EP3019574A1 - Compositions a base de 2,3,3,3-tetrafluoropropene presentant une miscibilite amelioree - Google Patents

Compositions a base de 2,3,3,3-tetrafluoropropene presentant une miscibilite amelioree

Info

Publication number
EP3019574A1
EP3019574A1 EP14736904.5A EP14736904A EP3019574A1 EP 3019574 A1 EP3019574 A1 EP 3019574A1 EP 14736904 A EP14736904 A EP 14736904A EP 3019574 A1 EP3019574 A1 EP 3019574A1
Authority
EP
European Patent Office
Prior art keywords
heat transfer
ammonia
equal
tetrafluoropropene
composition according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14736904.5A
Other languages
German (de)
English (en)
French (fr)
Inventor
Sophie GUERIN
Wissam Rached
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema France SA
Original Assignee
Arkema France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France SA filed Critical Arkema France SA
Publication of EP3019574A1 publication Critical patent/EP3019574A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/127Mixtures of organic and inorganic blowing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/142Compounds containing oxygen but no halogen atom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/143Halogen containing compounds
    • C08J9/144Halogen containing compounds containing carbon, halogen and hydrogen only
    • C08J9/146Halogen containing compounds containing carbon, halogen and hydrogen only only fluorine as halogen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/30Materials not provided for elsewhere for aerosols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/02Inorganic compounds
    • C11D7/04Water-soluble compounds
    • C11D7/06Hydroxides
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/50Solvents
    • C11D7/5036Azeotropic mixtures containing halogenated solvents
    • C11D7/504Azeotropic mixtures containing halogenated solvents all solvents being halogenated hydrocarbons
    • C11D7/5063Halogenated hydrocarbons containing heteroatoms, e.g. fluoro alcohols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/50Solvents
    • C11D7/5036Azeotropic mixtures containing halogenated solvents
    • C11D7/5068Mixtures of halogenated and non-halogenated solvents
    • C11D7/509Mixtures of hydrocarbons and oxygen-containing solvents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/12Organic compounds only containing carbon, hydrogen and oxygen atoms, e.g. ketone or alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/16Unsaturated hydrocarbons
    • C08J2203/162Halogenated unsaturated hydrocarbons, e.g. H2C=CF2
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/18Binary blends of expanding agents
    • C08J2203/184Binary blends of expanding agents of chemical foaming agent and physical blowing agent, e.g. azodicarbonamide and fluorocarbon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/102Alcohols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/126Unsaturated fluorinated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/132Components containing nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • F25B2400/121Inflammable refrigerants using R1234

Definitions

  • the present invention relates to the use of alcoholic compounds to improve the miscibility of compositions based on 2,3,3,3-tetrafluoropropene and the use of these compositions in particular for heat transfer.
  • Fluorocarbon-based fluids are widely used in vapor compression heat transfer systems, including air conditioning, heat pump, refrigeration or freezing devices. These devices have in common to rely on a thermodynamic cycle comprising the vaporization of the fluid at low pressure (in which the fluid absorbs heat); compressing the vaporized fluid to a high pressure; condensing the vaporized fluid into a high pressure liquid (in which the fluid emits heat); and the expansion of the fluid to complete the cycle.
  • a heat transfer fluid which may be a pure compound or a mixture of compounds
  • thermodynamic properties of the fluid and on the other hand by additional constraints.
  • a particularly important criterion is that of the impact of the fluid considered on the environment.
  • chlorinated compounds chlorofluorocarbons and hydrochlorofluorocarbons
  • non-chlorinated compounds such as hydrofluorocarbons, fluoroethers and fluoroolefins are now generally preferred.
  • GWP global warming potential
  • WO 2006/094303 describes a large number of heat transfer compositions comprising fluorolefins, and in particular 2,3,3,3-tetrafluoropropene (HFO-1234yf), and additional compounds.
  • WO 2007/126414 describes a large number of mixtures of heat transfer compounds, including mixtures comprising 2,3,3,3-tetrafluoropropene (HFO-1234yf) and ammonia.
  • WO 2008/009928 and WO 2008/009922 disclose heat transfer compositions based on pentafluoropropene, tetrafluoropropene and at least one additional compound, which may be ammonia.
  • EP 2487216 describes binary compositions of HFO-1234yf and of azeotropic or quasi-azeotropic ammonia.
  • the mixture of HFO-1234yf and ammonia represents an advantageous composition, especially for heat transfer applications - in particular because the HFO-1234yf is a very interesting compound given its low GWP and its good energy performance. .
  • the miscibility of the two compounds is limited.
  • the azeotropic mixture composed of 78% HFO-1234yf and 22% ammonia is demixed at a temperature of less than or equal to -21 ° C.
  • the invention firstly relates to a composition comprising 2,3,3,3-tetrafluoropropene, ammonia and an alcoholic compound having a melting point of less than or equal to 0 ° C.
  • the alcoholic compound has a melting point less than or equal to -50 ° C, preferably less than or equal to -80 ° C; and / or the alcoholic compound has a viscosity at 20 ° C. of less than or equal to 32.5 mm 2 / s, preferably less than or equal to 15 mm 2 / s and more particularly preferably less than or equal to 5 mm 2 / s.
  • the groups R 1, R 2, R 3, R 4, R 5, R 6, R 7, R 9 and R 9 each independently represent a linear or branched alkyl group comprising from 1 to 20 carbon atoms, preferably from 1 to 10 carbon atoms and more particularly preferred from 1 to 7 carbon atoms, optionally substituted in whole or in part by F, Br, Cl or OH
  • R 0 represents a benzene ring optionally substituted in whole or in part with F, Br, Cl, OH or with alkyl groups as defined above.
  • the alcoholic compound is chosen from propan-1-ol, propan-2-ol, 2-perfluorohexylethanol and 1,1,1,3,3,3-hexafluoropropan-2-ol and their mixtures.
  • the composition comprises:
  • the alcoholic compound is present in a proportion of 0.1 to 20%, preferably 0.5 to 10%, preferably 1 to 5%, relative to the sum of the alcoholic compound, ammonia and 2,3,3,3-tetrafluoropropene.
  • the composition consists essentially of a mixture of ammonia, 2,3,3,3-tetrafluoropropene and the alcoholic compound.
  • the composition has a demixing temperature of less than or equal to -23 ° C., preferably less than or equal to -25 ° C., preferably less than or equal to -27 ° C., preferably less than or equal to -29 ° C, preferably less than or equal to -31 ° C, preferably less than or equal to -33 ° C, preferably less than or equal to -35 ° C.
  • the composition further comprises one or more additives chosen from lubricants and preferably polyalkylene glycols, stabilizers, tracers, fluorescers, odorants, solubilizers and mixtures thereof.
  • the invention also relates to the use of the composition as described above as a heat transfer composition.
  • the invention also relates to the use of an alcoholic compound to improve the miscibility of ammonia with 2,3,3,3-tetrafluoropropene.
  • the alcoholic compound has a melting point less than or equal to 0 ° C, preferably less than or equal to -50 ° C, more preferably less than or equal to -80 ° C; and / or the alcoholic compound has a viscosity at 20 ° C. of less than or equal to 32.5 mm 2 / s, preferably less than or equal to 15 mm 2 / s and more particularly preferably less than or equal to 5 mm 2 / s.
  • the alcoholic compound is a primary alcohol of formula R 1 -CH 2 -OH, or a secondary alcohol of formula R 2 R 3 -CH-OH, or a tertiary alcohol of formula R 4 R 5 R 6-C-OH, or an enol of formula or a phenol of formula R10-OH, the groups R 1, R 2, R 3, R 4, R 5, R 6, R 7, R 9 and R 9 each independently representing a linear or branched alkyl group comprising from 1 to 20 carbon atoms, preferably from 1 to 10 carbon atoms and more preferably 1 to 5 carbon atoms, optionally substituted in whole or in part by F, Br, Cl or OH; and R10 represents a benzene ring optionally substituted in whole or in part by F, Br, Cl, OH or by alkyl groups as defined above.
  • the alcoholic compound is chosen from propan-1-ol, propan-2-ol, 2-perfluorohexylethanol and 1,1,1,3,3,3-hexafluoropropan-2-ol and their mixtures.
  • ammonia and 2,3,3,3-tetrafluoroproene are combined in a mixture comprising:
  • the alcoholic compound is added to a mixture of ammonia and 2,3,3,3-tetrafluoropropene in a proportion of 0.1 to 20%, preferably 0.5 to 10%, of preferably 1 to 5%, based on the sum of the three compounds.
  • ammonia and 2,3,3,3-tetrafluoropropene are not combined with any heat transfer compound.
  • the invention also relates to a heat transfer installation comprising a vapor compression circuit containing a composition as described above as a heat transfer composition.
  • the plant is chosen from mobile or stationary heat pump heating, air conditioning, refrigeration, freezing and Rankine cycles, and in particular from automotive air-conditioning installations.
  • the installation is an automotive air conditioning installation.
  • the invention also relates to a method for heating or cooling a fluid or a body by means of a vapor compression circuit containing a heat transfer fluid, said method comprising successively at least partial evaporation of the heat transfer fluid, compression of the heat transfer fluid, at least partial condensation of the heat transfer fluid and expansion of the heat transfer fluid, wherein the heat transfer fluid is provided by a composition such as as described above.
  • the invention also relates to a method for reducing the environmental impact of a heat transfer installation comprising a vapor compression circuit containing an initial heat transfer fluid, said method comprising a step of replacing the heat transfer fluid.
  • initial heat in the vapor compression circuit by a final heat transfer fluid the final heat transfer fluid having a GWP lower than the initial heat transfer fluid, in wherein the final heat transfer fluid is provided by a composition as described above.
  • the invention also relates to the use of the composition described above as a solvent.
  • the invention also relates to the use of the composition described above as an expanding agent.
  • the invention also relates to the use of the composition described above as a propellant, preferably for an aerosol.
  • the invention also relates to the use of the composition described above as a cleaning agent.
  • the present invention makes it possible to meet the needs felt in the state of the art. It provides more particularly compositions based on HFO-1234yf and ammonia with improved miscibility.
  • the global warming potential is defined with respect to the carbon dioxide and with respect to a duration of 100 years, according to the method indicated in "The scientific assessment of ozone depletion, 2002, a report of the World Meteorological Association's Global Ozone Research and Monitoring Project.
  • heat transfer compound or “heat transfer fluid” (or refrigerant) is meant a compound, respectively a fluid, capable of absorbing heat by evaporating at low temperature and low pressure and to reject heat by condensing at high temperature and high pressure, in a vapor compression circuit.
  • a heat transfer fluid may comprise one, two, three or more than three heat transfer compounds.
  • heat transfer composition is meant a composition comprising a heat transfer fluid and optionally one or more additives which are not heat transfer compounds for the intended application.
  • the invention is based on the use of two heat transfer compounds, namely HFO-1234yf and ammonia, and a compatibilizing additive, namely an alcoholic compound, to form heat transfer compositions, optionally with other additives including lubricants.
  • the heat transfer composition can be introduced as such into a vapor compression circuit.
  • the heat transfer fluid comprising HFO-1234yf and ammonia
  • the compatibilizing additive can be introduced separately into the circuit with the compatibilizing additive, and on the other hand with other additives (in particular lubricant), at the same point or not.
  • the heat transfer fluid (comprising HFO-1234yf and ammonia) and the compatibilizing additive can be introduced separately, optionally with other additives and in particular lubricant.
  • the individual heat transfer compounds (HFO-1234yf and ammonia) can also be introduced separately.
  • the heat transfer compounds mainly used in the context of the present invention are HFO-1234yf and ammonia.
  • the heat transfer compositions according to the invention may optionally comprise one or more additional heat transfer compounds, besides HFO-1234yf and ammonia.
  • additional heat transfer compounds may be chosen especially from hydrocarbons, hydrofluorocarbons, ethers, hydrofluoroethers and fluoroolefins.
  • the heat transfer fluids according to the invention may be ternary (consisting of three heat transfer compounds) or quaternary (consisting of four heat transfer compounds) compositions, in association with the lubricant. to form the heat transfer compositions according to the invention.
  • binary heat transfer fluids are preferred.
  • binary fluid is meant either a fluid consisting of a mixture of HFO-1234yf and ammonia; a fluid consisting essentially of a mixture of HFO-1234yf and ammonia, but which may contain impurities of less than 1%, preferably less than 0.5%, of preferably less than 0.1%, preferably less than 0.05% and preferably less than 0.01%.
  • the proportion of HFO-1234yf in the heat transfer fluid may be: 0.1 to 5%; or 5 to 10%; or 10 to 15%; or 15 to 20%; or from 20 to 25%; or 25 to 30%; or from 30 to 35%; or 35 to 40%; or 40 to 45%; or 45 to 50%; or 50 to 55%; or 55 to 60%; or from 60 to 65%; or from 65 to 70%; or 70 to 75%; or from 75 to 80%; or from 80 to 85%; or from 85 to 90%; or from 90 to 95%; or 95 to 99.9%.
  • the proportion of ammonia in the heat transfer fluid may be: 0.1 to 5%; or 5 to 10%; or 10 to 15%; or 15 to 20%; or from 20 to 25%; or 25 to 30%; or from 30 to 35%; or 35 to 40%; or 40 to 45%; or 45 to 50%; or 50 to 55%; or 55 to 60%; or from 60 to 65%; or from 65 to 70%; or 70 to 75%; or from 75 to 80%; or from 80 to 85%; or from 85 to 90%; or from 90 to 95%; or 95 to 99.9%.
  • quadsi-azeotropic refers to those compositions for which, at a constant temperature, the liquid saturation pressure and the vapor saturation pressure are almost identical (the maximum pressure difference being 10%, or even advantageously 5%, relative to at the liquid saturation pressure).
  • compositions according to the invention have improved performances compared with R404A (mixture of 52% of 1,1,1-trifluoroethane, 44% of pentafluoroethane and 4% of 1,1,1,2-tetrafluoroethane). ) and / or R410A (mixture of 50% of difluoromethane and 50% of pentafluoroethane), in particular for the processes of cooling at moderate temperature, that is to say those in which the temperature of the cooled fluid or body is from -15 ° C to 15 ° C, preferably from -10 ° C to 10 ° C, more preferably from -5 ° C to 5 ° C (most preferably about 0 ° C).
  • the compositions for which the proportion of NH 3 is greater than or equal to 15% are particularly preferred, especially the compositions having a proportion of NH 3 of 15 to 30%, preferably 18 to 26%.
  • compositions according to the invention have improved performances compared to R410A, in particular for moderate temperature heating processes, that is to say those in which the temperature of the fluid or of the heated body is 30.degree. ° C to 80 ° C, and preferably 35 ° C to 55 ° C, more preferably 40 ° C to 50 ° C (most preferably about 45 ° C).
  • the compositions for which the proportion of NH 3 is greater than or equal to 15% are particularly preferred, especially the compositions having a proportion of NH 3 of 20 to 30%.
  • the compatibilizing additive used in the context of the present invention is an alcoholic compound, that is to say an organic compound having at least one -OH alcohol function.
  • the compound may comprise a single alcohol function or several (polyol, or glycol).
  • the alcoholic compound may in particular be a primary alcohol of formula R 1 -CH 2 -OH, or a secondary alcohol of formula R 2 R 3 -CH-OH, or a tertiary alcohol of formula R 4 R 5 R 6 -C-OH, or an enol Formula or a phenol of formula R10-OH.
  • it is a primary alcohol of formula R 1 -CH 2 -OH, or of a secondary alcohol of formula R 2 R 3 -CH-OH, or of a tertiary alcohol of formula R 4 R 5 R 6 - C-OH.
  • R 1, R 2 , R 3 , R 4 , R 5 , R 6, R 7, R 8 and R 9 above each independently represent a linear or branched alkyl group comprising from 1 to 20 carbon atoms, or from 1 to 15 carbon atoms. carbon atoms, or from 1 to 12 carbon atoms, or from 1 to 10 carbon atoms, or from 1 to 9 carbon atoms, or from 1 to 8 carbon atoms, or from 1 to 7 carbon atoms, or from 1 to 6 carbon atoms, or from 1 to 5 carbon atoms, or from 1 to 4 carbon atoms, or from 1 to 3 carbon atoms.
  • Each of these groups may be substituted in whole or in part by F, Br, Cl or OH, preferably by F, Br or Cl.
  • the group Rio represents a benzene ring optionally substituted in whole or in part by F, Br, Cl, OH or by one or more alkyl groups as defined above.
  • the alcoholic compound is a primary alcohol of formula R 1 -CH 2 -OH, or a secondary alcohol of formula R 2 R 3 -CH-OH, or a tertiary alcohol of formula R 4 R 5 R 6-C-OH, each R 1, R 2 , R 3 , R 4, R 5, R 6 group representing a linear alkyl group having 1 to 8 carbon atoms, optionally substituted in whole or in part by fluorine atoms.
  • the main compounds retained are those having a melting temperature of less than or equal to 0 ° C .; or less than or equal to -5 ° C; or less than or equal to -10 ° C; or less than or equal to -15 ° C; or less than or equal to -20 ° C; or less than or equal to -25 ° C; or less than or equal to -30 ° C; or less than or equal to -35 ° C; or less than or equal to -40 ° C; or less than or equal to -45 ° C; or less than or equal to -50 ° C; or less than or equal to -55 ° C; or less than or equal to -60 ° C; or less than or equal to -65 ° C; or less than or equal to -70 ° C; or less than or equal to -75 ° C; or less than or equal to -80 ° C; or less than or equal to -85 °
  • the melting point is determined according to ISO 1392: 1977.
  • the compatibilizing additive is not a lubricant or a lubricating oil.
  • it advantageously has a viscosity less than or equal to 32.5 mm 2 / s, or 30 mm 2 / s, or 27.5 mm 2 / s, or 25 mm 2 / s, or 22, 5 mm 2 / s, or 20 mm 2 / s, or 17.5 mm 2 / s, or 15 mm 2 / s, or 12.5 mm 2 / s, or 10 mm 2 / s, or 7.5 mm 2 / s, or 5 mm 2 / s, or 2.5 mm 2 / s.
  • the viscosity (kinematic) is determined at 20 ° C according to the standard
  • propan-1 -ol propan-2-ol, 2-perfluorohexylethanol, 1,1,1,3,3,3-hexafluoropropan-2-ol or a combination of these.
  • Propan-1-ol and propan-2-ol are particularly preferred, and especially propan-1-ol.
  • the proportion of compatibilizing additive, relative to the sum of HFO-1234yf, ammonia, and the compatibilizing additive itself, may be from 0.1 to 0.5%; or from 0.5 to 1.0%; or from 1.0 to 1.5%; or 1.5 to 2.0%; or 2.0 to 2.5%; or 2.5 to 3.0%; or from 3.0 to 3.5%; or 3.5 to 4.0%; or 4.0 to 4.5%; or 4.5 to 5.0%; or from 5.0 to 5.5%; or 5.5 to 6.0%; or 6.0 to 6.5%; or 6.5 to 7.0% or 7.0 to 7.5%; or 7.5 to 8.0%; or from 8.0 to 8.5%; or from 8.5 to 9.0%; or 9.0 to 9.5%; or 9.5 to 10.0%; from 10.0 to 10.5%; or from 10.5 to 11.0%; or from 1, 0 to 1, 1.5%; or from 1, 5 to 12.0%; or from 12.0 to 12.5%; or from 12.5 to 13.0%; or from 13.0 to 13.5%; or from 13.5 to 14.0%; or from 14.0 to 14.5%; or from 14.5 to 15.0%
  • the compatibilizing additive makes it possible to improve the miscibility of the HFO-1234yf / ammonia mixture, that is to say to reduce the demixing temperature of the mixture, the demixing temperature being defined as being the temperature from which the formation an emulsion is observed (starting from a homogeneous mixture without emulsion of HFO-1234yf / ammonia and gradually decreasing the temperature).
  • the compatibilizing additive may be added to either of the HFO-1234yf and ammonia compounds prior to mixing, or added to the mixture of the two compounds.
  • the other additives that may be used in the context of the invention may especially be chosen from lubricants, stabilizers, tracer agents, fluorescent agents, odorants and solubilizing agents.
  • none of these other possible additives is an alcoholic compound as defined above.
  • Lubricants that may be used include oils of mineral origin, silicone oils, paraffins of natural origin, naphthenes, synthetic paraffins, alkylbenzenes, poly-alpha olefins, polyalkylenes glycols, polyols and the like. esters and / or polyvinyl ethers.
  • Polyalkylene glycols are preferred lubricants (or lubricating oils).
  • the polyalkylene glycol may comprise polyalkylene glycols of different formulas in a mixture.
  • the polyalkylene glycol suitable for use in the context of the invention comprises from 5 to 50 repeating oxyalkylene units, each containing from 1 to 5 carbon atoms.
  • the polyalkylene glycol may be linear or branched. It may be a homopolymer or a copolymer of 2, 3 or more groups selected from oxyethylene, oxypropylene, oxybutylene, oxypentylene and combinations thereof.
  • Preferred polyalkylene glycols comprise at least 50% oxypropylene groups.
  • Suitable polyalkylene glycols are disclosed in US 4,971,712.
  • Other suitable polyalkylene glycols are the polyalkylene glycols having hydroxyl groups at each end, as described in US Pat. No. 4,755,316.
  • Other suitable polyalkylene glycols are the polyalkylene glycols having a capped hydroxyl end.
  • the hydroxyl group may be capped with an alkyl group containing from 1 to 10 carbon atoms (and optionally containing one or more heteroatoms such as nitrogen), or a fluoroalkyl group containing heteroatoms such as nitrogen, or a fluoroalkyl group as described in US 4,975,212, or other similar groups.
  • the terminal hydroxyl groups may also be capped to form an ester with a carboxylic acid, as described in US 5,008,028.
  • the carboxylic acid can also be fluorinated.
  • one or the other may be an ester, or one end may be capped with an ester and the other end be free or capped with one of the aforementioned alkyl, heteroalkyl or fluoroalkyl groups.
  • Polyalkylene glycols suitable for use as lubricating oils and commercially available are, for example, General Motors Goodwrench Oils, Daimler-Chrysler MOPAR-56,shrieve Chemical Products Zerol, Total's Planetelf PAG and Daphne Hermetic PAG. Itemitsu.
  • Other suitable polyalkylene glycols are manufactured by Dow Chemical and Denso. Mention may also be made of oils manufactured by Fuchs and in particular RENISO PG 68 / NH3 oil.
  • the viscosity of the polyalkylene glycol may for example be from 1 to 1000 centistokes at 40 ° C, preferably from 10 to 200 centistokes at 40 ° C and more preferably from 30 to 80 centistokes at 40 ° C.
  • the viscosity is determined according to ISO viscosity grades, according to ASTM D2422.
  • the proportion of lubricating oil to be used in combination with the heat transfer fluid depends mainly on the type of installation concerned. Indeed, the total quantity of lubricating oil in the installation depends mainly on the nature of the compressor, while the total amount of heat transfer fluid in the installation depends mainly on the exchangers and the piping.
  • the proportion of lubricating oil in the heat transfer composition is from 1 to 99%, preferably from 5 to 50%, for example 10 to 40% or 15 to 35%.
  • the lubricating oil used consists of the polyalkylene glycol described above, with the exception of any other lubricating compound.
  • another lubricating oil is used in combination with the polyalkylene glycol. It may especially be chosen from mineral oils, silicone oils, paraffins of natural origin, naphthenes, synthetic paraffins, alkylbenzenes, poly-alpha olefins, polyol esters and / or polyvinyl ethers. . Polyol esters and polyvinyl ethers are preferred.
  • the stabilizer (s), when present, preferably represent at most 5% by weight in the heat transfer composition.
  • the stabilizers there may be mentioned in particular nitromethane, ascorbic acid, terephthalic acid, azoles such as tolutriazole or benzotriazole, phenol compounds such as tocopherol, hydroquinone, t-butyl hydroquinone, 2,6-di-tert-butyl-4-methylphenol, epoxides (optionally fluorinated or perfluorinated alkyl or alkenyl or aromatic) such as n-butylglycidyl ether, hexanedioldiglycidyl ether, allylglycidyl ether, butylphenylglycidyl ether, phosphites, phosphonates, thiols and lactones.
  • the stabilizer is different from the transfer compound (s) of heat comprising the heat transfer fluid and the compatibilizing additive.
  • tracer agents which can be detected
  • deuterated hydrofluorocarbons or not, deuterated hydrocarbons, perfluorocarbons, fluoroethers, brominated compounds, iodinated compounds, aldehydes, ketones, nitrogen and combinations thereof.
  • the tracer agent is different from the one or more heat transfer compounds composing the heat transfer fluid and the compatibilizing additive.
  • solubilizing agents mention may be made of hydrocarbons, dimethyl ether, polyoxyalkylene ethers, amides, ketones, nitriles, chlorocarbons, esters, lactones, aryl ethers, fluoroethers and magnesium compounds. 1-trifluoroalkanes.
  • the solubilizing agent is different from the one or more heat transfer compounds composing the heat transfer fluid and the compatibilizing additive.
  • fluorescent agents mention may be made of naphthalimides, perylenes, coumarins, anthracenes, phenanthracenes, xanthenes, thioxanthenes, naphthoxanhthenes, fluoresceins and derivatives and combinations thereof.
  • the fluorescent agent is different from the one or more heat transfer compounds comprising the heat transfer fluid and the compatibilizing additive.
  • odorants mention may be made of alkyl acrylates, allyl acrylates, acrylic acids, acrylresters, alkyl ethers, alkyl esters, alkynes, aldehydes, thiols, thioethers, disulfides, allyl isothiocyanates and alkanoic acids. , amines, norbornenes, norbornene derivatives, cyclohexene, heterocyclic aromatic compounds, ascaridole, o-methoxy (methyl) phenol and combinations thereof.
  • the odorant is different from the heat transfer compound (s) composing the heat transfer fluid and the compatibilizing additive.
  • the heat transfer method according to the invention is based on the use of an installation comprising a vapor compression circuit which contains a heat transfer composition as described above.
  • the heat transfer process may be a method of heating or cooling a fluid or a body.
  • the vapor compression circuit includes at least one evaporator, a compressor, a condenser and an expander, and fluid transport lines between these elements.
  • the evaporator and the condenser comprise a heat exchanger allowing a heat exchange between the heat transfer fluid and another fluid or body.
  • a compressor it is possible to use in particular a centrifugal compressor with one or more stages or a mini centrifugal compressor.
  • Rotary, piston or screw compressors can also be used.
  • the compressor may be driven by an electric motor or by a gas turbine (eg powered by vehicle exhaust, for mobile applications) or by gearing.
  • the facility may include a turbine to generate electricity (Rankine cycle).
  • the installation may also optionally include at least one coolant circuit used to transmit the heat (with or without change of state) between the heat transfer fluid circuit and the fluid or body to be heated or cooled.
  • the installation may also optionally include two or more vapor compression circuits containing identical or different heat transfer fluids.
  • the vapor compression circuits may be coupled together.
  • the vapor compression circuit operates in a conventional vapor compression cycle.
  • the cycle comprises changing the state of the heat transfer fluid from a liquid phase (or two-phase liquid / vapor) to a vapor phase at a relatively low pressure, and then compressing the fluid in the vapor phase to a relatively high pressure. high, the change of state (condensation) of the heat transfer fluid from the vapor phase to the liquid phase at a relatively high pressure, and the reduction of the pressure to restart the cycle.
  • Cooling processes include air conditioning processes (with mobile installations, for example in vehicles, or stationary), refrigeration and freezing or cryogenics.
  • heat is transferred (directly or indirectly via a heat transfer fluid) from the heat transfer fluid, during the condensation thereof, to the fluid or to the body that is heating, and this at a relatively high temperature compared to the environment.
  • heat pump The installation for implementing the heat transfer is called in this case "heat pump”.
  • heat exchanger for the implementation of heat transfer fluids according to the invention, and in particular co-current heat exchangers or, preferably, heat exchangers against -current. It is also possible to use microchannel exchangers.
  • the invention makes it possible in particular to implement cooling processes at moderate temperature, that is to say in which the temperature of the fluid or of the cooled body is from -15 ° C. to 15 ° C., preferably from -15 ° C. to 15.degree. 10 ° C to 10 ° C, more preferably -5 ° C to 5 ° C (most preferably about 0 ° C).
  • the invention also makes it possible to implement heating processes at a moderate temperature, that is to say in which the temperature of the fluid or of the heated body is from 30 ° C. to 70 ° C., and preferably 35 ° C. C at 55 ° C, more preferably at 40 ° C to 50 ° C (most preferably at about 45 ° C).
  • the inlet temperature of the heat transfer fluid to the evaporator is preferably from -20 ° C. to 10 ° C., especially from -15 ° C. ° C at 5 ° C, more preferably at -10 ° C to 0 ° C and for example about -5 ° C; and the temperature of the start of condensation of the heat transfer fluid at the condenser is preferably 25 ° C to 80 ° C, especially 30 ° C to 70 ° C, more preferably 35 ° C to 55 ° C C and for example about 50 ° C.
  • These processes may be refrigeration, air conditioning or heating processes.
  • the invention also makes it possible to implement heating processes at high temperature, that is to say in which the temperature of the fluid or of the heated body is greater than 90 ° C., for example greater than or equal to 100 ° C. or greater than or equal to 1 10 ° C, and preferably less than or equal to 120 ° C.
  • the invention also makes it possible to implement refrigeration processes at low temperature, that is to say in which the temperature of the fluid or of the cooled body is from -40 ° C. to -10 ° C., and preferably from -40 ° C. to -10 ° C. 35 ° C to -25 ° C, more preferably -30 ° C to -20 ° C (most preferably about -25 ° C).
  • the compositions for which the proportion of NH 3 is greater than or equal to 15% are particularly preferred, especially the compositions having an NH 3 proportion of 18 to 24%.
  • the inlet temperature of the heat transfer fluid to the evaporator is preferably from -45 ° C. to -15 ° C., especially from -40 ° C. at -20 ° C, more preferably -35 ° C to -25 ° C and for example about -30 ° C; and the temperature of the onset of condensation of the heat transfer fluid at the condenser is preferably 25 ° C to 80 ° C, especially 30 ° C to 60 ° C, more preferably 35 ° C to 55 ° C C and for example about 40 ° C.
  • the heat transfer fluid is during the entire cycle at a temperature at which it is miscible.
  • the heat transfer fluid is during the entire cycle at a temperature between -20 ° C and 70 ° C.
  • the addition of the compatibilizing additive in the heat transfer fluid improves the miscibility of the heat transfer fluid, that is to say, decreases the demixing temperature (threshold temperature of appearance of the zone of non-miscibility, below which the compounds in the liquid phase form an emulsion), and thus makes it possible to increase the possibilities of use of the heat transfer fluid, for example with use at a higher evaporation temperature. low.
  • the invention makes it possible to proceed to the replacement of any heat transfer fluid in all heat transfer applications, and for example in automobile air conditioning.
  • the heat transfer fluids and heat transfer compositions according to the invention can serve to replace:
  • R1234yf (2,3,3,3-tetrafluoropropene);
  • R1234ze (1, 3,3,3-tetrafluoropropene).
  • compositions according to the invention may also be useful as an expanding agent, propellant (eg for an aerosol), cleaning agent or solvent, in addition to their use as heat transfer fluids.
  • the compositions according to the invention can be used alone or in combination with known propellants.
  • the propellant comprises, preferably consists of, a composition according to the invention.
  • the active substance to be sprayed can be mixed with the propellant and inert compounds, solvents or other additives to form a sprayable composition.
  • the composition to be sprayed is an aerosol.
  • compositions according to the invention may be included in an expansion composition, which preferably comprises one or more other compounds capable of reacting and forming a foam or cell structure under appropriate conditions, as is known to those skilled in the art.
  • the invention provides a process for preparing an expanded thermoplastic product comprising first the preparation of a polymeric expansion composition.
  • the polymeric expansion composition is prepared by plasticizing a polymer resin and mixing the compounds of a blowing agent composition at an initial pressure.
  • the plasticization of the polymer resin can be carried out under the effect of heat by heating the polymer resin to soften it sufficiently to mix a blowing agent composition.
  • the plasticization temperature is close to the glass transition temperature or the melting temperature for the crystalline polymers.
  • Other uses of the compositions according to the invention include uses as solvents, cleaning agents or the like. Examples include steam degreasing, precision cleaning, electronic circuit cleaning, dry cleaning, abrasive cleaning, solvents for deposition of lubricants and release agents, and other treatments. solvent or surface.
  • an autoclave controlled by a double jacket temperature and fed by a thermostatic bath is used.
  • the autoclave is equipped with portholes.
  • a light source and a camera are used to visualize the contents of the autoclave.
  • perfluorohex-1-enene is tested as an additive. After addition of 1% of additive, it is found that the additive is not compatible with the mixture HFO-1234yf / ammonia. Indeed, the addition of the additive causes the formation of an emulsion that does not disappear by increasing the temperature, as well as the appearance of deposits.
  • the additive greatly improves the homogeneity of the HFO-1234yf / ammonia mixture.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Dispersion Chemistry (AREA)
  • Lubricants (AREA)
  • Detergent Compositions (AREA)
EP14736904.5A 2013-07-11 2014-06-13 Compositions a base de 2,3,3,3-tetrafluoropropene presentant une miscibilite amelioree Withdrawn EP3019574A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1356829A FR3008419B1 (fr) 2013-07-11 2013-07-11 Compositions a base de 2,3,3,3-tetrafluoropropene presentant une miscibilite amelioree
PCT/FR2014/051468 WO2015004353A1 (fr) 2013-07-11 2014-06-13 Compositions a base de 2,3,3,3-tetrafluoropropene presentant une miscibilite amelioree

Publications (1)

Publication Number Publication Date
EP3019574A1 true EP3019574A1 (fr) 2016-05-18

Family

ID=49510282

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14736904.5A Withdrawn EP3019574A1 (fr) 2013-07-11 2014-06-13 Compositions a base de 2,3,3,3-tetrafluoropropene presentant une miscibilite amelioree

Country Status (7)

Country Link
US (2) US10023780B2 (ja)
EP (1) EP3019574A1 (ja)
JP (1) JP6581977B2 (ja)
CN (1) CN105378021B (ja)
AU (1) AU2014289096B2 (ja)
FR (1) FR3008419B1 (ja)
WO (1) WO2015004353A1 (ja)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2936806B1 (fr) 2008-10-08 2012-08-31 Arkema France Fluide refrigerant
FR2937328B1 (fr) 2008-10-16 2010-11-12 Arkema France Procede de transfert de chaleur
US20170080773A1 (en) 2008-11-03 2017-03-23 Arkema France Vehicle Heating and/or Air Conditioning Method
US10035938B2 (en) 2009-09-11 2018-07-31 Arkema France Heat transfer fluid replacing R-134a
FR2950065B1 (fr) 2009-09-11 2012-02-03 Arkema France Fluide refrigerant binaire
FR2950068B1 (fr) 2009-09-11 2012-05-18 Arkema France Procede de transfert de chaleur
FR2950066B1 (fr) 2009-09-11 2011-10-28 Arkema France Refrigeration basse et moyenne temperature
FR2962442B1 (fr) 2010-07-09 2016-02-26 Arkema France Composition stable de 2,3,3,3-tetrafluoropropene
FR2974812B1 (fr) 2011-05-04 2014-08-08 Arkema France Compositions de transfert de chaleur presentant une miscibilite amelioree avec l'huile de lubrification
FR2986236B1 (fr) 2012-01-26 2014-01-10 Arkema France Compositions de transfert de chaleur presentant une miscibilite amelioree avec l'huile de lubrification
FR3000095B1 (fr) 2012-12-26 2015-02-20 Arkema France Composition comprenant du 2,3,3,3-tetrafluoropropene et du 1,2-difluoroethylene
FR3000096B1 (fr) 2012-12-26 2015-02-20 Arkema France Composition comprenant du 2,3,3,3-tetrafluoropropene
FR3000093B1 (fr) 2012-12-26 2015-07-17 Arkema France Composition azeotropique ou quasi-azeotropique de chloromethane
FR3003565B1 (fr) 2013-03-20 2018-06-29 Arkema France Composition comprenant hf et 2,3,3,3-tetrafluoropropene
FR3008419B1 (fr) * 2013-07-11 2015-07-17 Arkema France Compositions a base de 2,3,3,3-tetrafluoropropene presentant une miscibilite amelioree
FR3033791B1 (fr) 2015-03-18 2017-04-14 Arkema France Stabilisation du 1-chloro-3,3,3-trifluoropropene
FR3057272B1 (fr) 2016-10-10 2020-05-08 Arkema France Compositions azeotropiques a base de tetrafluoropropene
FR3057271B1 (fr) 2016-10-10 2020-01-17 Arkema France Utilisation de compositions a base de tetrafluoropropene
FR3070982B1 (fr) 2017-09-12 2019-08-30 Arkema France Composition a base d'hydrochlorofluoroolefine et d'huile minerale
FR3077572B1 (fr) 2018-02-05 2021-10-08 Arkema France Composition azeotropique ou quasi-azeotropique ternaire comprenant hf, 2,3,3,3-tetrafluoropropene et 1,1,1,2,2,-pentafluoropropane.
FR3077822B1 (fr) 2018-02-15 2020-07-24 Arkema France Compositions de transfert de chaleur en remplacement du r-134a
CN112111249B (zh) * 2020-09-28 2021-07-13 珠海格力电器股份有限公司 一种混合制冷剂、换热系统和家用电器

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4755316A (en) 1987-10-23 1988-07-05 Allied-Signal Inc. Refrigeration lubricants
US5008028A (en) 1988-12-14 1991-04-16 The Lubrizol Corporation Liquid compositions containing carboxylic esters
US4975212A (en) 1988-12-27 1990-12-04 Allied-Signal Inc. Fluorinated lubricating compositions
US4971712A (en) 1989-06-02 1990-11-20 E. I. Du Pont De Nemours And Company Compositions for compression refrigeration and methods of using them
CH683028A5 (de) 1990-12-11 1993-12-31 Sulzer Ag Verfahren zum Betreiben einer NH(3)-Kälteanlage oder -Wärmepumpe.
US5595678A (en) 1994-08-30 1997-01-21 Cpi Engineering Services, Inc. Lubricant composition for ammonia refrigerants used in compression refrigeration systems
US20040089839A1 (en) 2002-10-25 2004-05-13 Honeywell International, Inc. Fluorinated alkene refrigerant compositions
ES2321796T5 (es) 2002-10-25 2017-06-28 Honeywell International Inc. Uso de una composición que comprende 1,3,3,3-tetrafluoropropeno (HFO 1234ze) en calidad de agente de soplado
US20060243945A1 (en) * 2005-03-04 2006-11-02 Minor Barbara H Compositions comprising a fluoroolefin
US20060243944A1 (en) 2005-03-04 2006-11-02 Minor Barbara H Compositions comprising a fluoroolefin
US7569170B2 (en) * 2005-03-04 2009-08-04 E.I. Du Pont De Nemours And Company Compositions comprising a fluoroolefin
DE202007008291U1 (de) 2006-06-17 2007-10-18 Ineos Fluor Holdings Ltd., Runcorn Wärmeübertragungszusammensetzungen
GB0614080D0 (en) 2006-07-17 2006-08-23 Ineos Fluor Holdings Ltd Heat transfer compositions
JP2010513827A (ja) 2006-09-01 2010-04-30 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 閉ループ・サイクル中の選択された伝熱流体の循環方法
WO2009124128A1 (en) 2008-04-01 2009-10-08 Honeywell International, Inc. Method for selecting lubricants for heat pumps
KR101593716B1 (ko) 2008-04-04 2016-02-12 다우 글로벌 테크놀로지스 엘엘씨 냉매 조성물
FR2932493B1 (fr) 2008-06-11 2010-07-30 Arkema France Compositions a base d'hydrofluoroolefines
FR2932492B1 (fr) 2008-06-11 2010-07-30 Arkema France Compositions a base d'hydrofluoroolefines
FR2936806B1 (fr) 2008-10-08 2012-08-31 Arkema France Fluide refrigerant
FR2937906B1 (fr) 2008-11-03 2010-11-19 Arkema France Procede de chauffage et/ou climatisation d'un vehicule.
US20170080773A1 (en) * 2008-11-03 2017-03-23 Arkema France Vehicle Heating and/or Air Conditioning Method
FR2938550B1 (fr) 2008-11-20 2010-11-12 Arkema France Composition comprenant du 2,3,3,3-tetrafluoropropene procede de chauffage et/ou climatisation d'un vehicule
FR2938551B1 (fr) 2008-11-20 2010-11-12 Arkema France Procede de chauffage et/ou climatisation d'un vehicule
WO2010088320A1 (en) * 2009-01-29 2010-08-05 Arkema Inc. Tetrafluoropropene based blowing agent compositions
FR2942237B1 (fr) 2009-02-13 2013-01-04 Arkema France Procede de chauffage et/ou climatisation d'un vehicule
FR2950067B1 (fr) 2009-09-11 2011-10-28 Arkema France Fluide de transfert de chaleur en remplacement du r-410a
FR2950071B1 (fr) 2009-09-11 2012-02-03 Arkema France Compositions ternaires pour refrigeration basse capacite
US10035938B2 (en) 2009-09-11 2018-07-31 Arkema France Heat transfer fluid replacing R-134a
FR2950066B1 (fr) 2009-09-11 2011-10-28 Arkema France Refrigeration basse et moyenne temperature
FR2950068B1 (fr) 2009-09-11 2012-05-18 Arkema France Procede de transfert de chaleur
FR2950070B1 (fr) 2009-09-11 2011-10-28 Arkema France Compositions ternaires pour refrigeration haute capacite
FR2950069B1 (fr) 2009-09-11 2011-11-25 Arkema France Utilisation de compositions ternaires
FR2950065B1 (fr) 2009-09-11 2012-02-03 Arkema France Fluide refrigerant binaire
FR2962130B1 (fr) 2010-06-30 2012-07-20 Arkema France Composition a base de 2,3,3,3-tetrafluoropropene
FR2962442B1 (fr) 2010-07-09 2016-02-26 Arkema France Composition stable de 2,3,3,3-tetrafluoropropene
FR2964975B1 (fr) 2010-09-20 2012-08-24 Arkema France Composition a base de 2,3,3,3-tetrafluoropropene
FR2971512B1 (fr) * 2011-02-10 2013-01-18 Arkema France Compositions binaires de 2,3,3,3-tetrafluoropropene et d'ammoniac
FR2974812B1 (fr) 2011-05-04 2014-08-08 Arkema France Compositions de transfert de chaleur presentant une miscibilite amelioree avec l'huile de lubrification
FR2986007B1 (fr) * 2012-01-25 2015-01-23 Arkema France Compositions de transfert de chaleur presentant une miscibilite amelioree avec l'huile de lubrification
FR2986236B1 (fr) 2012-01-26 2014-01-10 Arkema France Compositions de transfert de chaleur presentant une miscibilite amelioree avec l'huile de lubrification
FR3000096B1 (fr) 2012-12-26 2015-02-20 Arkema France Composition comprenant du 2,3,3,3-tetrafluoropropene
FR3000093B1 (fr) 2012-12-26 2015-07-17 Arkema France Composition azeotropique ou quasi-azeotropique de chloromethane
FR3000095B1 (fr) 2012-12-26 2015-02-20 Arkema France Composition comprenant du 2,3,3,3-tetrafluoropropene et du 1,2-difluoroethylene
FR3002180B1 (fr) * 2013-02-18 2017-12-29 Arkema France Utilisation de copolyamide semi-aromatique pour le transport de fluide frigorigene
FR3003565B1 (fr) 2013-03-20 2018-06-29 Arkema France Composition comprenant hf et 2,3,3,3-tetrafluoropropene
FR3008419B1 (fr) 2013-07-11 2015-07-17 Arkema France Compositions a base de 2,3,3,3-tetrafluoropropene presentant une miscibilite amelioree
FR3033791B1 (fr) 2015-03-18 2017-04-14 Arkema France Stabilisation du 1-chloro-3,3,3-trifluoropropene

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2015004353A1 *

Also Published As

Publication number Publication date
AU2014289096B2 (en) 2017-08-17
WO2015004353A1 (fr) 2015-01-15
JP6581977B2 (ja) 2019-09-25
CN105378021A (zh) 2016-03-02
US20180282603A1 (en) 2018-10-04
FR3008419A1 (fr) 2015-01-16
AU2014289096A1 (en) 2016-01-21
US10377935B2 (en) 2019-08-13
US10023780B2 (en) 2018-07-17
FR3008419B1 (fr) 2015-07-17
JP2016529351A (ja) 2016-09-23
US20160376484A1 (en) 2016-12-29
CN105378021B (zh) 2018-06-08

Similar Documents

Publication Publication Date Title
EP3019574A1 (fr) Compositions a base de 2,3,3,3-tetrafluoropropene presentant une miscibilite amelioree
EP2487216B1 (fr) Compositions binaires de 2,3,3,3-tétrafluoropropène et d'ammoniac
CA2979946C (fr) Stabilisation du 1-chloro-3,3,3-trifluoropropene
EP2807225B1 (fr) Compositions de transfert de chaleur presentant une miscibilite amelioree avec l'huile de lubrification
EP2807226A1 (fr) Compositions de transfert de chaleur presentant une miscibilite amelioree avec l'huile de lubrification
FR2974812A1 (fr) Compositions de transfert de chaleur presentant une miscibilite amelioree avec l'huile de lubrification
EP2834316B1 (fr) Compositions a base de 2,3,3,4,4,4-hexafluorobut-1-ene
EP3044278B1 (fr) Fluides de transfert de chaleur comprenant du difluoromethane, du pentafluoroethane, du tetrafluoropropene et eventuellement du propane
EP2726570B1 (fr) Compositions de 2,4,4,4-tetrafluorobut-1-ene et de cis-1,1,1,4,4,4-hexafluorobut-2-ene
EP2569386A2 (fr) Fluides de transfert de chaleur et leur utilisation dans des echangeurs de chaleur a contre-courant
EP2646520B1 (fr) Compositions a base de 1,1,1,4,4,4-hexafluorobut-2-ene et de 3,3,4,4,4-pentafluorobut-1-ene
EP2694612B1 (fr) Compositions comprenant du 3,3,3-trifluoropropene et de l'ammoniac
EP2547745B1 (fr) Fluide frigorigene pour le transfert de chaleur a haute temperature
WO2020002789A1 (fr) Stabilisation du trifluoroiodomethane
WO2019243704A1 (fr) Stabilisation du 1,1,1,4,4,4-hexafluorobut-2-ene

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20151204

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20180313

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20200603