EP3029012A2 - Device for the controlled initiation of the deflagration of an explosive charge - Google Patents

Device for the controlled initiation of the deflagration of an explosive charge Download PDF

Info

Publication number
EP3029012A2
EP3029012A2 EP15003412.2A EP15003412A EP3029012A2 EP 3029012 A2 EP3029012 A2 EP 3029012A2 EP 15003412 A EP15003412 A EP 15003412A EP 3029012 A2 EP3029012 A2 EP 3029012A2
Authority
EP
European Patent Office
Prior art keywords
explosive charge
explosive
core
shell
charge core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP15003412.2A
Other languages
German (de)
French (fr)
Other versions
EP3029012A3 (en
EP3029012B1 (en
Inventor
Markus Graswald
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDW Gesellschaft fuer Verteidigungstechnische Wirksysteme mbH
Original Assignee
TDW Gesellschaft fuer Verteidigungstechnische Wirksysteme mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDW Gesellschaft fuer Verteidigungstechnische Wirksysteme mbH filed Critical TDW Gesellschaft fuer Verteidigungstechnische Wirksysteme mbH
Publication of EP3029012A2 publication Critical patent/EP3029012A2/en
Publication of EP3029012A3 publication Critical patent/EP3029012A3/en
Application granted granted Critical
Publication of EP3029012B1 publication Critical patent/EP3029012B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42CAMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
    • F42C19/00Details of fuzes
    • F42C19/08Primers; Detonators
    • F42C19/0838Primers or igniters for the initiation or the explosive charge in a warhead
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B45/00Compositions or products which are defined by structure or arrangement of component of product
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06CDETONATING OR PRIMING DEVICES; FUSES; CHEMICAL LIGHTERS; PYROPHORIC COMPOSITIONS
    • C06C7/00Non-electric detonators; Blasting caps; Primers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B12/00Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
    • F42B12/02Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect
    • F42B12/20Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of high-explosive type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B12/00Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
    • F42B12/02Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect
    • F42B12/20Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of high-explosive type
    • F42B12/207Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of high-explosive type characterised by the explosive material or the construction of the high explosive warhead, e.g. insensitive ammunition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B12/00Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
    • F42B12/02Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect
    • F42B12/20Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of high-explosive type
    • F42B12/208Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of high-explosive type characterised by a plurality of charges within a single high explosive warhead

Definitions

  • the invention relates to a device for the controlled initiation of a subdetonative reaction - in particular the deflagration - of an explosive charge arranged in a casing, comprising at least one explosive charge core extending in the region of the longitudinal axis of the explosive charge.
  • a dosable explosive charge for a warhead with two different ignition devices has become known. While the first ignition device detonatively initiates the explosive charge, the further, oppositely directed ignition device is designed such that at most a subdetonative initiation can take place. The use of at least one detonating cord for this purpose is also known from this. In practice, some problems have arisen which, in extreme cases, may lead to the termination of initiation or to complete detonation initiation.
  • the US 2012/0227609 A1 describes an ignition system with two different ignition devices.
  • the first ignition device is conventionally designed for the detonative triggering of the explosive charge.
  • the locally opposite second ignition device is dimensioned for a deflagrative initiation of the explosive charge. Since in this ignition system the same construction principle with opposite ignition points is used, from which the detonation waves run against each other, the already known deficiencies occur here as well.
  • the present invention seeks to develop an ignition device which is able to maintain a deflagrative initiation over the entire length of the explosive charge without the Deflagration reaction in the axial or radial direction turns into a burn, dies out or turns into a detonation.
  • the explosive charge has an explosive charge core, which is adaptable in its transverse dimensions of the radial course of the shell in the longitudinal direction of the explosive charge, and that its charge over the length of the explosive charge core with respect to the type of explosive is homogeneously or locally adjustable ,
  • the transverse dimension of the explosive charge core is adaptable to the course of the shell in the longitudinal direction of the explosive charge. This can be done in stages or continuously so that the explosive charge core can be matched to any shape of the envelope.
  • an explosive charge core By means of the charging of the explosive charge core over the length of the explosive charge core, which is homogeneously or locally differently adjustable with regard to the type of explosive, if necessary different types of explosive can be combined with one another to form an explosive charge core.
  • an explosive charge core are comparatively high-energy (highly explosive) and / or sensitive CHNO-based explosives, such as, for example.
  • Hexogen- or octogen-based explosive mixtures as well as RDX (cyclo-1,3,5-trimethylene-2,4,6-trinitramine, hexogen), HMX (cyclo-1,3,5,7-tetramethylene 2,4,6, 8-tetranitramine, octogen), PETN (pentaerythritol tetranitrate), HNS (hexanitrostilbene), FOX-7 (1,1-diamino-2,2-dinitroethylene), FOX-12 (guanyl urea dinitramide) or Mixtures of these.
  • inert binders such as HTPB (hydroxyl-terminated polybutadiene), silicone rubber, polyurethane rubber, polystyrene, estane, nylon, wax and / or graphite may be used
  • the diameter of the explosive charge core can vary with non-constant sheath diameter and be adapted directly to this.
  • the charging of the explosive charge core is to be adapted to the size and shape of the explosive charge.
  • a jacket or a tube can be made of a fabric, a composite material (GFK, CFRP, CRC or CFRC), a plastic or a combination thereof, for example.
  • GFK a composite material
  • CFRP CFRP
  • CRC CFRC
  • plastic a material for a jacket (jacket or tube)
  • Textile fibers plastics (polymers) such. As Kevlar, nylon, polyethylene, polypropylene, PTFE (Teflon), PVC, polystyrene, Plexiglas (acrylic glass) or polyurethane but also wax into consideration.
  • the wall thickness and the material of the shell or of the tube can be adapted to the radial course of the shell in the longitudinal direction of the explosive charge in stages or continuously.
  • a subdetonative reaction is triggered. This is done in the exemplary embodiment by detonation of the explosive charge core, whereby the hot reaction gases convectively heat an unreacted energetic material. This continues through pores present in the explosive charge. It forms a multi-phase reaction zone out, in which the pressure and flame front, in contrast to the detonation are spatially separated from each other and can well propagate at different speeds.
  • the reaction ultimately leads to an increase in pressure under which the explosive can also mechanically fail and crack and continue to propagate.
  • the reaction rates also depend on the VerdämmungsSullivan the explosive charge, ie wall thickness and strength of the shell from. The speed of the flame and pressure front is typically below the speed of sound of the explosive charge.
  • a stable deflagration results from the rate of energy dissipation compared to the energy production rate, which is controlled here by the explosive charge core.
  • some system influence factors are described and concrete numbers / numbers ranges are given for individual parameters, in which a deflagration proceeds stably.
  • Insensitive, cast explosive charges contain at least 10% of the plastic binder.
  • the proportion of the explosive molecule for which RDX (cyclo-1,3,5-trimethylene-2,4,6-trinitramine, hexogen), HMX (cyclo-1,3,5,7-tetramethylene 2,4,6, 8-tetranitramine, octogen), NTO (5-nitro-1,2,4-triazole-3-one), FOX-7 (1,1-diamino-2,2-dinitroethylene), FOX-12 (guanyl urea dinitramide) and others can range between 90 and 50%.
  • a binder is suitable u. a.
  • HTPB hydroxyl-terminated polybutadiene
  • the granular explosive crystals are encapsulated.
  • Such a plastic-bound explosive charge basically has microscopically small pores as a result of the manufacturing process. These pores determine the porosity of the explosive charge and provide the necessary for the deflagration reaction free surface available. The porosities are typically in the single-digit percentage range, i. well below five percent.
  • the explosive charge may additionally be applied over coated or uncoated metal powders with particles, e.g.
  • the explosive charge may also be enriched with up to 20 percent ammonium perchlorate (AP).
  • the explosive charge a comparatively low Shock sensitivity.
  • the materials of the explosive charge core and its enclosing jacket or tube should be chosen with their Hugonioteigenschaften such that the shock impedance of the shell / tube leads to a significant reduction of the grazing detonation pressure of the explosive charge core.
  • the resulting pressure at the interface of the damping material to the explosive charge should be below the shock initiation pressure.
  • a critical diameter for a shock-initiated detonation of the explosive charge which is at least 5 mm, typically more than 10 mm, is also favorable.
  • the explosive charge In order to promote an ignition of the explosive charge by hot spots due to the weak shock wave and the hot reaction gases, the explosive charge should have a relatively low Organic acidzündzungstemperatur. It should be less than 230 ° C and typically be well below 200 ° C. Nevertheless, it should be large enough not to negatively impact the insensitivity of the explosive charge during thermal stimuli such as slow-cook-off and fast-cook-off tests.
  • the relevant parameters are the wall thickness, also in comparison to the charge diameter, and the material strength.
  • higher levels of damming especially if there is insufficient deaeration, may favor transitions into stronger reactions (DDTs).
  • the vent can be sustainably influenced by cargo cover, breaking points of the shell and drilling, as long as it is a completely dammed explosive charge.
  • the vent is especially in the area of initiation, where the deflagration reaction begins and thereby the pressure increases first.
  • a shell material for example, not only metals such as steel, aluminum, titanium or corresponding alloys, but also plastics or composite materials such as GRP or CFRP, and CRC or CFRC are. This achieves a lower lethal effect, but a higher pressure wave. Finally, when using non-metallic shell materials, the effect is limited to blast overpressure and heat, both rapidly decreasing with distance from the reaction site.
  • the inner radius (radial length) is applied from the central axis to the inner wall of the shell and horizontally the appropriate charge of an explosive core for this purpose.
  • a stable deflagration is achieved. Above the dashed lines, the deflagration goes into a combustion reaction and / or dies completely and below it goes unchecked in a stronger reaction as a partial or complete detonation.
  • FIG. 2 is a section through an active system shown, which is filled within the envelope HÜ except for a slender cavity in the region of the longitudinal axis LA with explosive SP.
  • This unspecified cavity serves to receive the explosive charge core SK.
  • the explosive charge core extends from a first ignition device Z1 at the tip of the active system to a further ignition device Z2 at the rear of the active system. Both ignition devices can be used to initiate the explosive charge core.
  • the explosive charge core SK is divided into a plurality of sections A1, A2, A3. Depending on the requirements of the active system, the division may also make sense in fewer or more sections. Each of these sections corresponds to charging of the explosive charge core SK adapted to this section. It is also possible the course of the charge to adapt according to the course of the envelope HÜ such that the charge decreases towards a higher value in the middle region towards the end again.
  • charging in section A1 can be in the value range 30 to 70 g / m, in the second range A2 in the value range 50 to 90 g / m, and finally in the third range A3 in the value range 70 to 100 g / m.
  • cross section of the explosive charge core SK This can be designed, for example, rectangular, round oval, half round, depending on the need for adjustment, as in FIG. 3 is shown.
  • an explosive charge core can be applied to almost any shape and size of warhead and other active system.
  • Another advantage is the significant reduction in the initial velocity of the splinters emitted from the shell.
  • Another advantage is the significant reduction of the maximum blast pressure. This can be easily characterized by estimating the performance of an explosive charge ⁇ • D 2 / 4 with p as density and D as reaction speed, mostly the detonation speed, the explosive charge. Due to the significantly lower reaction rates and reaction pressures, deflagration reduces performance by 5 to 15 percent compared to detonating the explosive charge.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Air Bags (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)
  • Developing Agents For Electrophotography (AREA)

Abstract

Eine Vorrichtung zur Auslösung einer subdetonativen Reaktion, insbesondere einer Deflagration, einer Sprengladung eines Wirksystems lässt sich durch Maßnahmen an die Konfiguration der Sprengladung und, sofern vorhanden, ihre Hülle soweit anpassen, dass eine stabile Deflagration der gesamten Sprengladung erreicht wird.A device for triggering a subdetonative reaction, in particular a deflagration, an explosive charge of an active system can be adapted by measures to the configuration of the explosive charge and, if available, its envelope so far that a stable deflagration of the entire explosive charge is achieved.

Description

Die Erfindung betrifft eine Vorrichtung zur gesteuerten Initiierung einer subdetonativen Reaktion - insbesondere der Deflagration - einer in einer Hülle angeordneten Sprengladung, umfassend wenigstens einen im Bereich der Längsachse der Sprengladung verlaufenden Sprengladungskern.The invention relates to a device for the controlled initiation of a subdetonative reaction - in particular the deflagration - of an explosive charge arranged in a casing, comprising at least one explosive charge core extending in the region of the longitudinal axis of the explosive charge.

Aus der DE 100 08 914 C2 ist eine dosierbare Sprengladung für einen Gefechtskopf mit zwei unterschiedlichen Zündeinrichtungen bekannt geworden. Während die erste Zündeinrichtung die Sprengladung detonativ initiiert, ist die weitere, gegenläufig ausgerichtete Zündeinrichtung so ausgelegt, dass höchstens eine subdetonative Initiierung erfolgen kann. Auch die Verwendung von wenigstens einer Detonationsschnur für diesen Zweck ist hieraus bekannt. In der Praxis haben sich einige Probleme ergeben, die im Extremfall zum Erlöschen der Initiierung oder zur komplett detonativen Initiierung führen können.From the DE 100 08 914 C2 a dosable explosive charge for a warhead with two different ignition devices has become known. While the first ignition device detonatively initiates the explosive charge, the further, oppositely directed ignition device is designed such that at most a subdetonative initiation can take place. The use of at least one detonating cord for this purpose is also known from this. In practice, some problems have arisen which, in extreme cases, may lead to the termination of initiation or to complete detonation initiation.

In der DE 10 2012 006 044 B3 ist eine zylindrische Sprengladung mit einer Hülle beschrieben, die eine parallel zur Sprengschnur angeordnete Messvorrichtung aufweist, welche den Fortschritt der laufenden Deflagration detektiert.In the DE 10 2012 006 044 B3 a cylindrical explosive charge is described with a shell having a parallel to the detonating cord arranged measuring device which detects the progress of the current deflagration.

Die US 2012/0227609 A1 beschreibt ein Zündsystem mit zwei unterschiedlichen Zündeinrichtungen. Die erste Zündeinrichtung ist konventionell für die detonative Auslösung der Sprengladung ausgelegt. Die örtlich gegenüber liegende zweite Zündeinrichtung ist für eine deflagrative Initiierung der Sprengladung dimensioniert. Da in diesem Zündsystem das selbe Bauprinzip mit gegenüber liegenden Zündstellen verwendet wird, von denen aus die Detonationswellen gegeneinander laufen, treten auch hier die bereits bekannten Mängel auf.The US 2012/0227609 A1 describes an ignition system with two different ignition devices. The first ignition device is conventionally designed for the detonative triggering of the explosive charge. The locally opposite second ignition device is dimensioned for a deflagrative initiation of the explosive charge. Since in this ignition system the same construction principle with opposite ignition points is used, from which the detonation waves run against each other, the already known deficiencies occur here as well.

Dem gegenüber liegt der vorliegenden Erfindung die Aufgabe zugrunde, eine Zündvorrichtung zu entwickeln, die in der Lage ist, eine deflagrative Initiierung über die gesamte Länge der Sprengladung aufrecht zu erhalten, ohne dass die Deflagrationsreaktion in axialer oder radialer Richtung in einen Abbrand übergeht, ausstirbt oder in eine Detonation umschlägt.On the other hand, the present invention seeks to develop an ignition device which is able to maintain a deflagrative initiation over the entire length of the explosive charge without the Deflagration reaction in the axial or radial direction turns into a burn, dies out or turns into a detonation.

Dies soll in derart robuster Weise geschehen, dass auch in stark verdämmten Wirksystemen (wie Penetratoren) sowie unter extremen militärischen Umweltbedingungen (insbesondere unter sehr geringen und sehr hohen Temperaturen) die Deflagration der Sprengladung kontrolliert und zuverlässig erfolgt.This should be done in such a robust manner that even in highly dammed-up systems (such as penetrators) and under extreme military environmental conditions (especially at very low and very high temperatures) the deflagration of the explosive charge is controlled and reliable.

Die Aufgabe wird erfindungsgemäß dadurch gelöst, dass die Sprengladung einen Sprengladungskern aufweist, der in seinen Querabmessungen dem radialen Verlauf der Hülle in Längsrichtung der Sprengladung anpassbar ist, und dass seine Aufladung über die Länge des Sprengladungskerns hinsichtlich der Art des Sprengstoffes homogen oder örtlich unterschiedlich einstellbar ist.The object is achieved in that the explosive charge has an explosive charge core, which is adaptable in its transverse dimensions of the radial course of the shell in the longitudinal direction of the explosive charge, and that its charge over the length of the explosive charge core with respect to the type of explosive is homogeneously or locally adjustable ,

Hieraus ergeben sich diverse Gestaltungsmöglichkeiten, die in den weiteren Ansprüchen beschrieben sind und die eine Anpassung dieser Initilerung an die örtlichen Gegebenheiten in der Sprengladung ermöglichen.This results in various design options, which are described in the other claims and allow adaptation of this initiation to the local conditions in the explosive charge.

Vorteilhaft ist, dass die Querabmessung des Sprengladungskerns dem Verlauf der Hülle in Längsrichtung der Sprengladung anpassbar ist. Dies kann in Stufen erfolgen oder auch kontinuierlich, so dass damit der Sprengladungskern an jede Form der Hülle angeglichen werden kann.It is advantageous that the transverse dimension of the explosive charge core is adaptable to the course of the shell in the longitudinal direction of the explosive charge. This can be done in stages or continuously so that the explosive charge core can be matched to any shape of the envelope.

Mittels der Aufladung des Sprengladungskerns über die Länge des Sprengladungskerns, die hinsichtlich der Art des Sprengstoffes homogen oder örtlich unterschiedlich einstellbar ist, können bei Bedarf auch unterschiedliche Sprengstoffarten miteinander zu einem Sprengladungskern kombiniert werden. Für einen Sprengladungskern eignen sich auch vergleichsweise energiereiche (hochbrisante) und/oder sensitive CHNO-basierte Sprengstoffe wie z. B. hexogen- oder oktogenbasierte Sprengstoffmischungen sowie RDX (Cyclo-1,3,5-Trimethylen-2,4,6-Trinitramin, Hexogen), HMX (Cyclo-1,3,5,7-Tetramethylen 2,4,6,8-Tetranitramin, Oktogen), PETN (Pentaerythritoltetranitrat), HNS (Hexanitrostilben), FOX-7 (1,1-Diamino-2,2-Dinitroethylen), FOX-12 (Guanylharnstoffdinitramid) oder Mischungen hieraus. Darüber hinaus können inerte Binder wie HTPB (Hydroxylterminiertes Polybutadien), Silikongummi, Polyurethangummi, Polystyrol, Estan, Nylon, Wachs und/oder Graphit verwendet werdenBy means of the charging of the explosive charge core over the length of the explosive charge core, which is homogeneously or locally differently adjustable with regard to the type of explosive, if necessary different types of explosive can be combined with one another to form an explosive charge core. Also suitable for an explosive charge core are comparatively high-energy (highly explosive) and / or sensitive CHNO-based explosives, such as, for example. Hexogen- or octogen-based explosive mixtures as well as RDX (cyclo-1,3,5-trimethylene-2,4,6-trinitramine, hexogen), HMX (cyclo-1,3,5,7-tetramethylene 2,4,6, 8-tetranitramine, octogen), PETN (pentaerythritol tetranitrate), HNS (hexanitrostilbene), FOX-7 (1,1-diamino-2,2-dinitroethylene), FOX-12 (guanyl urea dinitramide) or Mixtures of these. In addition, inert binders such as HTPB (hydroxyl-terminated polybutadiene), silicone rubber, polyurethane rubber, polystyrene, estane, nylon, wax and / or graphite may be used

Zudem kann der Durchmesser des Sprengladungskerns bei nicht konstantem Hüllendurchmesser variieren und direkt an diesen angepasst werden. Die Aufladung des Sprengladungskerns ist dabei an Größe und Form der Sprengladung anzupassen.In addition, the diameter of the explosive charge core can vary with non-constant sheath diameter and be adapted directly to this. The charging of the explosive charge core is to be adapted to the size and shape of the explosive charge.

Um einen direkten Kontakt vom detonativ reagierenden Sprengstoffkern zur Sprengladung zu unterbinden und so die Schockwelle bei Detonation des Sprengladungskerns zu dämpfen, ist es hilfreich, wenn der Sprengladungskern von einem Mantel oder einem Rohr umgeben ist. Dieser Mantel oder das Rohr kann beispielsweise aus einem Gewebe, einem Kompositewerkstoff (GFK, CFK, CRC oder CFRC), einem Kunststoff oder einer Kombination daraus bestehen. Als Material für eine Ummantelung (Mantel oder Rohr) kommen u. a. Textilfasern, Kunststoffe (Polymere) wie z. B. Kevlar, Nylon, Polyethylen, Polypropylen, PTFE (Teflon), PVC, Polystyrol, Plexiglas (Acrylglas) oder Polyurethan aber auch Wachs in Betracht.In order to prevent direct contact of the detonative reacting explosive core to the explosive charge and thus to dampen the shock wave during detonation of the explosive charge core, it is helpful if the explosive charge core is surrounded by a jacket or a tube. This jacket or tube can be made of a fabric, a composite material (GFK, CFRP, CRC or CFRC), a plastic or a combination thereof, for example. As a material for a jacket (jacket or tube) u. a. Textile fibers, plastics (polymers) such. As Kevlar, nylon, polyethylene, polypropylene, PTFE (Teflon), PVC, polystyrene, Plexiglas (acrylic glass) or polyurethane but also wax into consideration.

Auch die Wandstärke und das Material des Mantels oder des Rohrs kann dem radialen Verlauf der Hülle in Längsrichtung der Sprengladung in Stufen oder kontinuierlich angepasst werden.The wall thickness and the material of the shell or of the tube can be adapted to the radial course of the shell in the longitudinal direction of the explosive charge in stages or continuously.

Mit dem Deflagrator, der im Modus der kleinsten Wirkung allein initiiert wird, wird eine subdetonative Reaktion ausgelöst. Dies geschieht im Ausführungsbeispiel durch Detonation des Sprengladungskerns, wodurch die heißen Reaktionsgase ein noch nicht reagiertes energetisches Material konvektiv erhitzen. Dies setzt sich weiter über in der Sprengladung vorhandene Poren fort. Es bildet sich eine mehrphasige Reaktionszone heraus, bei der die Druck- und Flammfront im Gegensatz zur Detonation räumlich voneinander getrennt sind und sich durchaus mit unterschiedlicher Geschwindigkeit fortpflanzen können. Die Reaktion führt letztlich zu einer Druckerhöhung, unter der der Sprengstoff auch mechanisch versagen kann und sich Risse bilden und weiter fortpflanzen. Die Reaktionsgeschwindigkeiten hängen auch vom Verdämmungszustand der Sprengladung, d.h. Wandstärke und Festigkeit der Hülle, ab. Die Geschwindigkeit der Flamm- und Druckfront liegt dabei typischerweise unterhalb der Schallgeschwindigkeit der Sprengladung.With the deflagrator, which is initiated in the mode of least action alone, a subdetonative reaction is triggered. This is done in the exemplary embodiment by detonation of the explosive charge core, whereby the hot reaction gases convectively heat an unreacted energetic material. This continues through pores present in the explosive charge. It forms a multi-phase reaction zone out, in which the pressure and flame front, in contrast to the detonation are spatially separated from each other and can well propagate at different speeds. The reaction ultimately leads to an increase in pressure under which the explosive can also mechanically fail and crack and continue to propagate. The reaction rates also depend on the Verdämmungszustand the explosive charge, ie wall thickness and strength of the shell from. The speed of the flame and pressure front is typically below the speed of sound of the explosive charge.

Eine stabile Deflagration ergibt sich aus der Rate der Energiedissipation im Vergleich zur Energieerzeugungsrate, die hier durch den Sprengladungskern kontrolliert wird. Nachfolgend werden einige Systemeinflussfaktoren beschrieben und konkrete Zahlen / Zahlenbereiche für einzelne Parameter angegeben, bei denen eine Deflagration stabil abläuft.A stable deflagration results from the rate of energy dissipation compared to the energy production rate, which is controlled here by the explosive charge core. In the following, some system influence factors are described and concrete numbers / numbers ranges are given for individual parameters, in which a deflagration proceeds stably.

Unempfindliche, gegossene Sprengladungen enthalten einen Anteil des Kunststoffbinders von mindestens 10%. Der Anteil des Sprengstoffmoleküls, für das sich RDX (Cyclo-1,3,5-Trimethylen-2,4,6-Trinitramin, Hexogen), HMX (Cyclo-1,3,5,7-Tetramethylen 2,4,6,8-Tetranitramin, Oktogen), NTO (5-Nitro-1,2,4-Triazole-3-One), FOX-7 (1,1-Diamino-2,2-Dinitroethylen), FOX-12 (Guanylharnstoffdinitramid) u.a. anbieten, kann dabei zwischen 90 und 50% liegen. Als Binder eignet sich hierfür u. a. ein Zweikomponenten-Gießharz mit Hydroxyl-terminiertem Polybutadien (HTPB), aber auch Silikongummi, Polyurethangummi, Polystyrol, Estan oder Nylon. In der Bindermatrix werden die granularen Sprengstoffkristalle eingekapselt. Eine solche kunststoffgebundene Sprengladung verfügt grundsätzlich infolge des Herstellungsprozesses über mikroskopisch kleine Poren. Diese Poren bestimmen die Porosität der Sprengladung und stellen die für die Deflagrationsreaktion notwendige freie Oberfläche zu Verfügung. Die Porositäten liegen hierbei typischerweise im einstelligen Prozentbereich, d.h. deutlich unter fünf Prozent. Zur Steigerung der Blastdruckwirkung kann die Sprengladung zusätzlich über gecoatete oder nicht gecoatete Metallpulver mit Partikeln z.B. aus Aluminium, Magnesium, Zirkonium, Titan, Wolfram, Titankarbid oder Zirkonkarbidverfügen. Hierbei wird ein Anteil von typischerweise 15 bis 25 Masse-Prozenten angestrebt, sofern der Blastdruck zu optimieren ist. Zur Steigerung des Blastdruckes kann die Sprengladung auch mit bis 20 Prozent Ammoniumperchlorat (AP) angereichert sein.Insensitive, cast explosive charges contain at least 10% of the plastic binder. The proportion of the explosive molecule for which RDX (cyclo-1,3,5-trimethylene-2,4,6-trinitramine, hexogen), HMX (cyclo-1,3,5,7-tetramethylene 2,4,6, 8-tetranitramine, octogen), NTO (5-nitro-1,2,4-triazole-3-one), FOX-7 (1,1-diamino-2,2-dinitroethylene), FOX-12 (guanyl urea dinitramide) and others can range between 90 and 50%. As a binder is suitable u. a. a two-component casting resin with hydroxyl-terminated polybutadiene (HTPB), but also silicone rubber, polyurethane rubber, polystyrene, Estan or nylon. In the binder matrix, the granular explosive crystals are encapsulated. Such a plastic-bound explosive charge basically has microscopically small pores as a result of the manufacturing process. These pores determine the porosity of the explosive charge and provide the necessary for the deflagration reaction free surface available. The porosities are typically in the single-digit percentage range, i. well below five percent. To increase the blast-pressure effect, the explosive charge may additionally be applied over coated or uncoated metal powders with particles, e.g. of aluminum, magnesium, zirconium, titanium, tungsten, titanium carbide or zirconium carbide. In this case, a share of typically 15 to 25 mass percent is sought, provided the blast pressure is to be optimized. To increase the blast pressure, the explosive charge may also be enriched with up to 20 percent ammonium perchlorate (AP).

Zur Vermeidung einer schockinitiierten Detonation der Sprengladung ist es zweckmäßig, wenn die Sprengladung eine vergleichsweise geringe Schocksensitivität aufweist. Hierzu sollten die Materialien des Sprengladungskerns und seines umschließenden Mantels oder Rohrs mit ihren Hugonioteigenschaften derart gewählt werden, dass die Schockimpedanz des Mantels/Rohrs zu einer signifikanten Reduktion des streifenden Detonationsdruckes des Sprengladungskerns führt. Die Schockimpedanz Z kann mit der bekannten Formel bestimmt werden Z = ρ 0 U = ρ 0 c 0 + s u

Figure imgb0001
mit ρ0 als Dichte, U als Schockgeschwindigkeit, c0 als Bulk-Schallgeschwindigkeit, s als Steigung und u als Partikelgeschwindigkeit. Der Schockdruck ergibt sich dann mit P = ρ 0 U u = Z u
Figure imgb0002
To avoid a shock-initiated detonation of the explosive charge, it is expedient if the explosive charge a comparatively low Shock sensitivity. For this purpose, the materials of the explosive charge core and its enclosing jacket or tube should be chosen with their Hugonioteigenschaften such that the shock impedance of the shell / tube leads to a significant reduction of the grazing detonation pressure of the explosive charge core. The shock impedance Z can be determined with the known formula Z = ρ 0 U = ρ 0 c 0 + s u
Figure imgb0001
with ρ 0 as density, U as shock velocity, c 0 as bulk sound velocity, s as slope and u as particle velocity. The shock pressure then results with P = ρ 0 U u = Z u
Figure imgb0002

Zweckmäßigerweise sollte der resultierende Druck an der Grenzfläche des Dämpfungsmaterials zur Sprengladung unterhalb des Schockinitiierungsdrucks liegen. Günstig ist außerdem ein kritischer Durchmesser für eine schockinitiierte Detonation der Sprengladung, der mindestens 5 mm, typischerweise mehr als 10 mm, beträgt.Conveniently, the resulting pressure at the interface of the damping material to the explosive charge should be below the shock initiation pressure. In addition, a critical diameter for a shock-initiated detonation of the explosive charge, which is at least 5 mm, typically more than 10 mm, is also favorable.

Um eine Entzündung der Sprengladung durch Hot Spots infolge der schwachen Schockwelle und der heißen Reaktionsgase zu fördern, sollte die Sprengladung eine vergleichsweise geringe Selbstentzündzungstemperatur aufweisen. Sie sollte kleiner als 230°C sein und typischerweise deutlich unterhalb von 200°C liegen. Nichtsdestotrotz sollte sie hinreichend groß sein, um die Insensitivität der Sprengladung bei thermischen Stimuli wie Slow-Cook-Off- und Fast-Cook-Off-Tests nicht unnötig negativ zu beeinflussen.In order to promote an ignition of the explosive charge by hot spots due to the weak shock wave and the hot reaction gases, the explosive charge should have a relatively low Selbstentzündzungstemperatur. It should be less than 230 ° C and typically be well below 200 ° C. Nevertheless, it should be large enough not to negatively impact the insensitivity of the explosive charge during thermal stimuli such as slow-cook-off and fast-cook-off tests.

Bei Vorhandensein einer Ladungshülle sind die relevanten Parameter die Wandstärke, auch im Vergleich zum Ladungsdurchmesser, und die Materialfestigkeit.In the presence of a charge envelope, the relevant parameters are the wall thickness, also in comparison to the charge diameter, and the material strength.

Diese werden über den statischen Versagensdruck zweckmäßig miteinander verknüpft. Oberhalb eines spezifischen Grenzdrucks werden mit höherer Wahrscheinlichkeit unerwünschte Übergänge in stärkere Reaktionen (Detonation-to-Deflagration-Transitions, DDTs) erwartet. Eine Verdämmung an den Ladungsenden kann durch die nachfolgend beschriebene Entlüftung so reguliert werden, dass sich kaum Unterschiede zu an den Enden offenen Ladungen zeigen. Dies zeigt sich dann in ähnlichen Aufweitungsgeschwindigkeiten der Ladungshülle und damit Druckraten infolge der Reaktion der Sprengladung.These are expediently linked together via the static failure pressure. Above a specific limit pressure, it is more likely that undesirable transitions into stronger detonation-to-deflation (DDT) reactions are expected. Damping at the charge ends can be regulated by the venting described below so that there are hardly any differences to open charges at the ends. This shows up then in similar expansion rates of the cargo envelope and thus pressure rates due to the reaction of the explosive charge.

Der Versagensdruck einer Verdämmung unter statischer Belastung wird berechnet anhand p max = σ max 1 - k 2 1 + k 2

Figure imgb0003
mit k = d i / d a ,
Figure imgb0004

di als Innendurchmesser, da als Außendurchmesser und σmax als Maximalspannung. Eine Verdämmung mit einem statischen Versagendruck kleiner als 6,0 kbar, typischerweise kleiner als 2,6 kbar, wird dabei, sofern die Initiierung optimal an die Ladungsabmessungen angepasst ist, als günstig angesehen, um eine kontrolliert ablaufende Deflagration zu gewährleisten. Im Gegensatz dazu können höhere Verdämmungswerte, insbesondere wenn keine ausreichende Entlüftung vorhanden ist, Übergänge in stärkere Reaktionen (DDTs) begünstigen. Grundsätzlich kann die Entlüftung durch Ladungsdeckel, Sollbruchstellen der Hülle und Bohrungen nachhaltig beeinflusst werden, sofern es sich um eine vollständig verdämmte Sprengladung handelt. Vorteilhaft ist die Entlüftung insbesondere im Bereich der Initiierung, wo die Deflagrationsreaktion beginnt und hierdurch der Druck zuerst ansteigt.The failure pressure of a static load suspension is calculated by p Max = σ Max 1 - k 2 1 + k 2
Figure imgb0003
With k = d i / d a .
Figure imgb0004

d i as inner diameter, d a as outer diameter and σ max as maximum stress. A stowage with a static failure pressure of less than 6.0 kbar, typically less than 2.6 kbar, is considered favorable, provided that the initiation is optimally adapted to the charge dimensions, in order to ensure a controlled deflagration. In contrast, higher levels of damming, especially if there is insufficient deaeration, may favor transitions into stronger reactions (DDTs). Basically, the vent can be sustainably influenced by cargo cover, breaking points of the shell and drilling, as long as it is a completely dammed explosive charge. Advantageously, the vent is especially in the area of initiation, where the deflagration reaction begins and thereby the pressure increases first.

Als Hüllenmaterial eignen sich beispielsweise nicht nur Metalle wie Stahl, Aluminium, Titan oder entsprechende Legierungen, sondern auch Kunststoffe oder Kompositewerkstoffe wie GFK oder CFK, sowie CRC oder CFRC. Damit wird eine geringere letale Wirkung erreicht, dagegen aber eine höhere Druckwelle. Bei Verwendung nicht metallischer Hüllenmaterialien beschränkt sich schließlich die Wirkung auf den Blastüberdruck und die Hitze, wobei beide rasch mit dem Abstand vom Umsetzungsort abnehmen.As a shell material, for example, not only metals such as steel, aluminum, titanium or corresponding alloys, but also plastics or composite materials such as GRP or CFRP, and CRC or CFRC are. This achieves a lower lethal effect, but a higher pressure wave. Finally, when using non-metallic shell materials, the effect is limited to blast overpressure and heat, both rapidly decreasing with distance from the reaction site.

Ein Ausführungsbeispiel ist in der Zeichnung dargestellt und wird im Folgenden näher beschrieben. Es zeigen:

  • Fig.1: die Radiallänge einer Sprengladung in Relation zur Aufladung eines Sprengladungskerns;
  • Fig.2: ein Ausführungsbeispiel einer erfindungsgemäßen Vorrichtung bei der Verwendung in einem bekannten Wirksystem;
  • Fig.3: Beispiele möglicher Querschnitte von Sprengladungskernen.
An embodiment is shown in the drawing and will be described in more detail below. Show it:
  • Fig.1 : the radial length of an explosive charge in relation to the charging of an explosive charge core;
  • Fig.2 an embodiment of a device according to the invention when used in a known active system;
  • Figure 3 : Examples of possible cross sections of explosive charge cores.

In der Figur 1 ist vertikal der Innenradius (Radiallänge) von der Mittelachse bis zur Innenwand der Hülle aufgetragen und horizontal die hierfür geeignete Aufladung eines Sprengstoffkerns. Innerhalb der gestrichelten Linien wird eine stabil ablaufende Deflagration erreicht. Oberhalb der gestrichelten Linien geht die Deflagration in eine Verbrennungsreaktion über und/oder stirbt gänzlich aus und unterhalb geht sie unkontrolliert in eine stärkere Reaktion wie eine teilweise oder vollständige Detonation über.In the FIG. 1 vertically the inner radius (radial length) is applied from the central axis to the inner wall of the shell and horizontally the appropriate charge of an explosive core for this purpose. Within the dashed lines a stable deflagration is achieved. Above the dashed lines, the deflagration goes into a combustion reaction and / or dies completely and below it goes unchecked in a stronger reaction as a partial or complete detonation.

In der Figur 2 ist ein Schnitt durch ein Wirksystem dargestellt, das innerhalb der Hülle HÜ bis auf einen schlanken Hohlraum im Bereich der Längsachse LA mit Sprengstoff SP gefüllt ist. Dieser nicht näher bezeichnete Hohlraum dient der Aufnahme des Sprengladungskerns SK. Der Sprengladungskern erstreckt sich von einer ersten Zündeinrichtung Z1 an der Spitze des Wirksystems bis zu einer weiteren Zündeinrichtung Z2 am Heck des Wirksystems. Beide Zündeinrichtungen können zur Initiierung des Sprengladungskerns herangezogen werden.In the FIG. 2 is a section through an active system shown, which is filled within the envelope HÜ except for a slender cavity in the region of the longitudinal axis LA with explosive SP. This unspecified cavity serves to receive the explosive charge core SK. The explosive charge core extends from a first ignition device Z1 at the tip of the active system to a further ignition device Z2 at the rear of the active system. Both ignition devices can be used to initiate the explosive charge core.

Erfindungsgemäß ist der Sprengladungskern SK in mehrere Abschnitte A1, A2, A3 aufgeteilt. Dabei kann die Aufteilung je nach den Erfordernissen des Wirksystems auch in weniger oder mehr Abschnitte sinnvoll sein. Diese Abschnitte entsprechen jeweils einer genau für diesen Abschnitt angepassten Aufladung des Sprengladungskerns SK. Es ist auch möglich den Verlauf der Aufladung entsprechend dem Verlauf der Hülle HÜ derart anzupassen, dass die Aufladung nach einem höheren Wert im mittleren Bereich zum Ende hin wieder abnimmt.According to the invention, the explosive charge core SK is divided into a plurality of sections A1, A2, A3. Depending on the requirements of the active system, the division may also make sense in fewer or more sections. Each of these sections corresponds to charging of the explosive charge core SK adapted to this section. It is also possible the course of the charge to adapt according to the course of the envelope HÜ such that the charge decreases towards a higher value in the middle region towards the end again.

Es wurden bereits typische Werte für Aufladungen in den unterschiedlichen Bereichen ermittelt, die Erfolg versprechend sind. So kann eine Aufladung im Abschnitt A1 im Wertebereich 30 bis 70 g/m liegen, im zweiten Bereich A2 im Wertebereich 50 bis 90 g/m und schließlich im dritten Bereich A3 im Wertebereich 70 bis 100 g/m.Typical values have already been determined for charges in the different ranges, which are promising. Thus, charging in section A1 can be in the value range 30 to 70 g / m, in the second range A2 in the value range 50 to 90 g / m, and finally in the third range A3 in the value range 70 to 100 g / m.

Eine weitere Anpassungsmöglichkeit besteht in der Wahl des Querschnitts des Sprengladungskerns SK. Dieser kann je nach Anpassungsbedarf beispielsweise eckig, rund oval, halbrund ausgeführt sein, wie dies in Figur 3 dargestellt ist.Another option is the choice of the cross section of the explosive charge core SK. This can be designed, for example, rectangular, round oval, half round, depending on the need for adjustment, as in FIG. 3 is shown.

Aufgrund der Anpassungsmöglichkeiten kann ein Sprengladungskern bei nahezu beliebigen Formen und Größen von Gefechtsköpfen und anderen Wirksystemen Anwendung finden.Due to the customization options, an explosive charge core can be applied to almost any shape and size of warhead and other active system.

Ein weiterer Vorteil ist die signifikante Reduktion der Anfangsgeschwindigkeit der aus der Hülle abgegebenen Splitter. Ebenso von Vorteil ist die erhebliche Verringerung des maximalen Blastdruckes. Dies lässt sich einfach anhand der Abschätzung der Leistung einer Sprengladung charakterisieren ρ D 2 / 4

Figure imgb0005
mit p als Dichte und D als Reaktionsgeschwindigkeit, zumeist der Detonationsgeschwindigkeit, der Sprengladung. Bei der Deflagration lässt sich infolge der signifikant geringeren Reaktionsgeschwindigkeiten und Reaktionsdrücke die Leistung damit auf 5 bis 15 Prozent im Vergleich zur detonativen Umsetzung der Sprengladung reduzieren.Another advantage is the significant reduction in the initial velocity of the splinters emitted from the shell. Another advantage is the significant reduction of the maximum blast pressure. This can be easily characterized by estimating the performance of an explosive charge ρ D 2 / 4
Figure imgb0005
with p as density and D as reaction speed, mostly the detonation speed, the explosive charge. Due to the significantly lower reaction rates and reaction pressures, deflagration reduces performance by 5 to 15 percent compared to detonating the explosive charge.

Claims (15)

Vorrichtung zur gesteuerten Initiierung einer subdetonativen Reaktion - insbesondere einer Deflagration - einer Sprengladung, die in einer Hülle angeordnet sein kann, umfassend wenigstens einen im Bereich der Längsachse der Sprengladung verlaufenden Sprengladungskern, dadurch gekennzeichnet, dass - die Querabmessung des Sprengladungskerns dem radialen Verlauf der Hülle in Längsrichtung der Sprengladung anpassbar ist, - die Aufladung des Sprengladungskerns über die Länge des Sprengladungskerns hinsichtlich der Art des Sprengstoffes homogen oder örtlich unterschiedlich einstellbar ist. Device for the controlled initiation of a subdetonative reaction - in particular a deflagration - of an explosive charge which may be arranged in an envelope, comprising at least one explosive charge core extending in the region of the longitudinal axis of the explosive charge, characterized in that the transverse dimension of the explosive charge core is adaptable to the radial course of the envelope in the longitudinal direction of the explosive charge, - The charging of the explosive charge core over the length of the explosive charge core with respect to the type of explosive is homogeneously or locally differently adjustable. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Aufladung des Sprengladungskerns hinsichtlich ihrer Form dem radialen Verlauf der Hülle in Längsrichtung der Sprengladung anpassbar ist.Apparatus according to claim 1, characterized in that the charging of the explosive charge core is adaptable in terms of their shape to the radial course of the shell in the longitudinal direction of the explosive charge. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Sprengstoff unter Berücksichtigung seiner Dichte und/oder seiner prozentualen Zusammensetzung im Sprengladungskern anordenbar ist.Apparatus according to claim 1, characterized in that the explosive, taking into account its density and / or its percentage composition in the explosive charge core can be arranged. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass für den Sprengladungskern Mischungen aus Sprengstoffmolekülen nach Anspruch 4 und inertem Binder wie HTPB, Silikongummi, Polyurethangummi, Polystyrol, Estan, Nylon, Wachs und/oder Graphit verwendet werden.Apparatus according to claim 3, characterized in that for the explosive charge core mixtures of explosive molecules according to claim 4 and inert binder such as HTPB, silicone rubber, polyurethane rubber, polystyrene, Estan, nylon, wax and / or graphite are used. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass die Detonationsgeschwindigkeit des Sprengladungskerns idealerweise genauso groß oder geringfügig kleiner ist als die Detonationsgeschwindigkeit der Sprengladung.Apparatus according to claim 3, characterized in that the detonation velocity of the explosive charge core is ideally just as large or slightly smaller than the detonation velocity of the explosive charge. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass die Selbstentzündungstemperatur des Sprengladungskerns unter 230°C und typischerweise unter 200°C liegt.Apparatus according to claim 3, characterized in that the autoignition temperature of the explosive charge core is below 230 ° C and typically below 200 ° C. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Querabmessungen des Sprengladungskerns erheblich kleiner sind als der Durchmesser der Sprengladung und deren Verhältnis zwischen 1/10 und 1/30 liegen.Apparatus according to claim 1, characterized in that the transverse dimensions of the explosive charge core are considerably smaller than the diameter of the explosive charge and their ratio is between 1/10 and 1/30. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Sprengladungskern von einem Mantel umgeben ist.Apparatus according to claim 1, characterized in that the explosive charge core is surrounded by a jacket. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass die Wandstärke und/oder das Material des Mantels in ihrer Form dem Verlauf der Hülle in Längsrichtung der Sprengladung anpassbar ist.Apparatus according to claim 8, characterized in that the wall thickness and / or the material of the jacket in shape is adapted to the course of the shell in the longitudinal direction of the explosive charge. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass die Wandstärke des Mantels in der Größenordnung wie die Querabmessungen des Sprengladungskerns liegen und diese typischerweise unterschreiten.Apparatus according to claim 8, characterized in that the wall thickness of the shell are of the order of magnitude of the transverse dimensions of the explosive charge core and fall below this typically. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Sprengladungskern von einem Rohr umgeben ist.Apparatus according to claim 1, characterized in that the explosive charge core is surrounded by a tube. Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, dass die Wandstärke und/oder das Material des Rohrs in ihrer Form dem Verlauf der Hülle in Längsrichtung der Sprengladung anpassbar ist.Apparatus according to claim 11, characterized in that the wall thickness and / or the material of the tube in shape is adapted to the course of the shell in the longitudinal direction of the explosive charge. Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, dass die Wandstärke des Rohrs in der Größenordnung wie die Querabmessungen des Sprengladungskerns liegen und diese typischerweise unterschreiten.Apparatus according to claim 11, characterized in that the wall thickness of the tube are of the order of magnitude of the transverse dimensions of the explosive charge core and fall below this typically. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass eine gegossene Sprengladung mit einem CHNO-basierten Sprengstoffmolekül wie RDX, HMX, NTO, FOX-7 oder FOX-12, eingekapselt in einem inertem Binder wie HTPB, Silikongummi, Polyurethangummi, Polystyrol, Estan oder Nylon, und/oder zusätzlich Metallpulver aus Aluminium, Magnesium, Zirkonium, Titan, Wolfram, Titankarbid, Zirkonkarbid und /oder Ammoniumperchlorat (AP) besteht.Apparatus according to claim 1, characterized in that a cast explosive charge with a CHNO-based explosive molecule such as RDX, HMX, NTO, FOX-7 or FOX-12, encapsulated in an inert binder such as HTPB, silicone rubber, polyurethane rubber, polystyrene, Estan or nylon , And / or additionally metal powder of aluminum, magnesium, zirconium, titanium, tungsten, titanium carbide, zirconium carbide and / or ammonium perchlorate (AP) consists. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Sprengladung von einer Hülle aus Metallen wie Stahl, Aluminium, Titan oder entsprechenden Legierungen oder Kunststoffen oder Kompositewerkstoffen wie GFK oder CFK sowie CRC oder CFRC umgeben ist und das Verhältnis der Hüllenmasse zur Sprengladungsmasse (M/C) zwischen 1,0 und 8,0 beträgt und der statische Versagensdruck der Hülle unter 6 kbar, typischerweise unter 2,6 kbar, liegt.Apparatus according to claim 1, characterized in that the explosive charge is surrounded by a shell of metals such as steel, aluminum, titanium or corresponding alloys or plastics or composite materials such as GRP or CFK and CRC or CFRC and the ratio of the shell mass to the explosive charge mass (M / C ) is between 1.0 and 8.0 and the shell static failure pressure is below 6 kbar, typically below 2.6 kbar.
EP15003412.2A 2014-12-06 2015-12-01 Device for the controlled initiation of the deflagration of an explosive charge Active EP3029012B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102014018218.5A DE102014018218B4 (en) 2014-12-06 2014-12-06 Device for the controlled initiation of the deflagration of an explosive charge

Publications (3)

Publication Number Publication Date
EP3029012A2 true EP3029012A2 (en) 2016-06-08
EP3029012A3 EP3029012A3 (en) 2016-08-24
EP3029012B1 EP3029012B1 (en) 2020-07-15

Family

ID=54770769

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15003412.2A Active EP3029012B1 (en) 2014-12-06 2015-12-01 Device for the controlled initiation of the deflagration of an explosive charge

Country Status (3)

Country Link
US (1) US9829297B2 (en)
EP (1) EP3029012B1 (en)
DE (1) DE102014018218B4 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108775855A (en) * 2018-07-16 2018-11-09 哈尔滨工业大学 The measuring device of through-hole hoop strain during a kind of static crushing
CN115745717A (en) * 2021-08-20 2023-03-07 北京理工大学 Preparation method of high-molecular fluorine-rich oxidant-based high-detonation-velocity industrial explosive

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11585622B1 (en) 2016-04-19 2023-02-21 Triad National Security, Llc Microwave ignition systems with launcher affixed to or located within a gun spindle
US10641572B1 (en) * 2016-04-19 2020-05-05 Triad National Security, Llc Microwave ignition of energetic material housed within a gun
US10724836B1 (en) * 2016-12-15 2020-07-28 The United States Of America, As Represented By The Secretary Of The Navy Cook-off mitigation systems
US10982942B1 (en) * 2018-09-18 2021-04-20 Corvid Technologies LLC Munitions and methods for operating same
CN112759495B (en) * 2021-02-25 2022-03-01 中国科学技术大学 Host-guest explosive with gas molecules embedded in CL-20 and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10008914C2 (en) 2000-02-25 2003-06-26 Tdw Verteidigungstech Wirksys Explosive charge for a warhead
US20120227609A1 (en) 2010-07-29 2012-09-13 Alliant Techsystems Inc. Initiation systems for explosive devices, scalable output explosive devices including initiation systems, and related methods
DE102012006044B3 (en) 2012-03-27 2013-03-21 TDW Gesellschaft für verteidigungstechnische Wirksysteme mbH Method and device for measuring the course of a deflagration front in a cylindrical warhead with at least two ignition devices

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1948583A (en) * 1931-12-09 1934-02-27 Atlas Powder Co Method of and explosive for blasting deep well holes
NL51785C (en) 1937-11-30
US2463709A (en) * 1943-11-16 1949-03-08 Atlas Powder Co Ammonium nitrate explosive
GB643872A (en) * 1944-12-26 1950-09-27 Atlas Powder Co Improvements in or relating to ammonium nitrate-containing blasting cartridges
FR2678722B1 (en) * 1987-08-19 1994-03-11 Saint Louis Inst Franco Alle Rec PYROTECHNIC GENERATOR WITH EXPLOSIVE COMPOSITION AND ITS APPLICATIONS.
FR2678262B1 (en) 1991-06-26 1993-12-10 Poudres Explosifs Ste Nale LITTLE VULNERABLE ELEMENT OF EXPLOSIVE AMMUNITION COMPRISING A BI-COMPOSITION EXPLOSIVE LOADING AND METHOD FOR OBTAINING A SHARD EFFECT.
GB2466236B (en) * 1992-06-05 2010-11-17 Poudres & Explosifs Ste Nale Dual-composition plastic bonded explosive
WO1999053263A2 (en) * 1998-01-29 1999-10-21 Halliburton Energy Services, Inc. Deflagration to detonation choke
US6352029B1 (en) * 2000-03-30 2002-03-05 The United States Of America As Represented By The Secretary Of The Navy Thermally actuated release mechanism
CA2410465C (en) * 2000-05-24 2007-02-13 The Ensign-Bickford Company Detonating cord and methods of making and using the same
US6523478B1 (en) 2001-09-10 2003-02-25 The United States Of America As Represented By The Secretary Of The Army Rifle-launched non-lethal cargo dispenser
ES2264958T3 (en) * 2001-11-28 2007-02-01 Rheinmetall Waffe Munition Gmbh PROJECTILES WITH HIGH EFFECT OF PENETRATION AND SIDE WITH INTEGRATED DISGREGATION DEVICE.
US6846372B1 (en) * 2003-03-31 2005-01-25 The United States Of America As Represented By The Secretary Of The Navy Reactively induced fragmentating explosives
DE102005031588B3 (en) * 2005-07-06 2007-01-11 TDW Gesellschaft für verteidigungstechnische Wirksysteme mbH Controllable charge of a warhead
WO2008097241A2 (en) * 2006-05-30 2008-08-14 Lockheed Martin Corporation Selectable effect warhead
DE102006048299B3 (en) * 2006-10-12 2008-09-25 TDW Gesellschaft für verteidigungstechnische Wirksysteme mbH Cylindrical active charge
DE102008027900B4 (en) 2008-06-11 2013-07-04 TDW Gesellschaft für verteidigungstechnische Wirksysteme mbH Method and device for power control of a warhead
GB0904929D0 (en) * 2009-03-23 2009-05-06 Qinetiq Ltd Novel munition
GB2479966B (en) 2010-04-27 2013-05-08 Qinetiq Ltd Controllable output warhead
FR2978238B1 (en) * 2011-07-20 2014-12-12 Nexter Munitions AMMUNITION WITH A REDUCED LETHALITY RAY
DE102013011404B4 (en) 2013-07-09 2015-03-19 TDW Gesellschaft für verteidigungstechnische Wirksysteme mbH Method and device for power control of an active system
DE102013011786A1 (en) * 2013-07-15 2015-01-15 TDW Gesellschaft für verteidigungstechnische Wirksysteme mbH Device for the controlled initiation of the deflagration of an explosive charge

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10008914C2 (en) 2000-02-25 2003-06-26 Tdw Verteidigungstech Wirksys Explosive charge for a warhead
US20120227609A1 (en) 2010-07-29 2012-09-13 Alliant Techsystems Inc. Initiation systems for explosive devices, scalable output explosive devices including initiation systems, and related methods
DE102012006044B3 (en) 2012-03-27 2013-03-21 TDW Gesellschaft für verteidigungstechnische Wirksysteme mbH Method and device for measuring the course of a deflagration front in a cylindrical warhead with at least two ignition devices

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108775855A (en) * 2018-07-16 2018-11-09 哈尔滨工业大学 The measuring device of through-hole hoop strain during a kind of static crushing
CN115745717A (en) * 2021-08-20 2023-03-07 北京理工大学 Preparation method of high-molecular fluorine-rich oxidant-based high-detonation-velocity industrial explosive

Also Published As

Publication number Publication date
DE102014018218A1 (en) 2016-07-21
DE102014018218B4 (en) 2023-05-17
US20160161236A1 (en) 2016-06-09
EP3029012A3 (en) 2016-08-24
EP3029012B1 (en) 2020-07-15
US9829297B2 (en) 2017-11-28

Similar Documents

Publication Publication Date Title
EP3029012B1 (en) Device for the controlled initiation of the deflagration of an explosive charge
DE1933162C2 (en) A method of applying high instantaneous pressures to a solid body to modify the properties of the solid, and plug closure for a cylindrical container containing the solid for carrying out this method
DE4001864C2 (en)
DE3932576C2 (en)
DE2729540A1 (en) TIMER DEVICE
DE60021398T2 (en) ZÜNDER
EP2239536A2 (en) Selectable igniter system for a warhead
DE2733211A1 (en) STOREY LOAD
DE102014015877B3 (en) Device for controllable pressure relief of an active system
EP2824414B1 (en) Method and device for controlling the performance of an active system
EP2827094B1 (en) Device for the controlled initiation of the deflagration of an explosive charge
EP0324371B1 (en) Initiator having a long delay
EP2789964B1 (en) Explosive charge for performing either the detonation, deflagration or detonation and deflagration of an explosive material
DE3821276C1 (en)
EP2789965B1 (en) Scalable explosive charge
DE2136789A1 (en) HOLLOW CHARGE BATTLE HEAD
DE102010048570B4 (en) Switchable Wirkladung
WO1994006779A1 (en) Nitrotriazolone for detonation purposes
DE10296518T5 (en) Oil well borehole feed with a high proportion of heavy metal
EP2792661B1 (en) Improved performance cylindrical explosive charge
DE102021002470B4 (en) Scalable active system and warhead
DE2306859C3 (en) Order to combat armored targets
DE102012013575B4 (en) Splinter body, in particular grenade body
DE1284058B (en) Arrangement for the production of hollow bodies from powder, in particular metal powder
EP3034990B1 (en) Projectile

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: C06C 7/00 20060101AFI20160718BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170224

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20181220

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200323

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015012997

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1290873

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200815

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201116

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201015

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201016

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201115

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015012997

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

26N No opposition filed

Effective date: 20210416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201201

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201201

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1290873

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201115

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231229

Year of fee payment: 9