EP3011571B1 - Selbsthaltemagnet mit besonders kleiner elektrischer auslöseleistung - Google Patents

Selbsthaltemagnet mit besonders kleiner elektrischer auslöseleistung Download PDF

Info

Publication number
EP3011571B1
EP3011571B1 EP14739699.8A EP14739699A EP3011571B1 EP 3011571 B1 EP3011571 B1 EP 3011571B1 EP 14739699 A EP14739699 A EP 14739699A EP 3011571 B1 EP3011571 B1 EP 3011571B1
Authority
EP
European Patent Office
Prior art keywords
armature
self
shunt
spring
holding magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14739699.8A
Other languages
English (en)
French (fr)
Other versions
EP3011571A1 (de
Inventor
Arno Mecklenburg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rhefor GbR
Original Assignee
Rhefor GbR
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhefor GbR filed Critical Rhefor GbR
Publication of EP3011571A1 publication Critical patent/EP3011571A1/de
Application granted granted Critical
Publication of EP3011571B1 publication Critical patent/EP3011571B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/16Magnetic circuit arrangements
    • H01H50/163Details concerning air-gaps, e.g. anti-remanence, damping, anti-corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F7/1638Armatures not entering the winding
    • H01F7/1646Armatures or stationary parts of magnetic circuit having permanent magnet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/16Magnetic circuit arrangements
    • H01H50/18Movable parts of magnetic circuits, e.g. armature
    • H01H50/20Movable parts of magnetic circuits, e.g. armature movable inside coil and substantially lengthwise with respect to axis thereof; movable coaxially with respect to coil
    • H01H50/22Movable parts of magnetic circuits, e.g. armature movable inside coil and substantially lengthwise with respect to axis thereof; movable coaxially with respect to coil wherein the magnetic circuit is substantially closed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/16Magnetic circuit arrangements
    • H01H50/18Movable parts of magnetic circuits, e.g. armature
    • H01H50/30Mechanical arrangements for preventing or damping vibration or shock, e.g. by balancing of armature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/16Magnetic circuit arrangements
    • H01H50/36Stationary parts of magnetic circuit, e.g. yoke
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F2007/1669Armatures actuated by current pulse, e.g. bistable actuators

Definitions

  • the invention relates to the field of electromagnetic actuators.
  • So-called self-holding magnets are generally known and used (see e.g. E. Kallenbach, R. Eick, P. Quendt, T. Ströhla, K. Feindt, M. Kallenbach: Elektromagnete (2008), chap. 9.2 Polarized magnets, p. 298 ).
  • the shunt reduces on the one hand the electrical power required to compensate for the field generated by permanent magnets; on the other hand, the permanent magnet or magnets are protected from demagnetization.
  • self-holding magnets are combined with springs and together with these they form electrically triggered spring accumulators.
  • the spring thus acts on the armature in order to open the working air gap or gaps.
  • the self-holding magnet is designed in such a way that if the air gap falls below a certain minimum, a residual air gap remains to hold the spring in the tensioned state.
  • magnets locking units
  • a self-holding magnet according to the preamble of claim 1 is from WO 99/33078 known. Further self-holding magnets are off DE 10 2011 014192 A1 , DE 943 479 C , U.S. 6,130,594 A , GB 765 411 A , U.S. 3,444,490 A and U.S. 2,130,870 A known.
  • a low trip current is particularly desirable in battery operated locking units.
  • Trip devices, especially residual current trip devices should also react as quickly as possible, that is to say have short dead times.
  • Such triggers must also be designed in such a way that excessive counter-excitation does not inadvertently prevent or slow down the triggering inadmissibly:
  • An overcompensation of the permanent magnetically generated field and thus the associated holding force can namely cause a holding force to develop as a result of the Result in a linked flux tripping current, so that the self-holding magnet triggers delayed or not at all.
  • Trigger magnets must of course be quite insensitive to vibrations, unintentional triggering as a result of blows or other vibrations should be made very difficult, which is why the desired high electrical sensitivity - i.e. the desired low trigger currents or outputs - cannot be easily achieved by magnetic holding force and spring force are aligned as closely as possible.
  • the invention is based on a self-holding magnet with a spring, the self-holding magnet having a stop for the armature and a magnetic shunt.
  • the armature of the self-holding magnet In the tensioned state, the armature of the self-holding magnet is held permanently magnetically against the spring force, the working air gap (or the working air gap, if an armature with several pole faces is used) is closed except for a (working) residual air gap given by the stop, whereby the frame of the self-holding magnet (as an anchor counterpart) itself can serve as a stop, if necessary with an anti-adhesive film or similar.
  • the shunt has a particularly low reluctance:
  • the shunt is to be dimensioned so that its reluctance in the clamped state is of the same order of magnitude and as large as possible as the reluctance of the (working) residual air gap (or the sum of the reluctances of the remaining working air gaps, provided that several working air gaps are connected in series; this is the case, for example, with pole plates where two poles act on the same surface).
  • the working air gap (s) and shunt are magnetically connected in parallel. However, they are connected in series with regard to the flux that can be generated by the coil.
  • the reluctance of the shunt is of the same order of magnitude as the reluctance of the (working) residual air gap and, if possible, the same size as this. Flux-carrying parasitic residual air gaps must also be taken into account according to their arrangement. In any case, an electrical counter-excitation of the self-holding magnet leads to the flux density in the Working air gap (s) is reduced while the flux density in the shunt increases.
  • the shunt partial circuit can also be designed with regard to the flux-carrying cross-sections occurring in it so that due to magnetic saturation the reluctance of the iron circuit "seen" by the coil increases with increasing counter-excitation so that even a comparatively strong counter-excitation does not hold the armature against the spring force able (because the flux density in the shunt increases with increasing counter-excitation).
  • the shunt pitch circle can have the smallest effective cross section possible over a certain (minimum) length.
  • the shunt can be defined geometrically; however, it can also be formed from a soft magnetic material with a comparatively low (macroscopic) permeability, in particular a sintered material with a distributed air gap, which can simplify production.
  • a self-holding magnet according to the invention also has a resilient stop.
  • the stop In conventional self-holding magnets with springs (“storage springs”), the stop can be regarded as rigid to a good approximation. In these drives, the armature only starts to move when, as a result of the electrical counter-excitation, the magnetic holding force falls below the acting (releasing) spring force of the storage spring. This is not the case if the stop is able to compress itself. However, in order to meet the requirement for low tripping capacities with sufficient insensitivity to vibrations, the residual air gap produced with the help of the stop should be small. Accordingly, the resilient stop should be of suitable rigidity: On the one hand, the stop should be much stiffer than the "first" spring of the self-holding magnet (“storage spring”) serving for elastic energy storage.
  • the resilient stop should be far less stiff than a solid stop (made of an iron material) would be.
  • the stop is 100 bis 10,000 times stiffer than the "first" spring (accumulator spring).
  • the stop should in no way have a linear characteristic, but can also be degressive, for example, and be built up with the help of spiral springs, in particular a disc spring.
  • the resilient stop can also be preloaded.
  • the stop can be configured to be adjustable, for example with a fine thread, so that its preload and / or rest position can be adjusted in order to match the triggering characteristics.
  • the "first" spring (storage spring) and the “second” spring, namely the resilient stop, together form a combined spring with a highly progressive characteristic curve, based on their effect on the armature.
  • the resilient stop allows a very small counter-excitation to cause a certain (small) movement of the armature. Since, however, according to the invention, the shunt has a very small reluctance, even very small deflections of the armature from its (closed, tensioned) initial stroke position result in the flow over the shunt increasing considerably and the flow over the working air gap (s) decreases noticeably, with the associated magnetic holding force naturally developing proportionally to the square of the flux density in the working air gap.
  • the self-holding magnet according to the present invention can further be a have the following configurations:
  • the reversing solenoid can have a variably designed shunt. This means that when the armature is detached - i.e. while the working air gap is still of the order of magnitude of its remaining air gap - a movement of the armature which increases the working air gap results in a reduction in the reluctance of the shunt.
  • the invention can be designed as a reversing stroke magnet, one end face of the armature forming the working air gap of the self-holding magnet together with the frame.
  • the opposite end of the armature can form the shunt, the shunt being designed as an armature-armature counterpart system, which is preferably designed so that the highest "force constant" occurs at the start of the stroke (i.e.
  • the armature is supplied with a permanent magnetically generated magnetic flux, which is distributed to the working air gap (without influencing the characteristic curve) and shunt (with influencing the characteristic curve, acts to open the working air gap) according to the associated reluctances.
  • the counter-excitation with the help of the associated coil then causes an increase in the reluctance force acting on the armature at the shunt and a decrease in the reluctance force at the "holding surface", ie at the working air gap.
  • the shunt and accumulator spring exert force on the armature in the same direction (to open the working air gap).
  • a reduction in the flux-carrying shunt air gap can also take place with the aid of a second armature (“shunt armature").
  • This anchor is movably arranged that it is able to close the shunt air gap, which is small anyway, except for a residual air gap.
  • the reluctance force acting on the shunt armature can be transmitted to the armature via a mechanical or hydraulic device with or without transmission to open the working air gap (the force on the "shunt armature” should therefore be applied in the same direction to the (working) )
  • Anchors of the self-holding magnet act like the force of the accumulator spring).
  • a simple plunger is suitable for power transmission.
  • the shunt armature In the tensioned state of the drive, the shunt armature is in a position in which the reluctance of the shunt is as equal as possible to the series reluctance of the (working) residual air gap (s). If a counter-excitation is now generated, the force acting on the shunt armature increases and is transferred to the (working) armature in the direction of the (storage) spring force acting on the (working) armature, i.e. it acts to remove it from its initial stroke position to solve. At the same time, the magnetic holding force is reduced by the counter-excitation. Movement of the armature and shunt armature ultimately causes a decrease in the reluctance of the shunt and an increase in the reluctance of the working air gap.
  • Fig. 1a and Figure 1b shows an exemplary embodiment for a self-holding magnet according to the invention with a spring, which has a shunt armature. A resilient stop is not shown, but can advantageously be added.
  • Fig. 1a shows a section through the approximately rotationally symmetrical drive. The drawing is not to scale, but offers the developer a good basis for FEM optimization. The exemplary embodiment serves only for explanation and is in no way to be seen as a restriction.
  • a coil body can be dispensed with if, for example, the groove in which the coil lies is coated with an insulating coating.
  • ⁇ 10 and ⁇ 11 are the working air gaps (connected in series) in the tensioned stroke start position and are therefore closed except for residual air gaps (not shown).
  • ⁇ 20 is the shunt air gap that is used by the shunt armature 21 to do work.
  • the inner frame part 31 is chamfered in the area of the working air gap ⁇ 10.
  • Figure 1b shows a top view of the drive with removed armature guide and removed working armature and ram.
  • the permanent magnets made up of radially polarized circular segments can be seen, which are located in recesses in the (soft magnetic) frame.
  • 33 are structural magnetic shunts, the magnets being dimensioned in such a way that these structural magnetic shunts 33 saturate, so that a magnetic tension occurs between the inner frame part 31 and the outer area with the outer frame part 30, 32 and flux return 41.
  • the construction with radially polarized circular segments, constructive (saturated) shunts, etc. is comparatively complex, but enables a particularly high dimensional accuracy and thus meets the basic requirement for small residual air gaps.
  • Secondary air gap ⁇ 20 is in the illustrated stroke start position (panned state) of the same reluctance as possible as the series connection ⁇ 10, ⁇ 11 (but with a larger cross section). From the point of view of the coil, this can result in a polarized (sic! Magnetic circuit with low reluctance, which enables large force constants (N / A).
  • the shunt anchor 21 acts via the driver 20 on the plunger 10 welded to the working anchor and thus additionally helps to maintain the holding force which is imparted via ⁇ 10 and ⁇ 11 overcome and accelerate the working anchor.
  • the (electrical) sensitivity of this drive can be further increased by equipping it with a resilient stop of suitable rigidity.
  • This stop (not shown) can, for example, make use of a plate spring and act on the plunger 10. Pre-tensioning the disc spring or changing its rest position, whereby the fine adjustment can be carried out by means of screws with fine threads, then enables the electrical sensitivity of the drive to be adjusted.
  • It can be advantageous to connect the drive according to the invention in series with a diode and to connect a varistor in parallel to the drive, because during opening a voltage is induced in the coil which is opposite to the trigger voltage. Such an external circuit can shorten the tripping time considerably.
  • triggering proceeds as follows: Electrical counter-excitation reduces the flow through working air gaps ⁇ 10, ⁇ 11 and increases that through the shunt air gap ⁇ 20.
  • the resilient stop even a minimal supply of current leads to a certain amount of rebound.
  • ⁇ 10 and ⁇ 11 increase, while ⁇ 20 decreases accordingly (since the shunt armature 21, accelerated by reluctance force, follows the plunger 10).
  • the air gaps mentioned are all small, this small deflection of the system - the rebound - leads to a markedly different distribution of the permanent magnetically generated flux:
  • the flow through the working air gaps ⁇ 10, ⁇ 11 decreases, that through the shunt increases.
  • the rapid increase in the force acting on the shunt armature 21 contributes to the triggering of the self-holding magnet and also enables a considerable shortening due to the additional force transmitted to the working armature 11 via the driver 20 and plunger 10 and the magnetic "short-circuiting" of the working air gaps ⁇ 10, ⁇ 11 the achievable actuating times, because in the vicinity of the stroke start position only small forces from the difference between the spring force and the reluctance force to accelerate the armature are available with conventional self-holding magnets, at least with low release powers.
  • the reluctance force inhibiting the armature movement is short-circuited with the associated flux as a result of the movement of the shunt armature, while the working armature 11 is driven by the reluctance force acting on the shunt armature 21 in addition to the spring force).

Description

  • Die Erfindung betrifft das Gebiet der elektromagnetischen Aktoren.
  • Sogenannte Selbsthaltemagnete sind allgemein bekannt und gebräuchlich (siehe z.B.: E. Kallenbach, R. Eick, P. Quendt, T. Ströhla, K. Feindt, M. Kallenbach: Elektromagnete (2008), Kap. 9.2 Polarisierte Magnete, S. 298).
  • Es handelt sich bei diesen um permanent polarisierte, abschaltbare Elektromagnete: Mit Hilfe von Permanentmagneten können Selbsthaltemagnete einen (Magnet-) Anker in mindestens einer Lage stabil halten, wobei bedarfsweise vermittels einer Spule ("Auslösespule") eine Gegenerregung erzeugt werden kann, welche das permanentmagnetisch erzeugte Feld so weit kompensiert, dass die Ankerposition nicht länger stabil ist. Es ist bekannt, in Selbsthaltemagneten einen magnetischen Nebenschluss vorzusehen. Bezüglich des permanentmagnetisch erzeugten Flusses ist der Nebenschluss mit dem oder den Arbeitsluftspalten des Ankers parallel geschaltet. Bezüglich des von der Spule erzeugten Flusses sind sie aber in Reihe geschaltet. Der Nebenschluss vermindert damit einerseits die zur Kompensation des permanentmagnetisch erzeugten Feldes erforderliche elektrische Leistung; andererseits werden der oder die Permanentmagnete vor Entmagnetisierung geschützt. Oftmals werden Selbsthaltemagnete mit Federn kombiniert und bilden mit diesen elektrisch auslösbare Federspeicher. Die Feder wirkt also auf den Anker, um den oder die Arbeitsluftspalte zu öffnen. Der Selbsthaltemagnet ist aber so ausgelegt, dass er bei Unterschreitung eines gewissen Mindestluftspaltes, es bleibt ein Restluftspalt, die Feder in gespanntem Zustand zu halten vermag.
  • Durch Bestromen der Auslösespule kann eine Gegenerregung so erzeugt werden, dass die magnetische Haltekraft geringer wird als die Federkraft und der Anker sich in Bewegung setzt, wobei die zuvor in der Feder gespeicherte elastische Energie genutzt werden kann, Arbeit zu verrichten. Derartige "magnetische Federspeicher" werden beispielsweise als Auslöser, insbesondere Fehlerstromauslöser, in elektrischen Schaltgeräten, zum Beispiel Leistungsschaltern, gebraucht. Allgemein bekannt ist auch die Verwendung als Fehlerstromauslöser in Fehlerstrom-Schutzschaltern. Daneben werden sie in Verriegelungseinheiten verwendet ("Verriegelungsmagnete"), wobei das Spannen mechanisch erfolgen kann oder auch durch umgekehrte Erregung des Magneten mit Hilfe der Spule (Erregung statt Gegenerregung wie beim Auslösen). Um das magnetische Spannen zu erleichtern, kann von einer Kennlinienbeeinflussung Gebrauch gemacht werden, wodurch sich bei voll geöffnetem Arbeitsluftspalt weitaus höhere Kraftkonstanten ergeben können.
  • Ein Selbsthaltemagnet gemäß dem Oberbegriff von Anspruch 1 ist aus der WO 99/33078 bekannt. Weitere Selbsthaltemagnete sind aus DE 10 2011 014192 A1 , DE 943 479 C , US 6 130 594 A , GB 765 411 A , US 3 444 490 A und US 2 130 870 A bekannt.
  • In batteriebetriebenen Verriegelungseinheiten ist ein geringer Auslösestrom besonders wünschenswert. Gleiches gilt für die Auslöser elektrischer Schaltgeräte, und zwar insbesondere für Fehlerstromauslöser eigenversorgter Nieder- und Mittelspannungsschaltgeräte. Auslöser, vor allem Fehlerstromauslöser, sollen ferner möglichst schnell reagieren, also geringe Totzeiten aufweisen. Von solchen Auslösern ist außerdem zu fordern, dass sie so ausgelegt werden können, dass nicht eine zu hohe Gegenerregung das Auslösen unbeabsichtigt verhindert oder unzulässig verlangsamt: Eine Überkompensation des permanentmagnetisch erzeugten Feldes und damit der zugehörigen Haltekraft kann nämlich die Ausbildung einer Haltekraft infolge des mit dem Auslösestrom verketteten Flusses zur Folge haben, sodass der Selbsthaltemagnet verzögert oder überhaupt nicht auslöst. Gleichsam müssen Auslösemagnete natürlich recht erschütterungsunempfindlich sein, die unbeabsichtigte Auslösung infolge von Schlägen oder sonstigen Erschütterungen soll stark erschwert sein, weshalb die gewünschte hohe elektrische Empfindlichkeit - also die gewünscht niedrigen Auslöseströme bzw. -leistungen - nicht einfach realisiert werden können, indem magnetische Haltekraft und Federkraft einander möglichst nah angeglichen werden.
  • Damit ist die erfinderische Aufgabe gestellt: Selbsthaltemagnet mit Feder ("magnetischer Federspeicher"), der im Vergleich zu bekannten Typen eine besonders niedrige elektrische Auslöseleistung aufweist.
    Diese Aufgabe wird erfindungsgemäß durch einen Sebsthaltemagnet gemäß Anspruch 1 gelöst. Bevorzugte Ausgestaltungen der vorliegenden Erfindung sind Gegenstand der Unteransprüche.
  • Die Erfindung geht von einem Selbsthaltemagneten mit Feder aus, wobei der Selbsthaltemagnet einen Anschlag für den Anker sowie einen magnetischen Nebenschluss aufweist. In gespanntem Zustand wird der Anker des Selbsthaltemagneten gegen die Federkraft permanentmagnetisch gehalten, der Arbeitsluftspalt (oder die Arbeitsluftspalte, falls ein Anker mit mehreren Polflächen verwendet wird) ist bis auf einen durch den Anschlag gegebenen (Arbeits-)Restluftspalt geschlossen, wobei der Rahmen des Selbsthaltemagneten (als Ankergegenstück) selbst als Anschlag dienen kann, ggf. mit einer Antiklebfolie o.ä..
  • Dabei weist der Nebenschluss eine besonders geringe Reluktanz auf: Erfindungsgemäß ist der Nebenschluss so zu bemessen, dass seine Reluktanz im gespannten Zustand von gleicher Größenordnung und möglichst gleich groß ist wie die Reluktanz des (Arbeits-)Restluftspaltes (oder der Summe der Reluktanzen der Arbeitsrestluftspalte, sofern eine Reihenschaltung mehrerer Arbeitsluftspalte vorhanden ist; dies ist bspw. bei Polplatten der Fall, bei denen zwei Pole an derselben Fläche angreifen).
  • Bezüglich des permanentmagnetisch erzeugten Flusses sind Arbeitsluftspalt(e) und Nebenschluss magnetisch parallel geschaltet. Bezüglich des von der Spule erzeugbaren Flusses sind sie aber in Reihe geschaltet. Die Reluktanz des Nebenschlusses ist, wie gesagt, von gleicher Größenordnung wie die Reluktanz des (Arbeits-)Restluftspaltes und möglichst gleich groß wie diese. Flussführende parasitäre Restluftspalte sind entsprechend ihrer Anordnung ebenfalls zu berücksichtigen. Jedenfalls führt eine elektrische Gegenerregung des Selbsthaltemagneten dazu, dass die Flussdichte in dem/den Arbeitsluftspalt(en) vermindert wird, während die Flussdichte im Nebenschluss steigt.
  • Der Nebenschluss-Teilkreis kann außerdem bezüglich der in ihm auftretenden flussführenden Querschnitte so ausgeführt werden, dass infolge magnetischer Sättigung die Reluktanz des von der Spule "gesehenen" Eisenkreises mit zunehmender Gegenerregung derart zunimmt, dass auch eine vergleichsweise starke Gegenerregung den Anker nicht wider die Federkraft festzuhalten vermag (denn die Flussdichte im Nebenschluss steigt mit zunehmender Gegenerregung). Zu diesem Zweck kann der Nebenschluss-Teilkreis über eine gewisse (Mindest-)Länge einen möglichst konstanten, kleinsten effektiven Querschnitt besitzen. Der Nebenschluss kann geometrisch definiert sein; er kann aber auch aus einem weichmagnetischen Werkstoff vergleichsweise niedriger (makroskopischer) Permeabilität, insbesondere einem Sinterwerkstoff mit verteiltem Luftspalt, gebildet werden, was die Fertigung vereinfachen kann.
  • Im Gegensatz zu bekannten Selbsthaltemagneten weist ein erfindungsgemäßer Selbsthaltemagnet außerdem einen federnden Anschlag auf.
  • In herkömmlichen Selbsthaltemagneten mit Feder ("Speicherfeder") kann der Anschlag in guter Näherung als starr betrachtet werden. In diesen Antrieben setzt sich deshalb der Anker erst in Bewegung, wenn infolge der elektrischen Gegenerregung die magnetische Haltekraft die angreifende (ablösende) Federkraft der Speicherfeder unterschreitet. Dies ist nicht der Fall, wenn der Anschlag selbst einzufedern in der Lage ist. Allerdingssoll, um der Forderung nach kleinen Auslöseleistungen bei hinreichender Erschütterungsunempfindlichkeit gerecht zu werden, der mit Hilfe des Anschlags hergestellte Restluftspalt klein sein. Entsprechend soll der federnde Anschlag von geeigneter Steifigkeit sein: Einerseits soll der Anschlag weitaus steifer sein als die der elastischen Energiespeicherung dienende "erste" Feder des Selbsthaltemagneten ("Speicherfeder"). Andererseits soll der federnde Anschlag aber weitaus weniger steif sein, als es ein massiver Anschlag (aus einem Eisenwerkstoff) wäre. Erfindungsgemäß ist der Anschlag 100- bis 10.000-mal steifer als die "erste" Feder (Speicherfeder). Dabei soll der Anschlag keineswegs eine lineare Kennlinie besitzen, sondern kann beispielsweise auch degressiv sein und mit Hilfe von Biegefedern, insbesondere einer Tellerfeder, aufgebaut werden. Der federnde Anschlag kann auch vorgespannt werden. Ferner kann der Anschlag einstellbar ausgestaltet werden, zum Beispiel mit Feingewinden, sodass seine Vorspannung und/oder Ruhelage eingestellt werden können, um die Auslösecharakteristik abzustimmen. Zusammengefasst bilden die "erste" Feder (Speicherfeder) und die "zweite" Feder, nämlich der federnde Anschlag, bezogen auf ihre Wirkung auf den Anker gemeinsam eine kombinierte Feder mit höchst progressiver Kennlinie. Der federnde Anschlag lässt zu, dass bereits eine sehr kleine Gegenerregung eine gewisse (kleine) Bewegung des Ankers zur Folge hat. Da aber erfindungsgemäß der Nebenschluss eine sehr kleine Reluktanz aufweist, führen schon sehr kleine Auslenkungen des Ankers aus seiner (geschlossenen, gespannten) Hubanfangslage dazu, dass der Fluss über den Nebenschluss erheblich zu- und der Fluss über den (oder die) Arbeitsluftspalt(e) merklich abnimmt, wobei sich die zugehörige magnetische Haltekraft natürlich proportional zum Quadrat der Flussdichte im Arbeitsluftspalt entwickelt. Die kleine Auslenkung des Ankers, die infolge des federnden Anschlags bereits von einer kleinen Gegenerregung bewirkt wird, führt also infolge der sich ändernden Verteilung des Flusses zwischen Arbeitsluftspalt und Nebenschluss zu einer erheblichen Verminderung der magnetischen Haltekraft am Anker. Bei Auslegung und Einstellung des federnden Abnschlags ist entsprechend zu berücksichtigen, dass eine hinreichende Erschütterungsunempfindlichkeit des Systems erhalten bleibt (Unempfindlichkeit gegen versehentliche Auslösung). Um die Unempfindlichkeit gegen versehentliche Auslösevorgänge durch Erschütterungen oder auch durch von Störfeldern induzierte Gegenerregungen zu verbessern, kann mit einer zusätzlichen elektrischen Erregung gearbeitet werden. Hierzu kann die Auslösespule verwendet und entgegen derjenigen Richtung bestromt werden, die zur Auslösung gebraucht wird. Es kann aber auch eine zusätzliche Wicklung verwendet werden.
  • Der Selbsthaltemagnet gemäß der vorliegenden Erfindung kann weiterhin eine der folgenden Ausgestaltungen aufweisen:
  • 1. Variabler Nebenschluss durch Ausführung als Umkehrhubmagnet
  • Der Umkehrhubmagnet kann einen variabel gestalteten Nebenschluss aufweisen. Das bedeutet, dass beim Ablösen des Ankers - also während der Arbeitsluftspalt noch von der Größenordnung seines Restluftspaltes ist - eine Bewegung des Ankers, die den Arbeitsluftspalt vergrößert, eine Verringerung der Reluktanz des Nebenschlusses zur Folge hat. Hierzu kann die Erfindung als Umkehrhubmagnet ausgeführt werden, wobei eine Stirnfläche des Ankers zusammen mit dem Rahmen den Arbeitsluftspalt des Selbsthaltemagneten bildet. Das gegenüberliegende Ende des Ankers kann den Nebenschluss bilden, wobei der Nebenschluss als Anker-Ankergegenstück-System ausgeführt wird, welches vorzugsweise so ausgelegt wird, dass die höchste "Kraftkonstante" am Hubanfang auftritt (also in derjenigen Position, in welcher der Arbeitsluftspalt bis auf einen Restluftspalt geschlossen ist; die "gespannte" Lage). Folglich wird in dieser Ausführungsweise der Erfindung dem Anker ein permanentmagnetisch erzeugter magnetischer Fluss zugeführt, der entsprechend den zugehörigen Reluktanzen auf Arbeitsluftspalt (ohne Kennlinienbeeinflussung) und Nebenschluss (mit Kennlinienbeeinflussung, wirkt, den Arbeitsluftspalt zu öffnen) verteilt wird. Die Gegenerregung mit Hilfe der zugehörigen Spule bewirkt dann eine Zunahme der auf den Anker wirkenden Reluktanzkraft am Nebenschluss und eine Abnahme der Reluktanzkraft an der "Haltefläche", also am Arbeitsluftspalt. Nebenschluss und Speicherfeder üben auf den Anker Kraft in der gleichen Richtung aus (den Arbeitsluftspalt zu öffnen).
  • 2. Nutzarbeit aus Verminderung der Reluktanz des variablen Nebenschlusses mit Hilfe eines zweiten Ankers
  • Eine Verkleinerung des flussführenden Nebenschluss-Luftspaltes (Abnahme von dessen Reluktanz) kann auch mit Hilfe eines zweiten Ankers ("Nebenschluss-Anker") erfolgen. Dieser Anker ist beweglich so angeordnet, dass er den ohnehin kleinen Nebenschluss-Luftspalt bis auf einen Restluftspalt zu schließen vermag. Die auf den Nebenschluss-Anker wirkende Reluktanzkraft kann über eine mechanische oder hydraulische Vorrichtung mit oder ohne Transmission auf den Anker übertragen werden, den Arbeitsluftspalt zu öffnen (die Kraft auf den "Nebenschluss-Anker" soll also in der gleichen Richtung auf den (Arbeits-)Anker des Selbsthaltemagneten wirken wie die Kraft der Speicherfeder). Zur Kraftübertragung geeignet ist ein einfacher Stößel. In gespanntem Zustand des Antriebs befindet sich der Nebenschluss-Anker in einer Position, in welcher die Reluktanz des Nebenschlusses möglichst gleich der Reihenreluktanz des oder der (Arbeits-)Restluftspalte(s) ist. Wird nun eine Gegenerregung erzeugt, steigt die auf den Nebenschluss-Anker wirkende Kraft und wird in Richtung der auf den (Arbeits-)Anker wirkenden (Speicher-)Federkraft auf den (Arbeits-)Anker übertragen, wirkt also dahingehend, diesen aus seiner Hubanfangslage zu lösen. Gleichsam wird die magnetische Haltekraft durch die Gegenerregung gemindert. Bewegung von Anker und Nebenschlussanker bewirkt schließlich eine Abnahme der Reluktanz des Nebenschlusses sowie eine Zunahme der Reluktanz des Arbeitsluftspaltes.
  • Der magnetische Federspeicher gemäß der vorliegenden Erfindung kann bedarfsweise folgende weitere Merkmale aufweisen:
    • geringe Totzeit, d.h. kurze Zeit zwischen Bestromungsbeginn und einsetzender Ankerbewegung
    • kein Versagen auch bei, verglichen mit üblichen Selbsthaltemagneten, hohen Gegenerregungen.
  • Die Erfindung wird nachfolgend anhand von den in den Abbildungen dargestellten Beispielen näher erläutert. Die Darstellungen sind nicht zwangsläufig maßstabsgetreu und die Erfindung beschränkt sich nicht nur auf die dargestellten Aspekte. Vielmehr wird Wert darauf gelegt, die der Erfindung zugrunde liegenden Prinzipien darzustellen. In den Abbildungen zeigt:
  • Fig. 1a
    einen Längsschnitt durch einen Selbsthaltemagneten gemäß dem ersten Beispiel der vorliegenden Erfindung; und
    Fig. 1b
    einen Querschnitt durch einen Selbsthaltemagneten gemäß dem ersten Beispiel der vorliegenden Erfindung.
  • In den Figuren bezeichnen gleiche Bezugszeichen gleiche oder ähnliche Komponenten mit jeweils gleicher oder ähnlicher Bedeutung.
  • In Fig. 1a und Fig. 1b. ist ein Ausführungsbeispiel zu sehen für einen erfindungsgemäßen Selbsthaltemagneten mit Feder, der einen Nebenschlussanker aufweist. Ein federnder Anschlag ist nicht abgebildet, kann aber vorteilhaft hinzugefügt werden. Fig. 1a zeigt einen Schnitt durch den näherungsweise rotationssymmetrischen Antrieb. Die Zeichnung ist nicht maßstabsgerecht, bietet dem Entwickler aber eine gute Grundlage für FEM-Optimierungen. Das Ausführungsbeispiel dient nur der Erläuterung und ist keinesfalls als Einschränkung zu sehen.
  • Die einzelnen abgebildeten Bestandteile des Antriebs können aus folgenden Werkstoffen bestehen:
    • 10 Stößel, mit dem Arbeitsanker verschweißt, Austenitischer Edelstahl (NiCr)
    • 11 Arbeitsanker, Silizium-Eisen (FeSi)
    • 20 Mitnehmer, mit dem Nebenschlussanker verschweißt, (NiCr)
    • 21 Nebenschluss-Anker (FeSi)
    • 30 äußeres Rahmenteil (FeSi)
    • 31 inneres Rahmenteil (FeSi)
    • 32 weiteres äußeres Rahmenteil (FeSi)
    • 40 Ankerführung (Messing)
    • 41 Flussrückführung (FeSi)
    • 42 Nebenschlussanker-Anschlag (NiCr)
    • 50 Feder (Federstahl, kann vorteilhaft als Wellringfeder ausgeführt werden)
    • 60 Widerlager für Feder und Gleitlager(buchse) für Stößel (Bronze)
    • 70 Spule, gewickelt in die Nut des Rahmenteils (Kupfer-Lackdraht)
    • 80 Permanentmagnet (insb. NdFeB)
  • Auf einen Spulenkörper kann verzichtet werden, wenn bspw. die Nut, in welcher die Spule liegt, isolierend lackiert ist.
  • δ10 und δ11 sind die (in Reihe geschalteten) Arbeitsluftspalte in der gespannten Hubanfangslage und daher bis auf (nicht dargestellte) Restluftspalte geschlossen. δ20 ist der Nebenschluss-Luftspalt, der vom Nebenschluss-Anker 21 zum Verrichten von Arbeit genutzt wird. Das innere Rahmenteil 31 ist im Bereich des Arbeitsluftspaltes δ10 angefast.
  • Fig. 1b zeigt eine Draufsicht auf den Antrieb mit entfernter Ankerführung und entferntem Arbeitsanker und Stößel. Zu sehen sind die aus radial polarisierten Kreissegmenten bestehenden Permanentmagnete, die sich in Aussparungen des (weichmagnetischen) Rahmens befinden. 33 sind konstruktive magnetische Nebenschlüsse, wobei die Magnete so zu dimensionieren sind, dass diese konstruktiven magnetischen Nebenschlüsse 33 sättigen, sodass eine magnetische Spannung zwischen dem inneren Rahmenteil 31 und dem äußeren Bereich mit äußerem Rahmenteil 30, 32 und Flussrückführung 41 auftritt. Die Bauweise mit radial polarisierten Kreissegmenten, konstruktiven (gesättigten) Nebenschlüssen usw. ist zwar vergleichsweise aufwendig, ermöglicht aber eine besonders hohe Maßhaltigkeit und kommt somit der grundsätzlichen Forderung nach geringen Restluftspalten sehr entgegen.
  • Funktionsweise:
  • Nebenluftspalt δ20 ist in der dargestellten Hubanfangslage (gepannter Zustand) von möglichst gleicher Reluktanz wie die Reihenschaltung δ10, δ11 (jedoch von größerem Querschnitt). Aus Sicht der Spule kann sich hierdurch ein polarisierter (sic!) Magnetkreis geringer Reluktanz ergeben, was große Kraftkonstanten (N/A) ermöglicht. Der Nebenschlussanker 21 wirkt über den Mitnehmer 20 auf den mit dem Arbeitsanker verschweißten Stößel 10 und hilft so zusätzlich, die Haltekraft, welche über δ10 und δ11 vermittelt wird, zu überwinden und den Arbeitsanker zu beschleunigen. Infolge der Reihenschaltung (sic!) von δ10 und δ11 bewirkt eine Öffnung dieser Restluftspalte um eine gegebene (kleine) Länge näherungsweise eine doppelt so hohe Zunahme derer Reihen-Reluktanz, wie dies bei einem einfachen (kleinen) Arbeitsluftspalt der Fall wäre. Gleichsam setzt sich der Nebenschlussanker 21 in Bewegung und hilft nicht nur vermittels Mitnehmer 20, den Arbeitsanker zu bewegen, sondern entzieht den Arbeitsluftspalten δ10, δ11 zusätzlich Fluss, da ja eine schließende Bewegung des Nebenschluss-Ankers zu einer Verminderung der Reluktanz des Nebenschlusses führt und dieser bezüglich des permanentmagnetisch erzeugten Flusses mit den Arbeitsluftspalten parallel geschaltet ist. Wie gesagt kann die (elektrische) Empfindlichkeit dieses Antriebs weiter erhöht werden, indem er mit einem federnden Anschlag geeigneter Steifigkeit ausgerüstet wird. Dieser Anschlag (nicht eingezeichnet) kann beispielsweise von einer Tellerfeder Gebrauch machen und auf den Stößel 10 wirken. Vorspannen der Tellerfeder oder Veränderung derer Ruhelage, wobei die Feineinstellung vermittels Schrauben mit Feingewinden erfolgen kann, ermöglicht dann eine Justierung der elektrischen Empfindlichkeit des Antriebs. Es kann vorteilhaft sein, den erfindungsgemäßen Antrieb mit einer Diode in Reihe zu schalten und parallel zum Antrieb einen Varistor zu schalten, denn während des Öffnens wird in der Spule eine Spannung induziert, welche der Auslösespannung entgegengesetzt ist. Eine solche äußere Beschaltung kann die Auslösezeit erheblich verkürzen. Unter Verwendung eines federnden Anschlags verläuft eine Auslösung folgendermaßen:
    Elektrische Gegenerregung vermindert den Fluss durch Arbeitsluftspalte δ10, δ11 und erhöht jenen durch Nebenschluss-Luftspalt δ20. Durch den federnden Anschlag führt dabei schon eine minimale Bestromung zu einem gewissen Ausfedern. Infolge dieses Ausfederns erhöhen sich δ10 und δ11, derweil δ20 entsprechend abnimmt (da der Nebenschluss-Anker 21, durch Reluktanzkraft beschleunigt, dem Stößel 10 folgt). Weil die genannten Luftspalte alle klein sind, führt diese kleine Auslenkung des Systems - das Ausfedern - zu einer ausgeprägt anderen Verteilung des permanentmagnetisch erzeugten Flusses: Der Fluss durch die Arbeitsluftspalte δ10, δ11 nimmt ab, jener durch den Nebenschluss nimmt zu. Die rapide Zunahme der auf den Nebenschluss-Anker 21 wirkenden Kraft trägt zum Auslösen des Selbsthaltemagneten bei und ermöglicht wegen der zusätzlich über Mitnehmer 20 und Stößel 10 auf den Arbeitsanker 11 übertragenen Kraft und des magnetischen "Kurzschließens" der Arbeitsluftspalte δ10, δ11 auch eine erhebliche Verkürzung der erzielbaren Stellzeiten, denn in der Umgebung der Hubanfangslage stehen bei herkömmlichen Selbsthaltemagneten, jedenfalls bei geringen Auslöseleistungen, nur kleine Kräfte aus der Differenz der Federkraft und der Reluktanzkraft zur Beschleunigung des Ankers zur Verfügung. Im Ausführungsbeispiel dagegen wird die die Ankerbewegung hemmende Reluktanzkraft mit dem zugehörigen Fluss infolge der Bewegung des Nebenschluss-Ankers kurzgeschlossen, während der Arbeitsanker 11 durch die auf Nebenschlussanker 21 wirkende Reluktanzkraft zusätzlich zur Federkraft angetrieben wird).

Claims (13)

  1. Selbsthaltemagnet, umfassend:
    - einen Magnetkreis umfassend einen Stator und einem ersten Anker (11);
    - einen Anschlag;
    - eine durch den Anschlag definierte Hubanfangslage, in welcher zwischen Stator und erstem Anker ein oder mehrere Arbeits-Restluftspalte vorliegen;
    - mindestens eine Feder (50), welche eine Federkraft ausübt, die den ersten Anker vom Anschlag wegdrückt;
    - einen magnetischen Nebenschluss (33; 31, 520, 21, 32);
    - einen oder mehrere Permanentmagnete (80) zur Erregung des Magnetkreises;
    - eine oder mehrere Auslöse-Spulen (70) zur Gegenerregung des Magnetkreises,
    wobei der Magnetkreis so bemessen ist, dass er seinen ersten Anker magnetisch wider die Federkraft in der Hubanfangslage zu halten vermag, wobei der magnetische Nebenschluss in der Hubanfangslage eine Reluktanz aufweist, welche von gleicher Größenordnung ist wie die Reluktanz des Arbeits-Restluftspaltes oder im Falle einer Reihenschaltung mehrerer Arbeits-Restluftspalte wie die Reihen-Reluktanz der Arbeits-Restluftspalte,
    wobei Arbeits-Luftspalt(e) (510, 511) und Nebenschluss (33; 31, 520, 21, 32) bezüglich des permanentmagnetisch erzeugten Flusses magnetisch parallel geschaltet sind, bezüglich des von der(den) Auslöse-Spule(n) erzeugten Flusses aber in Reihe geschaltet sind,
    wobei die Auslöse-Spule(n) derart bestromt werden, dass der magnetische Fluss in dem (den) Arbeitsluftspalt(en) geschwächt und der magnetische Fluss im Nebenschluss erhöht wird, was zum Entspannen der Feder führt, wenn die magnetische Haltekraft betragsmäßig die Federkraft unterschreitet;
    dadurch gekennzeichnet,
    dass der Anschlag als federnder Anschlag ausgestaltet ist, wobei der Anschlag selbst Federeigenschaften aufweist und dabei 100- bis 10.000-mal steifer ist als die mindestens eine Feder.
  2. Selbsthaltemagnet gemäß Anspruch 1, wobei der magnetische Nebenschluss so ausgeführt ist, dass eine Bewegung des ersten Ankers weg aus der Hubanfangslage eine Verminderung der Reluktanz des Nebenschlusses zur Folge hat, womit der permanentmagnetisch erzeugte Fluss mit einsetzender Bewegung des ersten Ankers zunehmend auf den Nebenschluss kommutiert.
  3. Selbsthaltemagnet gemäß Anspruch 2, wobei das Kommutieren des permanentmagnetisch erzeugten Flusses auf den Nebenschluss erreicht wird, indem:
    der Nebenschluss einen zweiten Anker (21) umfasst, welcher die auf ihn wirkende Reluktanzkraft beispielsweise durch einem Stößel (10) auf den ersten Anker überträgt,
    sodass eine Gegenerregung durch die Auslöse-Spule(n) zur Folge hat, dass der Fluss in den Arbeitsluftspalt(en) des ersten Ankers abnimmt, der Fluss in den Arbeitsluftspalt(en) des zweiten Ankers jedoch zunimmt.
  4. Selbsthaltemagnet gemäß Anspruch 2, wobei das Kommutieren des permanentmagnetisch erzeugten Flusses auf den Nebenschluss erreicht wird, indem:
    der Selbsthaltemagnet als Umkehrhubmagnet ausgeführt ist,
    wobei eine Stirnfläche des Ankers zusammen mit einem Rahmen den Arbeitsluftspalt des Selbsthaltemagneten bildet, wobei das gegenüberliegende Ende des Ankers den Nebenschluss bildet, und wobei der Nebenschluss als Anker-Ankergegenstück-System ausgeführt ist, welches so ausgelegt ist, dass die höchste Kraftkonstante in der Hubanfangslage auftritt.
  5. Selbsthaltemagnet gemäß Anspruch 1, wobei der federnde Anschlag 100 bis 1000 mal steifer ist als die mindestens eine Feder.
  6. Selbsthaltemagnet gemäß Anspruch 1 gekennzeichnet dadurch, dass der federnde Anschlag bezüglich seiner Vorspannung und/oder Position einstellbar ist, bevorzugt mit Hilfe von Gewinden.
  7. Selbsthaltemagnet gemäß Anspruch 1 gekennzeichnet dadurch, dass der Nebenschluss nicht als geometrisch bestimmter Luftspalt ausgeführt wird sondern mit Hilfe eines Werkstoffs mit verteiltem Luftspalt.
  8. Selbsthaltemagnet nach Anspruch 1 gekennzeichnet dadurch, dass der Nebenschluss bzw. die zugehörige Flussführung derartig dimensioniert und geformt ist, dass infolge von Sättigung die Reluktanz des von der Spule gesehenen Eisenkreises dahingehend steigen kann, dass auch bei vergleichsweise hoher Gegenerregung ein unbeabsichtigtes Festhalten des Ankers in seiner Hubanfangslage oder ein unzulässig verzögertes Auslösen vermieden wird.
  9. Selbsthaltemagnet nach Anspruch 1 gekennzeichnet dadurch, dass er mit einem Gleichrichter und einem Varistor ausgerüstet ist, wobei der Gleichrichter mit dem Selbsthaltemagneten in Reihe, der Varistor aber parallel geschaltet, und zwar so, dass bei einer Änderung der Stromrichtung in der Spule des Selbsthaltemagneten der Strom nicht länger über den Gleichrichter fließt sondern über den Varistor frei läuft.
  10. Selbsthaltemagnet nach Anspruch 1 gekennzeichnet dadurch, dass als Feder eine Wellringfeder verwendet wird.
  11. Selbsthaltemagnet nach Anspruch 1 oder 3 gekennzeichnet dadurch, dass wenigstens der oder die Anker rund ausgeführt werden und dass in den oder die Anker und/oder in Rahmenteile des Ankers Schlitze eingebracht sind und dass diese Schlitze mit einem elektrisch schlecht leitenden Lagerwerkstoff gefüllt sind, der so weit übersteht, dass er als Teil eines Gleitlagers dienen kann.
  12. Selbsthaltemagnet nach Anspruch 1 gekennzeichnet dadurch, dass als Feder eine Tellerfeder oder ein Tellerfederpaket besitzt, welche eine derart degressive Kennlinie aufweist, dass die Federkraft beim Entspannen der Feder zuerst zunimmt.
  13. Selbsthaltemagnet nach Anspruch 1 gekennzeichnet dadurch, dass der federnde Anschlag mit Hilfe mindestens einer Biegefeder, insbesondere einer Tellerfeder, aufgebaut ist.
EP14739699.8A 2013-06-20 2014-06-20 Selbsthaltemagnet mit besonders kleiner elektrischer auslöseleistung Active EP3011571B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102013010204 2013-06-20
DE102013013585.0A DE102013013585B4 (de) 2013-06-20 2013-08-19 Selbsthaltemagnet mit besonders kleiner elektrischer Auslöseleistung
PCT/EP2014/063042 WO2014202761A1 (de) 2013-06-20 2014-06-20 Selbsthaltemagnet mit besonders kleiner elektrischer auslöseleistung

Publications (2)

Publication Number Publication Date
EP3011571A1 EP3011571A1 (de) 2016-04-27
EP3011571B1 true EP3011571B1 (de) 2020-12-16

Family

ID=52010233

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14739699.8A Active EP3011571B1 (de) 2013-06-20 2014-06-20 Selbsthaltemagnet mit besonders kleiner elektrischer auslöseleistung

Country Status (4)

Country Link
US (1) US9953786B2 (de)
EP (1) EP3011571B1 (de)
DE (1) DE102013013585B4 (de)
WO (1) WO2014202761A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106449277A (zh) * 2016-10-28 2017-02-22 游民 一种开关用自闭合磁路永磁机构
EP3454456B1 (de) * 2017-09-08 2021-03-10 Hamilton Sundstrand Corporation Polstück für torsionsmotor
US11640864B2 (en) * 2019-12-05 2023-05-02 Deltrol Corp. System and method for detecting position of a solenoid plunger
CN110953397B (zh) * 2019-12-11 2021-08-31 长沙理工大学 一种带减振的串并联永磁与电磁混合励磁高速电磁执行器

Family Cites Families (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2130870A (en) 1936-08-04 1938-09-20 Gen Electric Protective control device and system
US2278971A (en) * 1938-12-31 1942-04-07 Gen Electric Electromagnetic apparatus
US2310138A (en) * 1941-10-23 1943-02-02 Westinghouse Electric & Mfg Co Electrical switching apparatus
DE943479C (de) 1953-10-22 1956-05-24 Berker Geb Elektromagnetischer Ausloeser fuer Selbstschalter, insbesondere fuer Beruehrungs-Schutzschalter
GB765411A (en) 1954-03-01 1957-01-09 Bbc Brown Boveri & Cie Magnetic trip with short time-lag-release
US2919324A (en) * 1958-08-04 1959-12-29 Leach Corp Magnetic shuttle device
US3119940A (en) * 1961-05-16 1964-01-28 Sperry Rand Corp Magnetomotive actuators of the rectilinear output type
DE1464993A1 (de) * 1964-03-05 1969-10-09 Harting Elektro W Elektrohubmagnet
US3371297A (en) * 1966-08-10 1968-02-27 Westinghouse Electric Corp Electromagnetic control device having a predetermined radial air gap which remains substantially constant independently of the wear of the armature and associated stationary magnetic structure
US3444490A (en) * 1966-09-30 1969-05-13 Westinghouse Electric Corp Electromagnetic structures for electrical control devices
US3639871A (en) * 1970-05-21 1972-02-01 Servotronics Torque motor
US3783423A (en) * 1973-01-30 1974-01-01 Westinghouse Electric Corp Circuit breaker with improved flux transfer magnetic actuator
US3792390A (en) * 1973-05-29 1974-02-19 Allis Chalmers Magnetic actuator device
US3886507A (en) * 1973-10-05 1975-05-27 Westinghouse Electric Corp Adjustable latch for a relay
US4157520A (en) * 1975-11-04 1979-06-05 Westinghouse Electric Corp. Magnetic flux shifting ground fault trip indicator
US4144514A (en) * 1976-11-03 1979-03-13 General Electric Company Linear motion, electromagnetic force motor
US4072918A (en) * 1976-12-01 1978-02-07 Regdon Corporation Bistable electromagnetic actuator
DE2816555A1 (de) * 1977-04-18 1978-10-19 Francaise App Elect Mesure Magnetkreisanordnung fuer einen elektromagneten fuer einen mit einem permanentmagneten als anker
GB1591471A (en) * 1977-06-18 1981-06-24 Hart J C H Electromagnetic actuators
US4251789A (en) * 1979-09-04 1981-02-17 General Electric Company Circuit breaker trip indicator and auxiliary switch combination
DE3042752C2 (de) * 1980-11-13 1985-10-03 bso Steuerungstechnik GmbH, 6603 Sulzbach Ankerlagerung in Elektrohubmagneten
DE3563140D1 (en) * 1984-08-20 1988-07-07 Telemecanique Electrique Polarised electromagnet presenting a symmetric disposition
DE3533817A1 (de) * 1985-09-21 1987-04-02 Rexroth Mannesmann Gmbh Servoventil sowie dafuer geeigneter steuermotor
DE3635431C1 (de) * 1986-10-17 1988-01-28 Sds Relais Ag Polarisierter Magnetantrieb fuer ein elektromagnetisches Schaltgeraet
US4737750A (en) * 1986-12-22 1988-04-12 Hamilton Standard Controls, Inc. Bistable electrical contactor arrangement
US4829947A (en) * 1987-08-12 1989-05-16 General Motors Corporation Variable lift operation of bistable electromechanical poppet valve actuator
US4876521A (en) * 1987-08-25 1989-10-24 Siemens Energy & Automation, Inc. Tripping coil with flux shifting coil and booster coil
IT1226237B (it) * 1988-07-08 1990-12-27 Bassani Spa Attuatore elettromagnetico del tipo rele'
US4847581A (en) * 1988-08-01 1989-07-11 Lucas Ledex Inc. Dual conversion force motor
CA1283680C (en) * 1988-09-28 1991-04-30 Klaus Gunter Engel Microwave c-switches and s-switches
US4954799A (en) * 1989-06-02 1990-09-04 Puritan-Bennett Corporation Proportional electropneumatic solenoid-controlled valve
US5010911A (en) * 1989-12-15 1991-04-30 Wormald U.S., Inc. Electromagnetic valve operator
US5032812A (en) * 1990-03-01 1991-07-16 Automatic Switch Company Solenoid actuator having a magnetic flux sensor
IT1249286B (it) * 1990-07-30 1995-02-22 Bticino Spa Elettromagnete di sgancio a magnete permanente per interruttori automatici
MX9304342A (es) * 1992-07-20 1994-04-29 Gec Alsthom Ltd Reconectores automaticos.
US5351934A (en) * 1992-12-15 1994-10-04 Alliedsignal, Inc. Proportional solenoid valve
DE19608729C1 (de) * 1996-03-06 1997-07-03 Siemens Ag Elektromagnetisches Schaltgerät
DE19619835A1 (de) 1996-05-17 1997-11-20 E I B S A Elektrischer Schalter mit einem magnetischen Antrieb
GB9727148D0 (en) 1997-12-22 1998-02-25 Fki Plc Improvemnts in and relating to electomagnetic actuators
DE29905393U1 (de) * 1999-03-23 1999-06-10 Kuhnke Gmbh Kg H Hubmagnet, insbesondere elektromagnetischer Umkehrhubmagnet
DE10026813B4 (de) * 1999-06-24 2006-01-19 Abb Patent Gmbh Elektromagnetischer Auslöser
DE10146899A1 (de) * 2001-09-24 2003-04-10 Abb Patent Gmbh Elektromagnetischer Aktuator, insbesondere elektromagnetischer Antrieb für ein Schaltgerät
JP2004071512A (ja) * 2002-08-09 2004-03-04 Omron Corp 開閉装置
US6791442B1 (en) * 2003-11-21 2004-09-14 Trombetta, Llc Magnetic latching solenoid
DE102004012391A1 (de) * 2004-03-13 2005-09-29 Ina-Schaeffler Kg Ventilbetätigungseinrichtung
JP2007227766A (ja) * 2006-02-24 2007-09-06 Toshiba Corp 電磁アクチュエータ
US7557681B2 (en) * 2007-04-09 2009-07-07 Eaton Corporation Electrical switching apparatus accessory sub-assembly employing reversible coil frame, and accessory and electrical switching apparatus employing the same
US7598830B2 (en) * 2007-04-09 2009-10-06 Eaton Corporation Electromagnetic coil apparatus employing a magnetic flux enhancer, and accessory and electrical switching apparatus employing the same
FR2921199B1 (fr) * 2007-09-17 2014-03-14 Schneider Electric Ind Sas Actionneur electromagnetique et appareil interrupteur equipe d'un tel actionneur electromagnetique
DE102008000534A1 (de) * 2008-03-06 2009-09-10 Zf Friedrichshafen Ag Elektromagnetische Stellvorrichtung
JP5206157B2 (ja) * 2008-06-30 2013-06-12 オムロン株式会社 電磁継電器
JP5163318B2 (ja) * 2008-06-30 2013-03-13 オムロン株式会社 電磁石装置
GB0822760D0 (en) * 2008-12-13 2009-01-21 Camcon Ltd Bistable electromagnetic actuator
KR101304056B1 (ko) * 2009-10-29 2013-09-04 미쓰비시덴키 가부시키가이샤 전자석 장치 및 전자석 장치를 이용한 개폐장치
ES2457549T3 (es) * 2009-12-18 2014-04-28 Schneider Electric Industries Sas Actuador electromagnético con acoplamiento magnético y dispositivo de corte que comprende dicho actuador
CN102054606B (zh) * 2010-11-03 2012-10-03 江苏现代电力电容器有限公司 软碰撞的电磁驱动机构
DE102011014192B4 (de) 2011-03-16 2014-03-06 Eto Magnetic Gmbh Elektromagnetische Aktuatorvorrichtung
DE102011082114B3 (de) * 2011-09-05 2013-01-31 Siemens Aktiengesellschaft Elektromagnetischer Antrieb
DE102013210871A1 (de) * 2013-06-11 2014-12-11 Schaeffler Technologies Gmbh & Co. Kg Aktor mit Übertragungselement
CN103500688B (zh) * 2013-09-27 2016-04-27 哈尔滨工业大学 一种含永磁电磁结构
CN105659481B (zh) * 2013-10-23 2020-02-11 雷福尔公司 机电致动器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102013013585B4 (de) 2020-09-17
WO2014202761A1 (de) 2014-12-24
US9953786B2 (en) 2018-04-24
US20160148769A1 (en) 2016-05-26
EP3011571A1 (de) 2016-04-27
DE102013013585A1 (de) 2014-12-24

Similar Documents

Publication Publication Date Title
EP2561523B1 (de) Bistabiler magnetaktor
DE3215057C2 (de) Selbsthaltendes solenoid
EP2880696B1 (de) Aktuatorvorrichtung
EP2486575B1 (de) Aktuator für eine verbrennungskraftmaschine
EP3061104B1 (de) Elektromechanischer aktor
EP3011571B1 (de) Selbsthaltemagnet mit besonders kleiner elektrischer auslöseleistung
DE202007008281U1 (de) Hubmagnet
EP2973618B1 (de) Elektromagnetische stellvorrichtung
DE10207828A1 (de) Elektromagnetischer Hubmagnet mit Permanentmagnet
WO2009083124A1 (de) Vorrichtung zum aktivieren einer sicherheitstechnischen einrichtung, insbesondere insassenschutzeinrichtung in einem fahrzeug
WO2018141815A1 (de) Bistabiler hubmagnet
DE102010015514A1 (de) Verriegelungseinheit
EP1615242B1 (de) Elektromagnetischer Aktuator
WO2014056487A2 (de) Skalierbarer hochdynamischer elektromagnetischer linearantrieb mit begrenztem hub und geringen querkräften
DE102008063689B4 (de) Elektromagnet mit Permanentmagnet
DE102010025766B4 (de) Bistabiler Hubmagnet
EP2743940B1 (de) Elektromagnetischer Aktor
DE102008057738B4 (de) Elektromagnet mit einstellbarem Nebenschlussluftspalt
DE2836705C2 (de) Auslöse-Elektromagnet
DE4344143B4 (de) Elektromagnetischer Schnellauslöser für elektrische Schaltgeräte
DE102018216223B3 (de) Aktor und Verfahren zur Betätigung eines Hochspannungsschalters
DE102010032688A1 (de) Elektromagnet mit Permanentmagnet
DE102016107410A1 (de) Bistabiler Aktuator für ein polarisiertes elektromagnetisches Relais
DE102016205674A1 (de) Bistabiler elektromagnetischer Antrieb sowie Verfahren zum Herstellen und Betreiben desselben
DE2200498C3 (de) Elektromagnetische Lasthebevorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20151124

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: ARNO, MECKLENBURG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200630

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MECKLENBURG, ARNO

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R108

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1346327

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210316

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210316

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210416

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210416

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

26N No opposition filed

Effective date: 20210917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230623

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20230622

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230622

Year of fee payment: 10

Ref country code: CH

Payment date: 20230702

Year of fee payment: 10