EP2962706A1 - Implant médical pour la libération de médicament - Google Patents
Implant médical pour la libération de médicament Download PDFInfo
- Publication number
- EP2962706A1 EP2962706A1 EP15158846.4A EP15158846A EP2962706A1 EP 2962706 A1 EP2962706 A1 EP 2962706A1 EP 15158846 A EP15158846 A EP 15158846A EP 2962706 A1 EP2962706 A1 EP 2962706A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- balloon
- paclitaxel
- water
- catheter
- polyamide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229940079593 drug Drugs 0.000 title claims abstract description 63
- 239000003814 drug Substances 0.000 title claims abstract description 63
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 claims abstract description 120
- 229930012538 Paclitaxel Natural products 0.000 claims abstract description 119
- 229960001592 paclitaxel Drugs 0.000 claims abstract description 119
- 239000012729 immediate-release (IR) formulation Substances 0.000 claims abstract description 16
- 229920006147 copolyamide elastomer Polymers 0.000 claims abstract description 12
- 229920006149 polyester-amide block copolymer Polymers 0.000 claims abstract description 12
- 229920000299 Nylon 12 Polymers 0.000 claims abstract description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 72
- 238000000034 method Methods 0.000 claims description 44
- 239000011248 coating agent Substances 0.000 claims description 38
- 238000000576 coating method Methods 0.000 claims description 38
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 24
- 239000000203 mixture Substances 0.000 claims description 24
- 239000004952 Polyamide Substances 0.000 claims description 22
- 150000001875 compounds Chemical class 0.000 claims description 22
- 229920002647 polyamide Polymers 0.000 claims description 22
- 239000002904 solvent Substances 0.000 claims description 20
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims description 18
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 12
- 239000003125 aqueous solvent Substances 0.000 claims description 10
- 238000002425 crystallisation Methods 0.000 claims description 10
- 230000008025 crystallization Effects 0.000 claims description 10
- 150000002009 diols Chemical class 0.000 claims description 10
- 230000001681 protective effect Effects 0.000 claims description 10
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 9
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 9
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 9
- 239000004202 carbamide Substances 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 9
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 9
- 239000002783 friction material Substances 0.000 claims description 8
- 238000011282 treatment Methods 0.000 claims description 8
- 238000009736 wetting Methods 0.000 claims description 8
- 229940008309 acetone / ethanol Drugs 0.000 claims description 7
- 238000006116 polymerization reaction Methods 0.000 claims description 7
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 claims description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 6
- 125000002947 alkylene group Chemical group 0.000 claims description 6
- 230000015572 biosynthetic process Effects 0.000 claims description 6
- 125000004432 carbon atom Chemical group C* 0.000 claims description 6
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 6
- 238000000151 deposition Methods 0.000 claims description 6
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 6
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 6
- 229920001577 copolymer Polymers 0.000 claims description 5
- 239000000539 dimer Substances 0.000 claims description 5
- 230000002035 prolonged effect Effects 0.000 claims description 5
- 239000011247 coating layer Substances 0.000 claims description 4
- CYSGHNMQYZDMIA-UHFFFAOYSA-N 1,3-Dimethyl-2-imidazolidinon Chemical compound CN1CCN(C)C1=O CYSGHNMQYZDMIA-UHFFFAOYSA-N 0.000 claims description 3
- KXDHJXZQYSOELW-UHFFFAOYSA-N Carbamic acid Chemical compound NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 claims description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 claims description 3
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 claims description 3
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 claims description 3
- 125000003368 amide group Chemical group 0.000 claims description 3
- GUVUOGQBMYCBQP-UHFFFAOYSA-N dmpu Chemical compound CN1CCCN(C)C1=O GUVUOGQBMYCBQP-UHFFFAOYSA-N 0.000 claims description 3
- 238000009472 formulation Methods 0.000 claims description 3
- 125000001183 hydrocarbyl group Chemical group 0.000 claims description 3
- 150000003951 lactams Chemical class 0.000 claims description 3
- 125000005647 linker group Chemical group 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- 239000003960 organic solvent Substances 0.000 claims description 3
- -1 polytetrafluoroethylene Polymers 0.000 claims description 3
- 238000003825 pressing Methods 0.000 claims description 3
- 208000037803 restenosis Diseases 0.000 abstract description 8
- 238000002399 angioplasty Methods 0.000 abstract description 7
- 238000010828 elution Methods 0.000 abstract description 6
- 239000000243 solution Substances 0.000 description 40
- 210000001519 tissue Anatomy 0.000 description 9
- 230000002792 vascular Effects 0.000 description 9
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- 230000017531 blood circulation Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 241001465754 Metazoa Species 0.000 description 4
- 210000001367 artery Anatomy 0.000 description 4
- 210000004204 blood vessel Anatomy 0.000 description 4
- 238000004128 high performance liquid chromatography Methods 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 230000005764 inhibitory process Effects 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 230000003902 lesion Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 206010002091 Anaesthesia Diseases 0.000 description 2
- 241000282887 Suidae Species 0.000 description 2
- 229920003734 UBESTA® Polymers 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000001949 anaesthesia Methods 0.000 description 2
- 230000037005 anaesthesia Effects 0.000 description 2
- 230000001028 anti-proliverative effect Effects 0.000 description 2
- 230000003143 atherosclerotic effect Effects 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 239000000806 elastomer Substances 0.000 description 2
- 239000012453 solvate Substances 0.000 description 2
- 238000002604 ultrasonography Methods 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 1
- 208000037260 Atherosclerotic Plaque Diseases 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- PIWKPBJCKXDKJR-UHFFFAOYSA-N Isoflurane Chemical compound FC(F)OC(Cl)C(F)(F)F PIWKPBJCKXDKJR-UHFFFAOYSA-N 0.000 description 1
- YQEZLKZALYSWHR-UHFFFAOYSA-N Ketamine Chemical compound C=1C=CC=C(Cl)C=1C1(NC)CCCCC1=O YQEZLKZALYSWHR-UHFFFAOYSA-N 0.000 description 1
- 208000031481 Pathologic Constriction Diseases 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000002583 angiography Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 210000001715 carotid artery Anatomy 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 210000004351 coronary vessel Anatomy 0.000 description 1
- 230000000916 dilatatory effect Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229960002725 isoflurane Drugs 0.000 description 1
- 229960003299 ketamine Drugs 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000003094 microcapsule Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 238000012141 orotracheal intubation Methods 0.000 description 1
- 150000002926 oxygen Chemical class 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229960004134 propofol Drugs 0.000 description 1
- OLBCVFGFOZPWHH-UHFFFAOYSA-N propofol Chemical compound CC(C)C1=CC=CC(C(C)C)=C1O OLBCVFGFOZPWHH-UHFFFAOYSA-N 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000012086 standard solution Substances 0.000 description 1
- 208000037804 stenosis Diseases 0.000 description 1
- 230000036262 stenosis Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 210000005167 vascular cell Anatomy 0.000 description 1
- 210000004509 vascular smooth muscle cell Anatomy 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- BPICBUSOMSTKRF-UHFFFAOYSA-N xylazine Chemical compound CC1=CC=CC(C)=C1NC1=NCCCS1 BPICBUSOMSTKRF-UHFFFAOYSA-N 0.000 description 1
- 229960001600 xylazine Drugs 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L29/00—Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
- A61L29/14—Materials characterised by their function or physical properties, e.g. lubricating compositions
- A61L29/16—Biologically active materials, e.g. therapeutic substances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L29/00—Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
- A61L29/04—Macromolecular materials
- A61L29/06—Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/10—Balloon catheters
- A61M25/1002—Balloon catheters characterised by balloon shape
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/10—Balloon catheters
- A61M25/1027—Making of balloon catheters
- A61M25/1029—Production methods of the balloon members, e.g. blow-moulding, extruding, deposition or by wrapping a plurality of layers of balloon material around a mandril
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/20—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials
- A61L2300/216—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials with other specific functional groups, e.g. aldehydes, ketones, phenols, quaternary phosphonium groups
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/416—Anti-neoplastic or anti-proliferative or anti-restenosis or anti-angiogenic agents, e.g. paclitaxel, sirolimus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/60—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
- A61L2300/602—Type of release, e.g. controlled, sustained, slow
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/60—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
- A61L2300/63—Crystals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/10—Balloon catheters
- A61M25/1002—Balloon catheters characterised by balloon shape
- A61M2025/1004—Balloons with folds, e.g. folded or multifolded
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/10—Balloon catheters
- A61M25/1027—Making of balloon catheters
- A61M25/1029—Production methods of the balloon members, e.g. blow-moulding, extruding, deposition or by wrapping a plurality of layers of balloon material around a mandril
- A61M2025/1031—Surface processing of balloon members, e.g. coating or deposition; Mounting additional parts onto the balloon member's surface
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/10—Balloon catheters
- A61M2025/1043—Balloon catheters with special features or adapted for special applications
- A61M2025/105—Balloon catheters with special features or adapted for special applications having a balloon suitable for drug delivery, e.g. by using holes for delivery, drug coating or membranes
Definitions
- the present invention relates to a drug-eluting medical device, in particular a balloon for angioplasty catheters with drug elution to prevent restenosis of the vessel subjected to angioplasty.
- vascular atherosclerotic lesions are most often localized at predetermined portions of the blood vessels, of which they cause constrictions or also obstructions.
- vascular atherosclerotic lesions are typically treated in angioplasty procedures by means of catheters provided with a balloon.
- a catheter provided at the distal end thereof with a balloon is advanced, following a guidewire, to the ostium of the narrowed artery.
- the balloon Once the balloon has been arranged at the artery narrowing, it is repeatedly inflated and deflated.
- the insufflation, with successive deflation, of the balloon within the artery reduce the extent of the arterial luminal narrowing, and restore a suitable blood flow in the cardiac area, suffering from the stenosis.
- it is necessary to arrange a so-called stent which provides to maintain the artery patent also after withdrawal of the catheter and the balloon.
- paclitaxel taxol
- the drug must be released for a sufficiently long time span, so as to inhibit the cell hyperproliferation process caused by the constant presence of the stent implanted in the vessel.
- the drug also induces an inhibition of the stent endothelization process, which is crucial to avoid the formation of thrombi.
- drug eluting stent has some drawbacks.
- the patent publication WO 02/076509 discloses drug-coated catheter balloons releasing such drug in an immediately bioavailable form during the short contact time of the balloon with the vessel wall.
- the drug has to be, first of all, released from the balloon to the vessel wall in the very short contact time available during an angioplasty procedure. Once the drug has been released, it has to be absorbed by the cell wall, before the blood flow washes it off. Ideally, it is therefore desirable that the drug absorption occurs concomitantly to the release thereof from the balloon.
- the drug is retained by the balloon surface in a manner sufficient to resist to all the handling operations which it is subjected to, both during the production step and during the preparation and carrying out of the angioplasty procedure, in any case, before the balloon reaches the site of intervention. This requires a perfect balance of such properties.
- the present invention relates to a catheter balloon coated with paclitaxel in crystalline hydrated form, having an immediate release and bioavailability of the drug at the site of intervention.
- a further object of the invention is a catheter balloon coated with paclitaxel in crystalline hydrated solvated form, having an immediate release and bioavailability of the drug at the site of intervention.
- the catheter balloon coated with paclitaxel in crystalline hydrated or solvated hydrated form as defined before is made of a polyether-polyamide block copolymer, or "compound" thereof with a polyamide.
- the catheter balloon coated with paclitaxel in crystalline hydrated or solvated hydrated form as defined before is made of a polyester amide.
- the catheter balloon coated with paclitaxel in crystalline hydrated or crystalline solvated hydrated form as defined before is made of polyamide-12.
- the catheter balloon surface is hydrophilic or made hydrophilic by treatment with a hydrophilizing agent.
- paclitaxel in crystalline hydrated or solvated hydrated form as defined before is deposited from a urea-containing solution.
- the balloon is inflated before coating with the paclitaxel solution and then it is folded when still wet.
- the balloon is folded, then it is inflated before coating with the paclitaxel solution and it is finally folded again when still wet.
- Figure 1 shows a schematic side view of a device for rotating a catheter balloon during coating, according to an aspect of the invention.
- the present invention relates in particular to a catheter balloon completely or partially coated with paclitaxel in hydrated crystalline form, having an immediate release and bioavailability of a therapeutically effective amount of paclitaxel at the site of intervention.
- an immediate release and bioavailability is meant a release from the balloon surface in periods of time ranging between 1 second and 1.5 minutes, preferably between 20 seconds and 1 minute, and an absorption by the vascular tissue in periods of time ranging between 1 second and 25 minutes, preferably between 20 seconds and 25 minutes.
- terapéuticaally effective amount is meant a drug amount capable of inducing a therapeutical or preventive effect against the restenosis of the treated vascular tissue in the patient.
- site of intervention is meant the section of the blood vessel treated directly with the catheter balloon of the invention, and the adjacent portion of the tissues in which the post-procedure presence of paclitaxel can be detected. Generally, such section will extend for 2-10 mm down- and upstream the contact section with the balloon.
- paclitaxel in hydrated crystalline form is meant paclitaxel with 2, 3 or 4 molecules of water of crystallization.
- This crystalline form of paclitaxel can be obtained by dissolving paclitaxel in an aqueous solvent, by completely or partially wetting the balloon surface with such solution, and by letting the solvent to evaporate to a formation of a crystalline layer having a white, homogeneous, or partially inhomogeneous appearance.
- aqueous solvent a mixture of solvents selected from acetone/ethanol/water, tetrahydrofuran/water, methanol/water, acetone/water, ethanol/water, acetonitrile/water, DMF/water is preferably used. More preferably, the solvent is a 9:1 tetrahydrofuran/water mixture or a tetrahydrofuran/water mixture with ratios ranging between 9.5:0.5 and 65:35, or an acetone/ethanol/water mixture in which the organic solvent is present in amounts not less than 50% by volume relative to water.
- the concentration of paclitaxel in the solution may range from 4 to 6 mg/ml, preferably about 5 mg/ml.
- the balloon wetting step can be performed in several ways, known to those skilled in the art, such as, for example, dipping the balloon into the paclitaxel solution, spraying the paclitaxel solution on the balloon, or depositing the paclitaxel solution on the balloon by means of a syringe, a micropipette, or other similar dispensing device.
- the balloon can be wetted with the paclitaxel solution in a deployed and inflated condition, or in a folded condition. It has been observed that in this second case also, the paclitaxel solution penetrates by capillarity under the folds, so as to form a drug depot which remains protected during the introduction step of the folded balloon into the blood vessel by means of the catheter, until reaching the site of intervention and the inflation thereof.
- Methods are also known to selectively coat the area under the balloon folds, leaving the outer surface substantially free from the drug.
- Such methods can comprise, for example, the introduction into the balloon folds of a cannula bearing a series of micro-nozzles, through which the paclitaxel solution is deposited on the inner surface of the folds.
- Such a method is described, for example, in the international application No. PCT/IT2007/000816, filed on November 21 2007 , the contents of which are incorporated herein by reference.
- the folded balloon will preferably have 3 to 6 folds.
- a preferred wetting method for the balloon is the deposition of the paclitaxel solution on the folded balloon surface by means of a syringe, micropipette, or other similar dispensing means.
- the dispensing means will be made to slide on the surface from an end to the other one, and vice versa, while rotating the balloon around the longitudinal axis thereof, so as to establish a zigzag path.
- the dispensing means will be made to slide on the balloon surface starting from a substantially central position relative to the longitudinal extent thereof, and it will be made to slide towards a first end thereof and, subsequently, towards the second end thereof, so as to establish a substantially zigzag path.
- the coating step is performed directly during the manufacturing process of the balloon catheter and the coating step is indeed part of the balloon catheter manufacturing process. Therefore, the production of a coated balloon catheter according to this method is advantageously quicker.
- step (g) The use of an already folded balloon according to step (g) is advantageous because the material may keep some memory of the folds even after inflation in step (h), so that the subsequent re-folding of step (k) can take place easily and in a short time, without manipulating too much the coated balloon.
- the said predetermined pressure in step (b) or (h) is a pressure below the nominal pressure (RBP pressure) of the balloon.
- RBP pressure nominal pressure
- the said predetermined pressure is between 5 and 9 bar.
- the inflated balloon of step (b) or (h) is preferably disconnected from the pressurised air source before coating. In such a way, the balloon is still inflated, but it is not tensioned and the coating step advantageously benefits from this state condition. In the case of long balloons, inflation step (b) or (h) is prolonged for less than 1 minute.
- Coating of step (c) or (i) is preferably performed by delivering the drug solution over the inflated balloon surface.
- a micropipette can be used, as described above for the coating of the folded balloons.
- the same protocol can be followed, i.e. starting delivery of the solution from the mid of the balloon length and moving to an end of the balloon, then to the opposite end, while the balloon is rotated. It is important that substantially the whole balloon surface is wetted.
- the rotation of the balloon is not too fast.
- a rotational speed of the balloon during coating from about 5 rpm to about 30, preferably from about 10 rpm to about 20 rpm, is used , but different values may be set without departing from the scope of the invention.
- the delivery time of the drug solution may range from about 10 seconds to about 500 seconds.
- the rotation of the balloon may preferably be accomplished by means of a device as shown in figure 1 and as described below.
- Step (d) or (j) of deflation of the coated balloon is accomplished by applying vacuum to the catheter balloon opening and/or by pressing the balloon from the exterior. Application of vacuum is preferred, in particular for long balloons.
- Step (e) or (k) of folding and re-folding respectively is performed by means of conventional devices for folding balloons.
- folding (e) and re-folding (k) are performed when the balloon surface is still wet. This allows a better adherence of drug onto the balloon surface to be obtained.
- the said folding (e) or re-folding (k) is performed within 20 minutes from the end of the coating step (c) or (i) respectively, preferably between 1 minute and 10 minutes, more preferably between 1 minute and 5 minutes.
- step (f) or step (1) are accomplished by inserting over the folded or re-folded balloon a protective cover, typically a sleeve that envelops the balloon surface that has been coated with the drug.
- a protective cover typically a sleeve that envelops the balloon surface that has been coated with the drug.
- a sleeve is preferably made of a low friction material.
- a low friction material polytetrafluoroethylene (PTFE) may conveniently be used.
- PTFE polytetrafluoroethylene
- the use of a low friction material allows to minimize the removal of the drug adhered onto the balloon surface.
- the low friction material should have a friction coefficient below the friction coefficient of the material of which the balloon is made.
- a suitable device for rotating a catheter balloon 2 is indicated with the numeral 1.
- the catheter balloon 2 comprises a catheter section 3 and a balloon section 4, that is shown in the inflated condition.
- the device 1 comprises a basement 4, a first motor unit 5 and a second motor unit 6.
- Each motor unit 5, 6 comprises clamping means 8, 8' to clamp the two ends of the catheter balloon 2.
- the distal clamping means 8 acts upon the guide wire (not shown) on which the catheter balloon is loaded.
- the proximal clamping means 8' acts upon the connector (luer) (not shown) the catheter balloon is provided with.
- the motor units 5, 6 are preferably brushless motors.
- the motor units 5, 6 are synchronously operated.
- a command and control unit 7 provides for the synchronous operation of the two motor units 5, 6. This is important, in order to avoid torsion of the catheter balloon 2.
- One or more supporting means 9, depending on the balloon length, are also provided in order to keep the catheter balloon 2 in an horizontal position.
- the invention relates to a catheter balloon completely or partially coated with paclitaxel in crystalline hydrated solvated form, having an immediate release and bioavailability of a therapeutically effective amount of paclitaxel at the site of intervention.
- paclitaxel in crystalline hydrated solvated form is meant paclitaxel with 2 to 3 molecules of water of crystallization and with 1 to 3 molecules of solvent.
- paclitaxel tends to form dimers which take in water and/or the solvent into the crystalline structure. Therefore, it is possible that the number of molecules of water of crystallization or solvent into the solvate per molecule of paclitaxel is not defined by an integer, but by a decimal.
- a dimer can be obtained, which takes in 5 water molecules and 3 dioxane molecules: in this case, therefore, there will be 2.5 molecules of water of crystallization and 1.5 molecules dioxane per molecule of paclitaxel.
- the crystalline hydrated solvated form of paclitaxel can be obtained from an aqueous solvent preferably selected from dioxane/water, DMF/water, DMSO/water, N-methylpyrrolidone/water, acetonitrile/water, N,N-dimethylacetamide/water, 1,3-dimethyl-3,4,5,6-tetrahydro-2-(1H)-pyrimidinone/water, 1,3-dimethyl-2-imidazolidinone/water mixtures, or mixtures thereof, by operating under suitable conditions, such as those described in the patent publication WO 03/0475078 in the name of Bristol-Myers Squibb Co., the content of which, relatively to such preparation methods, is incorporated herein by reference.
- an aqueous solvent preferably selected from dioxane/water, DMF/water, DMSO/water, N-methylpyrrolidone/water, acetonitrile/water, N,N-dimethylacetamide/water,
- a catheter balloon completely or partially coated with paclitaxel in crystalline hydrated or crystalline solvated hydrated form, having an immediate release and bioavailability of a therapeutically effective amount of paclitaxel at the site of intervention can be obtained by dissolving paclitaxel in an aqueous solvent, as defined before, in the presence of urea, by completely or partially wetting the balloon surface with such solution, and by letting the solvent to evaporate to the formation of a crystalline layer having a white, homogeneous, or partially inhomogeneous appearance.
- Urea can be used in amounts ranging between 1 and 100 mg per mL solvent, preferably between 4 and 10 mg per mL solvent, more preferably about 7 mg per mL solvent.
- a catheter balloon completely or partially coated with paclitaxel in crystalline hydrated or crystalline solvated hydrated form having an immediate release and bioavailability of a therapeutically effective amount of paclitaxel at the site of intervention, in which said balloon is made of a polyether-polyamide block copolymer or "compound" thereof with a polyamide.
- the polyether-polyamide block copolymer according to the invention is an elastomer comprising polyamide block-forming monomers, representing the hard portion of the material, modified with a group representing the soft portion.
- This elastomer is obtained by polymerization of a polyamide block-forming compound selected from the group consisting of an aminocarboxylic acid according to the formula (1) and a lactam according to the formula (2): H 2 N-R1-COOH (1) with a triblock polyetherdiamine compound of formula (3): and with a dicarboxylic acid according to the formula (4) : HOOC-(R3) m -COOH (4)
- each of the R1, R2, and R3 groups represents linking groups comprising a hydrocarbon chain therein, optionally interrupted by one or more amide groups.
- R1 and R2 independently comprise an alkylene group having 2 to 20 carbon atoms and amide bonds
- R3 comprises an alkylene group having 1 to 20 carbon atoms
- x can vary between 1 and 20, preferably between 1 and 18, more preferably between 1 and 16
- y can vary between 4 and 50, preferably between 5 and 45, more preferably between 8 and 30, and z can vary between 1 and 20, preferably between 1 and 18, more preferably between 1 and 12
- m is 0 or 1.
- the polymerization is carried out by using 15 to 70% by weight of the compound of formula (1) and/or (2), and a mixture of compounds of formulae (3) and (4) in an overall weight percentage between 30 and 85%.
- This polymerization is carried out in a reactor at a temperature ranging between 150 and 300 °C, preferably between 160 and 280 °C, more preferably between 180 and 250 °C.
- Compounds of such copolymers with polyamides can be obtained by mixing, according to known techniques, the copolymer in amounts from 10 to 90% by weight, preferably 75 to 25%, more preferably 60 to 40% by weight, with an amount of polyamide to completion of 100%.
- the polyamide is polyamide-12.
- a catheter balloon completely or partially coated with paclitaxel in crystalline hydrated or crystalline solvated hydrated form having an immediate release and bioavailability of a therapeutically effective amount of paclitaxel at the site of intervention, in which said balloon is made of polyamide-12.
- a catheter balloon completely or partially coated with paclitaxel in crystalline hydrated or crystalline solvated hydrated form having an immediate release and bioavailability of a therapeutically effective amount of paclitaxel at the site of intervention, in which said balloon is made of polyester amide.
- the polyester amide used in the present invention can be described by the following general formula: H-(O-PF-OOC-PA-COO-PF-OOC-PA-CO) n -OH in which PA is a polyamide segment, PF is a diol segment comprising OH-terminating dimer diol segments, and n is a number ranging between 5 and 20.
- the content of the diol component within the polyester-amide copolymer is 5-50% by weight.
- the concentration of the diol component ranges between 10 to 30% by weight, still more preferably between 10 and 20% by weight of the total formulation.
- a catheter balloon completely or partially coated with paclitaxel in crystalline hydrated or crystalline solvated hydrated form having an immediate release and bioavailability of a therapeutically effective amount of paclitaxel at the site of intervention, in which said balloon has a surface which is hydrophilic or hydrophilized by suitable hydrophilizing treatment.
- the catheter balloon surface according to the invention can be made hydrophilic by treatment with plasma-activated oxygen.
- paclitaxel is present in the catheter balloon coating layer in amounts ranging between 1 and 20 ⁇ g/mm 2 , preferably between 2 and 7 ⁇ g/mm 2 , more preferably between 3 and 5 ⁇ g/mm 2 .
- Paclitaxel solutions have been prepared at a 50 mg/mL concentration in the following solvents:
- paclitaxel in a crystalline hydrated or solvated hydrated form according to the invention is not obtained by crystallization from acetic acid. Instead, amorphous paclitaxel is obtained by precipitation from dichloromethane.
- the appearance of the coating was white, not always homogeneous.
- example 1A has been repeated using coating solution (2), by inflating first the folded balloons at 7 bar, then removing the pressurised air source and coating the inflated balloons by means of a Hamilton syringe.
- the coated balloons have then been re-folded after about 1 minute after the coating step, while the surface thereof was still wet.
- the appearance of the coating was white, substantially homogeneous.
- the balloons prepared according to the example 1 have been subjected to some assessments, in order to determine the drug adhesion under the various conditions.
- the dry adhesion has been assessed, which is useful to determine the paclitaxel loss which can occur in the production or handling steps of the balloon. Such determination has been carried out by dry expanding the balloon and shaking the inflated balloon within a tube.
- the paclitaxel content in the tube was determined by HPLC/UV.
- the drug was taken up with ethanol, the tubes were closed and vigorously vortexed for at least 30 seconds, followed by a treatment in an ultrasound bath for 30 minutes. At least 70 ⁇ l of extract were injected into the HPLC, together with a paclitaxel standard solution (concentration of about 20 ⁇ g/mL). The results are reported in Table I.
- paclitaxel at the site of intervention has been assessed in experiments on castrated male pigs, approximately 3 months old, and weighing about 30 kg.
- the pigs were sedated by intramuscular injection of ketamine and xylazine. Anaesthesia was started by intravenous injection of propofol, followed by orotracheal intubation, and was maintained with 1-2 vol% isoflurane, 70 vol% N 2 O 2 , and 30 vol% oxygen. All the animals received 5.000 IU heparin, 250 mg aspirine, and 200 mg nitroglicerine via the intracoronary route.
- the coronary arteries were monitored by means of a standard angiography technique through the left carotid artery.
- the animals were treated with the paclitaxel-coated balloons (solutions (1)-(6)) mounted on catheter.
- the coating in the inflated state, followed by re-folding while still wet, allows a better adherence of the drug onto the balloon surface.
- Paclitaxel in crystalline hydrated form was identified by IR analysis under the conditions reported in the literature, thus obtaining a spectrum which was equivalent to what has been described in Jeong Hoon Lee et al., Bull. Korean Chem. Soc. 2001, vol. 22, No. 8, 925-928 .
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Engineering & Computer Science (AREA)
- Heart & Thoracic Surgery (AREA)
- Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- Epidemiology (AREA)
- Anesthesiology (AREA)
- Biophysics (AREA)
- Hematology (AREA)
- Child & Adolescent Psychology (AREA)
- Pulmonology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Manufacturing & Machinery (AREA)
- Materials For Medical Uses (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Medicinal Preparation (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22157684.6A EP4019059A1 (fr) | 2009-01-09 | 2010-01-08 | Implant médical pour la libération de médicament |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ITMI2009A000014A IT1394522B1 (it) | 2009-01-09 | 2009-01-09 | Dispositivo medicale con rilascio di farmaco |
US15950309P | 2009-03-12 | 2009-03-12 | |
EP10700525.8A EP2385848B1 (fr) | 2009-01-09 | 2010-01-08 | Implant medical pour la liberation de medicament |
PCT/EP2010/050162 WO2010079218A2 (fr) | 2009-01-09 | 2010-01-08 | Dispositif médical d'élution médicamenteuse |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10700525.8A Division EP2385848B1 (fr) | 2009-01-09 | 2010-01-08 | Implant medical pour la liberation de medicament |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP22157684.6A Division EP4019059A1 (fr) | 2009-01-09 | 2010-01-08 | Implant médical pour la libération de médicament |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2962706A1 true EP2962706A1 (fr) | 2016-01-06 |
EP2962706B1 EP2962706B1 (fr) | 2022-03-23 |
Family
ID=42060656
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP22157684.6A Pending EP4019059A1 (fr) | 2009-01-09 | 2010-01-08 | Implant médical pour la libération de médicament |
EP10700525.8A Revoked EP2385848B1 (fr) | 2009-01-09 | 2010-01-08 | Implant medical pour la liberation de medicament |
EP15158846.4A Active EP2962706B1 (fr) | 2009-01-09 | 2010-01-08 | Implant médical pour la libération de médicament |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP22157684.6A Pending EP4019059A1 (fr) | 2009-01-09 | 2010-01-08 | Implant médical pour la libération de médicament |
EP10700525.8A Revoked EP2385848B1 (fr) | 2009-01-09 | 2010-01-08 | Implant medical pour la liberation de medicament |
Country Status (7)
Country | Link |
---|---|
US (4) | US20110295200A1 (fr) |
EP (3) | EP4019059A1 (fr) |
JP (1) | JP5647147B2 (fr) |
CN (1) | CN102307602B (fr) |
ES (1) | ES2539326T3 (fr) |
IT (1) | IT1394522B1 (fr) |
WO (1) | WO2010079218A2 (fr) |
Families Citing this family (66)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10076641B2 (en) | 2005-05-11 | 2018-09-18 | The Spectranetics Corporation | Methods and systems for delivering substances into luminal walls |
CN101972492B (zh) | 2007-01-21 | 2014-12-10 | 汉莫堤克股份有限公司 | 治疗体通道狭窄和预防危险的再狭窄的医学产品 |
US9192697B2 (en) | 2007-07-03 | 2015-11-24 | Hemoteq Ag | Balloon catheter for treating stenosis of body passages and for preventing threatening restenosis |
US9198968B2 (en) | 2008-09-15 | 2015-12-01 | The Spectranetics Corporation | Local delivery of water-soluble or water-insoluble therapeutic agents to the surface of body lumens |
US8257722B2 (en) | 2008-09-15 | 2012-09-04 | Cv Ingenuity Corp. | Local delivery of water-soluble or water-insoluble therapeutic agents to the surface of body lumens |
US8114429B2 (en) | 2008-09-15 | 2012-02-14 | Cv Ingenuity Corp. | Local delivery of water-soluble or water-insoluble therapeutic agents to the surface of body lumens |
IT1394522B1 (it) | 2009-01-09 | 2012-07-05 | Invatec Technology Ct Gmbh | Dispositivo medicale con rilascio di farmaco |
EP3064230B1 (fr) | 2009-07-10 | 2019-04-10 | Boston Scientific Scimed, Inc. | Utilisation de nanocristaux pour un ballonnet de distribution de médicament |
JP5933434B2 (ja) * | 2009-07-17 | 2016-06-08 | ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. | 薬剤送達バルーンの製造方法 |
CA3037168A1 (fr) | 2009-12-18 | 2011-06-23 | Interface Biologics, Inc. | Administration locale de medicaments a partir de revetements auto-assembles |
EP2380604A1 (fr) | 2010-04-19 | 2011-10-26 | InnoRa Gmbh | Formulations de revêtement améliorées pour strier ou découper des cathéters à ballonnet |
WO2012031236A1 (fr) | 2010-09-02 | 2012-03-08 | Boston Scientific Scimed, Inc. | Procédé d'enrobage de ballonnets d'administration de médicaments utilisant une mémoire d'enveloppe induite par la chaleur |
EP3928807A1 (fr) | 2011-01-28 | 2021-12-29 | Merit Medical Systems, Inc. | Endoprothèse revêtue de ptfe électrofilé et procédé d'utilisation |
US8669360B2 (en) | 2011-08-05 | 2014-03-11 | Boston Scientific Scimed, Inc. | Methods of converting amorphous drug substance into crystalline form |
US9056152B2 (en) | 2011-08-25 | 2015-06-16 | Boston Scientific Scimed, Inc. | Medical device with crystalline drug coating |
US11623438B2 (en) | 2012-01-16 | 2023-04-11 | Merit Medical Systems, Inc. | Rotational spun material covered medical appliances and methods of manufacture |
JP6104232B2 (ja) | 2012-03-27 | 2017-03-29 | テルモ株式会社 | コーティング組成物および医療機器 |
EP2813250B1 (fr) * | 2012-03-27 | 2017-05-03 | Terumo Kabushiki Kaisha | Composition de revêtement et dispositif médical |
US9956385B2 (en) | 2012-06-28 | 2018-05-01 | The Spectranetics Corporation | Post-processing of a medical device to control morphology and mechanical properties |
US10064981B2 (en) * | 2012-07-10 | 2018-09-04 | Bayer Pharma Aktiengesellschaft | Catheter with drug coating |
US10507268B2 (en) | 2012-09-19 | 2019-12-17 | Merit Medical Systems, Inc. | Electrospun material covered medical appliances and methods of manufacture |
US9198999B2 (en) | 2012-09-21 | 2015-12-01 | Merit Medical Systems, Inc. | Drug-eluting rotational spun coatings and methods of use |
US11504450B2 (en) | 2012-10-26 | 2022-11-22 | Urotronic, Inc. | Drug-coated balloon catheters for body lumens |
US10668188B2 (en) | 2012-10-26 | 2020-06-02 | Urotronic, Inc. | Drug coated balloon catheters for nonvascular strictures |
US10850076B2 (en) | 2012-10-26 | 2020-12-01 | Urotronic, Inc. | Balloon catheters for body lumens |
US10881839B2 (en) | 2012-10-26 | 2021-01-05 | Urotronic, Inc. | Drug-coated balloon catheters for body lumens |
US10806830B2 (en) | 2012-10-26 | 2020-10-20 | Urotronic, Inc. | Drug-coated balloon catheters for body lumens |
US11938287B2 (en) | 2012-10-26 | 2024-03-26 | Urotronic, Inc. | Drug-coated balloon catheters for body lumens |
US10898700B2 (en) | 2012-10-26 | 2021-01-26 | Urotronic, Inc. | Balloon catheters for body lumens |
CN104884694B (zh) | 2013-03-13 | 2018-09-11 | 麦瑞通医疗设备有限公司 | 连续沉积的纤维材料以及相关联的装置和方法 |
WO2014159399A1 (fr) | 2013-03-13 | 2014-10-02 | Merit Medical Systems, Inc. | Procédés, systèmes et appareils de fabrication d'équipements tissés rotationnels |
US11167063B2 (en) * | 2013-03-14 | 2021-11-09 | W. L. Gore & Associates, Inc. | Porous composites with high-aspect ratio crystals |
JP6442135B2 (ja) * | 2013-04-01 | 2018-12-19 | テルモ株式会社 | バルーンコーティング方法 |
US9872940B2 (en) * | 2013-04-01 | 2018-01-23 | Terumo Kabushiki Kaisha | Drug coating layer |
JP6352249B2 (ja) * | 2013-04-01 | 2018-07-04 | テルモ株式会社 | 薬剤コート層、薬剤コート層の形態型を制御する方法および医療機器 |
DE102013014821A1 (de) * | 2013-09-10 | 2015-03-12 | Alexander Rübben | Gefäßendoprothesenbeschichtung |
US10525171B2 (en) | 2014-01-24 | 2020-01-07 | The Spectranetics Corporation | Coatings for medical devices |
CN106163603B (zh) | 2014-04-01 | 2019-11-15 | 泰尔茂株式会社 | 用于球囊涂敷的定位方法 |
CN106132470B (zh) | 2014-04-01 | 2019-09-24 | 泰尔茂株式会社 | 用于球囊涂敷的定位方法 |
CN106163602B (zh) | 2014-04-01 | 2019-11-01 | 泰尔茂株式会社 | 球囊涂敷方法、涂敷层控制方法及球囊涂敷装置 |
WO2015151876A1 (fr) | 2014-04-01 | 2015-10-08 | テルモ株式会社 | Procédé de revêtement de ballonnet |
US10188771B2 (en) * | 2014-05-16 | 2019-01-29 | Terumo Kabushiki Kaisha | Method of treating peripheral artery diseases in lower limbs |
US10149925B2 (en) * | 2014-05-16 | 2018-12-11 | Terumo Kabushiki Kaisha | Method of reducing the risk of embolization of peripheral blood vessels |
US10143779B2 (en) * | 2014-05-16 | 2018-12-04 | Terumo Kabushiki Kaisha | Method of inhibiting thickening of vascular intima |
ES2524248B2 (es) * | 2014-08-01 | 2015-07-03 | Lvd Biotech S.L. | Balón liberador de paclitaxel y procedimiento de fabricación del mismo |
EP4417225A2 (fr) | 2015-02-26 | 2024-08-21 | Merit Medical Systems, Inc. | Appareils médicaux en couches et procédés |
JP6723807B2 (ja) | 2015-04-23 | 2020-07-15 | テルモ株式会社 | バルーンコーティング方法、バルーン回転方法およびバルーンコーティング装置 |
JP6778507B2 (ja) * | 2015-04-23 | 2020-11-04 | テルモ株式会社 | バルーンコーティング方法、バルーン回転方法およびバルーンコーティング装置 |
JP6734843B2 (ja) * | 2015-04-23 | 2020-08-05 | テルモ株式会社 | バルーンコーティング方法、バルーン回転方法およびバルーンコーティング装置 |
US10427184B2 (en) * | 2015-04-23 | 2019-10-01 | Terumo Kabushiki Kaisha | Balloon coating method, balloon rotating method and balloon coating apparatus |
CN107635593A (zh) | 2015-04-24 | 2018-01-26 | 优敦力公司 | 用于非血管狭窄的药物涂布的球囊导管 |
US11904072B2 (en) | 2015-04-24 | 2024-02-20 | Urotronic, Inc. | Drug coated balloon catheters for nonvascular strictures |
US10561766B2 (en) | 2015-09-15 | 2020-02-18 | W. L. Gore & Associates, Inc. | Drug composition and coating |
US10792477B2 (en) | 2016-02-08 | 2020-10-06 | Orbusneich Medical Pte. Ltd. | Drug eluting balloon |
CN108601930B (zh) * | 2016-02-08 | 2021-12-14 | 祥丰医疗私人有限公司 | 药物洗脱球囊 |
US10695542B2 (en) * | 2016-04-04 | 2020-06-30 | Medtronic Vascular, Inc. | Drug coated balloon |
US11147952B2 (en) * | 2016-04-28 | 2021-10-19 | Medtronic Vascular, Inc. | Drug coated inflatable balloon having a thermal dependent release layer |
CA3034676A1 (fr) * | 2016-06-24 | 2017-12-28 | W. L. Gore & Associates, Inc. | Ballonnets revetus de medicament et techniques d'augmentation de la permeabilite vasculaire |
US10874768B2 (en) * | 2017-01-20 | 2020-12-29 | Covidien Lp | Drug eluting medical device |
CN112638436A (zh) | 2018-05-22 | 2021-04-09 | 界面生物公司 | 用于将药物递送至血管壁的组合物和方法 |
CN118454075A (zh) | 2019-02-22 | 2024-08-09 | 优敦力公司 | 用于体腔的药物涂布的球囊导管 |
US11478245B2 (en) | 2019-05-08 | 2022-10-25 | Covidien Lp | Surgical stapling device |
US11596403B2 (en) | 2019-05-08 | 2023-03-07 | Covidien Lp | Surgical stapling device |
CN112933301B (zh) * | 2019-11-26 | 2023-01-24 | 上海微创医疗器械(集团)有限公司 | 载药植入医疗器械及其制备方法 |
JP7483017B2 (ja) | 2020-01-24 | 2024-05-14 | パッチクランプ メドテック, インコーポレイテッド | 着脱可能な移植片・留め具アセンブリを有する組織修復・シーリングデバイスおよびそれを使用するための方法 |
CN116585602B (zh) * | 2023-07-18 | 2023-10-03 | 上海威高医疗技术发展有限公司 | 一种提高球囊表面药物利用率的方法及制备的球囊 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002076509A2 (fr) | 2001-03-26 | 2002-10-03 | Ulrich Speck | Preparation de prevention de la restenose |
WO2003047508A2 (fr) | 2001-11-30 | 2003-06-12 | Bristol-Myers Squibb Company | Solvates de paclitaxel |
WO2005037337A1 (fr) | 2003-10-17 | 2005-04-28 | Invatec S.R.L. | Ballons de catheter |
WO2007106441A2 (fr) * | 2006-03-10 | 2007-09-20 | Cook Incorporated | Revêtements à base de taxane pour des dispositifs médicaux implantables |
EP1857127A1 (fr) * | 2002-09-20 | 2007-11-21 | Bayer Schering Pharma Aktiengesellschaft | Cathéter à ballonnet pour la délivrance de Paclitaxel |
WO2007132485A1 (fr) | 2006-05-12 | 2007-11-22 | Invatec S.R.L. | Dispositifs médicaux d'angioplastie composés d'un matériau élastomère |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09108357A (ja) * | 1995-10-24 | 1997-04-28 | Buaayu:Kk | バルーンカテーテル |
NZ505584A (en) * | 1996-05-24 | 2002-04-26 | Univ British Columbia | Delivery of a therapeutic agent to the smooth muscle cells of a body passageway via an adventia |
AU1821200A (en) * | 1998-12-03 | 2000-06-19 | Scimed Life Systems, Inc. | Stent having drug crystals thereon |
CA2462966A1 (fr) | 2001-11-30 | 2003-06-12 | Emory University | Variants du domaine c2 du facteur viii |
US7025752B2 (en) * | 2002-11-06 | 2006-04-11 | Advanced Cardiovascular Systems, Inc. | Reduced slippage balloon catheter and method of using same |
US8440214B2 (en) * | 2006-01-31 | 2013-05-14 | Boston Scientific Scimed, Inc. | Medical devices for therapeutic agent delivery with polymeric regions that contain copolymers having both soft segments and uniform length hard segments |
US7875284B2 (en) | 2006-03-10 | 2011-01-25 | Cook Incorporated | Methods of manufacturing and modifying taxane coatings for implantable medical devices |
US8425459B2 (en) * | 2006-11-20 | 2013-04-23 | Lutonix, Inc. | Medical device rapid drug releasing coatings comprising a therapeutic agent and a contrast agent |
US8414525B2 (en) | 2006-11-20 | 2013-04-09 | Lutonix, Inc. | Drug releasing coatings for medical devices |
CN101972492B (zh) | 2007-01-21 | 2014-12-10 | 汉莫堤克股份有限公司 | 治疗体通道狭窄和预防危险的再狭窄的医学产品 |
DE102007003184A1 (de) * | 2007-01-22 | 2008-07-24 | Orlowski, Michael, Dr. | Verfahren zur Beladung von strukturierten Oberflächen |
DE102007036685A1 (de) * | 2007-08-03 | 2009-02-05 | Innora Gmbh | Verbesserte arzneimittelbeschichtete Medizinprodukte deren Herstellung und Verwendung |
US8951545B2 (en) | 2008-03-28 | 2015-02-10 | Surmodics, Inc. | Insertable medical devices having microparticulate-associated elastic substrates and methods for drug delivery |
IT1394522B1 (it) | 2009-01-09 | 2012-07-05 | Invatec Technology Ct Gmbh | Dispositivo medicale con rilascio di farmaco |
-
2009
- 2009-01-09 IT ITMI2009A000014A patent/IT1394522B1/it active
-
2010
- 2010-01-08 EP EP22157684.6A patent/EP4019059A1/fr active Pending
- 2010-01-08 EP EP10700525.8A patent/EP2385848B1/fr not_active Revoked
- 2010-01-08 JP JP2011544873A patent/JP5647147B2/ja active Active
- 2010-01-08 US US13/143,703 patent/US20110295200A1/en not_active Abandoned
- 2010-01-08 EP EP15158846.4A patent/EP2962706B1/fr active Active
- 2010-01-08 CN CN201080007189.7A patent/CN102307602B/zh active Active
- 2010-01-08 WO PCT/EP2010/050162 patent/WO2010079218A2/fr active Application Filing
- 2010-01-08 ES ES10700525.8T patent/ES2539326T3/es active Active
-
2017
- 2017-02-23 US US15/440,960 patent/US10029032B2/en active Active
-
2018
- 2018-07-23 US US16/042,598 patent/US10596303B2/en active Active
-
2020
- 2020-03-19 US US16/824,138 patent/US10874770B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002076509A2 (fr) | 2001-03-26 | 2002-10-03 | Ulrich Speck | Preparation de prevention de la restenose |
WO2003047508A2 (fr) | 2001-11-30 | 2003-06-12 | Bristol-Myers Squibb Company | Solvates de paclitaxel |
EP1857127A1 (fr) * | 2002-09-20 | 2007-11-21 | Bayer Schering Pharma Aktiengesellschaft | Cathéter à ballonnet pour la délivrance de Paclitaxel |
WO2005037337A1 (fr) | 2003-10-17 | 2005-04-28 | Invatec S.R.L. | Ballons de catheter |
WO2007106441A2 (fr) * | 2006-03-10 | 2007-09-20 | Cook Incorporated | Revêtements à base de taxane pour des dispositifs médicaux implantables |
WO2007132485A1 (fr) | 2006-05-12 | 2007-11-22 | Invatec S.R.L. | Dispositifs médicaux d'angioplastie composés d'un matériau élastomère |
Non-Patent Citations (1)
Title |
---|
JEONG HOON LEE ET AL., BULL. KOREAN CHEM. SOC., vol. 22, no. 8, 2001, pages 925 - 928 |
Also Published As
Publication number | Publication date |
---|---|
CN102307602A (zh) | 2012-01-04 |
JP5647147B2 (ja) | 2014-12-24 |
US20110295200A1 (en) | 2011-12-01 |
US10874770B2 (en) | 2020-12-29 |
EP4019059A1 (fr) | 2022-06-29 |
WO2010079218A2 (fr) | 2010-07-15 |
US10029032B2 (en) | 2018-07-24 |
US20170173220A1 (en) | 2017-06-22 |
EP2962706B1 (fr) | 2022-03-23 |
US20190015562A1 (en) | 2019-01-17 |
WO2010079218A3 (fr) | 2011-04-28 |
ITMI20090014A1 (it) | 2010-07-10 |
CN102307602B (zh) | 2014-12-10 |
EP2385848B1 (fr) | 2015-03-18 |
JP2012514510A (ja) | 2012-06-28 |
US10596303B2 (en) | 2020-03-24 |
IT1394522B1 (it) | 2012-07-05 |
EP2385848A2 (fr) | 2011-11-16 |
US20200215234A1 (en) | 2020-07-09 |
ES2539326T3 (es) | 2015-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10874770B2 (en) | Drug-eluting medical device | |
US20100233228A1 (en) | Drug-Eluting Medical Device | |
US20210154445A1 (en) | Balloon catheter including a drug delivery sheath | |
US11679240B2 (en) | Removable covers for drug eluting medical devices | |
EP2427227B1 (fr) | Revêtement pour ballon permettant de réguler le transfert d'un médicament grâce à l'épaisseur du revêtement | |
EP2337584B1 (fr) | Administration locale d'agents thérapeutiques hydrophobes aux lumières corporelles de surface | |
KR101782812B1 (ko) | 수불용성 치료제 및 첨가제를 포함하는 코팅 의료 장치 | |
US20130190725A1 (en) | Medical device having tissue engaging member and method for delivery of a therapeutic agent | |
US20050113687A1 (en) | Application of a therapeutic substance to a tissue location using a porous medical device | |
US20160184560A1 (en) | Balloon Catheter With Elastomeric Sheath and Methods | |
US9101740B2 (en) | Process for folding drug coated balloon | |
JP6307492B2 (ja) | 薬剤投与バルーンカテーテル及びその製造方法 | |
ITMI20090015A1 (it) | Dispositivo medicale con rilascio di farmaco | |
US20210346658A1 (en) | Active-substance coating for balloons of balloon catheters |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 2385848 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
17P | Request for examination filed |
Effective date: 20160623 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20170810 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: A61L 29/06 20060101ALI20210914BHEP Ipc: A61M 25/10 20130101ALI20210914BHEP Ipc: A61L 29/16 20060101ALI20210914BHEP Ipc: A61L 31/10 20060101ALI20210914BHEP Ipc: A61L 29/14 20060101AFI20210914BHEP |
|
INTG | Intention to grant announced |
Effective date: 20211015 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AC | Divisional application: reference to earlier application |
Ref document number: 2385848 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602010068135 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1477006 Country of ref document: AT Kind code of ref document: T Effective date: 20220415 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20220323 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220323 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220623 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220323 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220323 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220623 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1477006 Country of ref document: AT Kind code of ref document: T Effective date: 20220323 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220323 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220624 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220323 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220323 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220323 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220323 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220323 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220725 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220323 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220323 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220323 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220323 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220323 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220723 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R026 Ref document number: 602010068135 Country of ref document: DE |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
26 | Opposition filed |
Opponent name: AHRENS, GABRIELE Effective date: 20221215 |
|
26 | Opposition filed |
Opponent name: BARD PERIPHERAL VASCULAR, INC. Effective date: 20221220 |
|
R26 | Opposition filed (corrected) |
Opponent name: AHRENS, GABRIELE Effective date: 20221215 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220323 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220323 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220323 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20230108 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230108 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20230131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230131 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230108 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230108 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20231219 Year of fee payment: 15 |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
R26 | Opposition filed (corrected) |
Opponent name: AHRENS, GABRIELE DR. Effective date: 20221215 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20231219 Year of fee payment: 15 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220323 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220323 |
|
APBP | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2O |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |
|
APBM | Appeal reference recorded |
Free format text: ORIGINAL CODE: EPIDOSNREFNO |
|
APBP | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2O |