EP3034990B1 - Projectile - Google Patents

Projectile Download PDF

Info

Publication number
EP3034990B1
EP3034990B1 EP15003460.1A EP15003460A EP3034990B1 EP 3034990 B1 EP3034990 B1 EP 3034990B1 EP 15003460 A EP15003460 A EP 15003460A EP 3034990 B1 EP3034990 B1 EP 3034990B1
Authority
EP
European Patent Office
Prior art keywords
projectile
explosive
type
disposed
longitudinal axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15003460.1A
Other languages
German (de)
French (fr)
Other versions
EP3034990A1 (en
Inventor
Axel Pfersmann
Rainer Himmert
Thomas Falter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diehl Defence GmbH and Co KG
Original Assignee
Diehl Defence GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=54783333&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3034990(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Diehl Defence GmbH and Co KG filed Critical Diehl Defence GmbH and Co KG
Publication of EP3034990A1 publication Critical patent/EP3034990A1/en
Application granted granted Critical
Publication of EP3034990B1 publication Critical patent/EP3034990B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B12/00Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
    • F42B12/02Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect
    • F42B12/20Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of high-explosive type
    • F42B12/22Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of high-explosive type with fragmentation-hull construction

Definitions

  • the invention relates to a projectile, comprising a projectile casing and disposed therein explosive.
  • Projectiles of the type in question are brought in a known manner by a launching device to a high speed and then fly unguided and without further drive in the direction of the target.
  • the explosive Upon impact with the target or, if the projectile has a tempier device immediately before impingement, the explosive is ignited via a bullet-side igniter. The explosives explode, the bullet shell ruptures, it comes to splintering.
  • This fragmentation can be further enhanced by the fact that bullet casing side, be it on the inside, be it in the casing material itself, be it on the outside, additional fragmentation elements are provided, so that the forming, ring-shaped open fragment cone not only by Hüllmaterialsplitter, but also is formed by the additional introduced splitter elements.
  • the forming splinters experience both a radial velocity component resulting from the detonation and an axial velocity component resulting from the projectile motion.
  • an annular open splitter cone directed forward at a corresponding angle is formed.
  • a large part of the splinters are located in a narrow area of high fragment density, which means that the cone width as such is relatively narrow.
  • the effective range is correspondingly small.
  • the invention is therefore based on the problem to provide a projectile, which is improved in contrast.
  • the shell is designed and / or the explosives arranged or distributed so that at least partially a radial velocity profile of the splinter generated by bursting of the shell with the ignition of the explosive seen in projectile longitudinal direction from front to rear increasing radial velocity.
  • the projectile is characterized by the fact that the splinters, as viewed in the longitudinal direction, are moved at an ever greater radial speed, and thus therefore increase the radial acceleration from front to back.
  • the superposed radial velocity component has less influence in the front splitter region than in the rear region.
  • the radial velocity vector increases from front to back.
  • the total vector of a splitter resulting from the radial and axial components, which is generated in the front shell region is directed more in the longitudinal direction of the projectile than the resulting vector of a splitter, which is generated in the rear shell region.
  • the splinters thus fly away in the forward floor area at a smaller angle relative to the projectile longitudinal axis as compared to splitter from the rear floor area which fly away at a larger angle relative to the projectile longitudinal axis.
  • the wall thickness of the casing can be seen from the front to the rear, at least in sections, as viewed in the projectile longitudinal direction.
  • the sheath can consist, at least in sections, of two different material layers, one of which has a higher density than the other material layer, the material layer having the higher density decreasing in its thickness in the projectile longitudinal direction and the material layer having the lower density in their strength increases.
  • the material layer having the higher density may for example consist of a heavy metal such as tungsten, or of a tungsten-containing alloy, while the material layer having the lower density consists for example of steel.
  • the quantity of explosive may increase from the front to the rear at least in sections as seen in projectile longitudinal direction. This means that less explosive is provided in the area of the projectile nose in terms of quantity than in the rear projectile area, wherein the explosive increase can be designed linearly, for example.
  • the variation of the amount of explosives also causes the splinters generated in the front area to be accelerated less rapidly than the splinters produced in the rear area.
  • a preferably conical filling piece is expediently arranged in the interior of the projectile, lying in the projectile longitudinal axis. This fills a part of the projectile interior, so that inevitably increases the space in which the explosives can be introduced in volume from front to back.
  • the Gurney energy of the explosive seen in the projectile longitudinal direction can increase from front to back.
  • the gurney energy of an explosive is a measure of how much a material moved by the detonating explosive is accelerated. If the Gurney energy of the explosive now varies in such a way that the Gurney energy in the region of the projectile tip is smaller than in the rear projectile region, then the acceleration profile varying according to the invention can also be set here.
  • the explosive may consist of two different types of explosive, one of which being in the core and the other type of explosive being around the outside of the first type of explosive, and one type of explosive having a higher gurney energy than the other type of explosive. and in the projectile longitudinal direction, the amount of one explosive type increases from front to back and the amount of the other type of explosive decreases from the front to the rear. So there are two different explosive types with different Gurney energy used.
  • the amount of the different types of explosives arranged virtually layered in the interior of the projectile varies such that one explosive type increases quantitatively in the projectile longitudinal direction, while the other explosive type decreases in quantity. This also allows a variation of the radial splitter acceleration over the projectile longitudinal axis can be achieved.
  • the shell can be structured on the inside or outside by means of notches or hookers. These notches or grooves form quasi predetermined breaking points, along which preferably bursts the projectile casing when igniting the explosive.
  • splitter elements which comprise loose splinters or which themselves burst into splinters may be arranged.
  • the arrangement of internal splitter plates for example of heavy metal such as tungsten, which tear when splitting the explosives in splinters.
  • splitter elements As an alternative or in addition to the shell-inside or wrapping-material-side arrangement of the splitter elements, it is also conceivable to fix additional splitter elements on the outside of the shell in the region in which the velocity profile is given, which comprise loose splinters or which burst themselves into splinters, and which fixes them by means of an outer shell which overlaps them are to be arranged.
  • splitter plates corresponding to the outside of the projectile, preferably of heavy metal or corresponding alloys or the like. These are fixed by a thin outer shell, which naturally also ruptures when the explosive is ignited.
  • loose splinter elements can further be introduced in the area of the projectile nose, which form a closed fragment cone directed towards the projectile longitudinal direction when the explosive is ignited.
  • the projectile nose is thus filled with separate, additional loose splinter elements, which experience primarily an axial acceleration, respectively, the axial acceleration component is greater than the radial acceleration component, so that there is a front-opening, closed splinter cone.
  • the "distance" of this fragment cone to the fragment cone, which is generated by the shell-side generated splitter is lower due to the expansion or spreading of this second fragment cone according to the invention than in previously known projectiles.
  • the velocity profile is preferably designed in such a way that the open fragment cone formed by the splinters thrown away with different radial velocity adjoins the closed fragment cone. Consequently, a quasi-closed splinter front is formed, so that a very large effective range is given.
  • Fig. 1 shows a sectional view of an exemplary projectile 1, comprising a bullet casing 2 made of stainless steel with an explosive 3 introduced therein and an ignition device 4, via which the explosive can be ignited in a conventional manner.
  • the projectile casing 2 is for example made of steel, it has in the present embodiment on the shell side integrated additional splitter elements 5.
  • additional loose fragment elements 7, for example in the form of spheres are accommodated in a space delimited from the space in which the explosive is accommodated.
  • the splitter elements 5 and 7 may be made of heavy metal such as tungsten, for example.
  • the projectile casing 2 tears, forming a multiplicity of individual chips, the shape of which can optionally be influenced or defined by structuring the inside or outside of the projectile casing 2 by means of grooves or notches.
  • Fig. 2 shows in the form of a schematic representation of the splinter formation respectively splinter movement of the splinters, which are generated by the projectile casing 2. Due to the ignition of the explosive 3, the individual splitters experience a radial acceleration, as shown by the vector arrow v r . As the projectile flies, there is also an axial velocity component, as indicated by the vector arrow ⁇ a is shown. This results in the total vector ⁇ 1 indicating the direction of movement of the splitter.
  • a relatively narrow splinter cone 8 which is open in the longitudinal direction of the projectile, forms, as in FIG Fig. 3 is shown.
  • a large part of the sheath splinters lies in the narrow region, ie the fragment cone 8, in which the fragment density is relatively high.
  • a projectile 1 it is provided in a projectile 1 according to the invention to widen this splinter cone 8, which takes place in that over the projectile longitudinal axis a varying acceleration profile and thus a varying velocity profile of the thrown splitter is generated.
  • the splitter generated closer to the projectile nose 6 accelerated less than the splitter, which are generated closer to the projectile end 9. This is in Fig. 4 shown.
  • Also there is a splinter cone 8 is shown, however, compared to the splinter cone 8 off Fig. 3 , is significantly wider and widens with increasing distance from the projectile.
  • FIG. 5 An embodiment in the form of a schematic diagram shows Fig. 5 , The projectile casing 2 and the explosive 3 are shown.
  • the projectile casing is thicker in the region which is closer to the bullet tip 6, shown here by dashed lines, and the wall thickness is therefore greater than in the region which is closer to the projectile end, which is also shown dashed here 9 lies.
  • the amount of explosive seen inevitably varies over the projectile longitudinal axis, which is shown here by the dash-dotted line L.
  • the projectile casing 2 is, as far as the outside is concerned, at least in this area, for example cylindrical.
  • FIG. 6 Another way to vary the acceleration or velocity profile in the manner according to the invention along the projectile longitudinal axis, is in Fig. 6 shown.
  • the wall thickness of the projectile casing 2 is the same in this embodiment over the projectile longitudinal axis, but varies the density of the bullet casing material.
  • the projectile casing 2 is made up of two layers of material 2a and 2b.
  • the material layer 2a has a higher density compared with the material layer 2b.
  • the material layer 2a may, for example, be a heavy metal material, while the material layer 2b may be steel.
  • the wall thickness of the material layer 2 a decreases from the projectile-tip-side region to the projectile-side region, while the wall thickness of the lower-density material layer increases from the tip-side region to the shell-side region. Consequently, it follows that the total density of the projectile casing 2 decreases from front to back. The amount of explosive remains, seen axially, the same at each point. As a result of this, splinters from the region of higher density are inevitably accelerated more slowly, that is to say have a lower splitter speed than splinters which are produced in the region of the projectile end.
  • Fig. 7 Another possible measure for achieving the acceleration profile is in Fig. 7 shown.
  • the projectile casing 2 is unchanged in this embodiment, it consists for example of stainless steel constant wall thickness.
  • a conical filler 10 for example a steel cone, is introduced inside the projectile casing 2.
  • This steel cone varies over the projectile longitudinal axis inevitably the space in which the explosive 3 can be introduced.
  • the region which is closer to the projectile tip 6 there is less explosive 3 than in the region which is closer to the projectile end 9.
  • FIG. 8 A fourth possible measure for generating the acceleration or velocity profile is finally in Fig. 8 shown.
  • the projectile casing 2 is unchanged, it has a constant wall thickness and consists for example of steel.
  • the explosive 3 is introduced, which, however, consists of two different explosive types 3a and 3b.
  • the explosive 3a has a higher Gurney energy than the explosive 3b.
  • the two explosives 3a, 3b are arranged in defined layers or layers. The introduction takes place such that the quantity of explosive 3a having the higher Gurney energy increases from the region of the projectile tip to the region of the projectile end 9, while the amount of the lower Gurney energy type of explosive 3b extends from the region of the projectile tip 6 towards the projectile end 9 decreases.
  • Fig. 9 shows a schematic representation of the different individual vectors or the total vector with respect to a splitter, which is generated near the projectile nose, and on a splitter, which is generated near the projectile end.
  • the measures mentioned should at least be applied to the cylindrical part of the projectile, which lies close to the projectile tip 6, ie near the ogive. If one reduces there the radial portion of the splitter speed, in which the splinters are accelerated less, then inclines, see Fig. 9 , the vector ⁇ in the direction of flight. In this way, the region of the fragments from the cylindrical projectile part, that is to say the fragment cone 8, can be approximated to the splitter region or splinter cone, which is optionally generated on the ogive side.
  • Fig. 10 The generation of such an ogiven general generated fragment cone 10 is exemplified in Fig. 10 shown.
  • Fig. 1 According to the projectile Fig. 1 are in the field of Bullet tip 6 additional splitter elements 7 introduced in the form of loose, such as spherical heavy metal splinters.
  • the explosive 3 When the explosive 3 is ignited, it too is accelerated. It forms approximately a closed fragment cone, as in Fig. 10 is shown as an example.
  • the variation of the acceleration or velocity profile of the fragments produced on the sheath side is now preferably carried out in such a way that the splinter cone 8, which is open towards the front, is generated as far as possible so that it adjoins, naturally, seamlessly at the fragment cone 10.
  • the measures described should be implemented as close to the projectile tip, they should, if possible, extend as far as possible over the projectile casing length. Obviously results in such a case, a relatively wide, closed effective range of the projectile 1.
  • the measures should extend as far as possible to the floor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Description

Die Erfindung betrifft ein Geschoss, umfassend eine Geschosshülle und darin angeordneten Sprengstoff.The invention relates to a projectile, comprising a projectile casing and disposed therein explosive.

Geschosse der in Rede stehenden Art werden in bekannter Weise durch eine Abschussvorrichtung auf eine hohe Geschwindigkeit gebracht und fliegen sodann ungelenkt und ohne weiteren Antrieb in Richtung des Ziels. Beim Auftreffen auf das Ziel oder, wenn das Geschoss über eine Tempiervorrichtung verfügt, unmittelbar vor dem Auftreffen kommt es zur Zündung des Sprengstoffs über eine geschossseitige Zündeinrichtung. Der Sprengstoff explodiert, die Geschosshülle zerreißt, es kommt zur Splitterbildung. Diese Splitterbildung kann noch dadurch verstärkt werden, dass geschosshüllenseitig, sei es an der Innenseite, sei es im Hüllenmaterial selbst, sei es an der Außenseite, zusätzliche Splitterelemente vorgesehen werden, so dass der sich bildende, ringförmig offene Splitterkegel nicht nur durch Hüllmaterialsplitter, sondern auch durch die zusätzlichen eingebrachten Splitterelemente gebildet wird.Projectiles of the type in question are brought in a known manner by a launching device to a high speed and then fly unguided and without further drive in the direction of the target. Upon impact with the target or, if the projectile has a tempier device immediately before impingement, the explosive is ignited via a bullet-side igniter. The explosives explode, the bullet shell ruptures, it comes to splintering. This fragmentation can be further enhanced by the fact that bullet casing side, be it on the inside, be it in the casing material itself, be it on the outside, additional fragmentation elements are provided, so that the forming, ring-shaped open fragment cone not only by Hüllmaterialsplitter, but also is formed by the additional introduced splitter elements.

Im Falle der Sprengstoffdetonation erfahren die sich bildenden Splitter sowohl eine radiale Geschwindigkeitskomponente resultierend aus der Detonation, als auch eine axiale Geschwindigkeitskomponente resultierend aus der Geschossbewegung. Es bildet sich folglich ein unter einem entsprechenden Winkel nach vorne gerichteter, ringförmig offener Splitterkegel aus. In diesem Splitterkegel befindet sich ein Großteil der Splitter in einem schmalen Bereich hoher Splitterdichte, das heißt, dass die Kegelbreite als solche relativ schmal ist. Entsprechend klein ist auch der Wirkbereich.In the case of explosive detonation, the forming splinters experience both a radial velocity component resulting from the detonation and an axial velocity component resulting from the projectile motion. As a result, an annular open splitter cone directed forward at a corresponding angle is formed. In this fragment cone, a large part of the splinters are located in a narrow area of high fragment density, which means that the cone width as such is relatively narrow. The effective range is correspondingly small.

Der Erfindung liegt damit das Problem zugrunde, ein Geschoss anzugeben, das demgegenüber verbessert ist.The invention is therefore based on the problem to provide a projectile, which is improved in contrast.

Zur Lösung dieses Problems ist bei einem Geschoss der eingangs genannten Art erfindungsgemäß vorgesehen, dass die Hülle derart ausgebildet und/oder der Sprengstoff derart angeordnet oder verteilt ist, dass sich bei Zündung des Sprengstoffs zumindest abschnittsweise ein radiales Geschwindigkeitsprofil der durch Bersten der Hülle erzeugten Splitter mit in Geschosslängsrichtung gesehen von vorne nach hinten zunehmender radialer Geschwindigkeit ergibt.To solve this problem is inventively provided in a projectile of the type mentioned that the shell is designed and / or the explosives arranged or distributed so that at least partially a radial velocity profile of the splinter generated by bursting of the shell with the ignition of the explosive seen in projectile longitudinal direction from front to rear increasing radial velocity.

Das Geschoss zeichnet sich dadurch aus, dass die Splitter, gesehen in Längsrichtung, mit immer größerer radialer Geschwindigkeit bewegt werden, mithin also die radiale Beschleunigung von vorne nach hinten zunimmt. Dies führt dazu, dass, da alle Splitter die gleiche axiale Geschwindigkeit aufweisen, die überlagerte radiale Geschwindigkeitskomponente im vorderen Splitterbereich einen geringeren Einfluss als im hinteren Bereich hat. Der radiale Geschwindigkeitsvektor nimmt von vorne nach hinten zu. Dies führt dazu, dass der aus der Radial- und Axialkomponente resultierende Gesamtvektor eines Splitters, der im vorderen Hüllenbereich erzeugt wird, stärker in Längsrichtung des Geschosses gerichtet ist, als der resultierende Vektor eines Splitters, der im hinteren Hüllenbereich erzeugt wird. Die Splitter fliegen folglich im vorderen Geschossbereich unter einem kleineren Winkel relativ zur Geschosslängsachse weg, verglichen mit Splitter aus dem hinteren Geschossbereich, die unter einem größeren Winkel relativ zur Geschosslängsachse wegfliegen.The projectile is characterized by the fact that the splinters, as viewed in the longitudinal direction, are moved at an ever greater radial speed, and thus therefore increase the radial acceleration from front to back. As a result, since all the splitters have the same axial velocity, the superposed radial velocity component has less influence in the front splitter region than in the rear region. The radial velocity vector increases from front to back. As a result, the total vector of a splitter resulting from the radial and axial components, which is generated in the front shell region, is directed more in the longitudinal direction of the projectile than the resulting vector of a splitter, which is generated in the rear shell region. The splinters thus fly away in the forward floor area at a smaller angle relative to the projectile longitudinal axis as compared to splitter from the rear floor area which fly away at a larger angle relative to the projectile longitudinal axis.

Insgesamt ergibt sich hieraus durch die Anpassung respektive Variation der radialen Splittergeschwindigkeit in Abhängigkeit der axialen Position im Geschoss eine Aufweitung des Splitterkegels und damit eine gleichmäßigere Splitterdichte. US 7 451 704 B1 und US 4 768 440 A haben Geschosse zum Gegenstand, wobei Splitter erzeugt werden, die eine von vorne nach hinten längs der Geschosslängsachse zunehmende radiale Geschwindigkeit aufweisen. Um ein solches Geschwindigkeits- oder Beschleunigungsprofil zu realisieren, sind unterschiedliche Ausgestaltungen denkbar. Erfindungsgemäss ist eine Abnahme der Geschosshüllendichte längs der Längsachse von vorne nach hinten zumindest auf den zylindrischen Teil des Geschosses, der nahe an der Oive liegt, angewendet. Je höher die Dichte des Materials ist, desto geringer ist die radiale Beschleunigung und daraus folgend die radiale Geschwindigkeitskomponente. Gemäß einer ersten Erfindungsweiterbildung kann die Wandstärke der Hülle zumindest abschnittsweise in Geschosslängsrichtung gesehen von vorne nach hinten abnehmen. Je dicker die Hüllenwand ist, umso geringer ist die Radialbeschleunigung, da mehr Masse zu bewegen ist. Nimmt folglich die Hüllendicke in Geschosslängsrichtung von vorne nach hinten ab, werden zwangsläufig die weiter vorne erzeugten Splitter weniger stark beschleunigt als die weiter hinten erzeugten Splitter.Overall, this results from the adaptation or variation of the radial splitter speed as a function of the axial position in the projectile widening of the fragment cone and thus a more uniform splinter density. US Pat. No. 7,451,704 B1 and US 4,768,440 A have projectiles to the object, wherein splinters are generated, which have a front-to-rear along the projectile longitudinal axis increasing radial velocity. In order to realize such a speed or acceleration profile, different embodiments are conceivable. According to the invention, a decrease in the shell envelope density along the longitudinal axis from front to back is applied at least to the cylindrical part of the projectile which lies close to the eyepiece. The higher the density of the material, the lower the radial acceleration and, consequently, the radial velocity component. According to a first embodiment of the invention, the wall thickness of the casing can be seen from the front to the rear, at least in sections, as viewed in the projectile longitudinal direction. The thicker the shell wall, the lower the radial acceleration, because more mass is to move. Consequently, decreases the shell thickness in the projectile longitudinal direction from front to back, inevitably the splinters generated further forward are accelerated less than the fragments generated further back.

Um diese Dichtevariation zu erzielen, kann die Hülle zumindest abschnittsweise aus zwei unterschiedlichen Materiallagen bestehen, von denen eine eine höhere Dichte als die andere Materiallage aufweist, wobei die die höhere Dichte aufweisende Materiallage in ihrer Stärke in Geschosslängsrichtung gesehen abnimmt und die die niedrigere Dichte aufweisende Materiallage in ihrer Stärke zunimmt. Die die höhere Dichte aufweisende Materiallage kann beispielsweise aus einem Schwermetall wie Wolfram bestehen, oder aus einer wolframhaltigen Legierung, während die die niedrigere Dichte aufweisende Materiallage beispielsweise aus Stahl besteht.In order to achieve this density variation, the sheath can consist, at least in sections, of two different material layers, one of which has a higher density than the other material layer, the material layer having the higher density decreasing in its thickness in the projectile longitudinal direction and the material layer having the lower density in their strength increases. The material layer having the higher density may for example consist of a heavy metal such as tungsten, or of a tungsten-containing alloy, while the material layer having the lower density consists for example of steel.

Alternativ oder zusätzlich zur Abnahme der Geschosshüllenwandstärke kann gemäß einer weiteren erfindungsgemäßen Variante auch die Sprengstoffmenge zumindest abschnittsweise in Geschosslängsrichtung gesehen von vorne nach hinten zunehmen. Das heißt, dass im Bereich der Geschossspitze mengenmäßig weniger Sprengstoff als im hinteren Geschossbereich vorgesehen ist, wobei die Sprengstoffzunahme beispielsweise linear ausgelegt sein kann. Auch die Variation der Sprengstoffmenge führt dazu, dass die im vorderen Bereich erzeugten Splitter weniger stark beschleunigt werden als die im hinteren Bereich erzeugten Splitter.Alternatively or in addition to the decrease of the projectile casing wall thickness, according to a further variant of the invention, the quantity of explosive may increase from the front to the rear at least in sections as seen in projectile longitudinal direction. This means that less explosive is provided in the area of the projectile nose in terms of quantity than in the rear projectile area, wherein the explosive increase can be designed linearly, for example. The variation of the amount of explosives also causes the splinters generated in the front area to be accelerated less rapidly than the splinters produced in the rear area.

Um die Sprengstoffvorlage wie beschrieben variieren zu können, ist zweckmäßigerweise im Innern des Geschosses, in der Geschosslängsachse liegend, ein vorzugsweise kegelförmiges Füllstück angeordnet. Dieses füllt einen Teil des Geschossinneren aus, so dass zwangsläufig der Raum, in den der Sprengstoff eingebracht werden kann, im Volumen von vorne nach hinten zunimmt.In order to be able to vary the explosive template as described, a preferably conical filling piece is expediently arranged in the interior of the projectile, lying in the projectile longitudinal axis. This fills a part of the projectile interior, so that inevitably increases the space in which the explosives can be introduced in volume from front to back.

Als weitere erfindungsrelevante Variante, die alternativ oder zusätzlich zur Abnahme der Geschosshüllenwandstärke und zur Zunahme der Sprengstoffmenge vorgesehen sein kann, kann auch die Gurney-Energie des Sprengstoffs in Geschosslängsrichtung gesehen von vorne nach hinten zunehmen. Die Gurney-Energie eines Sprengstoffs ist ein Maß dafür, wie stark ein durch den detonierenden Sprengstoff bewegtes Material beschleunigt wird. Variiert nun die Gurney-Energie des Sprengstoffs derart, dass die Gurney-Energie im Bereich der Geschossspitze geringer ist als im hinteren Geschossbereich, so kann auch hierüber das erfindungsgemäß variierende Beschleunigungsprofil eingestellt werden.As a further variant relevant to the invention, which may be provided as an alternative or in addition to the decrease of the bullet casing wall thickness and to the increase in the amount of explosive, the Gurney energy of the explosive seen in the projectile longitudinal direction can increase from front to back. The gurney energy of an explosive is a measure of how much a material moved by the detonating explosive is accelerated. If the Gurney energy of the explosive now varies in such a way that the Gurney energy in the region of the projectile tip is smaller than in the rear projectile region, then the acceleration profile varying according to the invention can also be set here.

Um dies zu erreichen, kann beispielsweise der Sprengstoff aus zwei unterschiedlichen Sprengstofftypen bestehen, wobei der eine Sprengstofftyp im Kern und der andere Sprengstofftyp außen um den ersten Sprengstofftyp herum angeordnet ist, und wobei der eine Sprengstofftyp eine höhere Gurney-Energie besitzt als der andere Sprengstofftyp, und wobei in Geschosslängsrichtung gesehen die Menge des einen Sprengstofftyps von vorne nach hinten zunimmt und die Menge des anderen Sprengstofftyps von vorne nach hinten abnimmt. Es kommen also zwei unterschiedliche Sprengstofftypen mit unterschiedlicher Gurney-Energie zum Einsatz. Die Menge der unterschiedlichen, quasi lagemäßig geschichtet im Geschossinneren angeordneten Sprengstofftypen variiert derart, dass der eine Sprengstofftyp mengenmäßig gesehen in Geschosslängsrichtung zunimmt, während der andere Sprengstofftyp mengenmäßig abnimmt. Auch hierüber kann folglich eine Variation der radialen Splitterbeschleunigung über die Geschosslängsachse erreicht werden.For example, to accomplish this, the explosive may consist of two different types of explosive, one of which being in the core and the other type of explosive being around the outside of the first type of explosive, and one type of explosive having a higher gurney energy than the other type of explosive. and in the projectile longitudinal direction, the amount of one explosive type increases from front to back and the amount of the other type of explosive decreases from the front to the rear. So there are two different explosive types with different Gurney energy used. The amount of the different types of explosives arranged virtually layered in the interior of the projectile varies such that one explosive type increases quantitatively in the projectile longitudinal direction, while the other explosive type decreases in quantity. This also allows a variation of the radial splitter acceleration over the projectile longitudinal axis can be achieved.

Zur Erleichterung der Splitterbildung kann die Hülle mittels Kerben oder Nutten innen- oder außenseitig strukturiert sein. Diese Kerben oder Nuten bilden quasi Sollbruchstellen, längs welcher beim Zünden des Sprengstoffs die Geschosshülle bevorzugt zerreißt.To facilitate splinter formation, the shell can be structured on the inside or outside by means of notches or hookers. These notches or grooves form quasi predetermined breaking points, along which preferably bursts the projectile casing when igniting the explosive.

Weiterhin kann an der Hülleninnenseite oder im Hüllenmaterial selbst im Bereich, in dem das Geschwindigkeitsprofil gegeben ist, zusätzliche Splitterelemente, die lose Splitter umfassen oder die selbst in Splitter zerbersten, angeordnet sein. Denkbar ist beispielsweise die Anordnung innenliegender Splitterplatten, beispielsweise aus Schwermetall wie Wolfram, die beim Zünden des Sprengstoffs in Splitter zerreißen. Auch ist es denkbar, im Hüllmaterial selbst entsprechende Schwermetallsplitter zu integrieren, die bei Zündung des Sprengstoffs freigegeben werden.Furthermore, on the inside of the casing or in the casing material even in the region in which the velocity profile is given, additional splitter elements which comprise loose splinters or which themselves burst into splinters may be arranged. It is conceivable, for example, the arrangement of internal splitter plates, for example of heavy metal such as tungsten, which tear when splitting the explosives in splinters. It is also conceivable to integrate in the shell material itself corresponding heavy metal splinters, which are released upon ignition of the explosive.

Alternativ oder zusätzlich zur hülleninnenseitigen oder hüllmaterialseitigen Anordnung der Splitterelemente ist es auch denkbar, an der Hüllenaußenseite im Bereich, in dem das Geschwindigkeitsprofil gegeben ist, zusätzliche Splitterelemente, die lose Splitter umfassen oder die selbst in Splitter zerbersten, und die mittels einer sie übergreifenden Außenhülle fixiert sind, anzuordnen. Es können also auch geschossaußenseitig entsprechende Splitterplatten, vorzugsweise aus Schwermetall oder entsprechenden Legierungen oder dergleichen, angeordnet werden. Diese sind über eine dünne Außenhülle fixiert, die bei Zündung des Sprengstoffs natürlich ebenfalls zerreißt. Gemäß einer zweckmäßigen Weiterbildung der Erfindung können ferner im Bereich der Geschossspitze lose Splitterelemente eingebracht sein, die bei Zündung des Sprengstoffs einen in Geschosslängsrichtung gerichteten, geschlossenen Splitterkegel bilden. Die Geschossspitze ist also mit separaten, zusätzlichen losen Splitterelementen gefüllt, die primär eine axiale Beschleunigung erfahren, respektive deren axiale Beschleunigungskomponente größer ist als die radiale Beschleunigungskomponente, so dass sich ein sich nach vorne öffnender, geschlossener Splitterkegel ergibt. Der "Abstand" dieses Splitterkegels zum Splitterkegel, der durch die hüllenseitig generierten Splitter erzeugt wird, ist aufgrund der erfindungsgemäßen Aufweitung oder Aufspreizung dieses zweiten Splitterkegels geringer als bei bisher bekannten Geschossen.As an alternative or in addition to the shell-inside or wrapping-material-side arrangement of the splitter elements, it is also conceivable to fix additional splitter elements on the outside of the shell in the region in which the velocity profile is given, which comprise loose splinters or which burst themselves into splinters, and which fixes them by means of an outer shell which overlaps them are to be arranged. Thus, it is also possible to arrange splitter plates corresponding to the outside of the projectile, preferably of heavy metal or corresponding alloys or the like. These are fixed by a thin outer shell, which naturally also ruptures when the explosive is ignited. According to an expedient development of the invention loose splinter elements can further be introduced in the area of the projectile nose, which form a closed fragment cone directed towards the projectile longitudinal direction when the explosive is ignited. The projectile nose is thus filled with separate, additional loose splinter elements, which experience primarily an axial acceleration, respectively, the axial acceleration component is greater than the radial acceleration component, so that there is a front-opening, closed splinter cone. The "distance" of this fragment cone to the fragment cone, which is generated by the shell-side generated splitter, is lower due to the expansion or spreading of this second fragment cone according to the invention than in previously known projectiles.

Bevorzugt ist in diesem Zusammenhang das Geschwindigkeitsprofil derart ausgelegt, dass sich der durch die mit unterschiedlicher radialer Geschwindigkeit weggeschleuderten Splitter gebildete offene Splitterkegel an den geschlossenen Splitterkegel anschließt. Es bildet sich folglich eine quasi geschlossene Splitterfront aus, so dass ein sehr großflächiger Wirkbereich gegeben ist.In this context, the velocity profile is preferably designed in such a way that the open fragment cone formed by the splinters thrown away with different radial velocity adjoins the closed fragment cone. Consequently, a quasi-closed splinter front is formed, so that a very large effective range is given.

Weitere Vorteile und Einzelheiten der Erfindung ergeben sich aus den im Folgenden beschriebenen Ausführungsbeispielen sowie anhand der Zeichnung. Dabei zeigen:

Fig. 1
eine Prinzipdarstellung eines Geschosses im Schnitt,
Fig. 2
eine Prinzipdarstellung zur Erläuterung der Splitterbildung bei bisher bekannten Geschossen,
Fig. 3
eine Prinzipdarstellung eines Splitterkegels, wie er sich bei bisher bekannten Geschossen ausbildet,
Fig. 4
eine Prinzipdarstellung eines sich bei einem erfindungsgemäßen Geschoss ausbildenden Splitterkegels,
Fig. 5
eine Prinzipdarstellung eines Hüllenaufbaus einer ersten Ausführungsform,
Fig. 6
eine Prinzipdarstellung eines Hüllenaufbaus einer zweiten Ausführungsform,
Fig. 7
eine Prinzipdarstellung eines Hüllenaufbaus einer dritten Ausführungsform mit innenliegendem Füllstück zur Variation der Sprengstoffmenge,
Fig. 8
eine Prinzipdarstellung eines Geschosses mit verschiedenen Sprengstofftypen,
Fig. 9
eine Prinzipdarstellung der Splitterbildung bei einem erfindungsgemäßen Geschoss, und
Fig. 10
eine Prinzipdarstellung der Bildung zweier sich ergänzender Splitterkegel eines erfindungsgemäßen Geschosses.
Further advantages and details of the invention will become apparent from the embodiments described below and from the drawing. Showing:
Fig. 1
a schematic representation of a projectile in section,
Fig. 2
a schematic diagram for explaining the fragmentation in previously known projectiles,
Fig. 3
a schematic diagram of a fragment cone, as it forms in previously known projectiles,
Fig. 4
a schematic representation of a forming in a projectile bullet invention,
Fig. 5
a schematic representation of a hull structure of a first embodiment,
Fig. 6
a schematic representation of a shell structure of a second embodiment,
Fig. 7
a schematic representation of a shell structure of a third embodiment with internal filler for varying the amount of explosives,
Fig. 8
a schematic representation of a projectile with different explosive types,
Fig. 9
a schematic representation of the fragmentation in a projectile according to the invention, and
Fig. 10
a schematic representation of the formation of two complementary splinter cone of a projectile according to the invention.

Fig. 1 zeigt eine Schnittansicht eines beispielhaften Geschosses 1, umfassend eine aus Edelstahl bestehende Geschosshülle 2 mit einem darin eingebrachten Sprengstoff 3 sowie eine Zündeinrichtung 4, über die der Sprengstoff in an sich bekannter Weise gezündet werden kann. Die Geschosshülle 2 ist beispielsweise aus Stahl, sie weist im vorliegenden Ausführungsbeispiel hüllenseitig integrierte zusätzliche Splitterelemente 5 auf. Im Bereich der Geschossspitze 6 sind in einem gegenüber dem Raum, in dem der Sprengstoff aufgenommen ist, abgegrenzten Raum weitere lose Splitterelemente 7, beispielsweise in Form von Kugeln, aufgenommen. Die Splitterelemente 5 und 7 können beispielsweise aus Schwermetall wie Wolfram sein. Fig. 1 shows a sectional view of an exemplary projectile 1, comprising a bullet casing 2 made of stainless steel with an explosive 3 introduced therein and an ignition device 4, via which the explosive can be ignited in a conventional manner. The projectile casing 2 is for example made of steel, it has in the present embodiment on the shell side integrated additional splitter elements 5. In the area of the projectile tip 6, additional loose fragment elements 7, for example in the form of spheres, are accommodated in a space delimited from the space in which the explosive is accommodated. The splitter elements 5 and 7 may be made of heavy metal such as tungsten, for example.

Wird der Sprengstoff 3 über die Zündeinrichtung 4 gezündet, so kommt es zur Splitterbildung. Zum einen zerreißt die Geschosshülle 2, es bilden sich eine Vielzahl einzelner Splitter, deren Form durch eine Strukturierung der Innen- oder Außenseite der Geschosshülle 2 mittels Nuten oder Kerben gegebenenfalls beeinflusst respektive definiert werden kann. Auch die Splitterelemente 5, beispielsweise Splitterplatten, bersten in viele einzelne Splitter. Entsprechendes gilt für die Splitterelemente 7, die bei Zündung des Sprengstoffs 3 ebenfalls als Splitter in die Umgebung geschleudert werden.If the explosive 3 ignited on the ignition device 4, it comes to splintering. On the one hand, the projectile casing 2 tears, forming a multiplicity of individual chips, the shape of which can optionally be influenced or defined by structuring the inside or outside of the projectile casing 2 by means of grooves or notches. The splitter elements 5, such as splitter plates, burst into many individual fragments. The same applies to the splitter elements 7, which are also hurled as splinters into the environment when the explosive 3 is ignited.

Fig. 2 zeigt in Form einer Prinzipdarstellung die Splitterbildung respektive Splitterbewegung der Splitter, die durch die Geschosshülle 2 erzeugt werden. Aufgrund der Zündung des Sprengstoffs 3 erfahren die einzelnen Splitter eine radiale Beschleunigung, wie durch den Vektorpfeil vr dargestellt ist. Da das Geschoss fliegt, ist auch eine axiale Geschwindigkeitskomponente gegeben, wie durch den Vektorpfeil ν a dargestellt ist. Hieraus resultiert der Gesamtvektor ν 1 der die Bewegungsrichtung des Splitters angibt. Fig. 2 shows in the form of a schematic representation of the splinter formation respectively splinter movement of the splinters, which are generated by the projectile casing 2. Due to the ignition of the explosive 3, the individual splitters experience a radial acceleration, as shown by the vector arrow v r . As the projectile flies, there is also an axial velocity component, as indicated by the vector arrow ν a is shown. This results in the total vector ν 1 indicating the direction of movement of the splitter.

In der Praxis bildet sich ein in Geschosslängsrichtung offener, relativ schmaler Splitterkegel 8 aus, wie in Fig. 3 gezeigt ist. Ein Großteil der Hüllensplitter liegt in dem schmalen Bereich, also dem Splitterkegel 8, in dem die Splitterdichte relativ hoch ist.In practice, a relatively narrow splinter cone 8, which is open in the longitudinal direction of the projectile, forms, as in FIG Fig. 3 is shown. A large part of the sheath splinters lies in the narrow region, ie the fragment cone 8, in which the fragment density is relatively high.

Dies resultiert daraus, dass bei bekannten Geschossen alle hüllenseitig erzeugten Splitter über den zündenden Sprengstoff 3 die gleiche Radialbeschleunigung erfahren, mithin also die radiale Geschwindigkeitskomponente respektive der radiale Geschwindigkeitsvektor νr gesehen in der Geschosslängsachse, quasi überall gleich ist.This results from the fact that in known projectiles all splinters generated on the shell side experience the same radial acceleration via the igniting explosive 3, that is to say therefore the radial velocity component or the radial velocity vector ν r seen in the projectile longitudinal axis, is virtually the same everywhere.

Demgegenüber ist bei einem erfindungsgemäßen Geschoss 1 vorgesehen, diesen Splitterkegel 8 aufzuweiten, was dadurch erfolgt, dass über die Geschosslängsachse ein variierendes Beschleunigungsprofil und damit ein variierendes Geschwindigkeitsprofil der weggeschleuderten Splitter erzeugt wird. Erfindungsgemäß werden durch unterschiedliche Maßnahmen, auf die nachfolgend noch eingegangen wird, die näher zur Geschossspitze 6 erzeugten Splitter weniger stark beschleunigt als die Splitter, die näher zum Geschossende 9 erzeugt werden. Dies ist in Fig. 4 dargestellt. Auch dort ist ein Splitterkegel 8 gezeigt, der jedoch, verglichen mit dem Splitterkegel 8 aus Fig. 3, deutlich breiter ist und der sich mit zunehmender Entfernung vom Geschoss aufweitet.In contrast, it is provided in a projectile 1 according to the invention to widen this splinter cone 8, which takes place in that over the projectile longitudinal axis a varying acceleration profile and thus a varying velocity profile of the thrown splitter is generated. According to the invention, by different measures, which will be discussed below, the splitter generated closer to the projectile nose 6 accelerated less than the splitter, which are generated closer to the projectile end 9. This is in Fig. 4 shown. Also there is a splinter cone 8 is shown, however, compared to the splinter cone 8 off Fig. 3 , is significantly wider and widens with increasing distance from the projectile.

Als eine Maßnahme, ein solches Beschleunigungs- oder Geschwindigkeitsprofil zu erzeugen, besteht die Möglichkeit, die Geschosshülle 2 in ihrer Wandstärke in Richtung der Geschosslängsachse zu variieren. Ein Ausführungsbeispiel in Form einer Prinzipdarstellung zeigt Fig. 5. Gezeigt ist die Geschosshülle 2 und der Sprengstoff 3. Ersichtlich ist die Geschosshülle in dem Bereich, der näher zur hier nur gestrichelt dargestellten Geschossspitze 6 liegt, dicker, die Wandstärke ist also größer als in dem Bereich, der näher zum auch hier nur gestrichelt gezeigten Geschossende 9 liegt. Damit variiert zwangsläufig auch die Menge an Sprengstoff gesehen über die Geschosslängsachse, die hier durch die strichpunktierte Linie L dargestellt ist. Ersichtlich ist im Bereich, der näher zur Geschossspitze 6 liegt, weniger Sprengstoff aufgrund der dickeren Hülle 2 eingebracht als in dem Bereich, der näher zum Geschossende 9 liegt. Die Geschosshülle 2 ist, was die Außenseite angeht, zumindest in diesem Bereich beispielsweise zylindrisch.As a measure to produce such an acceleration or velocity profile, it is possible to vary the projectile casing 2 in its wall thickness in the direction of the projectile longitudinal axis. An embodiment in the form of a schematic diagram shows Fig. 5 , The projectile casing 2 and the explosive 3 are shown. The projectile casing is thicker in the region which is closer to the bullet tip 6, shown here by dashed lines, and the wall thickness is therefore greater than in the region which is closer to the projectile end, which is also shown dashed here 9 lies. Thus, the amount of explosive seen inevitably varies over the projectile longitudinal axis, which is shown here by the dash-dotted line L. It can be seen that in the region closer to the bullet tip 6, less explosive is introduced due to the thicker shell 2 than in the region closer to the bullet Floor 9 is located. The projectile casing 2 is, as far as the outside is concerned, at least in this area, for example cylindrical.

Eine weitere Möglichkeit, das Beschleunigungs- oder Geschwindigkeitsprofil in der erfindungsgemäßen Weise längs der Geschosslängsachse variieren zu können, ist in Fig. 6 gezeigt. Wiederum ist in der Prinzipdarstellung die Geschosshülle 2 sowie der Sprengstoff 3 gezeigt. Die Wandstärke der Geschosshülle 2 ist bei dieser Ausgestaltung über die Geschosslängsachse gleich, jedoch variiert die Dichte des Geschosshüllenmaterials. In diesem Fall ist die Geschosshülle 2 aus zwei Materiallagen 2a und 2b aufgebaut. Die Materiallage 2a weist eine höhere Dichte auf, verglichen mit der Materiallage 2b. Bei der Materiallage 2a kann es sich beispielsweise um ein Schwermetallmaterial handeln, während es sich bei der Materiallage 2b um Stahl handeln kann. Die Wandstärke der Materiallage 2a nimmt von dem geschossspitzenseitigen Bereich zum geschossendeseitigen Bereich ab, während die Wandstärke der die niedrigere Dichte aufweisenden Materiallage vom geschossspitzenseitigen Bereich zum geschossendseitigen Bereich zunimmt. Hieraus ergibt sich folglich, dass die Gesamtdichte der Geschosshülle 2 von vorne nach hinten abnimmt. Die Sprengstoffmenge bleibt, axial gesehen, an jeder Stelle gleich. Dies führt dazu, dass Splitter aus dem Bereich mit höherer Dichte zwangsläufig langsamer beschleunigt werden, mithin also eine geringere Splittergeschwindigkeit aufweisen als Splitter, die im Bereich des Geschossendes erzeugt werden. Die jeweiligen Radialvektorkomponenten sind folglich über die Geschosslängsachse unterschiedlich, was zwangsläufig dazu führt, dass der Gesamtvektor eines spitzennah erzeugten Splitters deutlich flacher und in einem geringeren Winkel zur Geschosslängsachse L steht als der Gesamtvektor eines Splitters, der im Bereich des Geschossendes erzeugt wurde.Another way to vary the acceleration or velocity profile in the manner according to the invention along the projectile longitudinal axis, is in Fig. 6 shown. Again, in the schematic diagram of the projectile casing 2 and the explosive 3 is shown. The wall thickness of the projectile casing 2 is the same in this embodiment over the projectile longitudinal axis, but varies the density of the bullet casing material. In this case, the projectile casing 2 is made up of two layers of material 2a and 2b. The material layer 2a has a higher density compared with the material layer 2b. The material layer 2a may, for example, be a heavy metal material, while the material layer 2b may be steel. The wall thickness of the material layer 2 a decreases from the projectile-tip-side region to the projectile-side region, while the wall thickness of the lower-density material layer increases from the tip-side region to the shell-side region. Consequently, it follows that the total density of the projectile casing 2 decreases from front to back. The amount of explosive remains, seen axially, the same at each point. As a result of this, splinters from the region of higher density are inevitably accelerated more slowly, that is to say have a lower splitter speed than splinters which are produced in the region of the projectile end. The respective radial vector components are consequently different over the projectile longitudinal axis, which inevitably leads to the fact that the total vector of a near-splitter generated much clearer and at a lower angle to the projectile longitudinal axis L than the total vector of a splitter, which was generated in the region of the projectile end.

Eine weitere mögliche Maßnahme zur Erzielung des Beschleunigungsprofils ist in Fig. 7 gezeigt. Die Geschosshülle 2 ist bei dieser Ausgestaltung unverändert, sie besteht beispielsweise aus Edelstahl konstanter Wanddicke. Im Inneren der Geschosshülle 2 ist ein kegelförmiges Füllstück 10, beispielsweise ein Stahlkegel, eingebracht. Dieser Stahlkegel variiert über die Geschosslängsachse zwangsläufig den Raum, in den der Sprengstoff 3 eingebracht werden kann. Ersichtlich ist im Bereich, der näher zur Geschossspitze 6 liegt, weniger Sprengstoff 3 vorhanden als in dem Bereich, der näher zum Geschossende 9 liegt. Zwangsläufig ergibt sich eine geringere Beschleunigung und damit eine geringere Radialgeschwindigkeit für die Splitter, die näher zur Geschossspitze 6 erzeugt werden, als für die Splitter, die näher zum Geschossende erzeugt werden.Another possible measure for achieving the acceleration profile is in Fig. 7 shown. The projectile casing 2 is unchanged in this embodiment, it consists for example of stainless steel constant wall thickness. Inside the projectile casing 2, a conical filler 10, for example a steel cone, is introduced. This steel cone varies over the projectile longitudinal axis inevitably the space in which the explosive 3 can be introduced. Evidently, in the region which is closer to the projectile tip 6, there is less explosive 3 than in the region which is closer to the projectile end 9. Inevitably results in a lower acceleration and thus a lower radial velocity for the splitter, which is closer to Bullet tip 6 are generated, as for the splitter, which are generated closer to the floor.

Eine vierte mögliche Maßnahme zur Erzeugung des Beschleunigungs- oder Geschwindigkeitsprofils ist schließlich in Fig. 8 gezeigt. Auch hier ist die Geschosshülle 2 unverändert, sie weist eine konstante Wanddicke auf und besteht beispielsweise aus Stahl. Im Inneren der Geschosshülle 2 ist wiederum der Sprengstoff 3 eingebracht, der jedoch aus zwei unterschiedlichen Sprengstofftypen 3a und 3b besteht. Der Sprengstoff 3a weist eine höhere Gurney-Energie auf als der Sprengstoff 3b. Die beiden Sprengstoffe 3a, 3b sind in definierten Lagen respektive Schichten angeordnet. Das Einbringen erfolgt derart, dass die Menge an die höhere Gurney-Energie aufweisenden Sprengstoff 3a vom Bereich der Geschossspitze zum Bereich des Geschossendes 9 hin zunimmt, während die Menge an die niedrigere Gurney-Energie aufweisenden Sprengstofftyp 3b vom Bereich der Geschossspitze 6 zum Geschossende 9 hin abnimmt. Dies führt dazu, dass die quasi "überlagerte" Gurney-Energie des Sprengstoffs 3 vom Bereich der Geschossspitze 6 zum Bereich des Geschossendes 9 hin zunimmt. Ein näher zur Geschossspitze 6 erzeugter Splitter wird folglich weniger stark beschleunigt als ein näher zum Geschossende 9 hin erzeugter Splitter.A fourth possible measure for generating the acceleration or velocity profile is finally in Fig. 8 shown. Again, the projectile casing 2 is unchanged, it has a constant wall thickness and consists for example of steel. Inside the projectile casing 2, in turn, the explosive 3 is introduced, which, however, consists of two different explosive types 3a and 3b. The explosive 3a has a higher Gurney energy than the explosive 3b. The two explosives 3a, 3b are arranged in defined layers or layers. The introduction takes place such that the quantity of explosive 3a having the higher Gurney energy increases from the region of the projectile tip to the region of the projectile end 9, while the amount of the lower Gurney energy type of explosive 3b extends from the region of the projectile tip 6 towards the projectile end 9 decreases. This leads to the fact that the quasi "superimposed" Gurney energy of the explosive 3 increases from the region of the projectile tip 6 towards the region of the projectile end 9. A fragment produced closer to the projectile tip 6 is consequently accelerated less strongly than a fragment produced closer to the projectile end 9.

Fig. 9 zeigt eine Prinzipdarstellung der unterschiedlichen Einzelvektoren respektive des Gesamtvektors bezogen auf einen Splitter, der nahe der Geschossspitze erzeugt wird, und auf einen Splitter, der nahe dem Geschossende erzeugt wird. Fig. 9 shows a schematic representation of the different individual vectors or the total vector with respect to a splitter, which is generated near the projectile nose, and on a splitter, which is generated near the projectile end.

Die genannten Maßnahmen (Variation der Geschosshüllenwandstärke, Variation der Geschosshüllendichte, Variation der Sprengstoffmenge oder Variation der Gurney-Energie) sollten zumindest auf den zylindrischen Teil des Geschosses, der nahe der Geschossspitze 6, also nahe der Ogive liegt, angewendet werden. Vermindert man dort den radialen Anteil der Splittergeschwindigkeit, in dem die Splitter geringer beschleunigt werden, so neigt sich, siehe Fig. 9, der Vektor ν in Flugrichtung. Damit kann der Bereich der Splitter aus dem zylindrischen Geschossteil, also der Splitterkegel 8, an den Splitterbereich respektive Splitterkegel, der ogivenseitig gegebenenfalls erzeugt wird, angenähert werden.The measures mentioned (variation of the projectile shell wall thickness, variation of the shell envelope density, variation of the amount of explosive or variation of the Gurney energy) should at least be applied to the cylindrical part of the projectile, which lies close to the projectile tip 6, ie near the ogive. If one reduces there the radial portion of the splitter speed, in which the splinters are accelerated less, then inclines, see Fig. 9 , the vector ν in the direction of flight. In this way, the region of the fragments from the cylindrical projectile part, that is to say the fragment cone 8, can be approximated to the splitter region or splinter cone, which is optionally generated on the ogive side.

Die Erzeugung eines solchen ogivenseitig erzeugten Splitterkegels 10 ist exemplarisch in Fig. 10 gezeigt. Bei dem Geschoss gemäß Fig. 1 sind im Bereich der Geschossspitze 6 zusätzliche Splitterelemente 7 in Form der losen, beispielsweise kugelförmigen Schwermetallsplitter eingebracht. Beim Zünden des Sprengstoffs 3 werden auch diese beschleunigt. Es bildet sich näherungsweise ein geschlossener Splitterkegel aus, wie er in Fig. 10 exemplarisch dargestellt ist.The generation of such an ogivenseitig generated fragment cone 10 is exemplified in Fig. 10 shown. According to the projectile Fig. 1 are in the field of Bullet tip 6 additional splitter elements 7 introduced in the form of loose, such as spherical heavy metal splinters. When the explosive 3 is ignited, it too is accelerated. It forms approximately a closed fragment cone, as in Fig. 10 is shown as an example.

Die Variation des Beschleunigungs- oder Geschwindigkeitsprofils der hüllenseitig erzeugten Splitter erfolgt nun bevorzugt derart, dass der nach vorne offene Splitterkegel 8 möglichst so erzeugt wird, dass er benachbart zum natürlich nahtlos an dem Splitterkegel 10 anschließt. Aus diesem Grund sollten die beschriebenen Maßnahmen möglichst nahe an der Geschossspitze realisiert werden, sie sollten sich, wenn möglich, auch möglichst weit über die Geschosshüllenlänge erstrecken. Ersichtlich ergibt sich in einem solchen Fall ein relativ breiter, geschlossener Wirkbereich des Geschosses 1. Bevorzugt jedoch sollten sich die Maßnahmen möglichst weit bis zum Geschossende erstrecken.The variation of the acceleration or velocity profile of the fragments produced on the sheath side is now preferably carried out in such a way that the splinter cone 8, which is open towards the front, is generated as far as possible so that it adjoins, naturally, seamlessly at the fragment cone 10. For this reason, the measures described should be implemented as close to the projectile tip, they should, if possible, extend as far as possible over the projectile casing length. Obviously results in such a case, a relatively wide, closed effective range of the projectile 1. Preferably, however, the measures should extend as far as possible to the floor.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Geschossbullet
22
Geschosshülleprojectile casing
2a, 2b2a, 2b
verschiedene Materiallagendifferent material layers
33
Sprengstoffexplosive
3a, 3b3a, 3b
verschiedene Sprengstofftypendifferent types of explosives
44
Zündeinrichtungignition device
55
Splitterelementsplitting element
66
Geschossspitzebullet tip
77
Splitterelementsplitting element
88th
Splitterkegelfragment cone
99
Geschossendebasement end
1010
Füllstückfilling
LL
Linieline

Claims (10)

  1. Projectile (1), comprising a projectile body (2) and explosive (3) disposed therein,
    wherein the projectile (1) has a cylindrical part and an ogive (6),
    wherein the projectile body (2) is designed and/or the explosive (3) is disposed or distributed such that on ignition of the explosive (3) a radial speed profile of the fragments produced by the projectile body (2) breaking up results at least in segments with the radial speed (vr) increasing from front to rear when viewed in the longitudinal direction of the projectile (L),
    characterized in that
    a decrease in the density of the body of the projectile from front to rear along the longitudinal axis of the projectile (L) is applied at least to the cylindrical part of the projectile (1) lying near the ogive (6).
  2. Projectile according to Claim 1,
    characterized
    in that
    - a decrease in the thickness of the body of the wall of the projectile from front to rear in the direction of the longitudinal axis of the projectile (L) and/or
    - an increase in the quantity of explosive from front to rear over the longitudinal axis of the projectile (L) and/or
    - an increase in the Gurney energy of the explosive (3) from front to rear over the longitudinal axis of the projectile (L)
    is applied at least to the cylindrical part of the projectile (1) lying near the ogive (6).
  3. Projectile according to Claim 1 or 2,
    characterized in that
    the projectile body (2) consists at least in segments of two different layers of material (2a, 2b), of which one layer of material (2a) comprises a higher density than the other layer of material (2b), wherein the layer of material (2a) comprising the higher density decreases in its thickness when viewed in the longitudinal direction of the projectile (L) and the layer of material (2b) comprising the lower density increases in its thickness.
  4. Projectile according to Claim 2 or 3,
    characterized in that
    a preferably conical filler (10) is disposed in the interior of the projectile (1) and lies on the longitudinal axis of the projectile (L).
  5. Projectile according to any one of Claims 2 to 4, characterized in that
    the explosive (3) consists of two different types of explosive (3a, 3b), wherein the one type of explosive (3a) is disposed in the core and the other type of explosive (3b) is disposed around the outside of the first type of explosive, and wherein the one type of explosive (3a) comprises a higher Gurney energy than the other type of explosive (3b), and wherein the quantity of the one type of explosive (3a) increases from front to rear when viewed in the longitudinal direction of the projectile (L) and the quantity of the other type of explosive (3b) decreases from front to rear.
  6. Projectile according to any one of the preceding claims,
    characterized in that
    the projectile body (2) is internally and/or externally structured by means of notches or grooves to influence the fragment formation.
  7. Projectile according to any one of the preceding claims,
    characterized in that
    additional fragmentation elements (5) that contain loose fragments or that themselves break up into fragments, are disposed on the interior of the body or in the body material itself in the region in which the speed profile is specified.
  8. Projectile according to any one of the preceding claims,
    characterized in that
    additional fragmentation elements that comprise loose fragments or that break up into fragments themselves, and that are fixed by means of an outer body covering them, are disposed on the outside of the body in the region in which the speed profile is specified.
  9. Projectile according to any one of the preceding claims,
    characterized in that
    loose fragmentation elements (7) that form a closed fragment cone (11) oriented in the longitudinal direction of the projectile (L) on ignition of the explosive (3) are introduced in the region of the tip (6) of the projectile.
  10. Projectile according to Claim 9,
    characterized in that
    the speed profile is configured such that the open fragment cone (8) formed by the fragments accelerated off with different radial speeds adjoins the closed fragment cone (11).
EP15003460.1A 2014-12-19 2015-12-04 Projectile Active EP3034990B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102014019202.4A DE102014019202A1 (en) 2014-12-19 2014-12-19 bullet

Publications (2)

Publication Number Publication Date
EP3034990A1 EP3034990A1 (en) 2016-06-22
EP3034990B1 true EP3034990B1 (en) 2018-09-19

Family

ID=54783333

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15003460.1A Active EP3034990B1 (en) 2014-12-19 2015-12-04 Projectile

Country Status (3)

Country Link
EP (1) EP3034990B1 (en)
DE (1) DE102014019202A1 (en)
ZA (1) ZA201509170B (en)

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1085045A (en) 1966-02-10 1967-09-27 Forsvarets Fabriksverk A projectile or aerial bomb
US3498224A (en) 1968-10-04 1970-03-03 Us Navy Fragmentation warhead having circumferential layers of cubical fragments
DE2337690A1 (en) 1973-07-25 1975-02-13 Messerschmitt Boelkow Blohm AMMUNITION, IN PARTICULAR FOR COMBATING AIRPLANES OR SIMILAR AIR TARGETS
US4077326A (en) 1970-03-19 1978-03-07 The United States Of America As Represented By The Secretary Of The Navy Impulse compensated continuous rod warhead
DE3036463A1 (en) 1980-09-27 1985-12-19 Rheinmetall GmbH, 4000 Düsseldorf TARGET-BREAKING RIFLE BULLET
US4644867A (en) 1984-04-02 1987-02-24 Aktiebolaget Bofors Shell case with non-compressible fragments metallurgically bonded to the casing
US4768440A (en) 1986-05-23 1988-09-06 Matra Warhead for missiles
EP0314092A2 (en) 1987-10-30 1989-05-03 DIEHL GMBH & CO. High explosive projectile with a projectile body
EP0338874A1 (en) 1988-03-31 1989-10-25 GIAT Industries Explosive projectile producing explosions in a definite pattern
EP0718590A1 (en) 1994-12-20 1996-06-26 Loral Vought Systems Corporation Fragmentation warhead having low velocity radial deployment with predetermined pattern
EP0752572A1 (en) 1995-07-07 1997-01-08 Giat Industries Warhead with hollow charge and munition having such a warhead
RU2118790C1 (en) 1997-07-01 1998-09-10 Научно-исследовательский институт специального машиностроения МГТУ им.Н.Э.Баумана Fragmentation shell
RU2148244C1 (en) 1998-09-10 2000-04-27 Научно-исследовательский институт специального машиностроения Московского государственного технического университета им.Н.Э.Баумана Projectile with ready-made injurious members
US6186072B1 (en) 1999-02-22 2001-02-13 Sandia Corporation Monolithic ballasted penetrator
DE69619300T2 (en) 1995-06-05 2003-03-06 Lockheed Corp Projectile with means for the radial scattering of elements according to a certain distribution
EP1316774A1 (en) 2001-11-28 2003-06-04 GEKE Technologie GmbH High penetration and lateral effect projectiles having an integrated fragment generator
EP1516153A1 (en) 2002-06-26 2005-03-23 GEKE Technologie GmbH Projectile or warhead
DE102006025330A1 (en) 2006-05-31 2007-12-06 WEIHRAUCH, Günter Projectile, active body or warhead for combating massive, structured and planar targets
EP1893935A1 (en) 2005-06-21 2008-03-05 GEKE Technologie GmbH Projectile or warhead
US7451704B1 (en) 2003-03-20 2008-11-18 The United States Of America As Represented By The Secretary Of The Army Multifunctional explosive fragmentation airburst munition
DE102007048040A1 (en) 2007-10-05 2009-04-09 Rheinmetall Waffe Munition Gmbh Housing material for an explosive bullet, a hand grenade or the like
RU2408837C1 (en) 2009-07-06 2011-01-10 Российская Федерация, от имени которой выступает Министерство обороны Российской Федерации Anti-personnel fragmentation ammunition
US20110023743A1 (en) 2007-11-23 2011-02-03 Rheinmetall Waffe Munition Gmbh Projectile
EP2407747A2 (en) 2010-07-12 2012-01-18 Explosia a.s. Projectile with tubular penetrator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2353204C3 (en) * 1973-10-24 1978-09-21 Fa. Diehl, 8500 Nuernberg Explosive projectile

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1085045A (en) 1966-02-10 1967-09-27 Forsvarets Fabriksverk A projectile or aerial bomb
US3498224A (en) 1968-10-04 1970-03-03 Us Navy Fragmentation warhead having circumferential layers of cubical fragments
US4077326A (en) 1970-03-19 1978-03-07 The United States Of America As Represented By The Secretary Of The Navy Impulse compensated continuous rod warhead
DE2337690A1 (en) 1973-07-25 1975-02-13 Messerschmitt Boelkow Blohm AMMUNITION, IN PARTICULAR FOR COMBATING AIRPLANES OR SIMILAR AIR TARGETS
DE3036463A1 (en) 1980-09-27 1985-12-19 Rheinmetall GmbH, 4000 Düsseldorf TARGET-BREAKING RIFLE BULLET
US4644867A (en) 1984-04-02 1987-02-24 Aktiebolaget Bofors Shell case with non-compressible fragments metallurgically bonded to the casing
US4768440A (en) 1986-05-23 1988-09-06 Matra Warhead for missiles
EP0314092A2 (en) 1987-10-30 1989-05-03 DIEHL GMBH & CO. High explosive projectile with a projectile body
EP0338874A1 (en) 1988-03-31 1989-10-25 GIAT Industries Explosive projectile producing explosions in a definite pattern
EP0718590A1 (en) 1994-12-20 1996-06-26 Loral Vought Systems Corporation Fragmentation warhead having low velocity radial deployment with predetermined pattern
DE69619300T2 (en) 1995-06-05 2003-03-06 Lockheed Corp Projectile with means for the radial scattering of elements according to a certain distribution
EP0752572A1 (en) 1995-07-07 1997-01-08 Giat Industries Warhead with hollow charge and munition having such a warhead
US5801323A (en) 1995-07-07 1998-09-01 Giat Industries Shaped-charged warhead and munition equipped with such a warhead
RU2118790C1 (en) 1997-07-01 1998-09-10 Научно-исследовательский институт специального машиностроения МГТУ им.Н.Э.Баумана Fragmentation shell
RU2148244C1 (en) 1998-09-10 2000-04-27 Научно-исследовательский институт специального машиностроения Московского государственного технического университета им.Н.Э.Баумана Projectile with ready-made injurious members
US6186072B1 (en) 1999-02-22 2001-02-13 Sandia Corporation Monolithic ballasted penetrator
EP1316774A1 (en) 2001-11-28 2003-06-04 GEKE Technologie GmbH High penetration and lateral effect projectiles having an integrated fragment generator
EP1516153A1 (en) 2002-06-26 2005-03-23 GEKE Technologie GmbH Projectile or warhead
US7451704B1 (en) 2003-03-20 2008-11-18 The United States Of America As Represented By The Secretary Of The Army Multifunctional explosive fragmentation airburst munition
EP1893935A1 (en) 2005-06-21 2008-03-05 GEKE Technologie GmbH Projectile or warhead
DE102006025330A1 (en) 2006-05-31 2007-12-06 WEIHRAUCH, Günter Projectile, active body or warhead for combating massive, structured and planar targets
DE102007048040A1 (en) 2007-10-05 2009-04-09 Rheinmetall Waffe Munition Gmbh Housing material for an explosive bullet, a hand grenade or the like
US20110023743A1 (en) 2007-11-23 2011-02-03 Rheinmetall Waffe Munition Gmbh Projectile
RU2408837C1 (en) 2009-07-06 2011-01-10 Российская Федерация, от имени которой выступает Министерство обороны Российской Федерации Anti-personnel fragmentation ammunition
EP2407747A2 (en) 2010-07-12 2012-01-18 Explosia a.s. Projectile with tubular penetrator

Also Published As

Publication number Publication date
EP3034990A1 (en) 2016-06-22
ZA201509170B (en) 2017-03-29
DE102014019202A1 (en) 2016-06-23

Similar Documents

Publication Publication Date Title
DE19700349C2 (en) Missile or warhead to fight armored targets
EP0291845B1 (en) Projectile with core and jacket
EP0101795A1 (en) Fragmentation projectile with splinter effect
EP3601938A1 (en) Projectile, in particular in the medium caliber range
DE3316440C2 (en)
EP2024706B1 (en) Projectile, active body or warhead for fighting massive, structured and planar targets
DE3617415C2 (en) Sub-caliber sabot bullet
EP3742106B1 (en) Penetrator, use of a penetrator and projectile
EP0324371B1 (en) Initiator having a long delay
WO2021164961A1 (en) Penetrator and use of a penetrator
DE1910779A1 (en) IMPROVEMENTS TO THE EFFECTIVENESS OF HOLLOW CHARGE
EP3034990B1 (en) Projectile
DE102004035385A1 (en) Partial decomposition projectile with solid core and core of pressed powder
DE602004007080T2 (en) tank shell
DE3904625C2 (en)
AT407573B (en) IGNITION NEEDLE FOR BULLET IGNITION
CH660627A5 (en) CHARGE.
DE19752102B4 (en) Armor piercing projectile with balancing effect
DE2454584A1 (en) TUBULAR SHAPE
DE1578077C2 (en) Warhead for an anti-tank projectile
DE4126793C1 (en) Tandem hollow charge weapon head with gas shield - forming unit with main charge for acceleration along shell when initial charge detonates
DE4033754C2 (en)
DE3932825C2 (en)
WO2005073664A1 (en) Multi-purpose cascade projectile, in particular for medium-calibre ammunition
DE4331236C1 (en) Active armour-piercing warhead

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20161215

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DIEHL DEFENCE GMBH & CO. KG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170707

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180426

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015005920

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1043755

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181219

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181220

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20180919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190119

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190119

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502015005920

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: RHEINMETALL WAFFE MUNITION GMBH

Effective date: 20190612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181204

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181204

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180919

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20151204

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 502015005920

Country of ref document: DE

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20210127

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231220

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20231222

Year of fee payment: 9

Ref country code: FR

Payment date: 20231221

Year of fee payment: 9

Ref country code: AT

Payment date: 20231221

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240214

Year of fee payment: 9