EP3033439A1 - Zweilagige keramische schicht mit unterschiedlichen mikrostrukturen - Google Patents

Zweilagige keramische schicht mit unterschiedlichen mikrostrukturen

Info

Publication number
EP3033439A1
EP3033439A1 EP14725074.0A EP14725074A EP3033439A1 EP 3033439 A1 EP3033439 A1 EP 3033439A1 EP 14725074 A EP14725074 A EP 14725074A EP 3033439 A1 EP3033439 A1 EP 3033439A1
Authority
EP
European Patent Office
Prior art keywords
layer
ceramic
ceramic layer
outermost
previous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP14725074.0A
Other languages
English (en)
French (fr)
Inventor
Jens DÜSTERHÖFT
Claus Heuser
Matthias Richter
Werner Stamm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP14725074.0A priority Critical patent/EP3033439A1/de
Publication of EP3033439A1 publication Critical patent/EP3033439A1/de
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • C23C28/3215Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/321Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
    • F04D29/324Blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • F04D29/542Bladed diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • F05D2220/323Application in turbines in gas turbines for aircraft propulsion, e.g. jet engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • F05D2230/31Layer deposition
    • F05D2230/312Layer deposition by plasma spraying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/50Intrinsic material properties or characteristics
    • F05D2300/502Thermal properties
    • F05D2300/5023Thermal capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/611Coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the invention relates to a ceramic layer, the one
  • Ceramic layers are used, in particular in turbine showers, as heat-insulating layers and have a porosity.
  • thermal barrier coatings in which cracks during coating result from subsequent treatment.
  • FIGS. 1 to 4 embodiments of the invention
  • Figure 5 is a list of superalloys
  • FIG. 6 shows a turbine blade
  • the metallic substrate 4 has in particular a cobalt- or nickel-based superalloy, in particular according to FIG.
  • the substrate 4 (Fig. 1 - 4) comprises a metal ⁇ metallic bonding layer 7 is preferably applied, more in particular directly on the substrate 4.
  • This metallic adhesion promoter layer 7 preferably comprises an alloy of the type NiCoCrAl (X), on the surface of which a protective aluminum oxide layer forms during the further coating or in operation (TGO) (not shown).
  • a lower ceramic layer 10 ⁇ (FIG. 1) of a two-layer, outermost ceramic thermal barrier coating 15 ⁇ is applied.
  • the porosity is preferably given in vol%.
  • the bottom ceramic layer 10 ⁇ of Figure 1 thereby an APS process is preferably used for the bottom ceramic layer 10 ⁇ of Figure 1 and the lower ke ⁇ ramische layer 10 ⁇ of the two-layer outermost ceramic thermal barrier coating 15 has a porosity of ⁇ (12 +/- 4%) to.
  • the lower ceramic layer 10 ⁇ preferably has a layer thickness of up to 1 mm.
  • the minimum thickness of the lower ceramic layer 10 ⁇ is at least 100 ⁇ m, very particularly at least 150 ⁇ m (FIGS. 1-4).
  • the outermost ceramic layer 13 comprises in the figures 1 to 4, in comparison to the lower layer 10 10 IV of the two-layer ceramic thermal barrier coatings 15 15 ⁇ ⁇ , ... dense layer, which is vertically penetrated with cracks, that is, the porosity is preferably at ⁇ 8%.
  • the minimum layer thickness of the outermost ceramic layer 13 is 30ym, in particular at least 50ym (FIGS. 1-4).
  • the maximum layer thickness of the outermost ceramic layer 13 is a maximum of 500 ⁇ m, in particular a maximum of 300 ⁇ m (FIGS. 1 to 4).
  • the porosity of the segmented layers, such as here the outermost ceramic layer 13 corresponds to that of the prior art.
  • FIG. 2 shows a further exemplary embodiment with a layer system 1 ⁇ ⁇ .
  • the lower layer 10 ⁇ ⁇ of kera ⁇ thermal thermal barrier coating 15 ⁇ ⁇ has a porosity of (15 +/- 4)%.
  • the lower ceramic layer 10 ⁇ ⁇ in Figure 2 have a layer thickness of up to 1.5mm, in particular> lmm to 1.5mm and then have a porosity of (20 +/- 5)%.
  • the minimum layer thickness of the outermost ceramic layer 13 is 30ym, in particular at least 50ym.
  • the porosity of the lower ceramic layer 10 ⁇ ⁇ in Figure 2 can be further increased to (25 +/- 5)% and preferably layer thicknesses> 1.5mm are produced.
  • the minimum layer thickness of the outermost ceramic layer 13 is 30ym, in particular at least 50ym.
  • Figure 3 shows a further embodiment of a layer system in accordance OF INVENTION ⁇ dung 1 ⁇ ⁇ ⁇ .
  • the lower ceramic layer 10 ⁇ ⁇ ⁇ of the thermal barrier coating 15 ⁇ ⁇ ⁇ has a porosity of preferably greater than 15% and was prepared by an APS process.
  • the pores are sorted ⁇ but has preferably been produced by spraying a ceramic powder by means of polymers.
  • the lower ceramic layer 10 ⁇ ⁇ ⁇ may preferably be a
  • the minimum layer thickness of the outermost ceramic layer 13 is 30ym, in particular at least 50ym.
  • FIG. 4 shows a further layer system 1 IV according to the invention.
  • the lower ceramic layer 10 IV of the two-layer, ceramic thermal insulation layer 15 IV is produced by the suspension plasma spraying process (SPS) and has a ductile stalk structure with a certain porosity of 4% and with cracks of up to ⁇ 8%.
  • the outermost layer 13 in Figure 4 is formed according to the Min ⁇ least layer thickness and structure and maximum layer thickness in FIGS. 13
  • Yttrium oxide, partially stabilized zirconium oxide or heat-insulating layers of fully stabilized zirconium oxide are suitable as materials for the outermost, ceramic thermal insulation layers 15... 15 IV . It is also possible pyrochlore as gadolinium, gadolinium, lanthanum, Gadolinumzirkonat turn to ver ⁇ .
  • 10 10 ⁇ ⁇ , ..., and the outermost layer can be varied 13, the materials for the lower ceramic layer depending on conditions of use and compassionsmög- possibilities.
  • the two-layer outermost ceramic layer 15 is preferential ⁇ as the outermost layer of the layer system 1 ⁇ 1 ⁇ ⁇ , ....
  • FIG. 6 shows a perspective view of a rotor blade 120 or guide vane show ⁇ 130 of a turbomachine, which extends along a longitudinal axis of the 121st
  • the turbomachine may be a gas turbine of an aircraft or a power plant for power generation, a steam turbine or a compressor.
  • the blade 120, 130 has along the longitudinal axis 121 to each other, a securing region 400, an adjoining blade or vane platform 403 and a blade 406 and a blade tip 415.
  • the vane 130 may be pointed on its shovel 415 have a further platform (not Darge ⁇ asserted).
  • a blade root 183 is formed, which serves for attachment of the blades 120, 130 to a shaft or a disc (not shown).
  • the blade root 183 is, for example, as a hammerhead out staltet ⁇ .
  • Other designs as Christmas tree or Schwalbenschwanzfuß are possible.
  • the blade 120, 130 has a medium felblatt to the Schau- 406 flows past, a leading edge 409 and a trailing edge 412th
  • conventional blades 120, 130 in all regions 400, 403, 406 of the blade 120, 130, for example, massive metallic materials, in particular superalloys, are used.
  • Such superalloys are known, for example, from EP 1 204 776 B1, EP 1 306 454, EP 1 319 729 A1, WO 99/67435 or WO 00/44949.
  • the blade 120, 130 can hereby be produced by a casting process, also by directional solidification, by a forging process, by a milling process or combinations thereof.
  • Workpieces with a monocrystalline structure or structures are used as components for machines which are exposed to high mechanical, thermal and / or chemical stresses during operation.
  • Such monocrystalline workpieces takes place e.g. by directed solidification from the melt.
  • These are casting processes in which the liquid metallic alloy is transformed into a monocrystalline structure, i. to the single-crystal workpiece, or directionally solidified.
  • dendritic crystals are aligned along the heat flow and form either a columnar grain structure (columnar, ie grains that run the entire length of the workpiece and here, in common parlance, referred to as directionally solidified) or a monocrystalline structure, ie the whole workpiece be ⁇ is made of a single crystal.
  • a columnar grain structure columnar, ie grains that run the entire length of the workpiece and here, in common parlance, referred to as directionally solidified
  • a monocrystalline structure ie the whole workpiece be ⁇ is made of a single crystal.
  • directionally solidified microstructures it refers both to single crystals which have no grain boundaries or at most small-angle grain boundaries, and also to columnar crystal structures which are probably longitudinally extending grain boundaries but no transverse grain boundaries. have boundaries. These second-mentioned crystalline structures are also known as directionally solidified structures.
  • the blades 120, 130 may have coatings against corrosion or oxidation, e.g. B. (MCrAlX; M is at least one element of the group consisting of iron (Fe), cobalt (Co), Ni ⁇ ckel (Ni), X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element the rare earth, or hafnium (Hf)).
  • M is at least one element of the group consisting of iron (Fe), cobalt (Co), Ni ⁇ ckel (Ni)
  • X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element the rare earth, or hafnium (Hf)).
  • Such alloys are known from EP 0 486 489 B1, EP 0 786 017 B1, EP 0 412 397 B1 or EP 1 306 454 A1.
  • the density is preferably 95% of the theoretical log ⁇ te.
  • the layer composition comprises Co-30Ni-28Cr-8A1-0, 6Y-0, 7Si or Co-28Ni-24Cr-10Al-0, 6Y.
  • nickel-based protective layers such as Ni-10Cr-12Al-0.6Y-3Re or Ni-12Co-21Cr-IIAl-O, 4Y-2Re or Ni-25Co-17Cr-10A1-0, 4Y-1 are also preferably used , 5Re.
  • thermal barrier coating which is preferably the outermost layer, and consists for example of Zr0 2 , Y2Ü3-Zr02, ie it is not, partially ⁇ or fully stabilized by yttria
  • the thermal barrier coating covers the entire MCrAlX layer.
  • Electron beam evaporation produces stalk-shaped grains in the thermal barrier coating.
  • the heat- insulating layer may have porous, micro- or macro-cracked Kör ⁇ ner for better thermal shock resistance.
  • the thermal barrier coating is therefore preferably more porous than the
  • Refurbishment means that components 120, 130 may need to be deprotected after use (e.g., by sandblasting). This is followed by removal of the corrosion and / or oxidation layers or products. Optionally, even cracks in the component 120, 130 are repaired. This is followed by a How derbe Anlagenung of the component 120, 130 and a renewed use of the component 120, 130th
  • the blade 120, 130 may be hollow or solid. If the blade 120, 130 is to be cooled, it is hollow and also has, if necessary, film cooling holes 418 (indicated by dashed lines) on.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Laminated Bodies (AREA)

Abstract

Durch die Verwendung einer zweilagigen keramischen Wärmedämmschicht mit einer rissfreien hochporösen unteren Lage und einer äußersten Wärmedämmschichtlage mit vertikalen Rissen wird sowohl eine hohe Wärmedämmung und eine hohe Erosionsbeständigkeit gewährleistet.

Description

Zweilagige keramische Schicht mit unterschiedlichen Mikro¬ strukturen
Die Erfindung betrifft eine keramische Schicht, die eine
Zweilagigkeit aufweist, wobei in den Lagen unterschiedliche Mikrostrukturen vorhanden sind.
Keramische Schichten werden insbesondere bei Turbinenschau- fein als Wärmedämmschichten eingesetzt und weisen eine Porosität auf.
Ebenso bekannt sind vertikal segmentierte Wärmedämmschichten, bei denen Risse beim Beschichten durch eine nachträgliche Be- handlung entstehen.
Es besteht jedoch das Problem, dass bei Erhöhung der Porosi¬ tät zur Erzielung einer höheren Wärmedämmung die Erosionsbeständigkeit einer Wärmedämmschicht, die in der Regel plasma- gespritzt ist, sich reduziert.
Es ist daher Aufgabe der Erfindung oben genanntes Problem zu lösen . Die Aufgabe wird gelöst durch ein Wärmedämmschichtsystem gemäß Anspruch 1.
In den Unteransprüchen sind weitere vorteilhafte Maßnahmen aufgelistet, die beliebig miteinander kombiniert werden kön- nen, um weitere Vorteile zu erzielen.
Die Vorteile liegen bei einer guten Wärmedämmung und guten Erosionsbeständigkeit . Es zeigen:
Figur 1 - 4 Ausführungsbeispiele der Erfindung,
Figur 5 eine Liste von Superlegierungen und
Figur 6 eine Turbinenschaufel.
Die Beschreibung und die Figuren stellen nur Ausführungsbeispiele der Erfindung dar.
In Figur 1 und in den Figuren 2 bis 4 ist jeweils ein
Schichtsystem 1λ, 1λ λ, ... dargestellt, das zumindest ein me¬ tallisches Substrat 4 aufweist.
Das metallische Substrat 4 weist insbesondere eine kobalt- oder nickelbasierte Superlegierung, insbesondere gemäß Figur 5 auf .
Auf dem Substrat 4 (Fig. 1 - 4) ist vorzugsweise eine metal¬ lische Haftvermittlerschicht 7 aufgebracht, ganz insbesondere direkt auf dem Substrat 4.
Diese metallische Haftvermittlerschicht 7 weist vorzugsweise eine Legierung des Typs NiCoCrAl (X) auf, auf deren Oberfläche sich bei der weiteren Beschichtung oder im Betrieb (TGO) eine schützende Aluminiumoxidschicht bildet (nicht dargestellt) .
Auf dem Substrat 4 oder der metallischen Haftvermittlerschicht 7 wird eine untere keramische Schicht 10 λ (Fig. 1) einer zweilagigen, äußersten keramischen Wärmedämmschicht 15 λ aufgebracht .
Die Porosität wird vorzugsweise in vol% angegeben.
Vorzugsweise wird dabei für die untere keramische Schicht 10 λ gemäß Figur 1 ein APS-Verfahren verwendet und die untere ke¬ ramische Schicht 10 λ der zweilagigen, äußersten keramischen Wärmedämmschicht 15 λ weist eine Porosität von (12 +/-4)% auf. Die untere keramische Schicht 10 λ weist vorzugsweise eine Schichtdicke bis zu 1mm auf.
Die Mindestdicke der unteren keramischen Schicht 10 λ liegt bei mindestens 100 ym, ganz insbesondere bei mindestens 150 ym (Fig. 1 - 4) .
Die äußerste, keramische Schicht 13 weist in den Figuren 1 bis 4 eine im Vergleich zur unteren Schicht 10 10IV der zweilagigen keramischen Wärmedämmschichten 15 15 λ λ, ... dichte Schicht auf, die vertikal mit Rissen durchsetzt ist, d.h. die Porosität liegt vorzugsweise bei < 8%.
Die Mindestschichtdicke der äußersten keramischen Schicht 13 beträgt 30ym, insbesondere mindestens 50ym (Fig. 1 - 4) .
Die Maximalschichtdicke der äußersten keramischen Schicht 13 beträgt maximal 500ym, insbesondere maximal 300 ym (Fig. 1 - 4) .
Die Porosität der segmentierten Schichten wie hier der äußersten keramischen Schicht 13 entspricht dem aus dem Stand der Technik.
In Figur 2 ist ein weiteres Ausführungsbeispiel mit einem Schichtsystem 1λ λ gezeigt.
Im Gegensatz zur Figur 1 weist die untere Lage 10 λ λ der kera¬ mischen Wärmedämmschicht 15 λ λ eine Porosität von (15 +/- 4)% auf.
Ebenso vorzugsweise kann die untere keramische Schicht 10 λ λ in Figur 2 eine Schichtdicke von bis zu 1,5mm aufweisen, insbesondere >lmm bis 1,5mm und dann eine Porosität von (20 +/- 5)% aufweisen.
Die Mindestschichtdicke der äußersten, keramischen Schicht 13 beträgt 30ym, insbesondere mindestens 50ym.
Ebenso vorzugsweise kann die Porosität der unteren keramische Schicht 10 λ λ in Figur 2 noch weiter erhöht werden auf (25 +/- 5)% und dabei werden vorzugsweise Schichtdicken > 1,5mm erzeugt . Die Mindestschichtdicke der äußersten, keramischen Schicht 13 beträgt 30ym, insbesondere mindestens 50ym.
Figur 3 zeigt ein weiteres Ausführungsbeispiel eines erfin¬ dungsgemäßen Schichtsystems 1 λ λ λ .
Die untere keramische Schicht 10λ λ λ der Wärmedämmschicht 15 λ λ λ weist eine Porosität von vorzugsweise größer 15% auf und wurde durch ein APS-Verfahren hergestellt. Dabei sind je¬ doch die Poren durch Verspritzen eines keramischen Pulvers vorzugsweise mittels Polymeren hergestellt worden.
Dies ergibt eine charakteristische Mikrostruktur der Poren. Die untere keramische Schicht 10λ λ λ kann vorzugsweise eine
Schichtdicke von mehreren Millimetern aufweisen, insbesondere > 2mm.
Die Mindestschichtdicke der äußersten, keramischen Schicht 13 beträgt 30ym, insbesondere mindestens 50ym.
In Figur 4 ist ein weiteres erfindungsgemäßes Schichtsystem 1IV dargestellt.
Die untere keramische Schicht 10IV der zweilagigen, kerami- sehen Wärmedämmschicht 15IV ist durch das Suspensionsplasma- spraying-Verfahren (SPS) hergestellt und weist eine duktile Stängelstruktur mit einer gewissen Porosität auf, die bei 4% liegt und mit Rissen bis < 8%. Die äußerste Schicht 13 in Figur 4 ist entsprechend der Min¬ destschichtdicke und Struktur und maximalen Schichtdicke in den Figuren 1 - 3 ausgebildet.
Als Materialien für die äußersten, keramischen Wärmedämm- schichten 15 ... 15IV kommen Yttriumoxid, teilstabilisiertes Zirkonoxid oder Wärmedämmschichten aus vollstabilisierten Zirkonoxid in Frage. Ebenso ist es möglich Pyrochlore wie Gadoliniumzirkonat , Gadoliniumhafnat , Lanthanzirkonat , Gadolinumzirkonat zu ver¬ wenden .
Dabei können je nach Einsatzbedingungen und Herstellungsmög- lichkeiten die Materialien für die untere, keramische Schicht 10 10 λ λ, ... und äußerste Schicht 13 variiert werden.
Die zweilagige äußerste keramische Schicht 15 ist vorzugs¬ weise die äußerste Schicht des Schichtsystems 1λ, 1λ λ, ....
Die Figur 6 zeigt in perspektivischer Ansicht eine Laufschau¬ fel 120 oder Leitschaufel 130 einer Strömungsmaschine, die sich entlang einer Längsachse 121 erstreckt.
Die Strömungsmaschine kann eine Gasturbine eines Flugzeugs oder eines Kraftwerks zur Elektrizitätserzeugung, eine Dampfturbine oder ein Kompressor sein. Die Schaufel 120, 130 weist entlang der Längsachse 121 auf¬ einander folgend einen Befestigungsbereich 400, eine daran angrenzende Schaufelplattform 403 sowie ein Schaufelblatt 406 und eine Schaufelspitze 415 auf.
Als Leitschaufel 130 kann die Schaufel 130 an ihrer Schaufel- spitze 415 eine weitere Plattform aufweisen (nicht darge¬ stellt) .
Im Befestigungsbereich 400 ist ein Schaufelfuß 183 gebildet, der zur Befestigung der Laufschaufeln 120, 130 an einer Welle oder einer Scheibe dient (nicht dargestellt) .
Der Schaufelfuß 183 ist beispielsweise als Hammerkopf ausge¬ staltet. Andere Ausgestaltungen als Tannenbaum- oder Schwalbenschwanzfuß sind möglich.
Die Schaufel 120, 130 weist für ein Medium, das an dem Schau- felblatt 406 vorbeiströmt, eine Anströmkante 409 und eine Ab¬ strömkante 412 auf. Bei herkömmlichen Schaufeln 120, 130 werden in allen Bereichen 400, 403, 406 der Schaufel 120, 130 beispielsweise mas¬ sive metallische Werkstoffe, insbesondere Superlegierungen verwendet .
Solche Superlegierungen sind beispielsweise aus der EP 1 204 776 Bl, EP 1 306 454, EP 1 319 729 AI, WO 99/67435 oder WO 00/44949 bekannt.
Die Schaufel 120, 130 kann hierbei durch ein Gussverfahren, auch mittels gerichteter Erstarrung, durch ein Schmiedever- fahren, durch ein Fräsverfahren oder Kombinationen daraus gefertigt sein.
Werkstücke mit einkristalliner Struktur oder Strukturen werden als Bauteile für Maschinen eingesetzt, die im Betrieb ho- hen mechanischen, thermischen und/oder chemischen Belastungen ausgesetzt sind.
Die Fertigung von derartigen einkristallinen Werkstücken erfolgt z.B. durch gerichtetes Erstarren aus der Schmelze. Es handelt sich dabei um Gießverfahren, bei denen die flüssige metallische Legierung zur einkristallinen Struktur, d.h. zum einkristallinen Werkstück, oder gerichtet erstarrt.
Dabei werden dendritische Kristalle entlang dem Wärmefluss ausgerichtet und bilden entweder eine stängelkristalline Kornstruktur (kolumnar, d.h. Körner, die über die ganze Länge des Werkstückes verlaufen und hier, dem allgemeinen Sprachgebrauch nach, als gerichtet erstarrt bezeichnet werden) oder eine einkristalline Struktur, d.h. das ganze Werkstück be¬ steht aus einem einzigen Kristall. In diesen Verfahren muss man den Übergang zur globulitischen (polykristallinen) Er- starrung meiden, da sich durch ungerichtetes Wachstum notwendigerweise transversale und longitudinale Korngrenzen ausbil¬ den, welche die guten Eigenschaften des gerichtet erstarrten oder einkristallinen Bauteiles zunichtemachen.
Ist allgemein von gerichtet erstarrten Gefügen die Rede, so sind damit sowohl Einkristalle gemeint, die keine Korngrenzen oder höchstens Kleinwinkelkorngrenzen aufweisen, als auch Stängelkristallstrukturen, die wohl in longitudinaler Richtung verlaufende Korngrenzen, aber keine transversalen Korn- grenzen aufweisen. Bei diesen zweitgenannten kristallinen Strukturen spricht man auch von gerichtet erstarrten Gefügen (directionally solidified structures) .
Solche Verfahren sind aus der US-PS 6,024,792 und der EP 0 892 090 AI bekannt.
Ebenso können die Schaufeln 120, 130 Beschichtungen gegen Korrosion oder Oxidation aufweisen, z. B. (MCrAlX; M ist zumindest ein Element der Gruppe Eisen (Fe) , Kobalt (Co) , Ni¬ ckel (Ni) , X ist ein Aktivelement und steht für Yttrium (Y) und/oder Silizium und/oder zumindest ein Element der Seltenen Erden, bzw. Hafnium (Hf) ) . Solche Legierungen sind bekannt aus der EP 0 486 489 Bl, EP 0 786 017 Bl, EP 0 412 397 Bl oder EP 1 306 454 AI.
Die Dichte liegt vorzugsweise bei 95% der theoretischen Dich¬ te .
Auf der MCrAlX-Schicht (als Zwischenschicht oder als äußerste Schicht) bildet sich eine schützende Aluminiumoxidschicht (TGO = thermal grown oxide layer) .
Vorzugsweise weist die SchichtZusammensetzung Co-30Ni-28Cr- 8A1-0, 6Y-0, 7Si oder Co-28Ni-24Cr-10Al-0, 6Y auf. Neben diesen kobaltbasierten Schutzbeschichtungen werden auch vorzugsweise nickelbasierte Schutzschichten verwendet wie Ni-10Cr-12Al- 0,6Y-3Re oder Ni-12Co-21Cr-llAl-0, 4Y-2Re oder Ni-25Co-17Cr- 10A1-0, 4Y-1, 5Re .
Auf der MCrAlX kann noch eine Wärmedämmschicht vorhanden sein, die vorzugsweise die äußerste Schicht ist, und besteht beispielsweise aus Zr02, Y2Ü3-Zr02, d.h. sie ist nicht, teil¬ weise oder vollständig stabilisiert durch Yttriumoxid
und/oder Kalziumoxid und/oder Magnesiumoxid.
Die Wärmedämmschicht bedeckt die gesamte MCrAlX-Schicht.
Durch geeignete Beschichtungsverfahren wie z.B. Elektronen- strahlverdampfen (EB-PVD) werden stängelförmige Körner in der Wärmedämmschicht erzeugt.
Andere Beschichtungsverfahren sind denkbar, z.B. atmosphärisches Plasmaspritzen (APS), LPPS, VPS oder CVD. Die Wärme- dämmschicht kann poröse, mikro- oder makrorissbehaftete Kör¬ ner zur besseren Thermoschockbeständigkeit aufweisen. Die Wärmedämmschicht ist also vorzugsweise poröser als die
MCrAlX-Schicht .
Wiederaufarbeitung (Refurbishment ) bedeutet, dass Bauteile 120, 130 nach ihrem Einsatz gegebenenfalls von Schutzschichten befreit werden müssen (z.B. durch Sandstrahlen) . Danach erfolgt eine Entfernung der Korrosions- und/oder Oxidations- schichten bzw. -produkte. Gegebenenfalls werden auch noch Risse im Bauteil 120, 130 repariert. Danach erfolgt eine Wie derbeschichtung des Bauteils 120, 130 und ein erneuter Einsatz des Bauteils 120, 130.
Die Schaufel 120, 130 kann hohl oder massiv ausgeführt sein. Wenn die Schaufel 120, 130 gekühlt werden soll, ist sie hohl und weist ggf. noch Filmkühllöcher 418 (gestrichelt angedeu¬ tet) auf.

Claims

Patentansprüche
1. Schichtsystem (1\ 1λ\ 1λ λ\ liV)
mit einer zweilagigen, äußersten keramischen Schicht (15
15 *\ ...),
die eine untere keramische Schicht (10 10 λ λ, ...) und eine äußerste keramische Schicht (13) aufweist,
wobei die untere keramische Schicht (10 10 λ λ, ...) eine Po- rosität von mindestens 5%,
insbesondere von mindestens 8%,
ganz insbesondere von mindestens 10%,
aufweist und
kaum oder keine vertikale Risse,
insbesondere keine durchgehende vertikalen Risse,
aufweist,
wobei die äußerste keramische Schicht (13) eine Schicht¬ dicke von höchstens 40%,
insbesondere von höchstens 20%,
ganz insbesondere von höchstens 10% der Schichtdicke der unteren keramischen Schicht (10λ,10λ λ, ...) aufweist.
2. Schichtsystem nach Anspruch 1,
bei dem die äußerste keramische Schicht (13) eine Mindest schichtdicke von 30ym,
insbesondere von 40ym,
ganz insbesondere von 50ym,
aufweist .
Schichtsystem nach einem oder beiden der Ansprüche 1 oder 2,
bei dem die äußerste keramische Schicht (13) eine maximale Schichtdicke von 500ym, insbesondere von 300ym aufweist.
4. Schichtsystem nach einem oder mehreren der Ansprüche 1, 2 oder 3,
bei dem die untere keramische Schicht (10 λ) der zweilagigen keramischen Schicht (15 λ) eine Porosität von (12 +/- 4)% aufweist und
insbesondere eine Schichtdicke bis zu 1mm aufweist.
5. Schichtsystem nach einem oder mehreren der vorherigen Ansprüche 1 bis 3,
bei dem die untere keramische Schicht (10 λ λ) der zweilagi¬ gen keramischen Schicht (15 λ λ) eine Porosität von (15 +/-
4) % aufweist und
insbesondere eine Schichtdicke bis zu 1mm aufweist.
6. Schichtsystem nach einem oder mehreren der vorherigen Ansprüche 1 bis 3,
bei dem die untere keramische Schicht (10 λ λ) der zweilagi¬ gen keramischen Schicht (15 λ λ) eine Porosität von (20 +/-
5) % aufweist und
insbesondere eine Schichtdicke von bis zu 1,5mm,
insbesondere von > 1mm bis 1,5mm aufweist.
7. Schichtsystem nach einem oder mehreren der Ansprüche 1 bis 3 ,
bei dem die untere keramische Schicht (10 λ λ) der kerami¬ schen Schicht (15 λ λ) eine Porosität von (25 +/- 5)% auf¬ weist und
insbesondere eine Schichtdicke von > 1,5mm aufweist.
8. Schichtsystem nach einem oder mehreren der Ansprüche 1 bis 3 ,
bei dem die untere keramische Schicht (10λ λ λ) eine Porosi¬ tät von >15% aufweist.
9. Schichtsystem nach einem oder mehreren der Ansprüche 1 bis 3 ,
bei dem die untere keramische Schicht (10IV) der Wärmedämm¬ schicht (15IV) eine duktile Stängelstruktur aufweist.
10. Schichtsystem nach einem oder mehreren der vorherigen Ansprüche,
bei dem die untere keramische Schicht (10 ...) der zweila- gigen keramischen Wärmedämmschicht (15 ...) durch ein APS-
Verfahren hergestellt wurde.
11. Schichtsystem nach einem oder mehreren der vorherigen Ansprüche,
bei dem die untere keramische Schicht (10 10 λ λ, 10λ λ λ) der zweilagigen keramischen Wärmedämmschicht (15 15 λ λ, 15λ λ λ) durch Verspritzen von keramischen Pulvern mit Polymeren hergestellt wurde.
12. Schichtsystem nach einem oder mehreren der vorherigen Ansprüche 1 bis 9,
bei dem die untere keramische Schicht (10IV) der zweilagi- gen, keramischen Wärmedämmschicht (15IV) durch Suspension-
Plasma-Spraying (SPS) hergestellt wurde.
13. Schichtsystem nach einem oder mehreren der vorherigen Ansprüche,
bei dem die Materialien für die untere keramische Schicht (10 10 λ λ, ...) und der äußersten keramischen Schicht (13) ausgewählt wird aus: Zirkonoxid, teilstabilisiert oder vollstabilisiert, und/oder Pyrochloren.
14. Schichtsystem nach einem oder mehreren der vorherigen Ansprüche,
bei dem die zweilagige keramische Schicht (15 15 λ λ, ...) die die äußerste Schicht darstellt.
15. Schichtsystem nach einem oder mehreren der vorherigen Ansprüche,
bei dem die untere keramische Schicht (10 \ 10 λ\ ...) eine Mindestdicke von mindestens lOOym,
insbesondere von 150ym,
aufweist .
16. Schichtsystem nach einem oder mehreren der vorherigen Ansprüche,
bei dem die äußerste keramische Schicht (13) dicht ausge¬ bildet ist,
insbesondere eine Porosität kle aufweist .
17. Schichtsystem nach einem oder mehreren der vorherigen Ansprüche,
bei dem die äußerste keramische Schicht (13) vertikal mit Rissen durchsetzt ist.
EP14725074.0A 2013-10-22 2014-05-13 Zweilagige keramische schicht mit unterschiedlichen mikrostrukturen Ceased EP3033439A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14725074.0A EP3033439A1 (de) 2013-10-22 2014-05-13 Zweilagige keramische schicht mit unterschiedlichen mikrostrukturen

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP20130189688 EP2865781A1 (de) 2013-10-22 2013-10-22 Zweilagige keramische Schicht mit unterschiedlichen Mikrostrukturen
EP14725074.0A EP3033439A1 (de) 2013-10-22 2014-05-13 Zweilagige keramische schicht mit unterschiedlichen mikrostrukturen
PCT/EP2014/059738 WO2015058866A1 (de) 2013-10-22 2014-05-13 Zweilagige keramische schicht mit unterschiedlichen mikrostrukturen

Publications (1)

Publication Number Publication Date
EP3033439A1 true EP3033439A1 (de) 2016-06-22

Family

ID=49484128

Family Applications (2)

Application Number Title Priority Date Filing Date
EP20130189688 Ceased EP2865781A1 (de) 2013-10-22 2013-10-22 Zweilagige keramische Schicht mit unterschiedlichen Mikrostrukturen
EP14725074.0A Ceased EP3033439A1 (de) 2013-10-22 2014-05-13 Zweilagige keramische schicht mit unterschiedlichen mikrostrukturen

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP20130189688 Ceased EP2865781A1 (de) 2013-10-22 2013-10-22 Zweilagige keramische Schicht mit unterschiedlichen Mikrostrukturen

Country Status (7)

Country Link
US (1) US20160251971A1 (de)
EP (2) EP2865781A1 (de)
JP (1) JP2016537505A (de)
KR (1) KR20160058887A (de)
CN (1) CN105658836A (de)
RU (1) RU2657884C2 (de)
WO (1) WO2015058866A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014222686A1 (de) * 2014-11-06 2016-05-12 Siemens Aktiengesellschaft Doppellagige Wärmedämmschicht durch unterschiedliche Beschichtungsverfahren
US10094232B2 (en) * 2015-08-13 2018-10-09 United Technologies Corporation Self crystalline orientation for increased compliance
EP3153602A1 (de) * 2015-10-07 2017-04-12 Siemens Aktiengesellschaft Dvc-keramikschicht mit poröser keramikunterschicht
DE102015223576A1 (de) * 2015-11-27 2017-06-01 Siemens Aktiengesellschaft Lokale zweilagige Wärmedämmschicht
JP6908973B2 (ja) * 2016-06-08 2021-07-28 三菱重工業株式会社 遮熱コーティング、タービン部材、ガスタービン、ならびに遮熱コーティングの製造方法
EP3712379A1 (de) * 2019-03-22 2020-09-23 Siemens Aktiengesellschaft Vollstabilisiertes zirconiumdioxid in einem dichtungssystem

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991002108A1 (de) 1989-08-10 1991-02-21 Siemens Aktiengesellschaft Hochtemperaturfeste korrosionsschutzbeschichtung, insbesondere für gasturbinenbauteile
DE3926479A1 (de) 1989-08-10 1991-02-14 Siemens Ag Rheniumhaltige schutzbeschichtung, mit grosser korrosions- und/oder oxidationsbestaendigkeit
JPH07243018A (ja) * 1994-03-08 1995-09-19 Mitsubishi Heavy Ind Ltd 遮熱皮膜の表面改質方法
JP3370676B2 (ja) 1994-10-14 2003-01-27 シーメンス アクチエンゲゼルシヤフト 腐食・酸化及び熱的過負荷に対して部材を保護するための保護層並びにその製造方法
EP0892090B1 (de) 1997-02-24 2008-04-23 Sulzer Innotec Ag Verfahren zum Herstellen von einkristallinen Strukturen
EP0861927A1 (de) 1997-02-24 1998-09-02 Sulzer Innotec Ag Verfahren zum Herstellen von einkristallinen Strukturen
EP1306454B1 (de) 2001-10-24 2004-10-06 Siemens Aktiengesellschaft Rhenium enthaltende Schutzschicht zum Schutz eines Bauteils gegen Korrosion und Oxidation bei hohen Temperaturen
WO1999067435A1 (en) 1998-06-23 1999-12-29 Siemens Aktiengesellschaft Directionally solidified casting with improved transverse stress rupture strength
US6231692B1 (en) 1999-01-28 2001-05-15 Howmet Research Corporation Nickel base superalloy with improved machinability and method of making thereof
JP2003529677A (ja) 1999-07-29 2003-10-07 シーメンス アクチエンゲゼルシヤフト 耐熱性の構造部材及びその製造方法
US6730413B2 (en) * 2001-07-31 2004-05-04 General Electric Company Thermal barrier coating
EP1319729B1 (de) 2001-12-13 2007-04-11 Siemens Aktiengesellschaft Hochtemperaturbeständiges Bauteil aus einkristalliner oder polykristalliner Nickel-Basis-Superlegierung
CA2499559A1 (en) * 2002-10-03 2004-04-15 Alberta Research Council Inc. Protective ceramic coating
US7416788B2 (en) * 2005-06-30 2008-08-26 Honeywell International Inc. Thermal barrier coating resistant to penetration by environmental contaminants
US20080145694A1 (en) * 2006-12-19 2008-06-19 David Vincent Bucci Thermal barrier coating system and method for coating a component
ES2368005T3 (es) * 2007-05-07 2011-11-11 Siemens Aktiengesellschaft Polvo cerámico, capa cerámica y sistema de capas con fases pirocloro y óxidos.
DE102008007870A1 (de) * 2008-02-06 2009-08-13 Forschungszentrum Jülich GmbH Wärmedämmschichtsystem sowie Verfahren zu seiner Herstellung
US20100124616A1 (en) * 2008-11-19 2010-05-20 General Electric Company Method of forming an abradable coating
EP2230329A1 (de) * 2009-03-18 2010-09-22 Siemens Aktiengesellschaft Zweilagiges poröses Schichtsystem mit Pyrochlor-Phase
JP5075880B2 (ja) * 2009-06-30 2012-11-21 株式会社日立製作所 耐熱部材およびガスタービン用高温部品
US20110151132A1 (en) * 2009-12-21 2011-06-23 Bangalore Nagaraj Methods for Coating Articles Exposed to Hot and Harsh Environments
JP5643567B2 (ja) * 2010-08-02 2014-12-17 ポーライト株式会社 流体動圧軸受の製造方法
JP5561733B2 (ja) * 2010-12-28 2014-07-30 株式会社日立製作所 遮熱コーティングを有するガスタービン用部品と、それを用いたガスタービン
US8617698B2 (en) * 2011-04-27 2013-12-31 Siemens Energy, Inc. Damage resistant thermal barrier coating and method
US20130224453A1 (en) * 2012-02-29 2013-08-29 United Technologies Corporation Spallation-Resistant Thermal Barrier Coating
EP2644824A1 (de) * 2012-03-28 2013-10-02 Siemens Aktiengesellschaft Verfahren zur Herstellung und Wiederherstellung von keramischen Wärmedämmschichten in Gasturbinen sowie dazugehörige Gasturbine
JP5657048B2 (ja) * 2013-03-19 2015-01-21 三菱重工業株式会社 耐高温部材及びガスタービン

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2015058866A1 *

Also Published As

Publication number Publication date
CN105658836A (zh) 2016-06-08
EP2865781A1 (de) 2015-04-29
US20160251971A1 (en) 2016-09-01
JP2016537505A (ja) 2016-12-01
RU2657884C2 (ru) 2018-06-18
WO2015058866A1 (de) 2015-04-30
KR20160058887A (ko) 2016-05-25
RU2016119103A (ru) 2017-11-28

Similar Documents

Publication Publication Date Title
EP1845171B1 (de) Verwendung metallischer Pulver mit unterschiedlichen Korngrössen zum Herstellen eines Schichtsystems
EP3033439A1 (de) Zweilagige keramische schicht mit unterschiedlichen mikrostrukturen
EP2614174A1 (de) Poröses schichtsystem mit poröserer innenschicht
EP2444590A1 (de) Verfahren zur Beschichtung von Kühlbohrungen
EP2712700A1 (de) Laserbohren ohne Gratbildung
EP2802677A1 (de) Keramisches wärmedämmschichtsystem mit äusserer aluminiumreicher schicht und verfahren
WO2018072971A1 (de) Dreistufiger prozess zur kühlluftbohrerzeugung mittels nanosekunden- und millisekundenlaser und bauteil
EP2682488A1 (de) Schichtsystem mit NiCoCrAlY-Doppelschutzschicht mit unterschiedlichem Chromgehalt und Legierung
EP2878697A1 (de) Verfahren zur Erzeugung einer Fase, Bauteil mit Fase und Vorrichtung
EP2725235A1 (de) Unterschiedlich raue Schaufel und zugehörige Herstellungsverfahren
EP2604377B1 (de) Verfahren zur Laserbearbeitung eines Schichtsystems mit keramischer Schicht
EP2088224A1 (de) Verfahren zur Herstellung einer rauen Schicht und ein Schichtsystem
EP2845924A1 (de) Poröses keramisches Schichtsystem
EP2774710A1 (de) Oberflächen und Rissreparatur durch verschiedene Lotmaterialien
WO2015071011A1 (de) Geometriebedingte spritzfleckanpassung bei beschichtungsverfahren
WO2013068160A1 (de) Verfahren zum auftragsschweissen eines bauteiles aus einkristallinem oder gerichtet erstarrtem metall
DE102013224566A1 (de) Vorrichtung zur Maskierung auf Wolframlegierungsbasis und eine Wolframlegierung
EP2402096A1 (de) Poröse Balkenstruktur
EP2639336A1 (de) Schichtsystem mit NiCoCrAlY-Doppelschutzschicht mit unterschiedlichem Chromgehalt und Legierung
WO2014053419A2 (de) Metalllegierung mit quasikristallpartikeln, pulver, bauteil, verfahren und schichtsystem
EP2906383A1 (de) Auftragsschweissen mit äusserer dickerer rahmenkontur
WO2015055362A1 (de) Turbinenschaufel mit lamellenstruktur und verfahren zur herstellung
EP2740574A1 (de) Vorrichtung und akustisch überwachte Wasserstrahlverfahren
EP2498941B1 (de) Funkenerosives schneiden mit dicker ablaufender drahtelektrode
EP2586561A1 (de) Strategie der Verfahrbewegung zur Erhaltung des einkristallinen Aufbaus beim Auftragsschweißen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160316

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DUESTERHOEFT, JENS

Inventor name: RICHTER, MATTHIAS

Inventor name: HEUSER, CLAUS

Inventor name: STAMM, WERNER

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

17Q First examination report despatched

Effective date: 20171115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20190207