EP3012429B1 - Réservoir d'expansion et système de refroidissement comportant un tel réservoir - Google Patents

Réservoir d'expansion et système de refroidissement comportant un tel réservoir Download PDF

Info

Publication number
EP3012429B1
EP3012429B1 EP15190338.2A EP15190338A EP3012429B1 EP 3012429 B1 EP3012429 B1 EP 3012429B1 EP 15190338 A EP15190338 A EP 15190338A EP 3012429 B1 EP3012429 B1 EP 3012429B1
Authority
EP
European Patent Office
Prior art keywords
coolant
inlet
basin
guide member
expansion chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15190338.2A
Other languages
German (de)
English (en)
Other versions
EP3012429A1 (fr
Inventor
Dieter Jahns
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Scania CV AB
Original Assignee
Scania CV AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scania CV AB filed Critical Scania CV AB
Publication of EP3012429A1 publication Critical patent/EP3012429A1/fr
Application granted granted Critical
Publication of EP3012429B1 publication Critical patent/EP3012429B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/02Liquid-coolant filling, overflow, venting, or draining devices
    • F01P11/029Expansion reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/02Liquid-coolant filling, overflow, venting, or draining devices
    • F01P11/028Deaeration devices

Definitions

  • the present invention relates to an expansion tank according to the preamble of claim 1 which is intended to be included in a cooling system of a motor vehicle.
  • the invention also relates to a cooling system for a motor vehicle provided with such an expansion tank.
  • a combustion engine of a motor vehicle is cooled by means of coolant which is circulated in a cooling system.
  • coolant which is circulated in a cooling system.
  • the cooling system is provided with an expansion tank which can accommodate the surplus coolant generated in connection with the expansion of the coolant.
  • the boiling point of the coolant rises with increasing pressure, and it is therefore desirable to maintain a certain positive pressure in the cooling system when the engine is in operation to thereby prevent coolant boiling.
  • the expansion tank is provided with a pressure relief valve which ensures that the pressure in the expansion tank cannot exceed a predetermined pressure level.
  • an expansion tank of the above-mentioned type Another important function of an expansion tank of the above-mentioned type is that it should be possible for the coolant received in the expansion tank to be deaerated in the expansion tank before leaving the expansion tank.
  • the air which has been absorbed by the coolant when circulating through the cooling circuit of the cooling system and which therefore accompanies the coolant to the expansion tank is intended to rise to the surface of the coolant volume received in the expansion tank in order to accumulate in an air-filled space at an upper part of the expansion tank.
  • the coolant in the expansion tank is deaerated.
  • Some cast components included in a combustion engine of a motor vehicle have a very complex construction with narrow ducts and grooves and it is therefore difficult to completely clean such engine components from all foundry sand particles and metallic particles.
  • Such remaining particles and other particulate contaminants may be mixed with the coolant when the coolant flows through the coolant ducts in the combustion engine and through other parts of the cooling system.
  • Narrow ducts in different components included in the cooling circuit of the cooling system such as for instance ducts in heat exchangers, valves or thermostats, may become clogged by particulate contaminants flowing through the cooling circuit together with the coolant. Such clogging may damage the components and/or impair the functioning thereof.
  • the particulate contaminants may cause increased wear of the components included in the cooling circuit. It is previously known to catch such particulate contaminants by means of a particulate filter arranged in the combustion engine. However, a disadvantage with such a particulate filter is that it may become clogged and therefore requires recurrent maintenance.
  • the object of the present invention is to achieve a new and advantageous manner of removing particulate contaminants from coolant circulating through a cooling circuit of a cooling system.
  • the expansion tank of the present invention comprises:
  • the first inlet basin is configured to receive the coolant which flows into the expansion chamber via said first inlet opening.
  • the first inlet basin is connected to the settling basin by a flow passage, via which coolant may flow from an upper part of the first inlet basin and down into the settling basin, wherein particulate contaminants contained in the coolant received in the settling basin is allowed to settle at the bottom of the settling basin under the effect of gravity.
  • the settling basin is provided with an outlet, via which coolant may flow from an upper part of settling basin and further on towards said lower part of the expansion chamber.
  • the coolant flowing into the expansion tank via the first inlet opening is initially accumulated and spread out in the first inlet basin before flowing from an upper part of the first inlet basin and down into the settling basin.
  • Particulate contaminants contained in the coolant entering the expansion chamber via the first inlet opening cannot settle in the first inlet basin due to the fact that the flow of coolant in the first inlet basin is too turbulent.
  • the flow of coolant in the settling basin is sufficiently calm to enable a settling of particulate contaminants at the bottom of the settling basin under the effect of gravity.
  • particulate contaminants may be removed from the coolant in a simple and cost-efficient manner without having to use any particulate filter that may become clogged.
  • a second inlet opening is arranged in the casing and intended to be connected to a vent conduit of said cooling system in order to allow coolant and air to flow into the expansion chamber via this second inlet opening, wherein the expansion tank is so configured that the coolant entering the expansion chamber via the second inlet opening is allowed to flow to said lower part of the expansion chamber without passing the first inlet basin and the settling basin.
  • the flow passage between the first inlet basin and the settling basin comprises a guide member, here denominated first guide member, which extends between the first inlet basin and the settling basin and along which the coolant is to flow when passing from the first inlet basin to the settling basin, wherein this guide member slopes downwards towards the settling basin.
  • the coolant flowing into the expansion chamber via the first inlet opening is subjected to an initial deaeration in the first inlet basin in that air bubbles rise to the surface of the coolant accumulated in the inlet basin and join the air in the air-filled upper part of the expansion chamber.
  • the coolant is then subjected to a further deaeration when flowing over the first guide member.
  • the layer of coolant formed on the first guide member will be so thin that the air bubbles accompanying the coolant flowing along the first guide member very easily can join the air above the first guide member.
  • the coolant is thereafter subjected to a further deaeration in the settling basin in that air bubbles rise to the surface of the coolant accumulated in the settling basin and join the air in the air-filled upper part of the expansion chamber.
  • the first guide member is flat and slopes downwards towards the settling basin at an angle of 5-15°, preferably 5-10°, in relation to the horizontal plane.
  • the first guide member slopes gently downwards and the flow velocity of the coolant along the first guide member is thereby limited, which is advantageous with respect to the deaeration.
  • the coolant flowing into the expansion chamber via the second inlet opening is subjected to an initial deaeration in the second inlet basin in that air bubbles rise to the surface of the coolant accumulated in the second inlet basin and join the air in the air-filled upper part of the expansion chamber.
  • the coolant is then subjected to a further deaeration when flowing over the second guide member.
  • the second guide member is undulated and has at least one crest which extends perpendicularly to the longitudinal direction of the second guide member.
  • the coolant which flows into the upper part of the expansion chamber via the first and second inlet openings will be directed by the third guide member down into the coolant accumulated in the lower part of the expansion chamber and may thereby slide down into the coolant accumulated in the lower part of the expansion chamber in a rather gentle manner.
  • the coolant from the upper part of the expansion chamber enters the coolant accumulated in the lower part of the expansion chamber.
  • the invention also relates to a cooling system having the features defined in claim 12.
  • FIG. 1 An expansion tank 1 according to an embodiment of the present invention is illustrated in Figs 1-6 .
  • This expansion tank 1 is intended to be included in a cooling system of a motor vehicle, for instance a cooling system 40 of the type illustrated in Fig 7 .
  • the expansion tank 1 comprises an outer casing 2 of rigid material, for instance plastic, and an expansion chamber 3 (see Figs 4 and 6 ) provided inside the casing.
  • the expansion chamber 3 is separated from the surroundings by the casing 2 and comprises a lower part 3a, in which coolant is to be accumulated, and an upper part 3b, in which air is to be accumulated.
  • the casing 2 is formed by a rear piece 2a and a front piece 2b, which are secured to each other by hot plate welding or in any other suitable manner.
  • the casing 2 is provided with an outlet opening 4 (see Figs 3 , 4 and 6 ) which is intended to be connected to a coolant conduit of a cooling system in order to allow exchange of coolant between the expansion chamber 3 and other parts of the cooling system via this outlet opening 4.
  • the outlet opening 4 is located at the bottom of the expansion chamber 3.
  • a pipe 5 connected to the outlet opening 4 protrudes from the underside of the casing 2. Said coolant conduit is intended to be connected to this pipe 5.
  • the casing 2 is provided with a first inlet opening 6 which is intended to be connected to a vent conduit of said cooling system in order to allow coolant and air to flow into the upper part 3b of the expansion chamber 3 via this first inlet opening 6.
  • a first inlet basin 7 and a settling basin 8 are arranged in the upper part 3b of the expansion chamber 3.
  • the first inlet basin 7 is configured to receive the coolant which flows into the expansion chamber 3 via the first inlet opening 6, wherein this coolant may be temporarily accumulated in the first inlet basin 7 before passing on towards the settling basin 8.
  • the first inlet basin 7 is connected to the settling basin 8 by a flow passage 9, via which coolant accumulated in the first inlet basin 7 may flow from an upper part of the first inlet basin 7 and down into the settling basin 8.
  • the settling basin 8 is configured to receive the coolant which flows from the inlet basin 7 via the flow passage 9, wherein this coolant may be temporarily accumulated in the settling basin 8 before passing further on towards the lower part 3a of the expansion chamber.
  • the settling basin 8 is provided with an outlet 10, via which coolant accumulated in the settling basin 8 may flow from an upper part of settling basin and out of the settling basin. Particulate contaminants contained in the coolant accumulated in the settling basin 8 is allowed to settle at the bottom of the settling basin under the effect of gravity.
  • the settling basin 8 extends between a first wall 11 located at an inlet end of the settling basin 8 and a second wall 12 located opposite said first wall 11 at an outlet end of the settling basin 8. Coolant enters the settling basin 8 via an inlet at said inlet end and leaves the settling basin via the outlet 10 at said outlet end.
  • the inlet of the settling basin 8 has an inlet edge 14 provided on said first wall 11, wherein the coolant flows over this inlet edge 14 when entering the settling basin 8.
  • the outlet 10 of the settling basin 8 has an outlet edge 15 provided on said second wall 12, wherein the coolant flows over this outlet edge 15 when leaving the settling basin 8.
  • the inlet edge 14 is located at a higher elevation in the expansion chamber 3 than the outlet edge 15 to thereby allow the coolant flowing over the inlet edge 14 to fall vertically down into the coolant previously accumulated in the settling basin 8.
  • the above-mentioned flow passage 9 comprises a first guide member 16, which extends between the first inlet basin 7 and the settling basin 8 and along which the coolant flows when passing through the flow passage 9 from the first inlet basin 7 to the settling basin 8.
  • the first guide member 16 is preferably flat and slopes downwards towards the settling basin 8 at an angle ⁇ (see Fig 4 ) of 5-15°, preferably 5-10°, in relation to the horizontal plane.
  • see Fig 4
  • the upper end of the first guide member 16 is connected to an upper end of a curved wall 17 of the first inlet basin 7, whereas the lower end of the first guide member 16 is connected to the above-mentioned first wall 11 of the settling basin 8.
  • the upper end of said curved wall 17 forms an upper edge 18 (see Figs 4 and 6 ) of the first inlet basin 7 and the first inlet opening 6 is provided in the first inlet basin 7 at a level below this upper edge 18 so that the coolant flowing into the expansion chamber 3 via the first inlet opening 6 will rise upwards in the first inlet basin 7 and then over to the first guide member 16 via this upper edge 18.
  • a drain hole 19 is provided in a lower part of the first inlet basin 7 to thereby allow coolant accumulated in the first inlet basin 7 to be drained off from the first inlet basin via this drain hole 19 when the flow of coolant into the expansion chamber 3 via the first inlet opening 6 has stopped.
  • the casing 2 is also provided with a second inlet opening 20 which is intended to be connected to a vent conduit of said cooling system in order to allow coolant and air to flow into the upper part 3b of the expansion chamber 3 via this second inlet opening 20.
  • the flow of coolant into the expansion chamber 3 via the first inlet opening 6 is intended to be lower than the flow of coolant into the expansion chamber 3 via the second inlet opening 20 and the cross-sectional area of the first inlet opening 6 is therefore preferably smaller than the cross-sectional area of the second inlet opening 20.
  • a second inlet basin 21 is arranged in the upper part 3b of the expansion chamber 3.
  • the second inlet basin 21 is configured to receive the coolant which flows into the expansion chamber 3 via the second inlet opening 20, wherein this coolant may be temporarily accumulated in the second inlet basin 21 before passing on towards the lower part 3a of the expansion chamber. Coolant entering the expansion chamber 3 via the second inlet opening 20 is directed to the lower part 3a of the expansion chamber without passing the first inlet basin 7, the first guide member 16 and the settling basin 8.
  • a second guide member 22 is connected to the second inlet basin 21, wherein coolant accumulated in the second inlet basin 21 may flow from an upper part of the second inlet basin 21 and further on towards the lower part 3a of the expansion chamber 3 via this second guide member 22.
  • the second guide member 22 is arranged below the first guide member 16 and the settling basin 8.
  • the second guide member 22 is undulated and has a crest 23 which extends perpendicularly to the longitudinal direction of the second guide member 22.
  • An upper end of the second guide member 22 is connected to an upper end of a curved wall 24 of the second inlet basin 21.
  • the upper end of said curved wall 24 forms an upper edge 25 (see Figs 4 and 6 ) of the second inlet basin 21 and the second inlet opening 20 is provided in the second inlet basin 21 at a level below this upper edge 25 so that the coolant flowing into the expansion chamber 3 via the second inlet opening 20 will rise upwards in the second inlet basin 21 and then over to the second guide member 22 via this upper edge 25.
  • the top of the crest 23 is located at a slightly lower elevation in the expansion chamber 3 than the upper edge 25 of the second inlet basin 21.
  • a wave trough 26 is formed between the upper edge 25 of the second inlet basin 21 and the crest 23, wherein coolant flowing along the second guide member 22 will be temporarily accumulated in this wave trough 26 before flowing over the top of the crest 23.
  • the settling basin 8 is connected to the second guide member 22 by a flow passage 27, via which coolant may flow from the outlet 10 of the settling basin 8 and fall down onto the second guide member 22.
  • a third guide member 28 is arranged in the expansion chamber 3 below the second guide member 22.
  • This third guide member 28 slopes downwards from an upper end 28b located in the upper part 3b of the expansion chamber 3 to a lower end 28a located in the lower part 3a of the expansion chamber.
  • the second guide member 22 is connected to the third guide member 28 by a flow passage 29, via which coolant may flow from the lower end 22a of the second guide member 22 and fall down onto the third guide member 28.
  • a drain hole 37 is provided in a lower part of the second inlet basin 21 to thereby allow coolant accumulated in the second inlet basin 21 to be drained off from the second inlet basin via this drain hole 37 when the flow of coolant into the expansion chamber 3 via the second inlet opening 20 has stopped.
  • a pipe socket 32 connected to the first inlet opening 6 and another pipe socket 33 connected to the second inlet opening 20 protrude from a side wall of the casing 2.
  • Each pipe socket 32, 33 is connected to the associated inlet opening 6, 20 via an inlet conduit 34, 35 provided on the outside of the casing 2, as illustrated in Fig 2 .
  • the above-mentioned vent conduits are intended to be connected to these pipe sockets 32, 33.
  • the expansion tank 1 is provided with a closable refill opening 34 (see Fig 1 ) which is arranged on the casing 2. Coolant may be introduced into the expansion chamber 3 via this refill opening 34 in order to provide for replenishment of the cooling system.
  • This refill opening 34 is closed by means of a removable lid (not shown).
  • the expansion tank 1 is provided with a valve device 35 which is mounted to the casing 2 and comprises a pressure relief valve for limiting the pressure in the expansion chamber 3 and a return valve.
  • the pressure relief valve allows air and vapor to flow out from the upper part 3b of the expansion chamber 3 when the pressure in the expansion chamber, due to an increase of the coolant volume, exceeds a pressure level given by the pressure relief valve.
  • the pressure relief valve ensures that the pressure in the expansion chamber 3 cannot exceed a predetermined pressure level.
  • the return valve allows air to flow into the upper part 3b of the expansion chamber 3 from the surroundings when the pressure in the expansion chamber, due to a reduction of the coolant volume, becomes lower than a pressure level given by the return valve.
  • the expansion tank 1 is also provided with a liquid level sensor 36 (see Fig 1 ) which is mounted to the casing 2 at a lower part thereof and configured to give off a signal when the coolant level in the expansion chamber 3 has reached a given lower level.
  • a liquid level sensor 36 (see Fig 1 ) which is mounted to the casing 2 at a lower part thereof and configured to give off a signal when the coolant level in the expansion chamber 3 has reached a given lower level.
  • the casing 2 is provided with a marking 38 (see Fig 1 ) which indicates the minimum coolant level in the expansion chamber 3 and another marking 39 which indicates the maximum coolant level in the expansion chamber 3.
  • a closable discharge opening may be provided at the bottom of the settling basin 8 in order to make possible a discharge of particulate contaminants settled at the bottom of the settling basin.
  • Fig 6 illustrates the flow of coolant through the expansion chamber 3. Coolant and accompanying air bubbles are led into the first inlet basin 7 from a first vent conduit via the first inlet opening 6. From the first inlet basin 7 the coolant runs over to the first guide member 16 via the upper edge 18 of the first inlet basin. By means of the first inlet basin 7 it is ensured that the coolant will flow along the first guide member 16 in a well-distributed flow so that a thin layer of coolant is formed on the first guide member 16. From the lower end of the first guide member 16 the coolant runs over the inlet edge 14 and down into the settling basin 8. Particulate contaminants contained in the coolant received in the settling basin 8 settle at the bottom of the settling basin 8 under the effect of gravity. Coolant leaving the settling basin 8 will run over the outlet edge 15 and down onto the second guide member 22 via the flow passage 27.
  • Coolant and accompanying air bubbles are led into the second inlet basin 21 from a second vent conduit via the second inlet opening 20. From the second inlet basin 21 the coolant runs over to the second guide member 22 via the upper edge 25 of the second inlet basin 21. By means of the second inlet basin 21 it is ensured that the coolant will flow over the upper end of the second guide member 22 in a well-distributed flow so that a thin layer of coolant is formed on the upper end of the second guide member 22. The coolant then runs down into the wave trough 26 on the second guide member 22 and will thereafter pass over the top of the crest 23 on the second guide member 22.
  • the wave trough 26 By means of the wave trough 26 it is ensured that the coolant will flow over the top of the crest 23 in a well-distributed flow so that a thin layer of coolant is formed on the top of the crest 23.
  • the coolant flowing along the second guide member 22 will join the coolant which falls down onto the second guide member 22 from the flow passage 27.
  • the combined coolant flow is then directed to the lower part 3a of the expansion chamber 3 via the third guide member 28 and mixed with the coolant accumulated in the lower part 3a of the expansion chamber. Coolant leaves the expansion chamber 3 via the outlet 4 at the bottom of the expansion chamber.
  • a cooling system 40 intended for a motor vehicle is schematically illustrated in Fig 7 .
  • This cooling system 40 comprises a cooling circuit 41 for cooling a combustion engine 42 of the vehicle by means of a coolant flowing through the cooling circuit.
  • the coolant is preferably in the form of water, with possible antifreezing additives such as for instance glycol.
  • a coolant pump 43 is provided in the cooling circuit 41 in order to circulate the coolant in the cooling circuit.
  • a radiator 44 for instance in the form of a conventional coolant radiator, is provided in the cooling circuit 41 in order to cool the coolant.
  • This radiator 44 has a coolant inlet 45a which is connected to a coolant outlet 46b of the combustion engine 42 via a first conduit 47 of the cooling circuit, and a coolant outlet 45b which is connected to a coolant inlet 46a of the combustion engine 42 via a second conduit 48 of the cooling circuit.
  • the coolant pump 43 is arranged in the second conduit 48.
  • the first conduit 47 is connected to the second conduit 48 via a third conduit 49 of the cooling circuit.
  • This third conduit 49 is configured to allow coolant to be returned from the coolant outlet 46b of the combustion engine 42 back to the coolant inlet 46a of the combustion engine without passing through the radiator 44.
  • the third conduit 49 constitutes a bypass conduit, via which coolant circulating in the cooling circuit 41 can bypass the radiator 44 on its way between the coolant outlet 46b and the coolant inlet 46a of the combustion engine 42. Between the coolant inlet 46a and the coolant outlet 46b of the combustion engine 42, the coolant is circulated through coolant ducts (not shown) inside the combustion engine while absorbing heat from the combustion engine.
  • a thermostat 50 is provided at the junction point between the first conduit 47 and the third conduit 49.
  • the thermostat 50 will either direct the coolant from the combustion engine 42 to the radiator 44 in order to allow the coolant to be cooled therein before being returned to the combustion engine 42, or direct the coolant from the combustion engine 42 directly back to the combustion engine via the third conduit 49 without passing through the radiator 44.
  • the coolant flowing through the radiator 44 is cooled by means of air which is blown towards the radiator when the motor vehicle is in motion.
  • the cooling system 40 may also comprise a fan (not shown) for generating an air flow through the radiator 44. This fan may be connected to the combustion engine 42 in order to be driven by the combustion engine.
  • the cooling system 40 is provided with an expansion tank 1 of the type described above.
  • the outlet opening 4 of the expansion tank 1 is connected to the above-mentioned second conduit 48 via a fourth conduit 51 of the cooling circuit 41.
  • This fourth conduit 51 is connected to the second conduit 48 at a point located between the radiator 44 and the coolant pump 43.
  • the first inlet opening 6 of the expansion tank 1 is connected to the radiator 44 via a first vent conduit 52 in order to allow coolant and air to flow from the radiator 44 and into the upper part 3b of the expansion chamber 3 via this first vent conduit 52 and the first inlet opening 6 of the expansion tank 1.
  • the second inlet opening 20 is connected to cooling ducts in the combustion engine 42 via a second vent conduit 53 in order to allow coolant and air to flow from the combustion engine 42 and into the upper part 3b of the expansion chamber 3 via this second vent conduit 53 and the second inlet opening 20 of the expansion tank 1.
  • the diameter of the first vent conduit 52 is preferably smaller than the diameter of the second vent conduit 53.
  • the mass flow of coolant through the first vent conduit 52 is with advantage considerably lower than the mass flow of coolant through the second vent conduit 53, for instance 25-50%, preferably about one third, of the mass flow of coolant through the second vent conduit 53. Coolant is led into the expansion chamber 3 of the expansion tank 1 via the vent conduits 52, 53 and is returned from the expansion chamber 3 to the cooling circuit 41 via the above-mentioned fourth conduit 51 after deaeration in the expansion chamber.
  • the expansion tank according to the invention is particularly intended for use in a heavy motor vehicle, such as for instance a bus, a tractor truck or a lorry.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Claims (14)

  1. Réservoir d'expansion destiné à être incluss dans un système de refroidissement d'un véhicule automobile afin de recevoir un liquide de refroidissement qui circule dans le système de refroidissement, le réservoir d'expansion (1) comprenant :
    - un boîtier externe (2);
    - une chambre d'expansion (3) contenu dans le boîtier (2), dans lequel la chambre d'expansion (3) comprend une partie inférieure (3a), dans lequel un liquide de refroidissement doit être accumulé, et une partie supérieure (3b), dans lequel l'air doit être accumulé ;
    - un orifice d'entrée (6), désigné dans la présente invention comme premier orifice d'entrée, lequel est disposé dans le boîtier (2) et destiné à être relié à une conduite d'évacuation dudit système de refroidissement afin de permettre au liquide de refroidissement et à l'air de s'écouler dans ladite partie supérieure (3b) de la chambre d'expansion (3) via ce premier orifice d'entrée (6) ; et
    - un orifice de sortie (4) lequel est disposé dans le boîtier (2) et destiné à être relié à un conduit du liquide de refroidissement dudit système de refroidissement afin de permettre au liquide de refroidissement de s'échapper de ladite partie inférieure (3a) de la chambre d'expansion (3) via cet orifice de sortie (4) ;
    dans lequel
    - un bassin d'entrée (7), désigné dans la présente invention comme premier bassin d'entrée, est disposé dans ladite partie supérieure (3b) de la chambre d'expansion (3), dans lequel ce bassin d'entrée (7) est configuré pour recevoir le liquide de refroidissement qui s'écoule dans la chambre d'expansion (3) via ledit premier orifice d'entrée (6) ;
    - un bassin de décantation (8) est disposé dans ladite partie supérieure (3b) de la chambre d'expansion (3);
    - le premier bassin d'entrée (7) est relié au bassin de décantation (8) par un passage d'écoulement (9), par lequel le liquide de refroidissement peut s'écouler depuis une partie supérieure du premier bassin d'entrée (7) et vers le bas dans le bassin de décantation (8), dans lequel contaminants particulaires contenus dans le liquide de refroidissement reçu dans le bassin de décantation (8) sont laissés sédimenter dans le fond du bassin de décantation sous l'effet de la gravité ;
    - le bassin de décantation (8) est fourni avec une sortie (1 0), par lequel le liquide de refroidissement peut s'écouler depuis une partie supérieure du bassin de décantation (8) et plus loin vers ladite partie inférieure (3a) de la chambre d'expansion (3),
    caractérisé en ce qu'un deuxième orifice d'entrée (20) est disposé dans le boîtier (2) et destiné à être relié à une conduite d'évacuation dudit système de refroidissement afin de permettre au liquide de refroidissement et à l'air de s'écouler dans la chambre d'expansion (3) via ce deuxième orifice d'entrée (20), dans lequel le réservoir d'expansion (1) est configuré de telle sorte que le liquide de refroidissement entrant dans la chambre d'expansion (3) via le deuxième orifice d'entrée (20) peut s'écouler vers ladite partie inférieure (3a) de la chambre d'expansion sans passer par le premier bassin d'entrée (7) et par le bassin de décantation (8).
  2. Réservoir d'expansion selon la revendication 1, caractérisé en ce que ledit passage d'écoulement (9) comprend un élément de guidage (16), désigné dans la présente invention comme premier élément de guidage, lequel s'étend entre le premier bassin d'entrée (7) et le bassin de décantation (8) et le long duquel le liquide de refroidissement s'écoule lors du passage du premier bassin d'entrée (7) vers le bassin de décantation (8), dans lequel cet élément de guidage (16) s'incline vers le bas en direction du bassin de décantation (8).
  3. Réservoir d'expansion selon la revendication 2, caractérisé en ce que le premier élément de guidage (16) est plat et s'incline vers le bas en direction du bassin de décantation (8) selon un angle (a) de 5-15 °, de préférence 5-10 °, par rapport au plan horizontal.
  4. Réservoir d'expansion selon l'une quelconque des revendications 1-3,
    caractérisé en ce :
    - que le bassin de décantation (8) s'étend entre une première paroi (11) située au niveau d'une extrémité d'entrée du bassin de décantation (8) et une deuxième paroi (12) située au niveau d'une extrémité de sortie du bassin de décantation (8);
    - que la sortie (1 0) du bassin de décantation (8) a une bord de sortie (15) fourni sur ladite deuxième paroi (12) ;
    et
    - que le bassin de décantation (8) comprend une entrée ayant un bord d'entrée (14) fourni sur ladite première paroi (11), dans lequel le bord d'entrée (14) est situé au niveau d'une élévation supérieure dans la chambre d'expansion (3) par rapport au bord de sortie (15) pour ainsi permettre le liquide de refroidissement de s'écouler sur le bord d'entrée (14) pour tomber verticalement vers le bas dans le bassin de décantation (8) .
  5. Réservoir d'expansion selon la revendication 1, caractérisé en ce que la surface de section transversale du premier orifice d'entrée (6) est plus petite que la surface de section transversale du deuxième orifice d'entrée (20).
  6. Réservoir d'expansion selon la revendication 1 caractérisé en ce :
    - qu'un deuxième bassin d'entrée (21) est disposé dans ladite partie supérieure (3b) de la chambre d'expansion (3), dans lequel ce deuxième bassin d'entrée (21) est configuré pour recevoir le liquide de refroidissement qui s'écoule dans la chambre d'expansion (3) via ledit deuxième orifice d'entrée (20) ; et
    - qu'un deuxième élément de guidage (22) est relié au deuxième bassin d'entrée (21), dans lequel le liquide de refroidissement peut s'écouler depuis une partie supérieure du deuxième bassin d'entrée (21) et plus loin vers ladite partie inférieure de la chambre d'expansion (3) via ce deuxième élément de guidage (22).
  7. Réservoir d'expansion selon la revendication 6, caractérisé en ce que le deuxième élément de guidage (22) est ondulé et a au moins une crête (23) qui s'étend perpendiculairement vers la direction longitudinale du deuxième élément de guidage (22).
  8. Réservoir d'expansion selon la revendication 6 ou selon la revendication 7, caractérisé en ce que le deuxième élément de guidage (22) est agencé en dessous du bassin de décantation (8).
  9. Réservoir d'expansion selon la revendication 8, caractérisé en ce que le bassin de décantation (8) est relié au deuxième élément de guidage (22) par un passage d'écoulement (27), par lequel le liquide de refroidissement peut s'écouler depuis la sortie (1 0) du bassin de décantation (8) et tomber vers le deuxième élément de guidage (22).
  10. Réservoir d'expansion selon l'une quelconque des revendications 6-9,
    caractérisé en ce :
    - qu'un troisième élément de guidage (28) est disposé dans la chambre d'expansion (3) en dessous du deuxième élément de guidage (22), dans lequel ce troisième élément de guidage (28) s'incline vers le bas à partir d'une extrémité supérieure (28b) située dans ladite partie supérieure (3b) de la chambre d'expansion (3) à une extrémité inférieure (28a) située dans ladite partie inférieure (3a) de la chambre d'expansion ; et
    - que le deuxième élément de guidage (22) est relié au troisième élément de guidage (28) par un passage d'écoulement (29), par lequel le liquide de refroidissement peut s'écouler depuis une extrémité inférieure (22a) du deuxième élément de guidage (22) et tomber vers le troisième élément de guidage (28) .
  11. Système de refroidissement pour un véhicule automobile comprenant :
    un circuit de refroidissement (41) destinée à refroidir un moteur à combustion (42) du véhicule automobile au moyen d'un liquide de refroidissement circulant dans le circuit de refroidissement (41) ; et
    - un radiateur (44) fourni dans le circuit de refroidissement (41) pour refroidir le liquide de refroidissement ;
    caractérisé en ce que le système de refroidissement (40) comprend un réservoir d'expansion (3) selon l'une quelconque des revendications 1-10, dans lequel le premier orifice d'entrée (6) du réservoir d'expansion (3) est relié à une conduite d'évacuation (52) incluse dans le circuit de refroidissement (41) et l'orifice de sortie (4) du réservoir d'expansion (3) est relié à un conduit du liquide de refroidissement (51) inclus dans le circuit de refroidissement (41).
  12. Système de refroidissement selon la revendication 11, caractérisé en ce que le réservoir d'expansion (3) est un réservoir d'expansion selon l'une quelconque des revendications 5-11, dans lequel le premier orifice d'entrée (6) du réservoir d'expansion (3) est relié à une première conduite d'évacuation (52) incluse dans le circuit de refroidissement (41) et le deuxième orifice d'entrée (20) du réservoir d'expansion (3) est relié à une deuxième conduite d'évacuation (53) incluse dans le circuit de refroidissement (41).
  13. Système de refroidissement selon la revendication 12, caractérisé en ce que le diamètre de ladite première conduite d'évacuation (52) est plus petite que le diamètre de ladite deuxième conduite d'évacuation (53).
  14. Système de refroidissement selon la revendication 12 ou selon la revendication 13, caractérisé en ce :
    - que ladite première conduite d'évacuation (52) est relié au radiateur (44) afin de permettre au liquide de refroidissement et à l'air de s'écouler du radiateur (44) et dans ladite partie supérieure (3b) de la chambre d'expansion (3) via cette première conduite d'évacuation (52) et le premier orifice d'entrée (6) du réservoir d'expansion (3) ; et
    - que ladite deuxième conduite d'évacuation (53) est reliée au moteur à combustion (42) afin de permettre au liquide de refroidissement et à l'air de s'écouler du moteur à combustion (42) et dans ladite partie supérieure (3b) de la chambre d'expansion (3) via cette deuxième conduite d'évacuation (53) et le deuxième orifice d'entrée (20) du réservoir d'expansion (3).
EP15190338.2A 2014-10-21 2015-10-19 Réservoir d'expansion et système de refroidissement comportant un tel réservoir Active EP3012429B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE1451253A SE539416C2 (en) 2014-10-21 2014-10-21 Expansion tank and cooling system including such an expansion tank

Publications (2)

Publication Number Publication Date
EP3012429A1 EP3012429A1 (fr) 2016-04-27
EP3012429B1 true EP3012429B1 (fr) 2019-07-17

Family

ID=54337146

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15190338.2A Active EP3012429B1 (fr) 2014-10-21 2015-10-19 Réservoir d'expansion et système de refroidissement comportant un tel réservoir

Country Status (2)

Country Link
EP (1) EP3012429B1 (fr)
SE (1) SE539416C2 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019132130A (ja) * 2016-06-02 2019-08-08 日立建機株式会社 エクスパンションタンク
DE102017120056A1 (de) * 2017-08-31 2019-02-28 Volkswagen Aktiengesellschaft Ausgleichsbehälter für ein Kühlsystem eines Fahrzeuges und Fahrzeug mit einem derartigen Ausgleichsbehälter
EP4135100B1 (fr) * 2020-06-05 2024-07-17 Zhejiang Liankong Technologies Co., Ltd Bouilloire extensible, système de refroidissement de véhicule et véhicule
DE102022211415A1 (de) * 2022-10-27 2024-05-02 Robert Bosch Gesellschaft mit beschränkter Haftung Thermomanagementmodul für ein Elektrofahrzeug

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6124659Y2 (fr) * 1980-07-15 1986-07-24
DE10041121B4 (de) * 2000-08-22 2015-01-08 Behr Gmbh & Co. Kg Wärmeübertrager mit mehreren Wärmeübertragungskreisen
GB0318402D0 (en) * 2003-08-06 2003-09-10 Ford Global Tech Llc Cooling system expansion tank
US7383795B2 (en) * 2006-03-16 2008-06-10 Daimler Trucks North America Llc Surge tank
JP4600537B2 (ja) * 2008-07-10 2010-12-15 トヨタ自動車株式会社 リザーブタンク
CN201916040U (zh) * 2010-11-25 2011-08-03 集瑞联合重工有限公司 重卡用膨胀水箱

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
SE1451253A1 (en) 2016-04-22
SE539416C2 (en) 2017-09-19
EP3012429A1 (fr) 2016-04-27

Similar Documents

Publication Publication Date Title
EP3012429B1 (fr) Réservoir d'expansion et système de refroidissement comportant un tel réservoir
DE112012002674B4 (de) Klimaanlage für ein Fahrzeug
KR101971993B1 (ko) 축열재를 이용한 전기온풍기
CN106741549A (zh) 防潮盒组件和电动车辆
US10369497B2 (en) Foreign substance removal apparatus, circulation system and vehicle cooling system
DE112011100614T5 (de) Anordnung zum Enteisen eines Ladeluftkühlers
CN107253435B (zh) 一种新能源汽车冷却系统
WO2017082796A1 (fr) Séparateur d'air vers un réservoir pour un système hydraulique
CN104936418B (zh) 一种电动汽车一体化充电仓水冷式散热系统
CN106481431B (zh) 冷却设备和机动车
JPS5855695A (ja) ヒ−タコア
US5267606A (en) Vehicular flushing and draining apparatus and method
DE202014100953U1 (de) Vorrichtung zum Kühlen eines Fluids
US3246452A (en) Device for recovering liquid from air
WO2004076022A1 (fr) Installation permettant de separer un gaz d'un fluide
CN108138644A (zh) 用于机动车的空气过滤装置
US7073576B2 (en) System for the circulation of the coolant of the oil cooler for the automatic transmission of a motor vehicle
US9920680B1 (en) Cooling system with debris outlet for a marine engine
EP2615273A1 (fr) Système de refroidissement pour moteur
EP3527800B1 (fr) Système de refroidissement d'une unité de propulsion d'un véhicule
JP6222460B2 (ja) エンジンの冷却回路
CN207050499U (zh) 一种具有过滤功能的冷却塔
CN205586645U (zh) 一种地沟油处理装置
FR3103218B1 (fr) Dispositif de combustion comportant une chambre de combustion et un circuit echangeur et systeme comportant un tel dispositif
RU2673979C2 (ru) Впускной воздушный канал со скользящей крышкой

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20161027

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190322

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015033844

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1156036

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190815

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190717

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1156036

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191118

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191017

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191018

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015033844

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191019

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

26N No opposition filed

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20151019

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230516

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230830

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240829

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20240917

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240909

Year of fee payment: 10