EP3027341A1 - Infiltrierbares einlegeteil - Google Patents

Infiltrierbares einlegeteil

Info

Publication number
EP3027341A1
EP3027341A1 EP14744340.2A EP14744340A EP3027341A1 EP 3027341 A1 EP3027341 A1 EP 3027341A1 EP 14744340 A EP14744340 A EP 14744340A EP 3027341 A1 EP3027341 A1 EP 3027341A1
Authority
EP
European Patent Office
Prior art keywords
particles
insert
vol
powder
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP14744340.2A
Other languages
English (en)
French (fr)
Other versions
EP3027341B1 (de
Inventor
Udo Rotmann
Roland Ruch
Patrick Sutter
Frank Winger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle International GmbH
Original Assignee
Mahle International GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mahle International GmbH filed Critical Mahle International GmbH
Publication of EP3027341A1 publication Critical patent/EP3027341A1/de
Application granted granted Critical
Publication of EP3027341B1 publication Critical patent/EP3027341B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/0009Cylinders, pistons
    • B22D19/0027Cylinders, pistons pistons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/10Cores; Manufacture or installation of cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D18/00Pressure casting; Vacuum casting
    • B22D18/04Low pressure casting, i.e. making use of pressures up to a few bars to fill the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/007Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/008Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of engine cylinder parts or of piston parts other than piston rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron

Definitions

  • the present invention relates to an infiltratable insert for a cast light metal piston of an internal combustion engine.
  • the invention also relates to a method for producing a light metal piston using such an insert.
  • Light metal pistons have long been used in internal combustion engines due to their lower weight and lower inertial forces.
  • reinforcements in the form of so-called ring carriers are used.
  • As a material for such ring carriers are in particular iron alloys into consideration, which generally have a coefficient of expansion, which is as close as possible to the piston material.
  • iron and aluminum alloys have very different thermal conductivities, thermal stresses at the interfaces can lead to high stresses, which are greater the more different the coefficients of thermal expansion of the two materials used for the piston on the one hand and the ring carrier on the other.
  • a crack between the ring carrier and the piston usually leads to failure of the engine and must therefore be avoided at all costs.
  • the bond between the ring carrier and the piston is usually metallurgically achieved by the known Alfinier perspectives in which the ring carrier is so long immersed in an aluminum melt until a diffusion layer has formed. Then this alfin Arthur ring carrier is poured around during the casting of the piston of the melt of the piston alloy, during which the alfene bond is formed during the subsequent solidification. Due to the high ignition pressures of modern diesel engines, almost all pistons used for this purpose in the first annular groove are reinforced with cast-iron ring carriers, mostly austenite.
  • a composite Druckgit compiler for the production of aluminum pistons for internal combustion engines is known in which a ring carrier made of metal foam of the materials nickel, copper, iron or alloys thereof with a volume fraction of the piston of 3-50% at a casting pressure of be infiltrated at least 392 bar in the die casting to the composite with the piston alloy.
  • a metallurgical bond can be produced by a subsequent multi-stage heat treatment, for example, solution annealing, aging, or the like.
  • DE 196 35 326 A1 discloses a method for producing a light alloy composite element, in which initially a porous composite material is held in a cavity of a casting mold. Subsequently, a molten light alloy is poured into the cavity of the mold by applying a gas pressure, whereby the pores of the porous composite forming material are impregnated with the molten light alloy. This forms a composite section formed of a composite material of the light alloy and the composite forming material. From DE 26 39 294 C2 is for different highly porous sintered materials based on chromium-nickel and Cu, Ni, Fe, Ni-Fe foam materials by infiltration under solidification pressures between 2500 and 1000 bar for open porosities of 25-38% for use as Ring carrier described.
  • the present invention is concerned with the problem of providing an insert for an improved embodiment, which in particular enables better infiltration.
  • the present invention is based on the general idea of choosing a sintered material for an infiltratable insert powder with a completely novel grain composition in the manner of a new grading curve, whereby the open porosity and thus the infiltration of the insert made of this sintered material is significantly improved ,
  • This is achieved, for example, in that the grading curve is narrower, that is to say the size distribution of the individual sintered particles is narrower and thus the sintering powder from which the sintered material is produced is more homogeneous than usual.
  • the powder used according to the invention contains at least iron or its alloys, preferably also nickel, copper or their alloys, and in this case comprises particles of different particle sizes, with at most 4 percent by volume of the powder consisting of particles having a diameter of less than 75 ⁇ .
  • the size distribution of the individual particles is made significantly narrower, the limitation of the grain sizes below the threshold, in particular the previously occurring filling of pores, which are then no longer available for infiltration limited.
  • such a narrow restriction of the particle sizes downwards is not provided, as a result of which a significantly increased degree of filling of the pores remaining between larger sintered particles is achieved.
  • the powder used for the sintered material of the insert has a proportion of 0-4.0% vol. Particles with a diameter of 0-75 ⁇ on. In one embodiment, at most 10% vol., Preferably at most 2% vol. of the powder on particles with a diameter of 75-1 ⁇ . In a particularly preferred embodiment further comprise at most 6% vol. of the powder particle diameter in the range of 106-150 ⁇ on. Accordingly, in this preferred embodiment at least 88% vol. of the powder particle diameter greater than 150 ⁇ on.
  • the powder can be achieved that the remaining between the individual particles in the sintered material and infiltratable by a later light metal during the casting of the light metal piston pores are not completely filled, so that these pores for infiltration with the light metal available stand, whereby a significantly improved bond between the insert, which may be formed in a piston, for example, as a ring carrier, as a bowl edge or as a bolt eye, can be achieved.
  • At least 50% vol. the powder particle diameter of 106-212 ⁇ on Due to the high proportion of powder within a relatively narrow particle size range, the formation of a high porosity and thus promoted an easily infiltrated sintered material. In another embodiment accounts for at least 50% Vol. on particles with diameters greater than 212 ⁇ . Due to the high proportion of larger particles, a coarse-pored structure is achieved, which also facilitates infiltration.
  • a powder suitable for producing the sintered material according to the invention has a proportion of 0.5 to 6.0% by volume. Particles with a diameter of 106-150 ⁇ on.
  • the mentioned lower limit makes it clear that with such a sieving line or particle size distribution ultrafine particles for complete filling of the pores required for the infiltration are not available or only to an insufficient extent.
  • the sintered insert produced from the sintered material according to the invention has 50-80% pores, that is to say a 50-80% porosity which can optionally be filled at least in part by the light metal.
  • a powder which is relatively homogeneous in terms of particle size not only is the porosity of the sintered material produced higher, but the individual pores are also substantially larger, which further improves flow through with a light metal melt.
  • At least individual sintered particles of the sintered material are coated with a binder, for example with a resin, which increases the green state stability and burns during sintering.
  • a resin which increases the green state stability and burns during sintering.
  • the resin firmly holds the individual sintered particles together and thus improves the strength of the pressed green compact.
  • the binder or the resin represents a porosity of the insert reducing coating of individual sintered particles, which during the subsequent casting of the light metal piston infiltration and thus deteriorates the connection between the light metal of the piston and the insert.
  • the binder burns the resin and thus the previously reduced porosity of this again so that it can be used for the infiltration process.
  • the binder may also be configured to degrade during sintering by a different chemical reaction than oxidation.
  • the insert is fed during sintering instead of air another suitable gas, such as an endo gas.
  • a density of the insert is about 2.5-4.7 g / cm 3 .
  • the density of aluminum is, for example, about 2.7 g / cm 3 , so that with an infiltration of the insert with light metal, such as aluminum, always a density of less than 5g / cm 3 can be achieved. Due to its high porosity and its comparatively low density, the insert thus increases the weight of the light metal piston by a much smaller amount than a solid cast part made of an iron alloy.
  • the invention also relates to a method for producing a light metal piston, for example a magnesium or aluminum piston, using an insert described above, in which the liquid light metal is poured under a casting pressure of about 0.5-15 bar in a mold and in infiltrated the insert arranged in the mold.
  • hypoeutectic alloys of aluminum are used with silicon and / or copper. This avoids the formation of Si or Cu phases, which can arise in particular in a hypereutectic Al alloy. This is undesirable because, when infiltrated, the sintered material may act like a filter whose pores do not allow these phases to pass, so that they accumulate on its surface.
  • the layer formed thereby separates the insert from the cast piston body and forms a Weak point, which can lead to rejects or later failure of the piston.
  • the casting of the light metal piston can be done with or without back pressure, the casting pressure should be greater by at least 0.1 bar than the back pressure.
  • the casting of the light metal piston is carried out under protective gas, in particular using nitrogen or argon.
  • protective gas in particular using nitrogen or argon.
  • the cast piston is solution annealed or overaged.
  • so-called precipitation hardening can take place by solution heat treatment, as a result of which the strength of the light metal piston can be increased.
  • the curing can be done in principle in three stages, namely the actual solution annealing, quenching and subsequent aging (hot or cold).
  • the solution heat treatment is carried out at temperatures of about 480 ° to about 50 ° C, wherein a temperature is selected at which a sufficient amount of the alloying elements is dissolved in the solid solution, so that the hardening effect occurs after quenching and aging.
  • the overaging of such an aluminum alloy can also take place.
  • the casting molds are usually vented during the casting of the aluminum piston in order to achieve complete filling of the casting mold and an optimized infiltration process of the insert.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)
  • Powder Metallurgy (AREA)

Abstract

Die vorliegende Erfindung betrifft ein infiltrierbares Einlegeteil aus einem Sinterwerkstoff für einen gegossenen Kolben einer Brennkraftmaschine, das aus einem zumindest Eisen, vorzugsweise auch Nickel und Kupfer oder deren Legierungen aufweisenden Pulverhergestellt ist, wobei der Sinterwerkstoff Partikel unterschiedlicher Korngrößen umfasst und höchstens 4%Vol.der Sinterpartikel einen Durchmesser von kleiner als 75 µm aufweisen. Hierdurch kann eine höhere und gröbere Porosität des Sinterwerkstoffs und ein verbesserter Verbund zwischen dem Gussmaterial des Kolbens und dem Einlegeteil erreicht werden.

Description

Infiltrierbares Einlegeteil
Die vorliegende Erfindung betrifft ein infiltrierbares Einlegeteil für einen gegossenen Leichtmetallkolben einer Brennkraftmaschine. Die Erfindung betrifft außerdem ein Verfahren zur Herstellung eines Leichtmetallkolbens unter Verwendung eines derartigen Einlegeteils.
Leichtmetallkolben werden aufgrund ihres geringeren Gewichts und ihrer geringeren Trägheitskräfte bereits seit langem in Brennkraftmaschinen eingesetzt. Um insbesondere eine erste Ringnut eines derartigen Leichtmetallkolbens, beispielsweise eines Aluminiumkolbens, gegen Schwelldruckbelastungen zu sichern, werden Bewehrungen in Form von sogenannten Ringträgern eingesetzt. Als Werkstoff für derartige Ringträger kommen insbesondere Eisenlegierungen in Betracht, die in der Regel einen Ausdehnungskoeffizienten aufweisen, der dem des Kol- benwerkstoffs möglichst ähnlich ist. Da jedoch beispielsweise Eisen- und Aluminiumlegierungen sehr unterschiedliche Wärmeleitfähigkeiten haben, kann es bei thermischen Wechselbelastungen an den Grenzflächen zu hohen Spannungen kommen, die umso größer sind, je unterschiedlicher die Wärmeausdehnungskoeffizienten der beiden verwendeten Materialien für den Kolben einerseits und den Ringträger andererseits sind. Ein Riss zwischen dem Ringträger und dem Kolben führt üblicherweise zum Versagen des Motors und muss daher unbedingt vermieden werden. Die Bindung zwischen dem Ringträger und dem Kolben wird in der Regel metallurgisch durch den bekannten Alfinierprozess erreicht, bei welchem der Ringträger so lang in eine Aluminiumschmelze getaucht wird, bis sich eine Diffusionsschicht gebildet hat. Dann wird dieser alfinierte Ringträger beim Abguss des Kolbens von der Schmelze der Kolbenlegierung umgössen, wobei während der folgenden Erstarrung die Alfinbindung entsteht. Bedingt durch die hohen Zünddrücke moderner Dieselmotoren werden nahezu alle hierfür verwendeten Kolben in der ersten Ringnut mit gusseisernen Ringträgern, zumeist aus Austenit, bewehrt. Der Trend zur Direkteinspritzung des Brennstoffs bei Benzinmotoren, verbunden mit steigenden Zünddrücken erfordert nun ebenfalls eine höhere Verschleißfestigkeit in der ersten Ringnut als dies übliche Kolbenlegierungen bieten können. Von besonderer Wichtigkeit ist dabei jedoch allgemein der Verbund zwischen dem Leichtmetall des Kolbens und dem darin eingegossenen Ringträger.
Aus der DE 34 18 405 C2 ist ein Verbund-Druckgießverfahren zur Herstellung von Aluminiumkolben für Brennkraftmaschinen bekannt, bei welchem ein Ringträger aus Metallschaum der Werkstoffe Nickel, Kupfer, Eisen oder Legierungen davon mit einem Volumenanteil des Kolbens von 3-50% bei einem Gießdruck von mindestens 392 bar im Druckguss zum Verbund mit der Kolbenlegierung infiltriert werden. Eine metallurgische Bindung kann durch eine anschließende mehrstufige Wärmebehandlung, beispielsweise Lösungsglühen, Altern, oder ähnliches erzeugt werden.
Aus der DE 196 35 326 A1 ist ein Verfahren zum Herstellen eines Leichtlegie- rungs-Verbundstoffelements bekannt, bei welchem zunächst ein poröses Ver- bundstoffbildungsmaterial in einem Hohlraum einer Gussform gehalten wird. Anschließend wird eine geschmolzene leichte Legierung in dem Hohlraum der Gussform durch Anlegen eines Gasdrucks eingegossen, wodurch die Poren des porösen Verbundstoffbildungsmaterials mit der geschmolzenen leichten Legierung getränkt werden. Hierdurch bildet sich ein Verbundstoffabschnitt, der aus einem Verbundstoffmaterial aus der leichten Legierung und dem Verbundstoffbildungs- material gebildet ist. Aus der DE 26 39 294 C2 ist für unterschiedliche hochporöse Sinterwerkstoffe auf Chrom-Nickel-Basis sowie Cu, Ni, Fe, Ni-Fe-Schaumwerkstoffe durch Infiltration unter Erstarrungsdrücken zwischen 2500 und 1000 bar für offene Porositäten von 25-38% zur Verwendung als Ringträger beschrieben.
Die vorliegende Erfindung beschäftigt sich mit dem Problem, für ein Einlegeteil eine verbesserte Ausführungsform anzugeben, die insbesondere eine bessere In- filtrierbarkeit ermöglicht.
Dieses Problem wird erfindungsgemäß durch die Gegenstände der unabhängigen Ansprüche gelöst. Vorteilhafte Ausführungsformen sind Gegenstand der abhängigen Ansprüche.
Die vorliegende Erfindung beruht auf dem allgemeinen Gedanken, für einen Sinterwerkstoff für ein infiltrierbares Einlegeteil ein Pulver mit einer völlig neuartigen Kornzusammensetzung in der Art einer neuen Sieblinie zu wählen, wodurch die offene Porosität und damit auch die Infiltrierbarkeit des aus diesem Sinterwerkstoff hergestellten Einlegeteils deutlich verbessert wird. Erreicht wird dies beispielsweise dadurch, dass die Sieblinie enger gefasst ist, das heißt die Größenverteilung der einzelnen Sinterpartikel enger und damit das Sinterpulver, aus dem der Sinterwerkstoff erzeugt wird, homogener als üblicherweise ist. Das erfindungsgemäß eingesetzte Pulver enthält zumindest Eisen oder dessen Legierungen, vorzugsweise auch Nickel, Kupfer oder deren Legierungen, und umfasst dabei Partikel unterschiedlicher Korngrößen, wobei höchstens 4 Volumenprozent des Pulvers aus Partikeln mit einem Durchmesser von kleiner als 75 μιτι bestehen. Dabei können zumindest 28%Vol., bevorzugt mindestens 50%Vol. und in einer besonders bevorzugten Ausführungsform mindestens 88%Vol. des Pulvers Sinterpartikel mit einem Durchmesser von größer als 150 μιτι aufweisen. Hierdurch ist es möglich, den pulverförmigen Sinterwerkstoff gröber als üblich auszu- bilden, wobei üblicherweise 90% der Sinterpartikel einen Durchmesser von kleiner als 150 μιτι aufweisen. Neben der Begrenzung der Partikel mit einem Durchmesser von kleiner als 75 μιτι auf maximal 4%Vol. wird die Größenverteilung der einzelnen Partikel deutlich enger gefasst, wobei die Beschränkung der Korngrößen unterhalb des Schwellenwertes insbesondere das bisher auftretende Füllen von Poren, die dann nicht mehr zur Infiltration zur Verfügung stehen, beschränkt. Bei herkömmlichen Sinterwerkstoffen ist eine derart enge Beschränkung der Partikelgrößen nach unten nicht vorgesehen, wodurch ein deutlich erhöhter Füllgrad auch der zwischen größeren Sinterpartikeln verbleibenden Poren erreicht wird.
Erfindungsgemäß weist das für den Sinterwerkstoff des Einlegeteils verwendete Pulver einen Anteil von 0-4,0%Vol. Partikel mit einem Durchmesser von 0-75μηη auf. In einer Ausführungsform entfallen höchstens 10%Vol., bevorzugt höchstens 2%Vol. des Pulvers auf Partikel mit einem Durchmesser von 75-1 Οθμιτι. In einer besonders bevorzugten Ausführungsform weisen ferner höchstens 6%Vol. des Pulvers Partikeldurchmesser im Bereich von 106-150μηη auf. Demnach weisen in dieser bevorzugten Ausführungsform mindestens 88%Vol. des Pulvers Partikeldurchmesser größer als 150μηη auf. Bereits durch diese enge Beschränkung der Feinstbestandteile des Pulvers kann erreicht werden, dass die zwischen den einzelnen Partikeln im Sinterwerkstoff verbleibenden und von einem späteren Leichtmetall beim Gießen des Leichtmetallkolbens infiltrierbaren Poren nicht vollständig gefüllt werden, so dass diese Poren für die Infiltration mit dem Leichtmetall zur Verfügung stehen, wodurch ein deutlich verbesserter Verbund zwischen dem Einlegeteil, welches beispielsweise als Ringträger, als Muldenrand oder als Bolzenauge in einem Kolben ausgebildet sein kann, erreicht werden kann.
Dazu weisen in einer Ausführungsform mindestens 50%Vol. des Pulvers Partikeldurchmesser von 106-212μηη auf. Durch den hohen Pulveranteil innerhalb einer relativ engen Korngrößenbandbreite wird die Entstehung einer hohen Porosität und damit eines leicht infiltrierbaren Sinterwerkstoffs gefördert. In einer anderen Ausführungsform entfallen mindestens 50%Vol. auf Partikel mit Durchmessern größer als 212μηη. Durch den hohen Anteil größerer Partikel wird eine grobporigere Struktur erzielt, die ebenfalls die Infiltration erleichtert.
Zweckmäßig weist ein zur Herstellung des erfindungsgemäßen Sinterwerkstoffs geeignetes Pulver einen Anteil von 0,5 bis 6,0%Vol. Partikel mit einem Durchmesser von 106-150μηη auf. Insbesondere die genannte Untergrenze macht deutlich, dass bei einer derartigen Sieblinie bzw. Korngrößenverteilung Feinstpartikel zum vollständigen Füllen der für die Infiltration erforderlichen Poren nicht oder nur im unzureichenden Maße vorhanden sind. Hierdurch kann beispielsweise erreicht werden, dass das aus dem erfindungsgemäßen Sinterwerkstoff hergestellte, das heißt gesinterte Einlegeteil, 50-80 % Poren, das heißt eine 50-80%-ige Porosität aufweist, die gegebenenfalls zumindest teilweise durch das Leichtmetall ausgefüllt werden kann. Durch ein hinsichtlich der Partikelgröße relativ homogenes Pulver ist nicht nur die Porosität des erzeugten Sinterwerkstoffs höher, sondern die einzelnen Poren sind auch wesentlich größer, was die Durchströmbarkeit mit einer Leichtmetallschmelze weiter verbessert.
Bei einer weiteren vorteilhaften Ausführungsform der erfindungsgemäßen Lösung sind zumindest einzelne Sinterpartikel des Sinterwerkstoffs mit einem Binder, beispielsweise mit einem Harz, beschichtet, welches die Grünstandfestigkeit erhöht und beim Sintern verbrennt. Nach dem Pressen des Grünlings hält das Harz die einzelnen Sinterpartikel jedoch fest aneinander und verbessert somit die Festigkeit des gepressten Grünlings. Ein derartiges Harz erhöht somit die Formtreue des zunächst noch nicht gesinterten Einlegeteils und erleichtert dadurch dessen beschädigungsfreie Handhabung. Der Binder bzw. das Harz stellt dabei eine die Porosität des Einlegeteils reduzierende Beschichtung einzelner Sinterpartikel dar, welche beim späteren Gießen des Leichtmetallkolbens die Infiltration und damit die Verbindung zwischen dem Leichtmetall des Kolbens und dem Einlegeteil verschlechtert. Beim Sintern des Einlegeteils jedoch verbrennt der Binder das Harz und somit die zuvor von diesem reduzierte Porosität wieder frei, so dass diese für den Infiltrationsprozess genutzt werden kann. Alternativ kann der Binder auch dazu eingerichtet sein, beim Sintern durch eine andere chemische Reaktion als eine Oxidation abgebaut zu werden. Dazu wird dem Einlegeteil während des Sinterns statt Luft ein anderes geeignetes Gas, z.B. ein Endogas zugeführt.
Bei einer vorteilhaften Weiterbildung der erfindungsgemäßen Lösung liegt eine Dichte des Einlegeteils bei ca. 2,5-4,7g/cm3. Die Dichte von Aluminium liegt beispielsweise bei ca. 2,7g/cm3, so dass bei einer Infiltration des Einlegteils mit Leichtmetall, beispielsweise Aluminium, stets noch eine Dichte von unter 5g/cm3 erreicht werden kann. Das Einlegeteil erhöht somit aufgrund seiner hohen Porosität und seiner vergleichsweise geringe Dichte das Gewicht des Leichtmetallkolbens um einen wesentlich geringeren Betrag als ein aus einer Eisenlegierung gefertigtes massives Eingussteil.
Die Erfindung betrifft außerdem ein Verfahren zur Herstellung eines Leichtmetallkolbens, beispielsweise eines Magnesium- oder Aluminiumkolbens, unter Verwendung eines zuvor beschriebenen Einlegeteils, bei welchem das flüssige Leichtmetall unter einem Gießdruck von ca. 0,5-15 bar in eine Gussform eingefüllt wird und das in der Gussform angeordnete Einlegeteil infiltriert. In einer bevorzugten Ausführungsform werden untereutektische Legierungen des Aluminiums mit Silizium und/oder Kupfer verwendet. Dadurch wird eine Bildung von Si- oder Cu- Phasen vermieden, die insbes. in einer übereutektischen AI-Legierung entstehen können. Dies ist deswegen unerwünscht, weil der Sinterwerkstoff beim Infiltrieren wie ein Filter wirken kann, dessen Poren diese Phasen nicht durchlassen, so dass sie sich an dessen Oberfläche ansammeln. Die dadurch gebildete Schicht trennt das Einlegeteil von dem gegossenen Kolbenkörper und bildet eine Schwachstelle, die zu Ausschuss oder einem späteren Ausfall des Kolbens führen kann. Das Gießen des Leichtmetallkolbens kann dabei mit oder ohne Gegendruck erfolgen, wobei der Gießdruck um mindestens 0,1 bar größer sein sollte als der Gegendruck.
Bei einer weiteren vorteilhaften Ausführungsform der erfindungsgemäßen Lösung erfolgt das Gießen des Leichtmetallkolbens, beispielsweise des Aluminiumkolbens, unter Schutzgas, insbesondere unter Nutzung von Stickstoff oder Argon. Hierdurch kann eine Oxidation des Leichtmetalls beim Gießen verhindert werden, wobei eine derartige unerwünschte Oxidation des Leichtmetalls zum Verstopfen der Poren des Sinterwerkstoffs durch Oxide führen und dadurch eine gute Infiltration des Einlegeteils und dessen mechanische Bindung an den Kolbenkörper wie zuvor beschrieben erschweren kann. Durch die Verwendung des Schutzgases kann die Oxidation verhindert und damit die Infiltration des Einlegeteils verbessert werden.
Zweckmäßig wird der gegossene Kolben lösungsgeglüht bzw. überaltert. Insbesondere bei Aluminiumlegierungen kann durch das Lösungsglühen ein sogenanntes Ausscheidungshärten erfolgen, wodurch die Festigkeit des Leichtmetallkolbens gesteigert werden kann. Das Aushärten kann dabei prinzipiell in drei Stufen erfolgen, nämlich dem eigentlichen Lösungsglühen, dem Abschrecken und dem anschließenden Auslagern (warm oder kalt). Das Lösungsglühen erfolgt dabei bei Temperaturen von ca. 480° bis über 50°C, wobei eine Temperatur gewählt wird, bei welcher eine ausreichende Menge von den Legierungselementen im Mischkristall gelöst ist, so dass der Aushärtungseffekt nach dem Abschrecken und der Auslagerung eintritt. In entsprechender Weise kann auch das Überaltern einer derartigen Aluminiumlegierung erfolgen. Die Gussfornn wird während des Gießens des Aluminiumkolbens üblicherweise entlüftet, um ein vollständiges Füllen der Gussform und einen optimierten Infiltra- tionsprozess des Einlegeteils erzielen zu können.

Claims

Ansprüche
1 . Infiltrierbares Einlegeteil aus einem Sinterwerkstoff für einen gegossenen Kolben einer Brennkraftmaschine, das aus einem zumindest Eisen oder dessen Legierungen aufweisenden Pulver hergestellt ist, wobei das Pulver Partikel unterschiedlicher Korngrößen umfasst und höchstens 4%Vol. des Pulvers aus Partikeln mit einem Durchmesser von kleiner als 75 μιτι bestehen.
2. Einlegeteil nach Anspruch 1 ,
dadurch gekennzeichnet,
dass das Pulver einen Anteil von höchstens 10%Vol. Partikel mit einem Durchmesser von 75-1 Οθμιτι aufweist.
3. Einlegeteil nach Anspruch 2,
dadurch gekennzeichnet,
dass das Pulver einen Anteil von höchstens 2%Vol. Partikel mit einem
Durchmesser von 75-1 Οθμιτι aufweist und
das Pulver einen Anteil von höchstens 6%Vol. Partikel mit einem Durchmesser von 106-150μηη aufweist.
4. Einlegeteil nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet,
dass das Pulver einen Anteil von mindestens 28%Vol. Partikel mit einem Durchmesser von größer als 150μηη aufweist.
5. Einlegeteil nach Anspruch 4,
dadurch gekennzeichnet,
dass das Pulver einen Anteil von mindestens 50%Vol. Partikel mit einem Durchmesser von größer als 150μηη aufweist.
6. Einlegeteil nach Anspruch 5,
dadurch gekennzeichnet,
dass das Pulver einen Anteil von mindestens 88%Vol. Partikel mit einem Durchmesser von größer als 150μηη aufweist.
7. Einlegeteil nach einem der Ansprüche 1 bis 6,
dadurch gekennzeichnet,
dass das Pulver einen Anteil von mindestens 50%Vol. Partikel mit einem Durchmesser von 106-212μηη aufweist.
8. Einlegeteil nach einem der Ansprüche 1 bis 6,
dadurch gekennzeichnet,
dass das Pulver einen Anteil von mindestens 50%Vol. Partikel mit einem Durchmesser größer als 212μηη aufweist.
9. Einlegeteil nach einem der Ansprüche 1 bis 8,
dadurch gekennzeichnet,
dass das Pulver ferner Nickel, Kupfer oder Legierungen derselben enthält.
10. Einlegeteil nach einem der Ansprüche 1 bis 9,
dadurch gekennzeichnet,
dass zumindest einzelne Sinterpartikel mit einem Binder, insbesondere einem Harz, beschichtet sind, welcher dazu eingerichtet ist, eine zur Handhabung des Grünlings vor dem Sintern geeignete Grünstandfestigkeit herzustellen und beim Sintern zu verbrennen.
1 1 . Einlegeteil nach einem der Ansprüche 1 bis 10,
dadurch gekennzeichnet,
dass das gesinterte Einlegeteil 50-80 Vol.-% Poren aufweist.
12. Einlegeteil nach einem der Ansprüche 1 bis 1 1 ,
dadurch gekennzeichnet,
dass das Einlegeteil als Ringträger, als Bolzenauge oder als Muldenrand eines Kolbens ausgebildet ist.
13. Einlegeteil nach einem der Ansprüche 1 bis 12,
dadurch gekennzeichnet,
dass das Einlegeteil eine Dichte von ca. 2,5 - 4,7 g/cm3 aufweist.
14. Verfahren zu Herstellung eines Aluminiumkolbens unter Verwendung eines Einlegeteil nach einem der Ansprüche 1 bis 13, bei welchem das flüssige Aluminium unter einem Gießdruck von ca.- 0,5 bis 15 bar in eine Gussform eingefüllt wird und das in der Gussform angeordnete Einlegeteil infiltriert.
15. Verfahren nach Anspruch 14,
dadurch gekennzeichnet,
dass das Gießen des Aluminiumkolbens unter Schutzgas, insbesondere Stickstoff oder Argon, erfolgt, und/oder
dass das Gießen unter Gegendruck erfolgt, wobei der Gegendruck 0,1 bar kleiner ist als der Gießdruck.
16. Verfahren nach Anspruch 15, dadurch gekennzeichnet,
dass der gegossene Kolben lösungsgeglüht oder überaltert wird.
*****
EP14744340.2A 2013-07-31 2014-07-28 Verfahren zur herstellung eines leichtmetallkolbens unter verwendung eines einlegeteils Active EP3027341B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013215020.2A DE102013215020A1 (de) 2013-07-31 2013-07-31 Infiltrierbares Einlegeteil
PCT/EP2014/066168 WO2015014787A1 (de) 2013-07-31 2014-07-28 Infiltrierbares einlegeteil

Publications (2)

Publication Number Publication Date
EP3027341A1 true EP3027341A1 (de) 2016-06-08
EP3027341B1 EP3027341B1 (de) 2019-09-04

Family

ID=51228446

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14744340.2A Active EP3027341B1 (de) 2013-07-31 2014-07-28 Verfahren zur herstellung eines leichtmetallkolbens unter verwendung eines einlegeteils

Country Status (7)

Country Link
US (1) US10207319B2 (de)
EP (1) EP3027341B1 (de)
JP (1) JP6461954B2 (de)
CN (1) CN105451910B (de)
BR (1) BR112016001689B1 (de)
DE (1) DE102013215020A1 (de)
WO (1) WO2015014787A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015216321A1 (de) * 2015-08-26 2017-03-02 Mahle International Gmbh Verfahren zur Herstellung eines Kolbens
DE102015224588A1 (de) 2015-12-08 2017-06-08 Mahle International Gmbh Verfahren zum Herstellen eines porösen Formkörpers
IT201600126019A1 (it) * 2016-12-14 2018-06-14 Asso Werke S R L Pistone con anello alfin cofuso e processo per ottenerlo
DE102018219691A1 (de) * 2018-11-16 2020-05-20 Mahle International Gmbh Verfahren zum Herstellen eines Sintermaterials auf pulvermetallurgischem Wege
CN111842852A (zh) * 2020-07-30 2020-10-30 兰州理工大学 液模锻浸渗制备耐磨耐蚀高强度铜及铜合金结构件的方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2753859A (en) * 1952-03-07 1956-07-10 Thompson Prod Inc Valve seat insert
US3196501A (en) * 1961-01-26 1965-07-27 Balgarska Akademia Na Naukite Apparatus and method for metal casting
DE2639294C2 (de) * 1976-09-01 1982-05-13 Mahle Gmbh, 7000 Stuttgart Gepreßter Aluminiumkolben für Verbrennungsmotoren mit Einlagen aus einem anderen Werkstoff
DE3418405A1 (de) * 1983-05-18 1984-11-29 Mazda Motor Corp., Hiroshima Verfahren zur herstellung von gussteilen aus aluminiumlegierung und aus einer aluminiumlegierung bestehender kolben
JPS59218341A (ja) * 1983-05-25 1984-12-08 Mazda Motor Corp アルミニウム合金製ピストン
JPH02254132A (ja) * 1989-03-27 1990-10-12 Daihatsu Motor Co Ltd アルミ等の加圧鋳造用金属製部品を強化するために使用する鉄多孔体の製造方法
JP3212245B2 (ja) 1995-08-30 2001-09-25 マツダ株式会社 鋳造方法及び鋳造装置並びに鋳造品
JPH09256903A (ja) * 1996-03-26 1997-09-30 Unisia Jecs Corp 内燃機関のピストン及びその製造方法
DE19712624C2 (de) * 1997-03-26 1999-11-04 Vaw Motor Gmbh Aluminiummatrix-Verbundwerkstoff und Verfahren zu seiner Herstellung
JP2001276961A (ja) * 2000-03-30 2001-10-09 Mazda Motor Corp 金属多孔予備成形体及び該成形体を用いた金属複合部材の製造方法
US6719948B2 (en) * 2000-05-22 2004-04-13 Massachusetts Institute Of Technology Techniques for infiltration of a powder metal skeleton by a similar alloy with melting point depressed
FR2863186B1 (fr) 2003-12-04 2006-12-15 Toyota Jidoshokki Kk Element coule composite, substance poreuse a base de fer pour elements coules composites et carter sous pression procedes de fabrication de ce carter sous pression element constitutif de compresseurs
US20080060723A1 (en) * 2006-09-11 2008-03-13 Gm Global Technology Operations, Inc. Aluminum alloy for engine components
JP5337142B2 (ja) * 2010-12-28 2013-11-06 日立オートモティブシステムズ株式会社 内燃機関のピストンと該ピストンの製造法及び摺動部材
AT511300B1 (de) 2011-02-09 2019-03-15 Fill Gmbh Giessverfahren sowie giessanlage zur herstellung von werkstücken
DE102011013067A1 (de) * 2011-03-04 2012-09-06 Mahle International Gmbh Verfahren zur Herstellung eines Kolbens für einen Verbrennungsmotor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2015014787A1 *

Also Published As

Publication number Publication date
DE102013215020A1 (de) 2015-02-05
BR112016001689A2 (pt) 2017-08-01
US10207319B2 (en) 2019-02-19
CN105451910B (zh) 2019-04-26
JP2016535195A (ja) 2016-11-10
JP6461954B2 (ja) 2019-01-30
WO2015014787A1 (de) 2015-02-05
BR112016001689B1 (pt) 2020-10-20
US20160175927A1 (en) 2016-06-23
EP3027341B1 (de) 2019-09-04
CN105451910A (zh) 2016-03-30

Similar Documents

Publication Publication Date Title
EP3027341B1 (de) Verfahren zur herstellung eines leichtmetallkolbens unter verwendung eines einlegeteils
DE19681358B4 (de) Pulvergemisch aus Aluminiumlegierung sowie gesinterte Aluminiumlegierungen
DE112009002512B4 (de) Mengenchemieformulierung für Pulvermetall-Aluminiumlegierung
DE102011012142B3 (de) Aluminium-Matrixverbundwerkstoff, Halbzeug aus dem Aluminium-Matrixverbundwerkstoff und Verfahren zu dessen Herstellung
EP2870328A1 (de) Hochwärmeleitender ventilsitzring
DE2835033A1 (de) Verfahren zur herstellung eines leichtmetall-sinterkoerpers
DE2702602A1 (de) Formwerkzeuge zum formen von formbaren materialien sowie verfahren zur herstellung solcher formwerkzeuge
EP3150304A1 (de) Verfahren zur herstellung eines ventilsitzringes
DE102011121292A1 (de) Bremsscheibe aus einer Aluminium-Matrix-Verbundlegierung mit Siliziumcarbid-Partikeln und Herstellungsverfahren hierfür
DE102007059771A1 (de) Eingussteile mit Konditionierungsschicht zum Eingießen in Leichtmetalle
DE3801847A1 (de) Verfahren zur herstellung von kolben fuer brennkraftmaschinen sowie kolben, insbesondere hergestellt durch dieses verfahren
DE102006051200A1 (de) Verfahren zur Herstellung eines Körpers aus Metall-Keramik-Verbundwerkstoffen
DE102015216321A1 (de) Verfahren zur Herstellung eines Kolbens
DE102004059203A1 (de) Verbundgussteil, poröse Substanz auf Eisenbasis, Herstellungsverfahren und Anwendungen
DE10043108A1 (de) Metallurgische Bindung von Einsätzen mit mehrlagigen Beschichtungen innerhalb von Metallgußteilen
DE3444214A1 (de) Gegenstand mit einem gussmetallteil und einem gesinterten, metallischen teil, sowie verfahren zu dessen herstellung
EP1688517B1 (de) Verfahren zur Herstellung einer metallischen Haftvermittlungsschicht auf einem Umgusskörper
DE102004002714B3 (de) Verfahren zum Leichtmetall-Legierungs-Sintern
DE102006053018B4 (de) Zylinderkurbelgehäuse für ein Kraftfahrzeug
DE10236751A1 (de) Verfahren zur Herstellung eines Bauteils, Bauteil und Verwendung
AT165530B (de)
DE102007002833A1 (de) Keramischer Vorkörper zur Herstellung von Metall-Keramik Verbundwerkstoffen
DE102016122664A1 (de) Beschichtung für ein Trägermaterial, Kernteil zum Herstellen eines Verbundteils, Verbundteil und Verfahren zum Herstellen eines Verbundteils
DE2255975C2 (de) Anwendung des Verfahrens der Nitridierung von Eisen-Legierungsteilchen auf bestimmte Legierungspulver für die Herstellung von Polhörnern von Magnetköpfen
DE10117394A1 (de) Metall-keramische Bremsscheibe und Verfahren zu ihrer Herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160127

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170217

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190418

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1174648

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014012579

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190904

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191205

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200106

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014012579

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200105

26N No opposition filed

Effective date: 20200605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502014012579

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200728

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200728

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200728

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200728

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1174648

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904