the port in feet =the electrolyte density in pounds(mass) per cubic feet =viscosity of electrolyte in pounds(mass) per footsecond.
Exemplary of the calculation of the Reynolds number are situations wherein D is in., V is 1.84, p is 79.4 and ,u. is 0.00289. With this data the Reynolds number is 526. Another example is a situation in which D is V is 7.41, p is 79.4 and a is 0.00289. Under such conditions the Reynolds number is 885. It has been found that in accomplishing the results of the present invention, ve locities, diameters, electrolyte density and electrolyte viscosity of such nature are used that the Reynolds number is above approximately 60.
The Reynolds number utilized depends upon such measurable factors as the size of the inlet port, the velocity of the flow of the liquid in the point of entry, both taken in conjunction with the density of the electrolyte and its viscosity. This number is calculated from the foregoing equation as shown by the following:
Illustrative examples Where the diameter of the port is A,", the velocity in the entrance port, is 0.21 ft./sec.; the density of the electrolyte is 79.4, the viscosity of the electrolyte is 0.00289 and the impurity consists of aluminum or the like, the Reynolds number is 60 and the excellent results of extracting pure copper are obtained. 9
Where the diameter of the port is the velocity in the entrance port is 1.84 ft./sec. the density of the electrolyte is 79.4, the viscosity of the electrolyte is 0.00289, and the impurity comprises ferric ions, the Reynolds number is 526 and the results are excellent, I
Where the diameter of the port is ,4 the velocity in the inlet port is 7.41 'ft./sec., the density of the electrolyte 79.4, the viscosity of the electrolyte is 0.00289 and the impurity comprises ferric ions, the Reynolds number is 1060, and the results are excellent.
Where the diameter in the inlet port is the velocity of the inlet port is 0.115 ft./sec., the density of the electrolyte is 79.4, the viscosity of the electrolyte is 0.00289 and the impurity comprises ferric ions, the Reynolds number is 66, and the results are good.
Where the diameter of the port is & the velocity in the inlet port is 29.55 ft./sec.; the density of the electrolyte is 79.4, the viscosity of the electrolyte is 0.00289, and the impurity comprises ferric ions, the Reynolds number is 1055, and the results are excellent.
Where the diameter of the port is the velocity in the inlet port is 0.46 ft./sec., the density of the electrolyte is 79.4, the viscosity of the electrolyte is 0.00289 and the impurity comprises ferric ions, the Reynolds number is 263, and the results are excellent.
Where the diameter of the port is the velocity in the inlet port is 22.3, the density of the electrolyte is 79.4, the viscosity of the electrolyte is 0.00289 and the impurities comprise ferric ions, chloride ions and aluminum and the Reynolds number is approximately 1917 and the results are good.
Where the diameter of the port is the velocity of the inlet port is 14.32 ft./sec., the density of the electrolyte is 71.26, the viscosity of the electrolyte is 0.00163 and the impurity comprises ferric ions, manganese ions, and chloride ions, the Reynolds number is 6521.2, and the results are excellent.
Where the diameter of the port is the velocity of 6 the Reynolds number is 15,255.6 and the results are excellent.
It will be understood that the illustrative examples refer to cells of a size ranging from a 3 inch electrolyte depth to a 3 foot electrolyte depth. In view of the fact that the velocity in the inlet port may vary depending upon the depth of the tank, the Reynolds numbers will accordingly change depending upon the solution depth.
It is possible to predetermine the flow characteristics necessary by precalculating the Reynolds number. As observed it has been found that Reynold numbers of over approximately 60 must be utilized taking into consideration all conditions of impurities of the solution and the practical dimensions of the port size, the size of the cell, and the velocity in the inlet port.
While this description refers to an illustrative means for accomplishing the type of circulation illustrated in the drawings this circulation may be obtained in various ways. The pattern of fiow utilized is quite advantageous because the downward circulation at the cathode tends to cause any dendritic formation to be in the vertical direction in preference to a lateral growth. This eliminates the difiiculties heretofore encountered with cathode growth increase to the point where a shorting condition is established with the anode.
The dramatic nature of the improvements obtained in the extraction of metals from impure ores using the present invention is illustrated in Table I below. This table shows the results of tests in which an exemplary metal, viz copper, was attempted to be extracted from an impure electrolyte solution using the processes of the prior art and compares those results with the results obtained using the processes of the present invention.
TABLE I.ELECTROSEPARATION TESTS Electrolyte Circulating Fluid Characteristics Electrolyte Circulating Fluid Characteristics Using the Process of the Prior Art in a Cell Having 11 Anodes and 10 Cathodes and a Flow gate of Approximately 10 gal. per min. per sq.
Various Operating Parameters 1. Current densities higherthan 16 amps/it? Cathode production mainly a poorly ahdering powder unsuitable for use. 2. Concentrations of AMSOQ; to a maximum of Cathode production formed to a useless powder 150 n at 30 g.ll. AlztSOsM. 3 Concentrations of Mn to a max. of 2 g./l Cathodes of poor quality, low current eificiencies (60-70%), harmful permanganate formation. Cathode turned to useless powder and efficiencres lowered at concentrations of less than 4. Concentration of Cutomaximurn oig./l
Using the Processing of this Invention with a Reynolds Number of Over 400 and Using 10 Anodes and 10 Cathodes with 2. Flow Rate of Approximately 10 gal. per min. sq. ft.
Cathode solid and crystalline to the max. current density tested, 45 amps/ft.
Cathode solid and very crystalline to a max. concentration of Al2(S03)4 tested, 150 g./l.
Cathode solid and crystalline at circulation rates oi greater than 8 g.p.n1./it. No permanganate formation.
No powder formation at cathode until Cu concentration lowered below 8 g./l.
16 g./l. 5. Concentration oi 01- to arnax. of l.O5g./l At 0.2 to 0.4% C1- in solution, cathodes con- Cathode 01- content did not reach 1 to 1.5%
tained 1 to 1.591 01-. Cathode production a useless copper powder Cathode production solid and crystalline, no
6. Concentration of 4 g./l. Fe+++ ions and 1 gfl.
Cl" ion.
until solution contained 0.8 to 1.05 g.[l Cl powder production.
7. Dendritic growth from solution concentrations Excessive growth and very low current effici- Insignificant growth, current efficiency 85%.
shown above. enoy (75%).
3' Acid Concentration 30 Voltage required minimum of 3 volts Voltage required 2.1 volts.
the inlet port is 24.3 ft./sec., the density of the electrolyte is 73.13, the viscosity of the electrolyte is 000237, and the impurity comprises ferric ions and chloride ions, the Reynolds number is 9763.2 and the results are excellent.
Where the diameter of the port is & the velocity of the inlet port is 17.4 ft./sec., the density of the electrolyte is 73.13, the viscosity of the electrolyte is 0.00237, and the impurity comprises ferric ions and chloride ions, the Reynolds number is 9787.3, and the results are excellent.
Where the diameter of the port is the velocity of the inlet port is 17.4 ft./sec., the density of the electrolyte is 72.38, the viscosity of the electrolyte is 0.00190, and the impurity comprises ferric ions and chloride ions, the Reynolds number is 12,083.1 and the results are excellent.
Where the diameter of the port is the velocity of the inlet port is 26.8 ft./sec., the density of the electrolyte is 71.26, the viscosity of the electrolyte is 0.00163, and the impurity comprises ferric ions and chloride ions,
The tests from which the table was prepared clearly discloses that where the processes of the present invention were followed, pure copper was obtained with:
The extraction of pure copper from the impure solution is therefore effectively obtained under all adverse conditions when using the process described herein.
In addition to the impurities above set forth, metals have been electroseparated from other impurities present in the electrolytes by using the process of the present invention. Such impurities include gypsum and silica as well as nitrate concentrations of up to 1 g./l. Significantly, the process of the present invention does not require the use of the expensive electroseparating aids as is necessary when using the processes of the prior art. In fact, when using the present invention, 99.95% copper is obtained from the very impure solutions as set forth in Table I. Indicative of the small amount of impurities remaining in the copper is the result of the impurity analysis which are set forth in Table II below.
TABLE III.TESTS UTILIZING THE PROCESS OF THE PRESENT INVENTION AT A REYNOLDS NUMBER OF OVER 400 Assay of Average copper Current G.,l voltages cathode, elllClCllCy. Solution (x./l. Cu H5804 G./l. Fe G./l. Cl G./l. Mn G./l. N05 recorded percent percent;
Example I:
- 511 21. 75 3. 93 1. 03 0. 41 0. 0. 05 Spent 9. 34. 24 1.15 0. 46 0. 36 0. 04 i 99-96 3 23. 4s 2s. 15 1. 32 0. 43 0. 0. 00 18.16 43.04 1. 56 0. 46 0. 41 0.07 i 95 30. 0 15. s 4. 29 0. 46 1. s7 0. 79 15.1 87.9 4. 50 0. 4s 2. 23 0. 93 i 09 9993 6 TABLE II Impurity analysis of copper recovered with the use of the present invention as illustrated in Table I and the remainder of the impurities is primarily oxygen. Using the flow pattern characteristics of our process, the illustrative cell of FIG. 1 has been found to operate successfully at current densities varying from 5 to 45 amp./ft. with the major portion of the data recorded at 30 amp/{1. in place of the normal 7-18 amp/ft. current density of prior cells not embodying this invention. The difference of potential between the anodes and cathodes is approximately 2.1 volts at a current density of about 30 amp/ft. with acid concentrations of not less than about 29 g./l. of sulphuric acid (H 50 The voltages, of course, are determined basically by the electromotive series. When using cells absent this invention, polarization would necessitate a somewhat higher voltage which, in turn, would tend to cause undesired metal ions to electrolyze out of solution. For example, a higher voltage would tend to cause ferric ions to be reduced in addition to the desired copper. Ferric ions are frequently found in copper ore, and their presence is one of the factors that must be given special consideration in using electroseparation apparatus and processes. However, these are not the only troublesome ions commonly present as impurities in the solution.
A current efliciency of 85% is considered a favorable economic lower limit for the production of copper. The etermination of this efficiency is based on the fact that one Faraday would theoretically produce one gram equivalent weight of copper if the efficiency were 100%. It has been found that a cell constructed and operated in accordance with this invention will operate with an efiiciency of at least 85% even in the presence of abnormally high concentrations of manganese, aluminum sulfate, chloride ions, nitrate ions or other impurities in the electrolyte solution,
As observed, ferric ions repersent one of the most troublesome cations because of their efiiciency lowering characteristics and chloride ions represent one of the most troublesome anions because of the possible insoluble cuprous-chloride deposit, and the fourth column of the table shows that their concentration does not change appreciably, even in Examples 4 and 5, while in Examples 1, 2, 6 and 7 the concentration of chloride ions increases as the copper is reduced. With the processes of the prior art chloride levels of about 0.1 g./l. are considered to be the maximum that can be tolerated. Beyond that point extraction of pure metals is not possible and if the incoming ore contains enough soluble chloride material to increase the chloride levels about 0.1 g./l. additional costly and impractical preliminary purification processes have been necessary. With the use of the present invention, however, chloride levels at least twice as high can be tolerated while nevertheless extracting substantially pure metal.
The normal maximum concentration of ferric ions of the prior art is about 2.02.5 g./l. with the present invention pure metal may be extracted with ferric ion concentrations at least twice as high. In many cases this permits the dissolved-ore copper to be run directly into the cell Without any preliminary diminution of the ferric ions. Examples 6 and 7 show that the efiiciency of the present invention is still better than 85% even with quite high concentrations of ferric ions. In Example 7, not only the ferric ions but also the manganese and nitrate ions are present in high concentration without driving the efliciency of operations below 85%.
Typical operating conditions according to the present invention include an electrolyte temperature of 5055 C. which may be held within this range by suitable heaters or other means. The circulating rates that have been used in practice vary from the 1.0 to 4 gal. per min. in a cell having a total electrolyte volume of 2.1 gal. and a cathode-to-cathode center spacing of 5 inches. The'conductivity, and hence the voltage, of the cell may be held in the proper range by adding suflicient H to'maintain a free acid concentration of approximately 30 g./l. When the ferric concentrations reach levels higher than 4 g./l., the circulating rate is increased from the normal 0.6 gal. per min. to approximately 0.9 gal. per min. which, in this embodiment, represents a Reynolds number of approximately 400 in a '7 in. diameter port. No additives of any kind need be employed, although it may be desirable to use cover oil to prevent excessive evaporation and an acid-oil to prevent excessive sprout growth.
While conventional processes produce very poor cathodes and operate at low current efi'iciency if manganese ions are present to any extent, the present process operates with a minimum circulation of less than 0.5 gal. per min., which prevents the formation of permanganate because the circulation reduces the contact time necessary for oxidation of the manganese to the MnO More over, with conventional processes, concentration of aluminum sulfate of 150 g./l. results in a very poor copper deposit but with the present invention with a minimum circulation of less than 0.6 gal. per min. there is substantially no deleterious effect from aluminum concentrations as high as this.
With the use of our process there is no deleterious dendrite growth as was the case when using the same solutions in prior known processes.
It is to be noted that in the use of the present invention, the cell illustrated has produced pure copper at a rate of approximately 1 lb. per kilowatt hour of DC electrical power.
It is further of great significance that it has been demonstrated that the examples presented in Table I establish the workability of the present invention where as prior known pratcices were totally unable to produce a useful product. It will be recognized that in situations where the impurities are at a level intermediate to those discussed above and where previously known practices may produce a suitable useful product with considerable difficulty, use of the present invention will produce a product of improved quality, with less difliculty, more economically and with far higher efiiciency. Table III illustrates several examples Where production of high purity copper was possible at high efficiencies from very impure solutions by the practice of this invention.
In accordance with the present invention, higher current densities, viz., 13.3 amps/ft? and higher, may be utilized whereas they are not presently usable in conventional techniques heretofore known.
In addition, a much larger copper drop in the electrolyte solution is feasible, for example, a drop to 8 g./l. as compared with the conventional 13 g./l. This copper drop may be used with approximately the same efficiencies and power consumption rates as are now obtainable using conventional techniques. The process and techniques of the present invention have resulted in metal deposits of good quality from solutions whose impurity concentrations were such that recovery would heretofore have been considered electrolytically impossible.
While the illustrations set forth involve for the most part the processing of copper, the invention is equally efficient when utilized in the extraction of zinc, nickel, chromium and all similar metals which are subject to electroseparation.
Itwill be understood that we have attempted to describe in great detail the present invention, including the process and a specific apparatus. It is to be understood that this description is in no way intended to limit the invention and that variations and modifications may be made by those skilled in the art without in any way departing from the spirit of the invention as defined in the appended claims.
We claim: 1. The process of electroseparating a metal from an electrolyte solution containing ions of said metal comprising the steps of forcing the electrolyte through a port in a directed stream successively toward and across the face of an anode and thereafter across the face of a cathode;
maintaining an electric potential across said anode and said cathode sufficient to reduce ions of said metal; and
whereby relatively pure metal is extracted from said electrolyte solution.
2. The process of claim 1 comprising in addition removing said electrolyte as it becomes spent;
recirculating unspent electrolyte; and
adding fresh electrolyte to replace said spent electrolyte.
3. The process of claim 2 in which the directed stream through the port has a Reynolds number of over approximately 60.
References Cited UNITED STATES PATENTS 883,170 3/1908 Christy 204237 2,970,096 1/1961 Horton 204106 3,148,130 9/1964 Brace et al. 204-106 3,288,692 11/1966 Leduc 204 FOREIGN PATENTS 3,569 3/1916 Great Britain. 905,749 9/1962 Great Britain.
JOHN H. MACK, Primary Examiner H. M. FLOURNOY, Assistant Examiner US. Cl. X.R.
US611198A 1966-12-12 1966-12-12 Electrolytic metal extraction Expired - Lifetime US3483568A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US61119866A 1966-12-12 1966-12-12

Publications (1)

Publication Number Publication Date
US3483568A true US3483568A (en) 1969-12-16

Family

ID=24448017

Family Applications (1)

Application Number Title Priority Date Filing Date
US611198A Expired - Lifetime US3483568A (en) 1966-12-12 1966-12-12 Electrolytic metal extraction

Country Status (1)

Country Link
US (1) US3483568A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3876516A (en) * 1973-02-14 1975-04-08 Continental Oil Co Copper electrowinning process
US3880409A (en) * 1973-04-18 1975-04-29 In Line Technology Inc Solution agitation apparatus
US3974049A (en) * 1973-08-03 1976-08-10 Parel. Societe Anonyme Electrochemical process
US4097357A (en) * 1975-07-21 1978-06-27 Compagnie Generale D'electricite S.A. Method and device for regenerating zinc
US4289599A (en) * 1979-11-30 1981-09-15 Kabushiki Kaisha Kogai Boshi Sogo Kenkyusho Apparatus for producing alkaline water and acidic water

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US883170A (en) * 1906-03-10 1908-03-31 Samuel B Christy Electrode for the recovery of metals from solutions by electrolysis.
GB191503569A (en) * 1915-03-05 1916-03-05 Charles Edwin Stuart Bell Improved Method and Apparatus for the Electro-deposition of Metals.
US2970096A (en) * 1958-06-26 1961-01-31 Banner Mining Company Process and apparatus for treating oxidized copper ores
GB905749A (en) * 1960-06-22 1962-09-12 Ici Ltd Improvements in or relating to multi-electrolytic cells
US3148130A (en) * 1961-05-12 1964-09-08 Banner Mining Company Recovery of copper sponge from oxidized copper ores
US3288692A (en) * 1962-09-20 1966-11-29 Pullman Inc Electrochemical process for the production of organic oxides

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US883170A (en) * 1906-03-10 1908-03-31 Samuel B Christy Electrode for the recovery of metals from solutions by electrolysis.
GB191503569A (en) * 1915-03-05 1916-03-05 Charles Edwin Stuart Bell Improved Method and Apparatus for the Electro-deposition of Metals.
US2970096A (en) * 1958-06-26 1961-01-31 Banner Mining Company Process and apparatus for treating oxidized copper ores
GB905749A (en) * 1960-06-22 1962-09-12 Ici Ltd Improvements in or relating to multi-electrolytic cells
US3148130A (en) * 1961-05-12 1964-09-08 Banner Mining Company Recovery of copper sponge from oxidized copper ores
US3288692A (en) * 1962-09-20 1966-11-29 Pullman Inc Electrochemical process for the production of organic oxides

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3876516A (en) * 1973-02-14 1975-04-08 Continental Oil Co Copper electrowinning process
US3880409A (en) * 1973-04-18 1975-04-29 In Line Technology Inc Solution agitation apparatus
US3974049A (en) * 1973-08-03 1976-08-10 Parel. Societe Anonyme Electrochemical process
US4097357A (en) * 1975-07-21 1978-06-27 Compagnie Generale D'electricite S.A. Method and device for regenerating zinc
US4289599A (en) * 1979-11-30 1981-09-15 Kabushiki Kaisha Kogai Boshi Sogo Kenkyusho Apparatus for producing alkaline water and acidic water

Similar Documents

Publication Publication Date Title
US3981787A (en) Electrochemical circulating bed cell
US4098668A (en) Electrolyte metal extraction
US4129494A (en) Electrolytic cell for electrowinning of metals
US3876516A (en) Copper electrowinning process
US4282082A (en) Slurry electrowinning apparatus
US2273798A (en) Electrolytic process
US3764490A (en) Method of recovering metals
AU2016338328B2 (en) Filter press device for electroplating metal from solutions, which is formed by separating elements formed by ion-exchange membranes, forming a plurality of anolyte and catholyte chambers, the electrodes being connected in series with automatic detachment of the metallic product
NO760053L (en)
US4030989A (en) Electrowinning process
US3483568A (en) Electrolytic metal extraction
MacKinnon et al. Zinc electrowinning from aqueous chloride electrolytes
US3767543A (en) Process for the electrolytic recovery of copper from its sulfide ores
PL111879B1 (en) Method of recovery of copper from diluted acid solutions
CA1064856A (en) Purification of nickel electrolyte by electrolytic oxidation
US4312724A (en) Method for the recovery of lead from materials containing lead sulfide
US4601805A (en) Apparatus for preparing metal by electrolysis
Jiricny et al. Copper electrowinning using spouted-bed electrodes: part I. Experiments with oxygen evolution or matte oxidation at the anode
US1344127A (en) Metallurgical process
US2385269A (en) Process of electrolytically extracting metal
EP0161224B1 (en) Process for copper chloride aqueous electrolysis
US3799850A (en) Electrolytic process of extracting metallic zinc
US4124460A (en) Electrowinning of copper in presence of high concentration of iron
US3755113A (en) Method for electrorefining of nickel
RU2361967C1 (en) Method of compacted nickel electro-extraction