EP2953984A1 - Procédé de contrôle du poids moléculaire des polyoléfines préparées à l'aide de systèmes de catalyseurs pyridyldiamido - Google Patents

Procédé de contrôle du poids moléculaire des polyoléfines préparées à l'aide de systèmes de catalyseurs pyridyldiamido

Info

Publication number
EP2953984A1
EP2953984A1 EP14748706.0A EP14748706A EP2953984A1 EP 2953984 A1 EP2953984 A1 EP 2953984A1 EP 14748706 A EP14748706 A EP 14748706A EP 2953984 A1 EP2953984 A1 EP 2953984A1
Authority
EP
European Patent Office
Prior art keywords
borate
tetrakis
group
substituted
perfluoronaphthyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14748706.0A
Other languages
German (de)
English (en)
Other versions
EP2953984A4 (fr
Inventor
John R. Hagadorn
Matthew S. Bedoya
Peijun Jiang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Chemical Patents Inc
Original Assignee
ExxonMobil Chemical Patents Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ExxonMobil Chemical Patents Inc filed Critical ExxonMobil Chemical Patents Inc
Priority to EP14748706.0A priority Critical patent/EP2953984A4/fr
Publication of EP2953984A1 publication Critical patent/EP2953984A1/fr
Publication of EP2953984A4 publication Critical patent/EP2953984A4/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene

Definitions

  • the invention relates to pyridyldiamido transition metal complexes and intermediates and processes for use in making such pyridyldiamido complexes.
  • the transition metal complexes may be used as catalysts for alkene polymerization processes.
  • Pyridyl amines have been used to prepare Group 4 complexes which are useful transition metal components in the polymerization of alkenes, see for example US 2002/0142912, US 6,900,321, and US 6, 103,657, where the ligands have been used in complexes in which the ligands are coordinated in a bidentate fashion to the transition metal atom.
  • WO 2005/095469 shows catalyst compounds that use tridentate ligands through two nitrogen atoms (one amido and one pyridyl) and one oxygen atom.
  • US 2004/0220050A1 and WO 2007/067965 disclose complexes in which the ligand is coordinated in a tridentate fashion through two nitrogen (one amido and one pyridyl) and one carbon (aryl anion) donors.
  • a key step in the activation of these complexes is the insertion of an alkene into the metal-aryl bond of the catalyst precursor (Froese, R. D. J. et al, J. Am. Chem. Soc. 2007, 129, pp. 7831-7840) to form an active catalyst that has both a five-membered and a seven- membered chelate ring.
  • WO 2010/037059 discloses pyridine containing amines for use in pharmaceutical applications.
  • the performance may be varied with respect to the amount of polymer produced per amount of catalyst (generally referred to as the "activity") under the prevailing polymerization conditions; the molecular weight and molecular weight distribution achieved at a given temperature; and the placement of higher alpha-olefins in terms of the degree of stereoregular placement.
  • This invention relates to pyridyldiamido and related transition metal complexes represented by the formula (I), or (II)
  • M is a Group 3, 4, 5, 6, 7, 8, 9, 10, 1 1, or 12 metal
  • R 1 is selected from the group consisting of hydrocarbyls, substituted hydrocarbyls, and silyl groups (preferably a phenyl group substituted at the 2 and 6 positions, preferably with the same or different C1-C20 alkyl groups);
  • R 1 1 is selected from the group consisting of hydrocarbyls substituted, hydrocarbyls, and silyl groups, preferably R 1 1 is a phenyl group substituted at the 2 position, preferably with a Cl- C20 alkyl group and which is not substituted at the 3, 5, and/or 6 positions, optionally, the 4 position can be substituted with a group 17 element or a C1-C20 alkyl group;
  • R 2 and R 10 are each, independently, -E(R 12 )(R 13 )- with E being carbon, silicon, or germanium, and each R 12 and R 13 being independently selected from the group consisting of hydrogen, hydrocarbyls, and substituted hydrocarbyls, alkoxy, silyl, amino, aryloxy, halogen, and phosphino, R 12 and R 13 may be joined to form a saturated, substituted or unsubstituted hydrocarbyl ring, where the ring has 4, 5, 6, or 7 ring carbon atoms and where substitution
  • R 3 , R 4 , and R 5 are independently selected from the group consisting of hydrogen, hydrocarbyls, substituted hydrocarbyls, alkoxy, aryloxy, halogen, amino, and silyl, and wherein adjacent R groups (R 3 & R 4 and/or R 4 & R 5 ) may be joined to form a substituted or unsubstituted hydrocarbyl or heterocyclic ring, where the ring has 5, 6, 7, or 8 ring atoms and where substitutions on the ring can join to form additional rings;
  • R 6 , R 7 , R 8 , R 9 , R 15 , and R 16 are independently selected from the group consisting of hydrogen, hydrocarbyls, substituted hydrocarbyls, alkoxy, halogen, amino, and silyl, and wherein adjacent R groups (R 6 & R 7 , and/or R 7 & R 15 , and/or R 16 & R 15 , and/or R 8 & R 9 ) may be joined to form a saturated, substituted or unsubstituted hydrocarbyl or heterocyclic ring, where the ring has 5, 6, 7, or 8 ring carbon atoms and where substitutions on the ring can join to form additional rings;
  • L is an anionic leaving group, wherein the L groups may be the same or different and any two
  • L groups may be linked to form a dianionic leaving group
  • n 0, 1, 2, 3, or 4;
  • L' is neutral Lewis base
  • w 0, 1, 2, 3, or 4;
  • n + w is no greater than 4.
  • This invention further relates to process to make the above complex, process to make intermediates for the above complex and methods to polymerize olefins using the above complex.
  • Figure 1 provides some of the formulae for pyridyldiamido transition metal catalyst described herein.
  • Figure 2 is a plot showing the effect of scavenger concentration on weight-average molecular weight of polypropylene produced at 85°C using complex B (Table 1 in examples) and [PhNHMe 2 ]B(C 6 F 5 ) 4 catalyst system.
  • transition metal complexes The term complex is used to describe molecules in which an ancillary ligand is coordinated to a central transition metal atom.
  • the ligand is bulky and stably bonded to the transition metal so as to maintain its influence during use of the catalyst, such as polymerization.
  • the ligand may be coordinated to the transition metal by covalent bond and/or electron donation coordination or intermediate bonds.
  • the transition metal complexes are generally subjected to activation to perform their polymerization function using an activator which is believed to create a cation as a result of the removal of an anionic group, often referred to as a leaving group, from the transition metal.
  • Me is methyl
  • Et is ethyl
  • Bu is butyl
  • t-Bu and 3 ⁇ 4u are tertiary butyl
  • Pr is propyl
  • iPr and ⁇ are isopropyl
  • Cy is cyclohexyl
  • THF also referred to as thf
  • Bn is benzyl
  • Ph is phenyl.
  • substituted generally means that a hydrogen of the substituted species has been replaced with a different atom or group of atoms.
  • methyl-cyclopentadiene is cyclopentadiene that has been substituted with a methyl group.
  • picric acid can be described as phenol that has been substituted with three nitro groups, or, alternatively, as benzene that has been substituted with one hydroxyl and three nitro groups.
  • hydrocarbyl radical is defined to be C C ⁇ o radicals, that may be linear, branched, or cyclic, and when cyclic, aromatic or non-aromatic.
  • a substituted hydrocarbyl radical is a hydrocarbyl radical in which at least one hydrogen atom of the hydrocarbyl radical has been substituted with at least one functional group such as NR * 2 , OR*, SeR *, TeR *, PR* 2 , AsR* 2 , SbR* 2 , SR*, BR* 2 , SiR* 3 , GeR* 3 , SnR*3, PbR*3, and the like, or where at least one heteroatom has been inserted within a hydrocarbyl ring, where R* is, independently, hydrogen or a hydrocarbyl radical, or any combination thereof.
  • catalyst system is defined to mean a complex/activator pair.
  • Catalyst system means the unactivated catalyst complex (precatalyst) together with an activator and, optionally, a co-activator.
  • it means the activated complex and the activator or other charge-balancing moiety.
  • the transition metal compound may be neutral as in a precatalyst, or a charged species with a counter ion as in an activated catalyst system.
  • catalyst precursor is also often referred to as catalyst precursor, precatalyst, catalyst, catalyst compound, transition metal compound, or transition metal complex. These words are used interchangeably.
  • Activator and cocatalyst are also used interchangeably.
  • a scavenger is a compound that is typically added to facilitate polymerization by scavenging impurities. Some scavengers may also act as activators and may be referred to as co-activators. A co-activator, that is not a scavenger, may also be used in conjunction with an activator in order to form an active catalyst. In some embodiments, a co-activator can be pre-mixed with the transition metal compound to form an alkylated transition metal compound.
  • Noncoordinating anion is defined to mean an anion either that does not coordinate to the catalyst metal cation or that does coordinate to the metal cation, but only weakly.
  • NCA is also defined to include multicomponent NCA-containing activators, such as ⁇ , ⁇ -dimethylanilinium tetrakis(pentafluorophenyl)borate, that contain an acidic cationic group and the non-coordinating anion.
  • NCA is also defined to include neutral Lewis acids, such as tris(pentafluorophenyl)boron, that can react with a catalyst to form an activated species by abstraction of an anionic group.
  • NCA coordinates weakly enough that a neutral Lewis base, such as an olefinically or acetylenically unsaturated monomer can displace it from the catalyst center.
  • a neutral Lewis base such as an olefinically or acetylenically unsaturated monomer can displace it from the catalyst center.
  • Any metal or metalloid that can form a compatible, weakly coordinating complex may be used or contained in the noncoordinating anion. Suitable metals include, but are not limited to, aluminum, gold, and platinum. Suitable metalloids include, but are not limited to, boron, aluminum, phosphorus, and silicon.
  • a stoichiometric activator can be either neutral or ionic.
  • ionic activator and stoichiometric ionic activator can be used interchangeably.
  • neutral stoichiometric activator, and Lewis acid activator can be used interchangeably.
  • non-coordinating anion includes neutral stoichiometric activators, ionic s
  • an “olefin,” alternatively referred to as “alkene,” is a linear, branched, or cyclic compound of carbon and hydrogen having at least one double bond.
  • alkene is a linear, branched, or cyclic compound of carbon and hydrogen having at least one double bond.
  • a polymer or copolymer is referred to as comprising an olefin, including, but not limited to, ethylene, propylene, and butene
  • the olefin present in such polymer or copolymer is the polymerized form of the olefin.
  • a copolymer when a copolymer is said to have an "ethylene" content of 35 wt% to 55 wt%, it is understood that the mer unit in the copolymer is derived from ethylene in the polymerization reaction and said derived units are present at 35 wt% to 55 wt%, based upon the weight of the copolymer.
  • a "polymer” has two or more of the same or different mer units.
  • a “homopolymer” is a polymer having mer units that are the same.
  • a “copolymer” is a polymer having two or more mer units that are different from each other.
  • a “terpolymer” is a polymer having three mer units that are different from each other.
  • oligomer is a polymer having a low molecular weight. In some embodiments, an oligomer has an Mn of 21,000 g/mol or less (e.g., 2,500 g/mol or less); in other embodiments, an oligomer has a low number of mer units (such as 50 mer units or less).
  • alpha-olefin is an olefin having a double bond at the alpha (or 1-) position.
  • a higher a-olefin is defined to be an a-olefin having 4 or more carbon atoms.
  • melting points (T m ) are DSC second melt.
  • a "ring carbon atom” is a carbon atom that is part of a cyclic ring structure.
  • a benzyl group has six ring carbon atoms and para-methylstyrene also has six ring carbon atoms.
  • aryl or "aryl group” means a six carbon aromatic ring and the substituted variants thereof, including but not limited to, phenyl, 2-methyl-phenyl, xylyl, 4-bromo-xylyl.
  • heteroaryl means an aryl group where a ring carbon atom (or two or three ring carbon atoms) has been replaced with a heteroatom, preferably N, O, or S.
  • ring atom means an atom that is part of a cyclic ring structure.
  • a benzyl group has six ring atoms and tetrahydrofuran has 5 ring atoms.
  • a heterocyclic ring is a ring having a heteroatom in the ring structure as opposed to a heteroatom substituted ring where a hydrogen on a ring atom is replaced with a heteroatom.
  • tetrahydrofuran is a heterocyclic ring
  • 4-N,N-dimethylamino-phenyl is a heteroatom substituted ring.
  • aromatic also refers to pseudoaromatic heterocycles which are heterocyclic substituents that have similar properties and structures (nearly planar) to aromatic heterocyclic ligands, but are not by definition aromatic; likewise, the term aromatic also refers to substituted aromatics.
  • continuous means a system that operates without interruption or cessation.
  • a continuous process to produce a polymer would be one where the reactants are continually introduced into one or more reactors and polymer product is continually withdrawn.
  • a solution polymerization means a polymerization process in which the polymer is dissolved in a liquid polymerization medium, such as an inert solvent or monomer(s) or their blends.
  • a solution polymerization is typically homogeneous.
  • a homogeneous polymerization is one where the polymer product is dissolved in the polymerization medium.
  • Such systems are preferably not turbid as described in J. Vladimir Oliveira, C. Dariva and J. C. Pinto, Ind. Eng, Chem. Res. 29, 2000, p. 4627.
  • a bulk polymerization means a polymerization process in which the monomers and/or comonomers being polymerized are used as a solvent or diluent using little or no inert solvent as a solvent or diluent. A small faction of inert solvent might be used as a carrier for catalyst and scavenger.
  • a bulk polymerization system typically contains less than 25 wt% of inert solvent or diluent, preferably less than 10 wt%, preferably less than 1 wt%, preferably 0 wt%.
  • multimodal when used to describe a polymer or polymer composition, means “multimodal molecular weight distribution,” which is understood to mean that the Gel Permeation Chromatography (GPC) trace, plotted as Absorbance versus Retention Time (seconds), has more than one peak or inflection point(s).
  • An “inflection point” is that point where the second derivative of the curve changes in sign (e.g., from negative to positive or vice versa).
  • a polyolefin composition that includes a first lower molecular weight polymer component (such as a polymer having an Mw of 100,000 g/mol) and a second higher molecular weight polymer component (such as a polymer having an Mw of 300,000 g/mol) is considered to be a "bimodal" polyolefin composition.
  • the Mw's of the polymer or polymer composition differ by at least 10%, relative to each other, preferably by at least 20%, preferably at least 50%, preferably by at least 100%, preferably by at least 200%.
  • the Mw's of the polymer or polymer composition differ by 10% to 10,000%, relative to each other, preferably by 20% to 1000%, preferably 50% to 500%, preferably by at least 100% to 400%, preferably 200% to 300%.
  • Catalyst activity is a measure of how many grams of polymer (P) are produced using a polymerization catalyst comprising W mmol of transition metal (M), over a period of time of T hours; and may be expressed by the following formula: P/(T x W).
  • a pyridyldiamido transition metal complex (optionally for u sented by the formula
  • M is a Group 3, 4, 5, 6, 7, 8, 9, 10, 1 1, or 12 metal
  • R 1 and R 1 1 are each independently selected from the group consisting of hydrocarbyls substituted hydrocarbyls, and silyl groups (preferably a phenyl group substituted at the 2 and 6 positions, preferably with the same or different C1-C20 alkyl groups), more preferably R 1 1 is a phenyl group substituted at the 2 position, preferably with a C1-C20 alkyl group and which is not substituted at the 3, 5, and/or 6 positions, optionally, the 4 position can be substituted with a group 17 element or a C1-C20 alkyl group;
  • R 2 and R 10 are each, independently, -E(R 12 )(R 13 )- with E being carbon, silicon, or germanium, and each R 12 and R 13 being independently selected from the group consisting of hydrogen, hydrocarbyls, and substituted hydrocarbyls, alkoxy, silyl, amino, aryloxy, halogen, and phosphino, R 12 and R 13 may be joined to form a saturated, substituted or unsubstituted hydrocarbyl ring, where the ring has 4, 5, 6, or 7 ring carbon atoms and where substitutions on the ring can join to form additional rings, or R 12 and R 13 may be joined to form a saturated heterocyclic ring, or a saturated substituted heterocyclic ring where substitutions on the ring can join to form additional rings;
  • R 3 , R 4 , and R 5 are independently selected from the group consisting of hydrogen, hydrocarbyls, substituted hydrocarbyls, alkoxy, aryloxy, halogen, amino, and silyl, and wherein adjacent R groups (R 3 & R 4 and/or R 4 & R 5 ) may be joined to form a substituted or unsubstituted hydrocarbyl or heterocyclic ring, where the ring has 5, 6, 7, or 8 ring atoms and where substitutions on the ring can join to form additional rings;
  • R 6 , R 7 , R 8 , R 9 , R 15 , and R 16 are independently selected from the group consisting of hydrogen, hydrocarbyls, substituted hydrocarbyls, alkoxy, halogen, amino, and silyl, and wherein adjacent R groups (R 6 & R 7 , and/or R 7 & R 15 , and/or R 16 & R 15 , and/or R 8 & R 9 ) may be joined to form a saturated, substituted or unsubstituted hydrocarbyl or heterocyclic ring, where the ring has 5, 6, 7, or 8 ring carbon atoms and where substitutions on the ring can join to form additional rings;
  • L is an anionic leaving group, where the L groups may be the same or different and any two
  • L groups may be linked to form a dianionic leaving group
  • n 0, 1, 2, 3, or 4;
  • L' is neutral Lewis base
  • w 0, 1, 2, 3, or 4;
  • n + w is no greater than 4.
  • the R groups above and other R groups mentioned hereafter contain from 1 to 30, preferably 2 to 20 carbon atoms, especially from 6 to 20 carbon atoms.
  • M is Ti, Zr, or Hf
  • E is carbon, with Zr or Hf based complexes being especially preferred.
  • R 1 1 may be selected from phenyl groups that are variously substituted with between zero to five substituents that include F, CI, Br, I, CF 3 , ⁇ (3 ⁇ 4, alkoxy, dialkylamino, aryl, and alkyl groups having 1 to 10 carbons, such as methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, and isomers thereof.
  • substituents include F, CI, Br, I, CF 3 , ⁇ (3 ⁇ 4, alkoxy, dialkylamino, aryl, and alkyl groups having 1 to 10 carbons, such as methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, and isomers thereof.
  • R 1 1 when R 1 1 is a phenyl group, it is substituted at the ortho position, the 2 position, adjacent to the point of attachment to the nitrogen (N) group of the organic ligand as shown in formulae (I) and (II).
  • the substituent is an alkyl group, such as C 1-C20 alkyl groups, including methyl, ethyl, iso-propyl, propyl, butyl, sec -butyl, t-butyl, octyl, nonyl, dodecyl, etc.
  • R 1 1 can be further substituted particularly at the 4 position by group 17 elements (preferably F, CI, Br or I) or C1 -C20 alkyl groups as described above.
  • the substituent at the ortho position is a C 1-C5 group, including methyl, ethyl, iso-propyl, propyl, butyl, sec -butyl, t-butyl.
  • R 1 1 is not substituted at the 2 position with F, a fluoro group or a trifluoromethyl group.
  • R 1 1 is substituted at the 2 and, optionally, the 4 positions as described above, but is not substituted at the 3, 5 and/or 6 positions.
  • L may be selected from halide, alkyl, aryl, alkoxy, amido, hydrido, phenoxy, hydroxy, silyl, allyl, alkenyl, and alkynyl.
  • the selection of the leaving groups depends on the synthesis route adopted for arriving at the complex and may be changed by additional reactions to suit the later activation method in polymerization.
  • a preferred L is alkyl when using non-coordinating anions such as N,N- dimethylanilinium tetrakis(pentafluorophenyl)-borate or tris(pentafluorophenyl)borane.
  • two L groups may be linked to form a dianionic leaving group, for example oxalate.
  • each L' is independently selected from the group consisting of ethers, thio-ethers, amines, nitriles, imines, pyridines, and phosphines, preferably ethers.
  • Preferred R 2 groups and preferred R 10 groups include CH 2 , CMe2, SiMe2, SiEt 2 , SiPr 2 , SiBu 2 , SiPh 2 , Si(aryl) 2 , Si(alkyl) 2 , CH(aryl), CH(Ph), CH(alkyl), and CH(2- isopropylphenyl), preferably where alkyl is a Q to C 4 Q alkyl group, aryl is a C 5 to C 4 Q aryl group.
  • E is preferably carbon
  • R 2 is represented by the formula:
  • R 12 " is hydrogen, alkyl, aryl, or halogen
  • R 13 " is hydrogen, alkyl, aryl, or halogen, preferably R 12 " and R 13 " are the same.
  • R 6 , R 7 , R 8 , R 9 , R 15 , and R 16 may be, independently, selected from the group consisting of hydrogen, hydrocarbyls, substituted hydrocarbyls, alkoxy, halogen, amino, and silyl.
  • R 3 , R 4 , R 5 , and R 1 1 may each contain from 1 to 30 carbon atoms, preferably R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 15 , and R 16 each contain from 1 to than 30 carbon atoms.
  • E is carbon and R 1 1 is selected from phenyl groups that are substituted with 0, 1, 2, 3, 4, or 5 substituents selected from the group consisting of F, CI, Br, I, CF3, O2, alkoxy, dialkylamino, hydrocarbyl, and substituted hydrocarbyls groups with from one to ten carbons.
  • the pyridyldiamido transition metal complex is represented by the Formula (I) or (II) above, and M is a Group 4 metal preferably Zr or Hf, preferably Hf.
  • the pyridyldiamido transition metal complex is represented by the Formula (I) or (II) above, the R 2 and R 10 groups are -CH 2 -, M is a Group 4 metal (preferably Zr or Hf, preferably Hf) and R 1 1 is a phenyl group with substitution at the 2 position, but not further substituted at either the 3, 5 and/or 6 position, with the substituents preferably being C1-C5 alkyl groups, such as methyl, ethyl, propyl, butyl or pentyl.
  • the pyridyldiamido transition metal complex is represented by the Formula (I) or (II) above, wherein the R 2 and R 10 groups are -CH 2 -, M is a Group 4 metal (preferably Zr or Hf, preferably Hf), R 1 is 2,6-diisopropylphenyl, and R 1 1 is a phenyl group with a substituent at the 2 position, preferably a C1-C5 alkyl group, such as methyl, ethyl, propyl, isopropyl, butyl or pentyl. In particular, the 3, 5 and 6 positions of the phenyl group are not substituted. It should be understood where a substituent is not denoted that the position is a hydrogen atom and/or a carbon bond that forms a ring.
  • the 2 and 4 positions of the R 1 1 phenyl group are substituted with, each independently, C1-C20 alkyl groups and more particularly, C1-C5 alkyl groups.
  • the pyridyl diamine ligands described herein are generally prepared in multiple steps.
  • One step involves the preparation of an amine-containing "linker" group where the linker is typically a boronic acid ester of an aryl methyl amine or substituted amine.
  • This amine- containing linker may be prepared from an aryl-methyl boronic ester in two steps, the first of which involves the conversion of the methyl group to a halo-methyl group by free radical halogenation in unreactive solvents (e.g., CC1 4 , benzene).
  • the second step then involves reaction of this halo-methyl group containing species with an amine or protected amine or deprotonated protected amine to yield an amine-containing linker.
  • This amine-containing linker is then coupled with a suitable pyridine containing species, such as 6-bromo-2- pyridinecarboxaldehyde.
  • a suitable pyridine containing species such as 6-bromo-2- pyridinecarboxaldehyde.
  • This coupling step typically uses a metal catalyst (e.g., Pd(PPh 3 ) 4 ) in less than 5 mol% loading.
  • Pd(PPh 3 ) 4 e.g., Pd(PPh 3 ) 4
  • the new derivative which can be described as amine-linker-pyridine-aldehyde, is then reacted with a second amine to produce the imine derivative amine-linker-pyridine-imine in a condensation reaction. This can then be reduced to the pyridyl diamine ligand by reaction with a suitable aryl anion, alkyl anion, or hydride source.
  • This reaction is generally performed in etherial solvents at temperatures between -100°C and 50°C when aryllithium or alkyllithium reagents are employed. This reaction is generally performed in methanol at reflux when sodium cyanoborohydride is employed.
  • pyridyl diamide metal complexes from pyridyl diamines may be accomplished using typical protonolysis and methylation reactions.
  • the pyridyl diamine is reacted with a suitable metal reactant to produce a pyridyldiamide metal complex.
  • a suitable metal reactant will feature a basic leaving group that will accept a proton from the pyridyl diamine and then generally depart and be removed from the product.
  • PDA metal-chloride
  • metal-chloride groups such as the PDA dichloride complex
  • PDA dichloride complex can be alkylated by reaction with an appropriate organometallic reagent.
  • Suitable reagents include organolithium and organomagnesium, and Grignard reagents.
  • the alkylations are generally performed in etherial or hydrocarbon solvents or solvent mixtures at temperatures typically ranging from -100°C to 50°C.
  • catalyst systems may be formed by combining them with activators in any manner known from the literature including by supporting them for use in slurry or gas phase polymerization.
  • the catalyst systems may also be added to or generated in solution polymerization or bulk polymerization (in the monomer).
  • the catalyst system typically comprises a complex as described above and an activator such as alumoxane or a non-coordinating anion. Activation may be performed using alumoxane solution including methyl alumoxane, referred to as MAO, as well as modified MAO, referred to herein as MMAO, containing some higher alkyl groups to improve the solubility.
  • MAO methyl alumoxane
  • MMAO modified MAO
  • the catalyst system employed in the present invention preferably uses an activator selected from alumoxanes, such as methyl alumoxane, modified methyl alumoxane, ethyl alumoxane, z ' so-butyl alumoxane, and the like.
  • alumoxanes such as methyl alumoxane, modified methyl alumoxane, ethyl alumoxane, z ' so-butyl alumoxane, and the like.
  • the complex-to-activator molar ratio is from about 1 :3000 to 10: 1; alternatively 1 :2000 to 10: 1 ; alternatively 1 : 1000 to 10: 1 ; alternatively 1 :500 to 1 : 1 ; alternatively 1 :300 to 1 : 1; alternatively 1 :200 to 1 : 1; alternatively 1 : 100 to 1 : 1 ; alternatively 1 :50 to 1 : 1; and alternatively 1 : 10 to 1 : 1.
  • the activator is an alumoxane (modified or unmodified)
  • some embodiments select the maximum amount of activator at a 5000-fold molar excess over the catalyst precursor (per metal catalytic site).
  • the preferred minimum activator-to-complex ratio is 1 : 1 molar ratio.
  • NCA non-coordinating anions
  • NCA's non-coordinating anions
  • NCA may be added in the form of an ion pair using, for example, [DMAH] + [NCA] " in which the N,N- dimethylanilinium (DMAH) cation reacts with a basic leaving group on the transition metal complex to form a transition metal complex cation and [NCA] " .
  • the cation in the precursor may, alternatively, be trityl.
  • the transition metal complex may be reacted with a neutral NCA precursor, such as B(C6F 5 )3, which abstracts an anionic group from the complex to form an activated species.
  • Useful activators include N,N-dimethylanilinium tetrakis (pentafluorophenyl)borate (i.e., [PhNMe2H]B(C6F 5 )4) and N,N-dimethylanilinium tetrakis (heptafluoronaphthyl)borate, where Ph is phenyl, and Me is methyl.
  • preferred activators useful herein include those described in US 7,247,687 at column 169, line 50 to column 174, line 43, particularly column 172, line 24 to column 173, line 53.
  • activators include: trimethylammonium tetraphenylborate, triethylammonium tetraphenylborate, tripropylammonium tetraphenylborate, tri(n- butyl)ammonium tetraphenylborate, tri(t-butyl)ammonium tetraphenylborate, N,N- dimethylanilinium tetraphenylborate, ⁇ , ⁇ -diethylanilinium tetraphenylborate, N,N-dimethyl- (2,4,6-trimethylanilinium) tetraphenylborate, tropillium tetraphenylborate,
  • triphenylcarbenium tetraphenylborate triphenylphosphonium tetraphenylborate triethylsilylium tetraphenylborate, benzene(diazonium)tetraphenylborate, trimethylammonium tetrakis(pentafluorophenyl)borate, triethylammonium
  • the ionic stoichiometric activator is N,N-dimethylanilinium tetrakis(perfluoronaphthyl)borate, ⁇ , ⁇ -dimethylanilinium tetrakis(perfluorobiphenyl)borate, ⁇ , ⁇ -dimethylanilinium tetrakis(3 ,5-bis(trifluoromethyl)phenyl)borate, triphenylcarbenium tetrakis(perfluoronaphthyl)borate, triphenylcarbenium tetrakis(perfluorobiphenyl)borate, triphenylcarbenium tetrakis(3,5-bis(trifluoromethyl)phenyl)borate, or triphenylcarbenium tetrakis(perfluorophenyl)borate.
  • the complex-to-activator molar ratio is typically from 1:10 to 1:1; 1:10 to 10:1; 1:10 to 2:1; 1:10 to 3:1; 1:10 to 5:1; 1:2 to 1.2:1; 1:2 to 10:1; 1:2 to 2:1; 1:2 to 3:1; 1:2 to 5:1; 1:3 to 1.2:1; 1:3 to 10:1; 1:3 to 2:1; 1:3 to 3:1; 1:3 to 5:1; 1:5 to 1:1; 1:5 to 10:1; 1:5 to 2:1; 1:5 to 3:1; 1:5 to 5:1; and 1:1 to 1:1.2.
  • a co-activator may also be used in the catalyst system herein.
  • the complex-to-co-activator molar ratio is from 1:100 to 100:1; 1:75 to 75:1; 1:50 to 50:1; 1:25 to 25:1; 1:15 to 15:1; 1:10 to 10:1; 1:5 to 5:1, 1:2 to 2:1; 1:100 to 1:1; 1:75 to 1:1; 1:50 to 1:1; 1:25 to 1:1; 1:15 to 1:1; l:10to 1:1; 1:5 to 1:1; 1:2 to 1:1; and 1:10 to 2:1.
  • the complexes described herein may be supported (with or without an activator) by any method effective to support other coordination catalyst systems, effective meaning that the catalyst so prepared can be used for oligomerizing or polymerizing olefin in a heterogeneous process.
  • the catalyst precursor, activator, co-activator if needed, suitable solvent, and support may be added in any order or simultaneously.
  • the complex and activator may be combined in solvent to form a solution. Then the support is added, and the mixture is stirred for 1 minute to 10 hours.
  • the total solution volume may be greater than the pore volume of the support, but some embodiments limit the total solution volume below that needed to form a gel or slurry (about 90% to 400%, preferably about 100- 200% of the pore volume).
  • the residual solvent is removed under vacuum, typically at ambient temperature and over 10-16 hours. But greater or lesser times and temperatures are possible.
  • the complex may also be supported absent the activator; in that case, the activator (and co-activator if needed) is added to a polymerization process's liquid phase. Additionally, two or more different complexes may be placed on the same support. Likewise, two or more activators or an activator and co-activator may be placed on the same support.
  • Suitable solid particle supports are typically comprised of polymeric or refractory oxide materials, each being preferably porous.
  • any support material that has an average particle size greater than 10 ⁇ is suitable for use in this invention.
  • a porous support material such as for example, talc, inorganic oxides, inorganic chlorides, for example magnesium chloride and resinous support materials such as polystyrene polyolefin or polymeric compounds or any other organic support material and the like.
  • Some embodiments select inorganic oxide materials as the support material including Group-2, -3, -4, -5, -13, or -14 metal or metalloid oxides.
  • Some embodiments select the catalyst support materials to include silica, alumina, silica-alumina, and their mixtures.
  • inorganic oxides may serve either alone or in combination with the silica, alumina, or silica- alumina. These are magnesia, titania, zirconia, and the like.
  • Lewis acidic materials such as montmorillonite and similar clays may also serve as a support. In this case, the support can optionally double as the activator component; however, an additional activator may also be used.
  • the support material may be pretreated by any number of methods.
  • inorganic oxides may be calcined, chemically treated with dehydroxylating agents such as aluminum alkyls and the like, or both.
  • polymeric carriers will also be suitable in accordance with the invention, see for example the descriptions in WO 95/15815 and US 5,427,991.
  • the methods disclosed may be used with the catalyst complexes, activators or catalyst systems of this invention to adsorb or absorb them on the polymeric supports, particularly if made up of porous particles, or may be chemically bound through functional groups bound to or in the polymer chains.
  • Useful supports typically have a surface area of from 10-700 m 2 /g, a pore volume of 0.1-4.0 cc/g and an average particle size of 10-500 ⁇ . Some embodiments select a surface area of 50-500 m 2 /g, a pore volume of 0.5-3.5 cc/g, or an average particle size of 20-200 ⁇ . Other embodiments select a surface area of 100-400 m 2 /g, a pore volume of 0.8-3.0 cc/g, and an average particle size of 30-100 ⁇ . Useful supports typically have a pore size of 10-1000 Angstroms, alternatively 50-500 Angstroms, or 75-350 Angstroms.
  • the catalyst complexes described herein are generally deposited on the support at a loading level of 10-100 micromoles of complex per gram of solid support; alternately 20-80 micromoles of complex per gram of solid support; or 40-60 micromoles of complex per gram of support. But greater or lesser values may be used provided that the total amount of solid complex does not exceed the support's pore volume.
  • Inventive catalyst complexes are useful in polymerizing unsaturated monomers conventionally known to undergo metallocene-catalyzed polymerization such as solution, slurry, gas-phase, and high-pressure polymerization.
  • unsaturated monomers conventionally known to undergo metallocene-catalyzed polymerization
  • one or more of the complexes described herein, one or more activators, and one or more monomers are contacted to produce polymer.
  • the complexes may be supported and as such will be particularly useful in the known, fixed-bed, moving-bed, fluid-bed, slurry, solution, or bulk operating modes conducted in single, series, or parallel reactors.
  • One or more reactors in series or in parallel may be used in the present invention.
  • the complexes, activator and when required, co-activator may be delivered as a solution or slurry, either separately to the reactor, activated in-line just prior to the reactor, or preactivated and pumped as an activated solution or slurry to the reactor.
  • Polymerizations are carried out in either single reactor operation, in which monomer, comonomers, catalyst/activator/co-activator, optional scavenger, and optional modifiers are added continuously to a single reactor or in series reactor operation, in which the above components are added to each of two or more reactors connected in series.
  • the catalyst components can be added to the first reactor in the series.
  • the catalyst component may also be added to both reactors, with one component being added to first reaction and another component to other reactors.
  • the complex is activated in the reactor in the presence of olefin.
  • the polymerization process is a continuous process.
  • Polymerization processes used herein typically comprise contacting one or more alkene monomers with the complexes (and, optionally, activator) described herein.
  • alkenes are defined to include multi-alkenes (such as dialkenes) and alkenes having just one double bond.
  • Polymerization may be homogeneous (solution or bulk polymerization) or heterogeneous (slurry -in a liquid diluent, or gas phase -in a gaseous diluent).
  • the complex and activator may be supported.
  • Silica is useful as a support herein.
  • Chain transfer agents (such as hydrogen or diethyl zinc) may be used in the practice of this invention.
  • the present polymerization processes may be conducted under conditions preferably including a temperature of about 30°C to about 200°C, preferably from 60°C to 195°C, preferably from 75°C to 190°C.
  • the process may be conducted at a pressure of from 0.05 MPa to 1500 MPa. In a preferred embodiment, the pressure is between 1.7 MPa and 30 MPa, or in another embodiment, especially under supercritical conditions, the pressure is between 15 MPa and 1500 MPa.
  • Monomers useful herein include olefins having from 2 to 20 carbon atoms, alternately 2 to 12 carbon atoms (preferably ethylene, propylene, butylene, pentene, hexene, heptene, octene, nonene, decene, and dodecene) and optionally also polyenes (such as dienes).
  • Particularly preferred monomers include ethylene, and mixtures of C2 to alpha olefins, such as ethylene-propylene, ethylene-hexene, ethylene-octene, propylene-hexene, and the like.
  • the complexes described herein are also particularly effective for the polymerization of ethylene, either alone or in combination with at least one other olefinically unsaturated monomer, such as a C3 to C20 a-olefin, and particularly a C3 to a-olefin.
  • the present complexes are also particularly effective for the polymerization of propylene, either alone or in combination with at least one other olefinically unsaturated monomer, such as ethylene or a C 4 to C20 a-olefin, and particularly a C 4 to C20 a-olefin.
  • Examples of preferred a-olefins include ethylene, propylene, butene-1, pentene- 1, hexene- 1, heptene- 1, octene- 1, nonene-1, decene-1, dodecene-1, 4-methylpentene-l, 3-methylpentene-l, 3, 5, 5- trimethylhexene-1, and 5-ethylnonene-l .
  • the monomer mixture may also comprise one or more dienes at up to 10 wt%, such as from 0.00001 to 1.0 wt%, for example from 0.002 to 0.5 wt%, such as from 0.003 to 0.2 wt%, based upon the monomer mixture.
  • Non-limiting examples of useful dienes include, cyclopentadiene, norbornadiene, dicyclopentadiene, 5-ethylidene-2- norbornene, 5-vinyl-2-norbornene, 1,4-hexadiene, 1,5-hexadiene, 1,5-heptadiene, 1,6- heptadiene, 6-methyl-l,6-heptadiene, 1,7-octadiene, 7-methyl-l,7-octadiene, 1,9-decadiene, 1 and 9-methyl- 1,9-decadiene.
  • the catalyst systems may, under appropriate conditions, generate stereoregular polymers or polymers having stereoregular sequences in the polymer chains.
  • the catalyst system when using the complexes described herein, particularly when they are immobilized on a support, the catalyst system will additionally comprise one or more scavenging compounds.
  • scavenging compound means a compound that removes polar impurities from the reaction environment. These impurities adversely affect catalyst activity and stability.
  • the scavenging compound will be an organometallic compound such as the Group-13 organometallic compounds of US Patents 5, 153, 157, 5,241,025 and WO-A-91/09882, WO-A-94/03506, WO-A-93/14132, and that of WO 95/07941.
  • Exemplary compounds include triethyl aluminum, tri ethyl borane, tri-z ' so-butyl aluminum, methyl alumoxane, z ' so-butyl alumoxane, and tri-n-octyl aluminum.
  • Those scavenging compounds having bulky or C6-C20 linear hydrocarbyl substituents connected to the metal or metalloid center usually minimize adverse interaction with the active catalyst.
  • Examples include triethylaluminum, but more preferably, bulky compounds such as tri-iso- butyl aluminum, tri-z ' so-prenyl aluminum, and long-chain linear alkyl-substituted aluminum compounds, such as tri-n-hexyl aluminum, tri-n-octyl aluminum, or tri-n-dodecyl aluminum.
  • bulky compounds such as tri-iso- butyl aluminum, tri-z ' so-prenyl aluminum, and long-chain linear alkyl-substituted aluminum compounds, such as tri-n-hexyl aluminum, tri-n-octyl aluminum, or tri-n-dodecyl aluminum.
  • Preferred aluminum scavengers useful in the invention include those where there is an oxygen present. That is, the material per se or the aluminum mixture used as a scavenger, includes an aluminum/oxygen species, such as an alumoxane or alkylaluminum oxides, e.g., dialkyaluminum oxides, such as bis(diisobutylaluminum) oxide.
  • aluminum containing scavengers can be represented by the formula ((R z -Al-) y O-) x , wherein z is 1-2, y is 1-2, x is 1-100, and R is a CI -CI 2 hydrocarbyl group.
  • the scavenger has an oxygen to aluminum (O/Al) molar ratio of from about 0.25 to about 1.5, more particularly from about 0.5 to about 1.
  • two or more complexes are combined with diethyl zinc in the same reactor with monomer.
  • one or more complexes are combined with another catalyst (such as a metallocene) and diethyl zinc in the same reactor with monomer.
  • the homopolymer and copolymer products produced by the present process may have an Mw of about 1,000 to about 2,000,000 g/mol, alternately of about 30,000 to about 600,000 g/mol, or alternately of about 100,000 to about 500,000 g/mol, as determined by GPC.
  • Preferred polymers produced here may be homopolymers or copolymers.
  • the comonomer(s) are present at up to 50 mol%, preferably from 0.01 to 40 mol%, preferably 1 to 30 mol%, preferably from 5 to 20 mol%.
  • a multimodal polyolefin composition comprising a first polyolefin component and at least another polyolefin component, different from the first polyolefin component by molecular weight, preferably such that the GPC trace has more than one peak or inflection point.
  • Measurements of weight average molecular weight (Mw), number average molecular weight (Mn), and z average molecular weight (Mz) are determined by Gel Permeation Chromatography (GPC) as described in Macromolecules, 2001, Vol. 34, No. 19, pg. 6812, which is fully incorporated herein by reference, including that, a High Temperature Size Exclusion Chromatograph (SEC, Waters Alliance 2000), equipped with a differential refractive index detector (DRI) equipped with three Polymer Laboratories PLgel 10 mm Mixed-B columns is used. The instrument is operated with a flow rate of 1.0 cm 3 /min, and an injection volume of 300 ⁇ ⁇ .
  • GPC Gel Permeation Chromatography
  • the various transfer lines, columns and differential refractometer (the DRI detector) are housed in an oven maintained at 145°C.
  • Polymer solutions are prepared by heating 0.75 to 1.5 mg/mL of polymer in filtered 1,2,4-(TCB) containing -1000 ppm of butylated hydroxy toluene (BHT) at 160°C for 2 hours with continuous agitation.
  • a sample of the polymer containing solution is injected into the GPC and eluted using filtered 1,2,4-trichlorobenzene (TCB) containing -1000 ppm of BHT.
  • the separation efficiency of the column set is calibrated using a series of narrow MWD polystyrene standards reflecting the expected Mw range of the sample being analyzed and the exclusion limits of the column set. Seventeen individual polystyrene standards, obtained from Polymer Laboratories (Amherst, MA) and ranging from Peak Molecular Weight (Mp) -580 to 10,000,000, were used to generate the calibration curve. The flow rate is calibrated for each run to give a common peak position for a flow rate marker (taken to be the positive inject peak) before determining the retention volume for each polystyrene standard. The flow marker peak position is used to correct the flow rate when analyzing samples. A calibration curve (log(Mp) vs.
  • retention volume is generated by recording the retention volume at the peak in the DRI signal for each PS standard, and fitting this data set to a 2nd-order polynomial.
  • the equivalent polyethylene molecular weights are determined by using the Mark-Houwink coefficients shown in Table B.
  • the homopolymer and copolymer products produced by the present process may have an Mw of about 1,000 to about 2,000,000 g/mol, alternately of about 30,000 to about 600,000 g/mol, or alternately of about 100,000 to about 500,000 g/mol, as determined by GPC and have a multi-modal, preferably bimodal, Mw/Mn.
  • the polymers described herein may be formed into articles using conventional equipment and methods, such as by dry blending the individual components and subsequently melt mixing in a mixer, or by mixing the components together directly in a mixer, such as, for example, a Banbury mixer, a Haake mixer, a Brabender internal mixer, or a single or twin- screw extruder, which may include a compounding extruder and a side-arm extruder used directly downstream of a polymerization process. Additionally, additives may be included in the blend, in one or more components of the blend, and/or in a product formed from the blend, such as a film, as desired.
  • a mixer such as, for example, a Banbury mixer, a Haake mixer, a Brabender internal mixer, or a single or twin- screw extruder, which may include a compounding extruder and a side-arm extruder used directly downstream of a polymerization process.
  • additives may be included in the blend, in one or more components of the blend, and/
  • additives are well known in the art, and can include, for example: fillers; antioxidants (e.g., hindered phenolics such as IRGANOXTM 1010 or IRGANOXTM 1076 available from Ciba-Geigy); phosphites (e.g., IRGAFOSTM 168 available from Ciba-Geigy); anti-cling additives; tackifiers, such as polybutenes, terpene resins, aliphatic and aromatic hydrocarbon resins, alkali metal and glycerol stearates and hydrogenated rosins; UV stabilizers; heat stabilizers; antiblocking agents; release agents; anti-static agents; pigments; colorants; dyes; waxes; silica; fillers; talc; and the like.
  • antioxidants e.g., hindered phenolics such as IRGANOXTM 1010 or IRGANOXTM 1076 available from Ciba-Geig
  • Articles made using polymers produced herein may include, for example, molded articles (such as containers and bottles, e.g., household containers, industrial chemical containers, personal care bottles, medical containers, fuel tanks, and storageware, toys, sheets, pipes, tubing) films, non-wovens, and the like. It should be appreciated that the list of applications above is merely exemplary, and is not intended to be limiting.
  • polymer compositions described herein are useful in a wide variety of applications, including transparent articles such as cook and storage ware, and in other articles such as furniture, automotive components, toys, sportswear, medical devices, sterilizable medical devices and sterilization containers, nonwoven fibers and fabrics and articles therefrom such as drapes, gowns, filters, hygiene products, diapers, and films, oriented films, sheets, tubes, pipes and other items where softness, high impact strength, and impact strength below freezing are important.
  • compositions of the invention include films, sheets, fibers, woven and nonwoven fabrics, automotive components, furniture, sporting equipment, food storage containers, transparent and semi- transparent articles, toys, tubing and pipes, sheets, packaging, bags, sacks, coatings, caps, closures, crates, pallets, cups, non-food containers, pails, insulation, and medical devices.
  • Further examples include automotive components, wire and cable jacketing, pipes, agricultural films, geomembranes, toys, sporting equipment, medical devices, casting and blowing of packaging films, extrusion of tubing, pipes and profiles, sporting equipment, outdoor furniture (e.g., garden furniture) and playground equipment, boat and water craft components, and other such articles.
  • compositions described above and the blends thereof may be formed into monolayer or multilayer films.
  • These films may be formed by any of the conventional techniques known in the art including extrusion, co-extrusion, extrusion coating, lamination, blowing and casting.
  • the film may be obtained by the flat film or tubular process which may be followed by orientation in a uniaxial direction or in two mutually perpendicular directions in the plane of the film.
  • One or more of the layers of the film may be oriented in the transverse and/or longitudinal directions to the same or different extents. This orientation may occur before or after the individual layers are brought together.
  • a polyethylene layer can be extrusion coated or laminated onto an oriented polypropylene layer or the polyethylene and polypropylene can be coextruded together into a film then oriented.
  • oriented polypropylene could be laminated to oriented polyethylene or oriented polyethylene could be coated onto polypropylene, then optionally the combination could be oriented even further.
  • the films are oriented in the Machine Direction (MD) at a ratio of up to 15, preferably between 5 and 7, and in the Transverse Direction (TD) at a ratio of up to 15 preferably 7 to 9.
  • MD Machine Direction
  • TD Transverse Direction
  • the film is oriented to the same extent in both the MD and TD directions.
  • the other layer(s) may be any layer typically included in multilayer film structures.
  • the other layer or layers may be:
  • Polyolefins include homopolymers or copolymers of C2 to C40 olefins, preferably C2 to C20 olefins, preferably a copolymer of an alpha-olefin and another olefin or alpha-olefin (ethylene is defined to be an alpha-olefin for purposes of this invention).
  • ethylene is defined to be an alpha-olefin for purposes of this invention.
  • thermoplastic polymers such as ultra-low density polyethylene, very low density polyethylene, linear low density polyethylene, low density polyethylene, medium density polyethylene, high density polyethylene, polypropylene, isotactic polypropylene, highly isotactic polypropylene, syndiotactic polypropylene, random copolymer of propylene and ethylene and/or butene and/or hexene, elastomers such as ethylene propylene rubber, ethylene propylene diene monomer rubber, neoprene, and blends of thermoplastic polymers and elastomers, such as, for example, thermoplastic elastomers and rubber toughened plastics.
  • thermoplastic polymers such as ultra-low density polyethylene, very low density polyethylene, linear low density polyethylene, low density polyethylene, medium density polyethylene, high density polyethylene, polypropylene, isotactic polypropylene, highly isotactic polypropylene, syndiotactic polypropylene,
  • Polar polymers include homopolymers and copolymers of esters, amides, acetates, anhydrides, copolymers of a C2 to C20 olefin, such as ethylene and/or propylene and/or butene with one or more polar monomers such as acetates, anhydrides, esters, alcohol, and or acrylics.
  • Preferred examples include polyesters, polyamides, ethylene vinyl acetate copolymers, and polyvinyl chloride.
  • Cationic polymers include polymers or copolymers of geminally disubstituted olefins, alpha-heteroatom olefins and/or styrenic monomers.
  • Preferred geminally disubstituted olefins include isobutylene, isopentene, isoheptene, isohexane, isooctene, isodecene, and isododecene.
  • Preferred alpha-heteroatom olefins include vinyl ether and vinyl carbazole
  • preferred styrenic monomers include styrene, alkyl styrene, para-alkyl styrene, alpha-methyl styrene, chloro-styrene, and bromo-para- methyl styrene.
  • Preferred examples of cationic polymers include butyl rubber, isobutylene copolymerized with para methyl styrene, polystyrene, and poly-alpha-methyl styrene.
  • Other preferred layers can be paper, wood, cardboard, metal, metal foils (such as aluminum foil and tin foil), metallized surfaces, glass (including silicon oxide (SiO x ) coatings applied by evaporating silicon oxide onto a film surface), fabric, spunbonded fibers, and non-wovens (particularly polypropylene spun bonded fibers or non-wovens), and substrates coated with inks, dyes, pigments, and the like.
  • the films may vary in thickness depending on the intended application; however, films of a thickness from 1 ⁇ to 250 ⁇ are usually suitable. Films intended for packaging are usually from 10 to 60 micron thick.
  • the thickness of the sealing layer is typically 0.2 ⁇ to 50 ⁇ .
  • Additives such as block, antiblock, antioxidants, pigments, fillers, processing aids, UV stabilizers, neutralizers, lubricants, surfactants and/or nucleating agents may also be present in one or more than one layer in the films.
  • Preferred additives include silicon dioxide, titanium dioxide, polydimethylsiloxane, talc, dyes, wax, calcium sterate, carbon black, low molecular weight resins and glass beads, preferably these additives are present at from 0.1 ppm to 1000 ppm.
  • one more layers may be modified by corona treatment, electron beam irradiation, gamma irradiation, or microwave irradiation.
  • one or both of the surface layers is modified by corona treatment.
  • the films described herein may also comprise from 5 wt% to 60 wt%, based upon the weight of the polymer and the resin, of a hydrocarbon resin.
  • the resin may be combined with the polymer of the seal layer(s) or may be combined with the polymer in the core layer(s).
  • the resin preferably has a softening point above 100°C, even more preferably from 130°C to 180°C.
  • Preferred hydrocarbon resins include those described above.
  • the films comprising a hydrocarbon resin may be oriented in uniaxial or biaxial directions to the same or different degrees. For more information on blends of tackifiers and modifiers useful herein, see USSN 60/617,594, filed October 8, 2004.
  • the films described above may be used as stretch and/or cling films.
  • Stretch/cling films are used in various bundling, packaging and palletizing operations.
  • tackifying additives include polybutenes, terpene resins, alkali metal stearates and hydrogenated rosins and rosin esters.
  • the cling properties of a film can also be modified by the well-known physical process referred to as corona discharge. Some polymers (such as ethylene methyl acrylate copolymers) do not need cling additives and can be used as cling layers without tackifiers.
  • Stretch/clings films may comprise a slip layer comprising any suitable polyolefin or combination of polyolefins such as polyethylene, polypropylene, copolymers of ethylene and propylene, and polymers obtained from ethylene and/or propylene copolymerized with minor amounts of other olefins, particularly C 4 to olefins. Particularly, preferred is linear low density polyethylene (LLDPE). Additionally, the slip layer may include one or more anticling (slip and/or antiblock) additives which may be added during the production of the polyolefin or subsequently blended in to improve the slip properties of this layer.
  • polyolefins such as polyethylene, polypropylene, copolymers of ethylene and propylene, and polymers obtained from ethylene and/or propylene copolymerized with minor amounts of other olefins, particularly C 4 to olefins. Particularly, preferred is linear low density polyethylene (LLDPE).
  • the slip layer may include one
  • additives are well- known in the art and include, for example, silicas, silicates, diatomaceous earths, talcs, and various lubricants. These additives are preferably utilized in amounts ranging from about 100 ppm to about 20,000 ppm, more preferably between about 500 ppm to about 10,000 ppm, by weight based upon the weight of the slip layer.
  • the slip layer may, if desired, also include one or more other additives as described above.
  • this invention relates to:
  • a method to prepare a polyolefin comprising the step:
  • an olefinic monomer or olefinic monomers with a pyridyldiamido transition metal catalyst, optionally an activator, and an aluminum containing scavenger that has an oxygen to aluminum (O/Al) molar ratio from about 0.25 and about 1.5.
  • a pyridyldiamido transition metal catalyst optionally an activator
  • an aluminum containing scavenger that has an oxygen to aluminum (O/Al) molar ratio from about 0.25 and about 1.5.
  • olefinic monomers are one or more of ethylene, a propylene, a butylene, a hexane or an octene.
  • M is a Group 3, 4, 5, 6, 7, 8, 9, 10, 1 1, or 12 metal
  • R 1 and R 1 1 are each independently selected from the group consisting of hydrocarbyls, substituted hydrocarbyls, and silyl groups;
  • R 2 and R 10 are each, independently, -E(R 12 )(R 13 )- with E being carbon, silicon, or germanium, and each R 12 and R 13 being independently selected from the group consisting of hydrogen, hydrocarbyls, and substituted hydrocarbyls, alkoxy, silyl, amino, aryloxy, halogen, and phosphino, R 12 and R 13 may be joined to form a saturated, substituted or unsubstituted hydrocarbyl ring, where the ring has 4, 5, 6, or 7 ring carbon atoms and where substitutions on the ring can join to form additional rings, or R 12 and R 13 may be joined to form a saturated heterocyclic ring, or a saturated substituted heterocyclic ring where substitutions on the ring can join to form additional rings;
  • R 3 , R 4 , and R 5 are independently selected from the group consisting of hydrogen, hydrocarbyls, substituted hydrocarbyls, alkoxy, aryloxy, halogen, amino, and silyl, and wherein adjacent R groups (R 3 & R 4 and/or R 4 & R 5 ) may be joined to form a substituted or unsubstituted hydrocarbyl or heterocyclic ring, where the ring has 5, 6, 7, or 8 ring atoms and where substitutions on the ring can join to form additional rings;
  • R 6 , R 7 , R 8 , R 9 , R 15 , and R 16 are independently selected from the group consisting of hydrogen, hydrocarbyls, substituted hydrocarbyls, alkoxy, halogen, amino, and silyl, and wherein adjacent R groups (R 6 & R 7 , and/or R 7 & R 15 , and/or R 16 & R 15 , and/or R 8 & R 9 ) may be joined to
  • L is an anionic leaving group, where the L groups may be the same or different and any two
  • L groups may be linked to form a dianionic leaving group
  • n 0, 1, 2, 3, or 4;
  • L' is neutral Lewis base
  • w 0, 1, 2, 3, or 4;
  • n + w is no greater than 4.
  • R 6 , R 7 , R 8 , R 9 , R 15 , and R 16 are independently selected from the group consisting of hydrogen, hydrocarbyls, substituted hydrocarbyls, alkoxy, halogen, amino, and silyl.
  • each L is independently selected from the group consisting of halide, alkyl, aryl, alkoxy, amido, hydrido, phenoxy, hydroxy, silyl, allyl, alkenyl, and alkynyl.
  • each L' is independently selected from the group consisting of ethers, thio-ethers, amines, nitriles, imines, pyridines, and phosphines.
  • R 2 group(s) are selected from the group consisting of CH 2 , CMe2, SiMe2, SiEt 2 , SiPr 2 , SiBu2, SiPh 2 , Si(aryl) 2 , and Si(alkyl) 2 , CH(aryl), CH(Ph), CH(alkyl), CH(2-isopropylphenyl), where alkyl is a C ⁇ to C 40 alkyl group, aryl is a C 5 to C 4 Q aryl group.
  • R 10 group(s) are selected from the group consisting of CH 2 , CMe 2 , SiMe 2 , SiEt 2 , SiPr 2 , SiBu 2 , SiPh 2 , Si(aryl) 2 , and
  • alkyl is a C ⁇ to C 40 alkyl group
  • aryl is a C 5 to C 4 Q aryl group
  • Ph is phenyl.
  • R 11 is an ortho alkyl substituted phenyl group.
  • the ortho alkyl substituent is a methyl, ethyl, iso-propyl, propyl, butyl, or isobutyl group.
  • M is a Group 3, 4, 5, 6, 7, 8, 9, 10, 1 1, or 12 metal
  • R 1 is selected from the group consisting of hydrocarbyls, substituted hydrocarbyls, and silyl groups ( preferably a phenyl group substituted at the 2 and 6 positions, preferably with the same or different C1-C20 alkyl groups);
  • R 1 1 is a phenyl group substituted at the 2 position, preferably with a C1-C20 alkyl group and which is not substituted at the 3, 5, and/or 6 positions provided that the 4 position can be substituted with a group 17 (preferably CI, Br, F or I) element or a C1-C20 alkyl group;
  • R 2 and R 10 are each, independently, -E(R 12 )(R 13 )- with E being carbon, silicon, or germanium, and each R 12 and R 13 being independently selected from the group consisting of hydrogen, hydrocarbyls, and substituted hydrocarbyls, alkoxy, silyl, amino, aryloxy, halogen, and phosphino, R 12 and R 13 may be joined to form a saturated, substituted or unsubstituted hydrocarbyl ring, where the ring has 4, 5, 6, or 7 ring carbon atoms and where substitutions on the ring can join to form additional rings, or R 12 and R 13 may be joined to form a saturated heterocyclic ring, or a saturated substituted heterocyclic ring where substitutions on the ring can join to form additional rings;
  • R 3 , R 4 , and R 5 are independently selected from the group consisting of hydrogen, hydrocarbyls, substituted hydrocarbyls, alkoxy, aryloxy, halogen, amino, and silyl, and wherein adjacent R groups (R 3 & R 4 and/or R 4 & R 5 ) may be joined to form a substituted or unsubstituted hydrocarbyl or heterocyclic ring, where the ring has 5, 6, 7, or 8 ring atoms and where substitutions on the ring can join to form additional rings;
  • R 6 , R 7 , R 8 , R 9 , R 15 , and R 16 are independently selected from the group consisting of hydrogen, hydrocarbyls, substituted hydrocarbyls, alkoxy, halogen, amino, and silyl, and wherein adjacent R groups (R 6 & R 7 , and/or R 7 & R 15 , and/or R 16 & R 15 , and/or R 8 & R 9 ) may be joined to form a saturated, substituted or unsubstituted hydrocarbyl or heterocyclic ring, where the ring has 5, 6, 7, or 8 ring carbon atoms and where substitutions on the ring can join to form additional rings;
  • L is an anionic leaving group, where the L groups may be the same or different and any two
  • L groups may be linked to form a dianionic leaving group
  • n 0, 1, 2, 3, or 4;
  • L' is neutral Lewis base
  • w 0, 1, 2, 3, or 4;
  • n + w is no greater than 4.
  • each L is independently selected from the group consisting of halide, alkyl, aryl, alkoxy, amido, hydrido, phenoxy, hydroxy, silyl, allyl, alkenyl, and alkynyl.
  • each L' is independently selected from the group consisting of ethers, thio-ethers, amines, nitriles, imines, pyridines, and phosphines.
  • R 2 group(s) are selected from the group consisting of CH 2 , CMe2, SiMe2, SiEt2, SiPr 2 , SiBu 2 , SiPh 2 , Si(aryl) 2 , and Si(alkyl) 2 , CH(aryl), CH(Ph), CH(alkyl), CH(2- isopropylphenyl), where alkyl is a Q to C 4 Q alkyl group, aryl is a C 5 to C 4 Q aryl group.
  • R 10 group(s) are selected from the group consisting of CH 2 , CMe 2 , SiMe 2 , SiEt 2 , SiPr 2 , SiBu 2 , SiPh 2 , Si(aryl) 2 , and Si(alkyl) 2 , CH(aryl), CH(Ph), CH(alkyl), CH(2- isopropylphenyl), where alkyl is a to C 4 Q alkyl group, aryl is a C 5 to C 4 Q aryl group, and Ph is phenyl.
  • a catalyst system comprising optionally an activator, an aluminum containing scavenger that has an oxygen to aluminum (O/Al) molar ratio from about 0.25 to about 1.5 and a pyridyldiamido transition metal complex represented by the formula (I) or (II):
  • M is a Group 3, 4, 5, 6, 7, 8, 9, 10, 1 1, or 12 metal
  • R 1 and R 1 1 are each independently selected from the group consisting of hydrocarbyls, and substituted hydrocarbyls, or silyl groups;
  • R 2 and R 10 are each, independently, -E(R 12 )(R 13 )- with E being carbon, silicon, or germanium, and each R 12 and R 13 being independently selected from the group consisting of hydrogen, hydrocarbyls, and substituted hydrocarbyls, alkoxy, silyl, amino, aryloxy, halogen, and phosphino, R 12 and R 13 may be joined to form a saturated, substituted or unsubstituted hydrocarbyl ring, where the ring has 4, 5, 6, or 7 ring carbon atoms and where substitutions on the ring can join to form additional rings, or R 12 and R 13 may be joined to form a saturated heterocyclic ring, or a saturated substituted heterocyclic ring where substitutions on the ring can join to form additional rings;
  • R 3 , R 4 , and R 5 are independently selected from the group consisting of hydrogen, hydrocarbyls, substituted hydrocarbyls, alkoxy, aryloxy, halogen, amino, and silyl, and wherein adjacent R groups (R 3 & R 4 and/or R 4 & R 5 ) may be joined to form a substituted or unsubstituted hydrocarbyl or heterocyclic ring, where the ring has 5, 6, 7, or 8 ring atoms and where substitutions on the ring can join to form additional rings;
  • R 6 , R 7 , R 8 , R 9 , R 15 , and R 16 are independently selected from the group consisting of hydrogen, hydrocarbyls, substituted hydrocarbyls, alkoxy, halogen, amino, and silyl, and wherein adjacent R groups (R 6 & R 7 , and/or R 7 & R 15 , and/or R 16 & R 15 , and/or R 8 & R 9 ) may be joined to form a saturated, substituted or unsubstituted hydrocarbyl or heterocyclic ring, where the ring has 5, 6, 7, or 8 ring carbon atoms and where substitutions on the ring can join to form additional rings;
  • L is an anionic leaving group, where the L groups may be the same or different and any two
  • L groups may be linked to form a dianionic leaving group
  • n 0, 1, 2, 3, or 4;
  • L' is neutral Lewis base
  • w 0, 1, 2, 3, or 4;
  • n + w is no greater than 4.
  • R 1 1 is a phenyl group substituted at the 2 position, preferably with a C1-C20 alkyl group and which is not substituted at the 3, 5, and/or 6 positions.
  • GPC Gel Permeation Chromatography
  • MALLS Multiple Angle Light Scattering
  • Mw, Mn and Mw/Mn are determined by using a High Temperature Size Exclusion Chromatograph (Polymer Laboratories), equipped with three in-line detectors, a differential refractive index detector (DRI), a light scattering (LS) detector, and a viscometer. Experimental details, including detector calibration, are described in T. Sun, P. Brant, R. R. Chance, and W. W. Graessley, Macromolecules, Volume 34, Number 19, pp. 6812-6820, (2001) and references therein. Three Polymer Laboratories PLgel ⁇ Mixed-B LS columns are used. The nominal flow rate is 0.5 ml/min, and the nominal injection volume is 300 ⁇ ⁇ .
  • Solvent for the experiment is prepared by dissolving 6 grams of butylated hydroxytoluene as an antioxidant in 4 liters of Aldrich reagent grade 1, 2, 4 trichlorobenzene (TCB). The TCB mixture is then filtered through a 0.1 ⁇ Teflon filter. The TCB is then degassed with an online degasser before entering the Size Exclusion Chromatograph. Polymer solutions are prepared by placing dry polymer in a glass container, adding the desired amount of TCB, then heating the mixture at 160°C with continuous shaking for about 2 hours. All quantities are measured gravimetrically.
  • the TCB densities used to express the polymer concentration in mass/volume units are 1.463 g/ml at room temperature and 1.284 g/ml at 145°C.
  • the injection concentration is from 0.5 to 2.0 mg/ml, with lower concentrations being used for higher molecular weight samples.
  • the DRI detector and the injector Prior to running each sample, the DRI detector and the injector are purged. Flow rate in the apparatus is then increased to 0.5 ml/minute, and the DRI is allowed to stabilize for 8 to 9 hours before injecting the first sample.
  • the LS laser is turned on at least 1 to 1.5 hours before running the samples.
  • KDRI is a constant determined by calibrating the DRI
  • (dn/dc) is the refractive index increment for the system.
  • (dn dc) 0.1048 for propylene polymers, 0.0916 for butene polymers. Units on parameters throughout this description of the SEC method are such that concentration is expressed in g/cm 3 , molecular weight is expressed in g/mole, and intrinsic viscosity is expressed in dL/g.
  • the LS detector is a Wyatt Technology High Temperature DAWN HELEOS.
  • M molecular weight at each point in the chromatogram is determined by analyzing the LS output using the Zimm model for static light scattering (M.B. Huglin, Light Scattering from Polymer Solutions, Academic Press, 1971):
  • AR(9) is the measured excess Rayleigh scattering intensity at scattering angle ⁇ ;
  • c is the polymer concentration determined from the DRI analysis;
  • ⁇ ( ⁇ ) is the form factor for a monodisperse random coil; and K 0 is the optical constant for the system:
  • a high temperature Viscotek Corporation viscometer which has four capillaries arranged in a Wheatstone bridge configuration with two pressure transducers, is used to determine specific viscosity.
  • One transducer measures the total pressure drop across the detector, and the other, positioned between the two sides of the bridge, measures a differential pressure.
  • the specific viscosity, n s for the solution flowing through the viscometer is calculated from their outputs.
  • the intrinsic viscosity, [ ⁇ ], at each point in the chromatogram is calculated from the following equation:
  • ⁇ 8 ⁇ [ ⁇ ] + 0.3( ⁇ [ ⁇ ]) 2
  • NMR characterization data is broad and complex.
  • a pre-weighed glass vial insert and disposable stirring paddle were fitted to each reaction vessel of the reactor, which contains 48 individual reaction vessels.
  • the reactor was then closed and propylene (typically 1 mL) was introduced to each vessel as a condensed gas liquid. If ethylene was added as a comonomer, it was added before the propylene as a gas to a pre-determined pressure (typically 10-80 psi) while the reactor vessels were heated to a set temperature (typically 40°C).
  • solvent typically isohexane
  • scavenger and/or co-catalyst and/or a chain transfer agent such as tri-n-octylaluminum in toluene or bis(diisobutylaluminum) oxide in hexane (typically 100-1000 nmol) was added.
  • an activator solution typically 1.0-1.2 molar equivalents of dimethyl anilinium tetrakis-pentafluorophenyl borate dissolved in toluene or 100-1000 molar equivalents of methyl alumoxane (MAO) in toluene
  • MAO methyl alumoxane
  • Equivalence is determined based on the mol equivalents relative to the moles of the transition metal in the catalyst complex.
  • the reaction was then allowed to proceed until a pre-determined amount of pressure had been taken up by the reaction. Alternatively, the reaction may be allowed to proceed for a set amount of time. At this point, the reaction was quenched by pressurizing the vessel with compressed air.
  • the glass vial insert containing the polymer product and solvent was removed from the pressure cell and the inert atmosphere glove box, and the volatile components were removed using a Genevac HT-12 centrifuge and Genevac VC3000D vacuum evaporator operating at elevated temperature and reduced pressure.
  • the vial was then weighed to determine the yield of the polymer product.
  • the resultant polymer was analyzed by Rapid GPC (see below) to determine the molecular weight, by FT-IR (see below) to determine percent ethylene incorporation, and by DSC (see below) to determine melting point.
  • the system was operated at an eluent flow rate of 2.0 mL/minutes and an oven temperature of 165°C. 1,2,4-trichlorobenzene was used as the eluent.
  • the polymer samples were dissolved in 1,2,4-trichlorobenzene at a concentration of 0.1 - 0.9 mg/mL. 250 uL of a polymer solution was injected into the system. The concentration of the polymer in the eluent was monitored using an evaporative light scattering detector. The molecular weights presented are relative to linear polystyrene standards and are uncorrected.
  • DSC Differential Scanning Calorimetry
  • Weight percent ethylene was obtained from the ratio of peak heights at 744-715 and 1189-1126 cm -1 . This method was calibrated using a set of ethylene/propylene copolymers with a range of known wt% ethylene content. Comparison of Al Scavenger Effect on Molecular Weight or Polypropylene
  • the homopolymerization of propylene was performed in a parallel pressure reactor using a catalyst system consisting of complex CI and [PhNHMe2]B(C6F 5 ) 4 activator.
  • the choice of scavenger was found to have a large effect on molecular weight of the resulting polymer.
  • DIBALO bis(diisobutylaluminum)oxide
  • PMAO-IPTM a polymethylaluminoxane available from AkzoNobel, Pasadena, Texas
  • DIBALO gave the best results with the least reduction in molecular weight, even at high concentrations of scavenger.
  • R 1 1 group which is a single ortho substitution, preferably by a methyl group, with additional optional substitution at the 4 position.
  • R 11 group that contains no substitution e.g. C2
  • 2,6-disubstitution e.g. CI
  • ortho substitution by a fluorocarbon group e.g. C3
  • ortho substitution by a halogen e.g. C4
  • Isohexane was used as a solvent.
  • the solvent was fed into the reactor using a Pulsa pump and its flow rate was controlled by a mass flow controller.
  • Ethylene was delivered as a gas solubilized in the chilled solvent/monomer mixture.
  • the compressed, liquefied propylene feed was controlled by a mass flow controller.
  • the solvent and monomer were fed into a manifold first.
  • the mixture of solvent and monomers were then chilled to about -15°C by passing through a chiller prior to feeding into the reactor through a single tube.
  • the collected samples were first air-dried in a hood to evaporate most of the solvent and unreacted monomers, and then dried in a vacuum oven at a temperature of about 90°C for about 12 hours.
  • Catalyst used in the following examples was complex Al and N,N-dimethylanilinium tetrakis(pentafluorophenyl) borate. Both the complex A and activator were first dissolved in toluene and the solutions were kept in an inert atmosphere. The solutions of complex Al and activator were fed into the reactor using a separated ISCO syringe pump. The activator feed rate were adjusted according the catalyst feed rate so the molar ratio of catalyst to activator was about 1 : 1.
  • the weight percent of ethylene in the product was determined by NMR spectroscopy as described by Cheung in J. Poly. Sci. Part B 1987, 25, p. 2355. Molecular weights were determined by GPC-MALLS as described earlier.
  • compositions, an element, or a group of elements are preceded with the transitional phrase “comprising”, it is understood that we also contemplate the same composition or group of elements with transitional phrases “consisting essentially of,” “consisting of, “selected from the group of consisting of,” or “is” preceding the recitation of the composition, element, or elements and vice versa.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

Complexes de métaux de transition pyridyldiamido pouvant être utilisés dans la polymérisation des alcènes pour produire des polyoléfines.
EP14748706.0A 2013-02-06 2014-01-20 Procédé de contrôle du poids moléculaire des polyoléfines préparées à l'aide de systèmes de catalyseurs pyridyldiamido Withdrawn EP2953984A4 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14748706.0A EP2953984A4 (fr) 2013-02-06 2014-01-20 Procédé de contrôle du poids moléculaire des polyoléfines préparées à l'aide de systèmes de catalyseurs pyridyldiamido

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201361761307P 2013-02-06 2013-02-06
EP13167624 2013-05-14
EP14748706.0A EP2953984A4 (fr) 2013-02-06 2014-01-20 Procédé de contrôle du poids moléculaire des polyoléfines préparées à l'aide de systèmes de catalyseurs pyridyldiamido
PCT/US2014/012186 WO2014123683A1 (fr) 2013-02-06 2014-01-20 Procédé de contrôle du poids moléculaire des polyoléfines préparées à l'aide de systèmes de catalyseurs pyridyldiamido

Publications (2)

Publication Number Publication Date
EP2953984A1 true EP2953984A1 (fr) 2015-12-16
EP2953984A4 EP2953984A4 (fr) 2016-07-06

Family

ID=48325521

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14748706.0A Withdrawn EP2953984A4 (fr) 2013-02-06 2014-01-20 Procédé de contrôle du poids moléculaire des polyoléfines préparées à l'aide de systèmes de catalyseurs pyridyldiamido

Country Status (4)

Country Link
EP (1) EP2953984A4 (fr)
CN (1) CN104968692B (fr)
SG (1) SG11201505361VA (fr)
WO (1) WO2014123683A1 (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10533063B2 (en) 2015-04-20 2020-01-14 Exxonmobil Chemical Patents Inc. Supported catalyst systems and processes for use thereof
KR102066335B1 (ko) 2015-04-20 2020-01-14 엑손모빌 케미칼 패턴츠 인코포레이티드 지지된 촉매 시스템 및 이의 사용 방법
US10647786B2 (en) 2015-04-20 2020-05-12 Exxonmobil Chemical Patents, Inc. Supported catalyst systems and processes for use thereof
US10618988B2 (en) 2015-08-31 2020-04-14 Exxonmobil Chemical Patents Inc. Branched propylene polymers produced via use of vinyl transfer agents and processes for production thereof
KR101910232B1 (ko) 2015-12-24 2018-12-19 주식회사 엘지화학 신규한 전이금속 화합물을 포함하는 촉매 조성물
US10562987B2 (en) 2016-06-30 2020-02-18 Exxonmobil Chemical Patents Inc. Polymers produced via use of quinolinyldiamido transition metal complexes and vinyl transfer agents
BR112018077480A2 (pt) * 2016-06-30 2019-04-02 Exxonmobil Chemical Patents Inc. complexos de metais de transição quinolinildiamido, sua produção e sua utilização
SG11201811335UA (en) * 2016-06-30 2019-01-30 Exxonmobil Chemical Patents Inc Quinolinyldiamido transition metal complexes, production and use thereof
US10208140B2 (en) 2016-06-30 2019-02-19 Exxonmobil Chemical Patents Inc. Quinolinyldiamido transition metal complexes, production and use thereof
WO2018160276A1 (fr) * 2017-02-28 2018-09-07 Exxonmobil Chemical Patents Inc. Polymères produits par l'utilisation de complexes de métaux de transition quinolinyldiamido et d'agents de transfert de vinyle
US10626200B2 (en) 2017-02-28 2020-04-21 Exxonmobil Chemical Patents Inc. Branched EPDM polymers produced via use of vinyl transfer agents and processes for production thereof
WO2018160278A1 (fr) 2017-03-01 2018-09-07 Exxonmobil Chemical Patents Inc. Copolymères d'éthylène ramifiés produits par l'utilisation d'agents de transfert de vinyle et leurs procédés de production

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9319340D0 (en) * 1993-09-17 1993-11-03 Exxon Chemical Patents Inc Olefin polymersisation process
US6194527B1 (en) * 1999-09-22 2001-02-27 Equistar Chemicals, L.P. Process for making polyolefins
WO2002038628A2 (fr) * 2000-11-07 2002-05-16 Symyx Technologies, Inc. Ligands de pyridylamine substitues, complexes, catalyseurs et procedes pour la polymerisation, et polymeres
US6953764B2 (en) * 2003-05-02 2005-10-11 Dow Global Technologies Inc. High activity olefin polymerization catalyst and process
US7973116B2 (en) * 2008-07-25 2011-07-05 Exxonmobil Chemical Patents Inc. Pyridyldiamido transition metal complexes, production and use thereof
US8394902B2 (en) * 2008-07-25 2013-03-12 Exxonmobil Chemical Patents Inc. Pyridyldiamido transition metal complexes, production and use thereof

Also Published As

Publication number Publication date
SG11201505361VA (en) 2015-08-28
CN104968692A (zh) 2015-10-07
WO2014123683A1 (fr) 2014-08-14
CN104968692B (zh) 2017-12-01
EP2953984A4 (fr) 2016-07-06

Similar Documents

Publication Publication Date Title
US9102773B2 (en) Process for controlling molecular weight of polyolefins prepared using pyridyl diamide catalyst systems
CN112351987B (zh) 含有具有大烷基基团的阳离子的非配位阴离子型活化剂
EP2953984A1 (fr) Procédé de contrôle du poids moléculaire des polyoléfines préparées à l'aide de systèmes de catalyseurs pyridyldiamido
US8394902B2 (en) Pyridyldiamido transition metal complexes, production and use thereof
US8710163B2 (en) Pyridyldiamido transition metal complexes, production and use thereof
EP2989130B1 (fr) Catalyseurs métalliques de type pyridyldiamide et procédés de production de polyoléfines
US8674040B2 (en) Pyridyldiamido transition metal complexes, production and use thereof
US9290519B2 (en) Pyridyldiamido transition metal complexes, production and use thereof
EP2310399B1 (fr) Complexes pyridyldiamido-métal de transition, leur fabrication et leur utilisation
JP6750936B2 (ja) エチレン系アイオノマーの製造方法及びエチレン系アイオノマー
US9315593B2 (en) Catalyst systems comprising pyridyldiamido transition metal complexes and chain transfer agent and use thereof
WO2012134615A1 (fr) Complexes de pyridyldiamido et de métal de transition, production et utilisation de ceux-ci
CA2562090A1 (fr) Catalyseurs bi-aromatiques pontes, complexes, et procede d'utilisation de ceux-ci
US20180251586A1 (en) Branched Ethylene Polymers Produced via Use of Vinyl Transfer Agents and Processes for Production Thereof
US9315526B2 (en) Pyridyldiamido transition metal complexes, production and use thereof
CN115315453A (zh) 使用过渡金属双(酚盐)催化剂络合物获得的丙烯共聚物及生产该丙烯共聚物的均相方法
US10138257B2 (en) Transition metal complexes, production and use thereof
WO2015134213A1 (fr) Complexes de métaux de transition pyridyldiamido, production et utilisation associées
WO2015073610A9 (fr) Complexes de métaux de transition pyridyldiamido, production et utilisation associees
US11198745B2 (en) Poly(alpha-olefin)s and methods thereof
WO2018038880A1 (fr) Complexes de métaux de transition, leur production et leur utilisation
EP3068810B1 (fr) Complexes de métaux de transition pyridyldiamido, production et utilisation associees
WO2023177957A1 (fr) Composés aryles bis(imino) per-substitués contenant un métal et procédés associés
CN116490528A (zh) 使用过渡金属双(酚盐)催化剂配合物得到的含有环状物的聚合物组合物及其制备方法
US20170002027A1 (en) Transition Metal Complexes of Tridentate Dianionic CNN Ligands, Production and Use Thereof

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150731

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20160607

RIC1 Information provided on ipc code assigned before grant

Ipc: C08F 110/06 20060101AFI20160601BHEP

Ipc: C08F 210/06 20060101ALI20160601BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20200903