EP2936929B1 - Convertisseur de del avec une fonction démarrage en cas de gel - Google Patents

Convertisseur de del avec une fonction démarrage en cas de gel Download PDF

Info

Publication number
EP2936929B1
EP2936929B1 EP13838083.7A EP13838083A EP2936929B1 EP 2936929 B1 EP2936929 B1 EP 2936929B1 EP 13838083 A EP13838083 A EP 13838083A EP 2936929 B1 EP2936929 B1 EP 2936929B1
Authority
EP
European Patent Office
Prior art keywords
led
time
converter
control circuit
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13838083.7A
Other languages
German (de)
English (en)
Other versions
EP2936929A2 (fr
Inventor
Fabian LÄNGLE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tridonic GmbH and Co KG
Original Assignee
Tridonic GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tridonic GmbH and Co KG filed Critical Tridonic GmbH and Co KG
Publication of EP2936929A2 publication Critical patent/EP2936929A2/fr
Application granted granted Critical
Publication of EP2936929B1 publication Critical patent/EP2936929B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • H05B45/18Controlling the intensity of the light using temperature feedback

Definitions

  • the invention relates to an LED converter for operating an LED line and a method for operating such an LED line.
  • the method relates to an LED converter with an electrolytic capacitor (ELKO, ELCAP).
  • LED converters for operating LED lines are, for example, from the WO 2011/021096 A1 known in which an ELKO is provided, for example after a line filter and / or a rectifier, or in the supply path of the LED section.
  • the internal resistance of the electrolytic capacitor also rises sharply at such low temperatures.
  • the LED section is to be operated at 100% of its nominal output, there is a risk that the LED section cannot be activated.
  • electrolytic capacitors which are specified for operation at low temperatures, for example for temperatures below -40 ° C.
  • these electrolytic capacitors are much more expensive than the electrolytic capacitors used as standard, so that overall the costs of the LED converter would be greatly increased.
  • Such LED converters would also have to be specially manufactured.
  • the document is from the prior art WO 2010/108982 A1 known. This document describes that dimming values are limited once during a burn-in process for gas discharge lamps when a converter is started up for the first time.
  • a temperature sensor is electrically connected to a control circuit. If the temperature falls below a threshold, the LED is operated with a reduced current in order to avoid higher energy consumption due to the increasing luminous flux as the temperature decreases.
  • the document JP 2012 015052 A shows an operating circuit for an LED track. If the operating temperature is low, a frost protection mode is used for starting. The nominal power is limited during a period after the start.
  • the invention now proposes an LED converter and an operating method to solve the above problem.
  • the LED converter and the method are the subject of the independent claims. Further embodiments of the invention are the subject of the dependent claims.
  • the electrolytic capacitor can be supplied starting from an actuator / switching regulator, in particular a DC / DC converter and / or a constant current source. It is only important that the electrolytic capacitor is arranged in the supply path due to its physical properties as a polarized capacitor according to its polarity and is operated with a DC voltage.
  • the control circuit can be designed as an IC, ASIC, and / or microcontroller.
  • the control circuit can be set up to change, in particular to increase, the power with which the LED line is operated, after the period of time, preferably to 100% of a nominal power of the LED line and / or a predetermined dimming value.
  • the nominal power can in particular be the power with which the illuminant is operated without derating.
  • the dimming value can be stored in a memory in the LED converter and / or can be transmitted to the LED converter via the bus.
  • the LED converter can have a temperature sensor which detects the temperature in / on the LED converter, in particular on the electrolytic capacitor and / or the actuator / switching regulator.
  • a temperature sensor provided to protect the electrolytic capacitor from overheating can be used for the temperature detection.
  • the parameters influencing the light output of the LED path for the operation of the LED path with reduced power, in particular the duration, and parameters for the subsequent operation of the LED path can be stored as a dimming profile in the control circuit.
  • the invention provides a control circuit, in particular ASIC or microcontroller, which is designed to carry out a method as described above or for an LED converter as described above.
  • the invention provides an LED light for low ambient temperatures, comprising an LED path and an LED converter, as described above.
  • the invention provides a control circuit, in particular ASIC or microcontroller, which is designed to carry out a method as described above or for an LED converter as described above.
  • the invention provides an LED light for low ambient temperatures, comprising an LED path and an LED converter, as described above.
  • the LED converter which is designed for the operation of the LED section at very low temperatures, provides a frost start function (frosty start) that can be activated or fixed.
  • the LED converter operates an LED section in such a way that each time an electrical supply to the LED converter is switched on for a predetermined time, for example 10 seconds, the LED section is always operated in a strongly dimmed manner, for example with a dimming value of 10% of the Nominal power of the LED track.
  • An operating mode for low temperatures is referred to as the frost start function, the term “frost” generally denoting the occurrence of temperatures below 0 ° C.
  • Fig. 1 A circuit is shown as an example, on the basis of which the operation of the LED converter is described below.
  • the Fig. 1 shows an LED converter 1 with a rectifier 2, which converts an electrical variable supplied to the LED converter 1, for example an alternating current / alternating voltage, into a direct current / direct voltage.
  • the LED converter 1 is supplied by an electrical supply which already supplies a direct voltage / direct current.
  • an electrolytic capacitor 3 is also connected at the output of the rectifier 2, which is fed, for example, from the mains.
  • the electrolytic capacitor 3 can be provided elsewhere and a plurality of electrolytic capacitors can also be provided.
  • the electrolytic capacitor 3 can also be provided after an actuator or a switching regulator 4, in this case a DC / DC converter or a constant current source or a PFC circuit.
  • the LED converter 1 is used to operate an LED section 5, which can consist of at least one LED.
  • a control circuit 6 is typically also provided, to which an internal or external signal can be supplied and which sets a parameter of the switching regulator 4 (or e.g. the constant current source) which influences the light output of the LED path 5.
  • control circuit 6 can actuate the switch regulator 4 after the predetermined time has elapsed so that the LED section 5 is operated with a higher output, in particular 100% of its nominal output. It is therefore provided that the control circuit (for example an IC, ASIC or a microcontroller, etc.) controls the frost start function, ie the strongly dimmed LED operation for the specified time each time the LED converter is switched on. In particular, this frost start function can be programmed in the software of the control unit 6 of the LED converter 1.
  • the control unit 6 is therefore preferably implemented as an integrated circuit ASIC or as a microcontroller.
  • the electrolytic capacitor 3 can provide sufficient power even at low temperatures to operate the LED section 5 in this strongly dimmed mode.
  • the current flow through the electrolytic capacitor 3 heats the electrolytic capacitor 3. While the electrolytic capacitor 3 heats up at about 60 ° C. to 70 ° C. at normal temperature, the electrolytic capacitor self-heats to about 20 ° C. to 30 ° even at the low temperatures mentioned C given.
  • the electrolytic capacitor 3 likewise heats up above a temperature of approximately ⁇ 25 ° C., as a result of which frozen electrolyte may thaw and the electrolytic capacitor 3 can provide more power.
  • the time period in which the LED path 5 is operated with reduced power is therefore chosen in particular in such a way that the electrolytic capacitor 3 is sufficiently heated after the time period has expired, that is to say in particular has assumed a temperature of above -25 ° C. After the specified time has elapsed, operation with higher power, in particular with 100% rated power, can then be set.
  • the time period can be monitored and set by the control circuit 6.
  • the control circuit 6 has only one timer / timer 8, so that the control circuit determines the time duration Power changed on an internal signal from the timer / timer 8, with which the LED path 5 is operated.
  • control circuit 6 can also receive an external signal, for example from a bus, in particular from a DALI / DSI bus, and, depending on this, execute the frost start function.
  • an external signal for example from a bus, in particular from a DALI / DSI bus
  • the control circuit does not receive the signal via the bus, but rather receives a signal via the supply lines and interprets it accordingly.
  • This variant is in Fig. 1 not shown.
  • a certain switching sequence and / or a selective rectification of the mains supply could be interpreted in such a way that the time period is set thereby, or the frost start function is activated / deactivated.
  • Such an entry can be made, for example, using a (power) switch or button.
  • the LED converter 1 can also have a temperature sensor 7.
  • the temperature sensor 7 can be provided on or in the vicinity of the electrolytic capacitor 3 or the converter 4 and / or the LED section 5. If several electrolytic capacitors are used, several temperature sensors 7 can of course also be provided. This means that a frost start can be carried out selectively depending on temperature detection. In particular, when detecting lower temperatures the specified frost start time can be extended. At higher temperatures, the time period can be shortened or the frost start function can be deactivated.
  • control circuit 6 If an external signal can be supplied to the control circuit 6, it is also possible to supply the control circuit with a temperature signal from a temperature detection unit external to the LED converter 1.
  • the time period can thus be dependent, for example, on an ambient temperature, e.g. a (global) outside temperature sensor.
  • a memory for example a look-up table, can be provided in the control circuit 6. There it can be stored which time period is to be set for which temperature or for a specific temperature range. With a continuous detection of the temperature, the cold start can also be terminated if the detected temperature is interpreted to mean that the relevant electrolytic capacitor 3 has heated up to a predetermined temperature, for example above -25 ° C.
  • a temperature sensor can also be used for temperature detection, which is provided to prevent the electrolytic capacitor 3 / the LED converter 1 from heating up beyond a threshold value, for example in order to avoid overheating. In this case, the evaluation of the recorded temperature is modified accordingly in order to implement the frost start function.
  • the control circuit 6 is preferably adapted accordingly in order to also evaluate the low temperatures accordingly.
  • the LED converter can be designed to generally, i.e. even after frost start, to enable dimming operation of LED section 5. However, this is not necessary.
  • the LED converter 1 can also be a so-called fixed output device that always operates the LED section with 100% of its nominal power. Only one actuator is to be provided in this case, which the strongly dimmed operation, ie. H. Operation with greatly reduced (light) power allowed after each switch-on (mains reset) of the electrical supply of the LED converter.
  • the frost start can be deactivated. If, for example, the temperature, directly or indirectly, of the electrolytic capacitor 3 is evaluated such that the temperature of the electrolytic capacitor 3 is sufficiently high, the operation can be immediately set to 100% or another dimming value.
  • the control circuit 6 can, however, also detect a switch-on / switch-off period of the LED converter, for example with the aid of the timer / timer 8.
  • the control circuit 6 can, for example, detect whether a switch-on period is sufficiently long and / or a switch-off period is sufficient was short, so that based on the time measurement it can be assumed that the electrolytic capacitor 3 is still sufficiently heated.
  • a table can also be stored which specifies the time period as a function of the switch-off time period. If, for example, the LED converter has already been switched off for a longer period of time, the time period can be selected longer, whereas if the switch-off period is short, no frost start may be necessary.
  • the frost start function of the LED converter 1 is preferred, comparable to a dimming profile, stored in the control circuit on the part of the manufacturer, or the frost start function is implemented by a dimming profile.
  • the cold start function can also be carried out by changing the software / firmware of the control circuit 6.
  • a temperature sensor 7 can also be provided for each electrolytic capacitor, and the temperature at the electrolytic capacitors can be recorded individually.
  • the duration of the frost start function can then be set, for example, as a function of a recorded maximum / minimum temperature value or an average of the recorded temperatures.
  • Fig. 2 now shows a curve for an LED converter 1 according to the invention.
  • the vertical axis shows the capacitor temperature T c in degrees Celsius, an ambient temperature T a (ambient temperature) in degrees Celsius and a dimming value DL (dimming level) in percent of the nominal power .
  • the equivalent resistance ESR, Equivalent Series Resistance
  • Time is plotted on the transverse axis.
  • the electrolytic capacitor 3 now heats up to the point in time (2) to approximately -25 ° C. continuously.
  • the equivalent resistance (ESR) which at time (1) is still approximately ten times the equivalent resistance of the electrolytic capacitor 3 at approximately 20 ° C., is continuously decreasing.
  • the power with which the LED sections 5 are to be operated is continuously increased in a relatively short time (fade in, fade to 100%) until a predetermined light output, here 100%, is reached.
  • Fig. 3 shows the course of the equivalent resistance (ESR) for several frequencies (upper curve 100Hz, middle curve 1KHz, lower curve 100KHz) at different temperatures in a temperature range from -40 ° C to approx. 80 ° C. It can be clearly seen that at a temperature of -40 ° C to -30 ° C the equivalent resistance of the electrolytic capacitor is about ten times higher than at a temperature of 10 ° C to 20 ° C or 60 ° C to 80 ° C.
  • Fig. 4 also shows that the capacitance of the electrolytic capacitor increases continuously as the temperature rises, and thus at higher temperatures, ie after self-heating of the electrolytic capacitor 3, a higher output can be called up from the LED path 5 or the LED path through the control circuit 6 can be operated with a higher output.
  • the invention thus has the advantages that the reduced capacitance and the high equivalent resistance of the electrolytic capacitor 3 are not a problem at low temperatures and the LED path 5, which initially represents a low load for LED converters 1, is nevertheless operated reliably can.
  • the temperature ranges in which the LED converter can be increased by the method according to the invention and the converter according to the invention 1 can be used.
  • the costs for producing the LED converter 1 can be reduced or remain the same, since no electrolytic capacitors are required which are specified / certified for temperatures below -25 ° C, -30 ° C or -40 ° C.
  • LEDs work highly efficiently at low temperatures and even have a longer lifespan.
  • other illuminants can also be operated which can be started with an initially reduced output, in particular in strongly dimmed operation.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Dc-Dc Converters (AREA)

Claims (12)

  1. Convertisseur LED (1) qui est configuré pour commander au moins une chaîne de LED (5) de manière sélective en fonction d'une mesure de température dans un mode de fonctionnement pour des basses températures, comprenant :
    - au moins un condensateur à électrolyte (3) dans un trajet d'alimentation électrique, par l'intermédiaire duquel la chaîne de LED (5) peut être alimentée à partir d'une alimentation électrique et
    - un circuit de commande (6) qui est configuré pour commander la chaîne de LED (5), le circuit de commande (6) étant configuré pour commander la chaîne de LED (5) uniquement dans le mode de fonctionnement pour les basses températures après chaque mise en marche de l'alimentation électrique pour une durée, avec une puissance réduite par rapport à une puissance nominale, et, après l'écoulement de la durée, pour permettre un fonctionnement avec une puissance non réduite,
    caractérisé en ce que
    la durée est adaptative et
    le circuit de commande (6) est conçu pour déterminer la durée pour le fonctionnement avec la puissance réduite en fonction d'une durée de mise en marche et d'une durée d'arrêt antérieures du convertisseur LED (1).
  2. Convertisseur LED (1) selon la revendication 1,
    le condensateur à électrolyte (3) étant conçu pour être alimenté à partir d'un organe de réglage / régulateur de commutation (4).
  3. Convertisseur LED (1) selon l'une des revendications précédentes,
    le circuit de commande (6) étant conçu comme un IC, ASIC et/ou un microcontrôleur.
  4. Convertisseur LED (1) selon la revendication 3,
    le circuit de commande pouvant être relié avec un bus, le bus étant plus particulièrement un bus DALI ou un bus DSI.
  5. Convertisseur LED (1) selon la revendication 3 ou 4,
    le circuit de commande (6) étant configuré pour augmenter, après la durée, la puissance avec laquelle la chaîne de LED fonctionne, ou le circuit de commande (6) étant configuré pour augmenter, après la durée, la puissance avec laquelle la chaîne de LED fonctionne à 100% de la puissance nominale de la chaîne de LED (5) et/ou à une autre valeur de gradation, l'autre valeur de gradation étant enregistrée dans une mémoire du convertisseur LED (1) et/ou étant transmise au convertisseur LED (1) par l'intermédiaire du bus.
  6. Convertisseur LED (1) selon l'une des revendications précédentes, qui comprend en outre un capteur de température (7) qui mesure la température dans/sur le convertisseur LED (1) et/ou au niveau du condensateur à électrolyte (3) et/ou au niveau de l'organe de réglage / régulateur de commutation (4), ou un capteur de température (7) prévu pour la protection du condensateur à électrolyte (3) contre la surchauffe étant utilisé pour la mesure de température.
  7. Convertisseur LED (1) selon la revendication 6, le circuit de commande (6) étant conçu pour régler la durée pour le fonctionnement avec la puissance réduite en fonction d'une température mesurée au niveau du condensateur à électrolyte (3) et/ou au niveau de l'organe de réglage / régulateur de commutation (4), et
    le circuit de commande (6) réglant la durée en fonction d'une valeur enregistrée correspondant à la température mesurée.
  8. Convertisseur LED (1) selon la revendication 5, les paramètres déterminant la puissance lumineuse de la chaîne de LED (5) et les paramètres pour le fonctionnement de la chaîne de LED (5) étant enregistrés dans la mémoire, de préférence sous la forme d'un profil de gradation, dans le circuit de commande (6).
  9. Convertisseur LED (1) selon l'une des revendications précédentes, la puissance réduite correspondant à 5 à 15% de la puissance nominale de la chaîne de LED (5).
  10. Procédé de commande d'une chaîne de LED (5), la chaîne de LED fonctionnant de manière sélective en fonction d'une mesure de température, dans un mode de fonctionnement pour basses températures,
    ce procédé comprenant les étapes suivantes :
    - alimentation électrique de la chaîne de LED (5) à partir d'une alimentation électrique, par l'intermédiaire d'un trajet d'alimentation avec au moins un condensateur à électrolyte (3) et
    - commande de la chaîne de LED (5)
    la commande de la chaîne de LED (5) ayant lieu uniquement dans le mode de fonctionnement pour basses températures après chaque mise en marche de l'alimentation électrique pour une durée, avec une puissance réduite par rapport à une puissance nominale et
    une libération d'un fonctionnement avec une puissance non réduite après l'écoulement de la durée,
    caractérisé en ce que
    la durée est adaptative et
    la durée pour le fonctionnement avec la puissance réduite est déterminée en fonction d'une durée de mise en marche et d'une durée d'arrêt antérieures du convertisseur LED (1).
  11. Circuit de commande (6), qui est conçu pour l'exécution d'un procédé selon la revendication 10 ou pour un convertisseur LED selon l'une des revendications 1 à 9.
  12. Luminaire LED pour basses températures, comprenant une chaîne de LED (5) et un convertisseur LED (1) selon l'une des revendications 1 à 9.
EP13838083.7A 2012-12-21 2013-12-19 Convertisseur de del avec une fonction démarrage en cas de gel Active EP2936929B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012224206.6A DE102012224206A1 (de) 2012-12-21 2012-12-21 LED-Konverter mit Froststart-Funktion
PCT/AT2013/000204 WO2014094010A2 (fr) 2012-12-21 2013-12-19 Convertisseur del à fonction de démarrage pour conditions de gel

Publications (2)

Publication Number Publication Date
EP2936929A2 EP2936929A2 (fr) 2015-10-28
EP2936929B1 true EP2936929B1 (fr) 2020-03-25

Family

ID=50336009

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13838083.7A Active EP2936929B1 (fr) 2012-12-21 2013-12-19 Convertisseur de del avec une fonction démarrage en cas de gel

Country Status (5)

Country Link
EP (1) EP2936929B1 (fr)
CN (1) CN105075394B (fr)
AT (1) AT15400U1 (fr)
DE (1) DE102012224206A1 (fr)
WO (1) WO2014094010A2 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105813334A (zh) * 2014-12-31 2016-07-27 广州励丰文化科技股份有限公司 基于区域功率供电的剧场灯光供电管理方法及系统
GB2545216B (en) * 2015-12-09 2019-05-29 Thales Holdings Uk Plc Preheating for laser diode drivers
CN105763035B (zh) * 2016-04-11 2018-06-29 广州金升阳科技有限公司 一种提高低温启动能力的方法及电路
AT15439U1 (de) 2016-05-20 2017-09-15 Tridonic Gmbh & Co Kg Elektrisches Vorschaltgerät mit Extremtemperaturschutz
NL2023562B1 (en) 2019-07-24 2021-02-10 Eldolab Holding Bv Smart starting up method by an LED driver
US11564296B2 (en) * 2021-02-12 2023-01-24 Analog Devices International Unlimited Company Stochastic frequency pulse modulation for light-emitting diode drivers

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012015052A (ja) * 2010-07-05 2012-01-19 Mitsubishi Electric Corp 点灯装置および照明装置
WO2012137587A1 (fr) * 2011-04-07 2012-10-11 サンデン株式会社 Dispositif onduleur

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006056057A1 (de) * 2006-02-28 2007-09-06 Samsung Electro - Mechanics Co., Ltd., Suwon Antriebsvorrichtung für ein farbiges LED-Hintergrundlicht
DE102009014998A1 (de) 2009-03-26 2010-09-30 Tridonicatco Gmbh & Co. Kg Dimmbares Betriebsgerät und Beleuchtungssystem zur Erhöhung der Lebenserwartung bei LEDs und OLEDs
CA2808715A1 (fr) * 2009-08-20 2011-02-24 City University Of Hong Kong Appareils et procedes de fonctionnement d'equipements d'eclairage a del passif ou actifs
DE102010006998A1 (de) * 2010-02-05 2011-08-11 Siteco Beleuchtungstechnik GmbH, 83301 Temperaturkompensation des Lichtstroms an LED-Leuchten
US8299715B2 (en) * 2010-05-28 2012-10-30 Omnipulse Technology Corporation Temperature compensated driver for pulsed diode light source
JP2013065528A (ja) * 2011-09-20 2013-04-11 Toshiba Lighting & Technology Corp Led点灯装置およびled照明装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012015052A (ja) * 2010-07-05 2012-01-19 Mitsubishi Electric Corp 点灯装置および照明装置
WO2012137587A1 (fr) * 2011-04-07 2012-10-11 サンデン株式会社 Dispositif onduleur
EP2690778A1 (fr) * 2011-04-07 2014-01-29 Sanden Corporation Dispositif onduleur

Also Published As

Publication number Publication date
DE102012224206A1 (de) 2014-06-26
CN105075394B (zh) 2017-07-21
CN105075394A (zh) 2015-11-18
WO2014094010A2 (fr) 2014-06-26
WO2014094010A3 (fr) 2014-08-28
AT15400U1 (de) 2017-08-15
EP2936929A2 (fr) 2015-10-28

Similar Documents

Publication Publication Date Title
EP2936929B1 (fr) Convertisseur de del avec une fonction démarrage en cas de gel
CH663508A5 (de) Elektronisches vorschaltgeraet fuer fluoreszenzlampen sowie verfahren zu dessen betrieb.
DE112012005392B4 (de) Betriebsgerät mit Leistungsfaktorkorrektur und Rippelbegrenzung durch Betriebsänderung
WO2007098912A1 (fr) Procédé et dispositif de reconnaissance d'une sonde de température raccordéE à une commande
DE102005051762A1 (de) Vorrichtung zum steuerbaren Herstellen einer Schaltverbindung
DE102008006017B4 (de) Schmiegsames Wärmegerät
DE102010009523A1 (de) Einrichtung zur Steuerung/Regelung der Temperatur eines elektrischen Heizdrahts beim Schneiden von durch Wärmeeinwirkung zu trennende Körper
EP3307022A1 (fr) Circuit convertisseur flyback cadencé
DE102016206772A1 (de) Getakteter Wandler für dimmbare Leuchtmittel mit dynamisch einstellbarem Filter
DE102006042954A1 (de) Zündung von Gasentladungslampen unter variablen Umgebungsbedingungen
DE102010037225B4 (de) Vorrichtung und Verfahren zum Betreiben eines Leuchtmoduls mit Leerlauf-Spannungsbegrenzung
DE102006036292A1 (de) Vorrichtung und Verfahren zur Überwachung wenigstens einer Leuchtstofflampe
EP1920643B1 (fr) Ballast pour une lampe a decharge a prechauffage adaptatif
EP2625930A1 (fr) Appareil de commande à température critique réglable
DE102007017581B4 (de) Verfahren zur Ansteuerung eines kaltleitenden elektrischen Lastelementes, Schalteinheit für ein kaltleitendes elektrisches Lastelement, Glühlampensteuerung und Fahrzeug
WO2012167292A1 (fr) Procédé de fonctionnement d'un ballast électronique pour un luminaire, ainsi que ballast électronique
EP2777131B1 (fr) Équipement à mode d'éclairage de secours
AT519568B1 (de) Betriebswechsel eines Betriebsgeräts für Leuchtmittel
DE102014114814B4 (de) Störlichtbogen-Schutzvorrichtung für ein schmiegsames Wärmegerät
EP2796012B1 (fr) Procédé, appareillage d'alimentation et système d'éclairage, avec détection d'effet de redressement de lampes
DE102004037389A1 (de) Verfahren zur Ansteuerung einer eine Leuchtstofflampe aufweisenden Last zur Optimierung des Zündvorganges
EP2683058B1 (fr) Dispositif d'activation commandée par capteur d'une charge électrique
DE102005014857B4 (de) Leuchte, insbesondere zum Einbau in oder zum Anbau an ein Möbel oder eine Vitrine, mit einer Kaltkathodenröhre
DE2933596B1 (de) Schaltanordnung fuer ein Sicherheitslicht-Versorgungsgeraet fuer Leuchtstofflampen
DE102011082239B3 (de) Elektronisches Vorschaltgerät und Verfahren zum Betreiben einer Entladungslampe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150609

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190315

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191220

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013014502

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1250116

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200415

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200625

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200625

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200626

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200325

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200818

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200725

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013014502

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20201218

Year of fee payment: 8

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

26N No opposition filed

Effective date: 20210112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201219

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1250116

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211219

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231219

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231226

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231227

Year of fee payment: 11