EP2936613B1 - Anordnung und verfahren zur elektronischen nachführung von hf-reflektorantennen - Google Patents

Anordnung und verfahren zur elektronischen nachführung von hf-reflektorantennen Download PDF

Info

Publication number
EP2936613B1
EP2936613B1 EP13782939.6A EP13782939A EP2936613B1 EP 2936613 B1 EP2936613 B1 EP 2936613B1 EP 13782939 A EP13782939 A EP 13782939A EP 2936613 B1 EP2936613 B1 EP 2936613B1
Authority
EP
European Patent Office
Prior art keywords
horn
elements
frequency
reception characteristic
influencing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13782939.6A
Other languages
English (en)
French (fr)
Other versions
EP2936613A1 (de
Inventor
Mario Nowack
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Epak GmbH
Original Assignee
Epak GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epak GmbH filed Critical Epak GmbH
Publication of EP2936613A1 publication Critical patent/EP2936613A1/de
Application granted granted Critical
Publication of EP2936613B1 publication Critical patent/EP2936613B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/12Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems
    • H01Q3/14Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems for varying the relative position of primary active element and a refracting or diffracting device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/2664Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture electrically moving the phase centre of a radiating element in the focal plane of a focussing device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/02Waveguide horns
    • H01Q13/0241Waveguide horns radiating a circularly polarised wave
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/44Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
    • H01Q3/446Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element the radiating element being at the centre of one or more rings of auxiliary elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/125Means for positioning
    • H01Q1/1257Means for positioning using the received signal strength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/18Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces
    • H01Q19/19Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces comprising one main concave reflecting surface associated with an auxiliary reflecting surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them

Definitions

  • the invention relates to a high-frequency reflector antenna, comprising a main reflector, at least one sub-reflector and at least one horn, wherein in the beam path between the main reflector and horn stationary elements for influencing the directional receiving characteristic are present, further comprising a method for electronically tracking such antennas.
  • the compass-based tracking has the disadvantage that the location of the target or the signal source must either be known, or at least be predictable, in order to be able to use the compass information to locate the location of the target or the signal source.
  • German Offenlegungsschrift DE 198 48 202 A1 discloses a high-frequency reflector antenna, which in the immediate vicinity of a subreflector has a mechanically encircling, passive element, which deliberately disturbs the directional receiving characteristic in the antenna diagram of the entire antenna system. If a targeted signal source or a targeted target is in the center or in the focus of the antenna arrangement, the disturbance of the circulating element does not lead to a noticeable change in the received signal because the intensity distribution of the received signal in focus has circularly symmetrical properties. But if the target or the signal source is out of focus of the reflector antenna is arranged and thus the antenna assembly has a misalignment, so correlates the signal reception strength of the antenna assembly with the instantaneous position of the rotating interference element.
  • the received signal strength decreases and, if the circulating interference element is outside the direction of the signal source, the received signal strength increases again.
  • the reception strength is cyclically varied and mechanical modulation of the reception signal takes place.
  • the use of the mechanical circulating passive interferer results in useful results that can be used for automatic target or signal source tracking.
  • the constant presence of the circulating interfering element means a constant, not disconnectable signal receiving interference, whereby the receiving power is unnecessarily reduced permanently. For strong signal sources, the deliberately induced disturbance is acceptable.
  • the small dipole antennas can be switched, for example via a PIN diode in resonance condition with the received signal and turned off again.
  • the circulating, electronically switchable change in the directional characteristic can then be correlated with a synchronous to this internally electronically circulating vector signal with the variation of the received signal strength. From the correlation of the temporally and locally activated interfering elements with the synchronously varying target or received signal strength, as in the mechanically rotating interfering element, directional information can be derived, in which there is a target located outside the focus of the high-frequency reflector antenna or the signal source present.
  • This further developed high-frequency reflector antenna has the advantage that the interfering elements, the electronically switchable dipole antennas, are electronically activated and deactivated.
  • the use of this high frequency reflector antenna is reduced to a preselected polarization of a transmission signal. For the reception of a differently polarized signal source, it is therefore necessary to mechanically change the electronically switchable elements between the subreflector and the main reflector and to align them with the new polarization.
  • a high-frequency reflector antenna which is used simultaneously for receiving and for transmitting, has differences in the spatial power densities of the high-frequency field between reception and transmission in the near and mid-field range, which differ by up to 120 dB. If only the reception is to be influenced for direction detection, the arrangement according to the teaching of DE 100 41 996 A1 sufficient. However, if the high-frequency reflector antenna is switched simultaneously or alternately in the transmission mode, the electronically switchable interfering elements and / or present in the immediate vicinity of electronic interconnections can also receive the transmission power of the high-frequency reflector antenna in an undesirable manner. Therefore, it is necessary to select the spatial positioning of the electronically switchable interfering elements extremely precisely.
  • the transmission power undesirably receive the transmission power and feed back into the antenna electronics and destroy the electronics of the high-frequency reflector antenna in the worst case.
  • German Offenlegungsschrift DE 10 2007 007 707 A1 discloses the use of immovably arranged, controllable radiator elements for influencing the directional characteristic of reflector antennas.
  • the radiator elements are arranged in the mid-field region of the horn in the beam path between sub-reflector and main reflector.
  • the possibilities of a direction-dependent influencing of the receiving characteristic of the reflector antenna in the also very sensitive to minor disturbances near field area are greatly limited.
  • the object of the invention is to provide a high-frequency reflector antenna with electronically switchable interference elements for the electronic tracking of a target or a signal source that are insensitive to minor misalignment and at the same time to provide a very specific interaction with differently polarized transmitter signal radiation.
  • the elements for influencing the direction-dependent receiving characteristic are switchable dipole elements, which are arranged to influence the receiving characteristic of elliptically to circularly polarized high-frequency radiation with its dipole axis along a tangent of a helix coaxial to the horn axis, or for influencing the receiving characteristic of linearly polarized high frequency radiation with its dipole axis are arranged alternately parallel to a tangent of a lateral surface of the horn and parallel to the horn axis, or for influencing the reception characteristic of linearly polarized high frequency radiation with its dipole axis alternately aligned parallel to a tangent of a lateral surface of the horn and radially to the horn axis and protrude into the free aperture surface
  • switchable electronic dipoles which are arranged with their dipole axis on a tangent to a horn coaxial helix, whose interaction in the high-frequency reflector antenna with the field of circularly polarized transmitter signal radiation on the one hand so low that destruction or a unwanted feedback of the transmission signal in the electronics for generating a tracking signal and in the receiving electronics coupled thereto Radio frequency reflector antenna excluded or at least suppressible with minor means.
  • the aforementioned interaction is strong enough to directionally influence the received signal of the high-frequency reflector antenna so as to be able to derive the correct direction of a target or signal source that has migrated out of the focus of the high-frequency reflector antenna.
  • switchable electronic dipoles which are arranged with their dipole axis alternately either on a parallel to a tangent to the lateral surface of the horn or parallel to the horn axis, their interaction in the high-frequency reflector antenna with the field of an optionally vertically or horizontally polarized Transmitter signal radiation on the one hand so low that a destruction or unwanted feedback of the transmission signal in the electronics for generating a tracking signal and in the coupled thereto receiving electronics of the high-frequency reflector antenna is excluded or at least suppressible by small means.
  • the aforementioned interaction is strong enough to directionally disturb the received signal of the high-frequency reflector antenna so as to be able to derive the correct direction of a target or signal source that has migrated out of the focus of the high-frequency reflector antenna.
  • the individual dipoles consist of two short, collinear electrical conductor surfaces which are interconnected by switchable PIN diodes produced in SMD construction.
  • the electrical supply lines for the electronic components are perpendicular to the horn axis, ie radially thereto be guided and only significantly outside the free aperture surface of the horn have an axial direction component to provide there electrical connection with other electronic switching elements available, such as resistors, capacitors, coils or trained as geometric figures conductor surfaces, referred to as Stubs form a high frequency wave trap within which unwanted wave energy runs dead and therefore transformed into heat or resistors and capacitors to form a low-pass filter to block the transmission of high-frequency energy in the electronic components of the other electronics.
  • the elements for influencing the directional receiving characteristic individually and / or in groups can be activated, preferably by a high-frequency electronic switching element on and off or are tuned. So it should be the individual interfering elements either individually and / or in groups activatable or tunable.
  • a PIN diode is used to activate a dipole, an activation by turning on the PIN diode is provided. But it is also possible, for example with the aid of tunnel diodes to place a tunable element in the near field region of the horn.
  • FIG. 1 a generic high-frequency reflector antenna 1 of the Cassegrain or Gregory type is shown, comprising a main reflector 2, a sub-reflector 3 and a horn 4 for converting the directional electromagnetic radiation to be received.
  • the high-frequency reflector antenna 1 shown here are arranged according to the idea of the invention arranged elements 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7 and 5.8 for influencing the directional receiving characteristic of the high-frequency reflector antenna 1, which in the free aperture surface. 6 protrude into the horn 4 and thus in the near field region 7 of the horn 4 are arranged.
  • the circled area A around the sub-reflector 3 and the horn 4 is shown in the following figure, FIG. 2 , shown enlarged.
  • FIG. 2 are located on the edge of the horn 4 a total of eight elements 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7 and 5.8 for influencing the directional receiving characteristic of the high-frequency reflector antenna 1, wherein four of the eight elements 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7 and 5.8, namely a first group G1 consisting of elements 5.1, 5.3, 5.5 and 5.7 and a second group G2, consisting of elements 5.2, 5.4, 5.6 and 5.8 each have a common group of elements for influencing counter-circularly polarized Form radiofrequency radiation.
  • any positioning of metallic conductors in the near field region 7 of the horn 4 of a high-frequency reflector antenna 1 means a disturbance to the prevailing high-frequency field which is difficult or impossible to predict, and which should be avoided if possible.
  • the surprising behavior of the elements 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7 and 5.8 is presumably attributed to the fact that the near field 11 of the horn 4 is
  • the different structuring of the near field 11 may still be comprehensible since the radiation source 12, which is not shown here for the transmission mode, terminates at the end of the waveguide 13, which is connected to the horn 4 and is not shown here slightly different near field 11 'builds up, as is present in the receiving operation of the high-frequency reflector antenna 1 there.
  • the exact structuring of the near field 11 and 11 ' is insufficiently possible even with computer-assisted means for the theoretical simulation of the wave properties in the near field 11 and 11' of a Cassegrain or a Gregory antenna.
  • FIG. 3 is a side view of the horn 4 together with the sub-reflector 3, here the subreflector of a Cassegrain antenna shown.
  • the tangentially oriented helix 17 electronically switchable dipole arrangements 5.1.1, 5.3.1, 5.5.1, 5.7.1 and 5.2.1, 5.4.1, 5.6.1 and 5.8.1, an imaginary helix 17 is shown , wherein the slope of the helix 17 does not necessarily correspond to the slope of the electrical, circularly polarized field to be received. At a wavelength of the high frequency field of a few millimeters, this is in FIG. 3 sketched slope clearly too shallow.
  • the slope corresponds to the imaginary helix 17, on which the switchable dipole arrangements 5.1.1, 5.3.1, 5.5.1, 5.7.1 and 5.2.1, 5.4.1, 5.6.1 and 5.8.1 are tangentially arranged, presumably the orientation of the locally extended electric field in the near field region 7 of the horn 4th
  • FIG. 4 , 1 to derive that for the circular polarization on the elements 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7 and 5.8 switchable dipole arrangements 5.1.1, 5.3.1, 5.5.1, 5.7.1 and 5.2.1, 5.4.1 , 5.6.1 and 5.8.1, which are aligned with their dipole axis 15 along a tangential direction of a right-handed and a left-handed helix 17 and 17 '.
  • an electronic switching element 19 such as a PIN diode
  • the resonance condition is interrupted, but at least the impedance change of the near field region 7 is reduced , which depends inter alia on the length of the electrically conductive dipole. Since the individual dipole arrangement after switching off the electronic switching element 19 is no longer in resonance with the local high-frequency field, but at least slightly changed the impedance of the near field region 7, it absorbs no, but at least less radiation and therefore does not influence or at least to a much lesser extent the electromagnetic high frequency field in the near field region 7.
  • the idea of the invention is not necessarily provided, about a part of the received power in the spatial area, by the switchable dipole arrangements 5.1.1, 5.3.1, 5.5.1, 5.7.1 and 5.2.1 , 5.4.1, 5.6.1 and 5.8.1, the total received power is to be taken by electrical discharge, but it is rather idea of the invention to position 7 nodes in the near field area, which the training of im Near field area 7 standing wave changed.
  • This change in the boundary conditions for forming a complex structured near field wave differs significantly from, for example, laterally attached to the horn 4 waveguide with a switchable element for proper short circuit of a preselected, unwanted mode, such as a TEM 00 , TEM 01 or other modes, for selective frequency reception a not short closed fashion.
  • these configured as traces supply lines 20 extend radially to the horn axis 16 and only significantly outside the free aperture surface 6 of the horn 4 have a direction parallel to the horn axis 16 directional component. This arrangement of the supply lines 20 prevents electromagnetic radiation in the transmission mode is undesirably fed back into the control electronics 10, not shown here.
  • FIG. 4 , 2 It can be seen that for the linear polarization on the elements 5.1 ', 5.2', 5.3 ', 5.4', 5.5 ', 5.6', 5.7 'and 5.8' switchable dipole arrangements 5.1.1 ', 5.3.1', 5.5.1 ', 5.7.1' as well as 5.2.1 ', 5.4.1', 5.6.1 'and 5.8.1' which with their dipole axis 15 'alternate with their dipole axis 15' once parallel to a tangent 4.2 of the lateral surface 4.1 and are arranged once parallel to the horn axis 16.
  • the elements 5.1 ', 5.2', 5.3 ', 5.4', 5.5 ', 5.6', 5.7 'and 5.8' act in principle identical to those described for the circular polarization elements 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7 and 5.8, however, their spatial orientation to the spatial orientation of the elements for the circular polarization is changed.
  • the elements 5.1 ', 5.2', 5.3 ', 5.4', 5.5 ', 5.6', 5.7 'and 5.8' for the mutually perpendicular horizontal and vertical polarization are divided into two groups, namely group G1 'consisting from the elements 5.1 ', 5.3', 5.5 ', and 5.7' and group G2 'consisting of the elements 5.2', 5.4 ', 5.6', and 5.8 '.
  • the first group G1 'thus has an element 5.1' and 5.5 ', approximately in the 12:00 position and approximately in the 06:00 position, respectively, with the dipoles 5.1.1' and 5.5.1 'positioned thereon in parallel to the Horn axis 16 is axially aligned.
  • elements 5.3 'and 5.7' are arranged whose dipoles 5.3.1 'and 5.7.1' are aligned parallel to a tangent 4.2 of the lateral surface 4.1 of the horn 4 are.
  • This first group G1 exhibits an interaction with a linear polarization, which is vertical in this view, of the wavefront to be moved on the aperture surface 6 of the horn 4.
  • a linear polarization which is vertical in this view
  • the two dipoles 5.3.1 'and 5.7.1' are correspondingly aligned vertically
  • the two dipoles 5.1.1 'and 5.5.1' of the elements 5.1 'and 5.5' are aligned axially, in accordance with the spatial phase difference of the high-frequency field in the propagation direction of the wavefront to be moved onto the aperture surface 6.
  • the spatial orientation of the dipoles 5.1.1 'and 5.5.1' namely the axial direction of the horn 4, which is accompanied by the propagation direction of the wave front to be moved to the aperture surface 6, is responsible for the fact that these dipoles are both of horizontally polarized Wave fronts as well as with vertically polarized wavefronts interact.
  • Each group of G1 'and G2' thus has two polarization-specific elements and two polarization-unspecific elements.
  • the dipoles extend on the elements 5.1 'and 5.5' in the radial direction and thereby protrude with a small part of the dipole length into the free aperture surface 6 of the horn 4.
  • the second group G2 ' shows an interaction with a horizontal linear polarization in this view of the wave front to be moved on the aperture surface 6 of the horn 4.
  • the two dipoles 5.8.1 'and 5.4.1' corresponding to approximately horizontally aligned
  • the two dipoles 5.2.1 'and 5.6.1' of the elements 5.2 'and 5.6' are axially aligned , corresponding to the spatial phase difference of the high-frequency field in the propagation direction of the wavefront to be moved on the aperture surface 6.
  • the spatial orientation of the dipoles 5.2.1 'and 5.6.1' namely the axial direction of the horn 4, which is accompanied by the propagation direction of the wave front to be moved to the aperture surface 6, is responsible for the fact that these dipoles are both of horizontally polarized Wave fronts as well as with vertically polarized wavefronts interact.
  • the dipoles on the elements 5.2 'and 5.6' extend in the radial direction and thereby protrude with a small part of the dipole length into the free aperture surface 6 of the horn 4.
  • FIG. 5 The effect of influencing the receiving characteristic of a high-frequency reflector antenna is in FIG. 5 shown.
  • a reflector 30 is shown with a reception lobe 31 projected thereon.
  • Receiving lobe 31 is a three-dimensional graph depicting the spatially dependent antenna gain, as an improvement of the received signal strength compared to an antenna without a reflector as a contiguous area of a plot shown in polar coordinates.
  • Receiving lobe 31 thus has no spatial extent or any kind of spatial structure.
  • the high-frequency reflector antenna has the highest antenna gain.
  • the symmetry axis 32 is aligned exactly to the position of the targeted satellite 33. This ideal situation is in the left subfigure 5.1 of FIG. 5 shown.
  • Satellites that are due to their age on a so-called in-orbit a no longer exactly geostationary orbit around the earth with respect to the ideal eclipse angled eclipses with mostly elliptical orbit, describe to the moving observer on the earth's surface an eight-shaped path 34.
  • Um Trace this track 34 with a small high-frequency reflector antenna is provided that the orientation of the high-frequency reflector antenna, for example, a mobile transmission car of a broadcaster or the alignment of a communication antenna of a commercial, passenger or warship, and finally the communication antenna of an aircraft or a rocket always follows the variable, relative position of the satellite 33.
  • the switchable dipole arrangements 5.1.1, 5.3.1, 5.5.1, 5.7.1 and 5.2.1, 5.4.1, 5.6.1 and 5.8.1 are activated in variable patterns, but usually in sequence, and during the Activation is the signal reception strength 41 of the signal source measured. If the signal reception strength 41 becomes significantly weaker in the case of a predetermined transient activation pattern or even stronger because the reception lobe 31 is modified in terms of its structure, this is an indicator for a signal source outside the alignment
  • the correlation axis of the electronically switchable dipole arrangements 5.1.1, 5.3.1, 5.5.1, 5.7.1 and 5.2.1, 5.4.1, 5.6.1 and 5.8.1 with the Signal reception strength 41, which correlates with the antenna diagram 40 can be derived directional information in which direction the high-frequency reflector antenna 1 can be moved by electromechanical or hydraulic actuators to the symmetry axis 32 of the high-frequency reflector antenna 1, depending on the position of the receiving unit the high-frequency reflector antenna 1 is predetermined by the symmetry axis 32 of the receiving lobe 31, to align again with the symmetry
  • FIG. 6 The variability of the reception lobe 31 with different activation patterns of the electronically switchable dipole arrangements is shown in the next figure, FIG. 6 represented.
  • FIG. 6 is a view into the open horn 4 along the axis of symmetry 32 of the receiving lobe 31 'with eight different activation patterns of electronically switchable dipole arrangements 5.1.1, 5.3.1, 5.5.1, 5.7.1 and 5.2.1, 5.4.1, 5.6. 1 and 5.8.1 are shown.
  • a black-filled area of the respectively marked element 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7 and 5.8 means the activation of the respectively on the respective element 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7 and 5.8 Activated dipole 5.1.1, 5.3.1, 5.5.1, 5.7.1 and 5.2.1, 5.4.1, 5.6.1 and 5.8.1.
  • the received signal strength 41 in the signal intensity-time diagram 42 which represents signal intensity I compared to the time t, of a signal source which has migrated with respect to this direction, as shown in the nearly circular antenna diagram 40 with a recess in FIG 09: 00 position is shown.
  • This cycle is traversed at a frequency of 10 Hz to 100 Hz, 100 Hz to 1,000 Hz or 1,000 Hz to 1 MHz, and if an attenuation of the signal reception strength is detected, direction information is generated in accordance with the known activation pattern, in which the high frequency Reflector antenna must be tracked. It is not necessary for tracking that the signal disturbance constantly performed becomes. Rather, it is also possible to perform the measurement of the target or signal source drift also intermittently.
  • the method according to the invention is characterized by individual or group-wise activation and / or tuning of the elements for influencing the direction-dependent receiving characteristic, correlating at least one signal strength of at least one receiving unit with the activation and / or tuning pattern of the elements for influencing the receiving characteristic and the provision of Control signals for the mechanical change in direction of the high-frequency reflector antenna as a function of the measured correlation. It is provided that the control signals for the mechanical change in direction of the high-frequency reflector antenna from the correlation of a groupwise activation and / or tuning of the elements for influencing the directional receiving characteristic associated change in the signal strength of at least one receiving unit are generated.
  • the elements for influencing the direction-dependent receiving characteristic with respect to their spatial arrangement point-symmetric, rotating or randomly activated and / or tuned with a constant or randomly variable frequency.
  • the activation pattern sequence is of subordinate importance if the pattern sequence is fast enough, for example 10 Hz to 100 Hz, 100 Hz to 1000 Hz or even 1000 Hz to 1 MHz to ensure uninterrupted reception.
  • the thus modulated received signal strength 41 is supplied via a lock-in amplifier of a further stage for phase correlation, said stage for phase correlation, the phase of the activation pattern, which runs circularly correlated with the phase of the signal from the lock-in amplifier. From the phase correlation it is thus also possible to derive a directional information which, in contrast to the static correlation between activation pattern and direction.
  • the advantage is that interfering and undesirably suppressed on the radio frequency signal to be received modulated frequencies and direction information can be derived safer.
  • an electromechanical adjusting device may be provided or a hydraulic adjusting device.
  • a peristaltic piezo motor can also change the position of the degrees of freedom of the alignable high-frequency reflector antenna.
  • FIG. 7 Finally, an attachment to a horn is shown, a so-called Rillenhornstrahler 50, which serves as a wave trap to avoid unwanted secondary maxima of a directed beam. If a groove horn is used as a wave trap and for better focusing of the transmission beam, then the free aperture surface 51 of the groove horn radiator 50 takes the place of the free aperture surface 6 of the horn 4, for the placement of the elements.

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Description

  • Die Erfindung betrifft eine Hochfrequenz-Reflektorantenne, aufweisend einen Hauptreflektor, mindestens einen Subreflektor und mindestens ein Horn, wobei im Strahlengang zwischen Hauptreflektor und Horn stationäre Elemente zur Beeinflussung der richtungsabhängigen Empfangscharakteristik vorhanden sind, des Weiteren ein Verfahren zum elektronischen Nachführen solcher Antennen.
  • Zur automatischen Ausrichtung von Hochfrequenz-Reflektorantennen in Richtung auf ihre Signalquelle im Bereich Rundfunktechnik, Kommunikationstechnik und Wehrtechnik ist es bekannt, diese mit Hilfe von mechanischen oder opto-elektronischen Kreiselkompassen dem im Verhältnis zur Antenne beweglichen Ziel oder der Signalquelle nachzuführen. Die kompassbasierte Nachführung hat aber den Nachteil, dass der Ort des Ziels oder der Signalquelle entweder bekannt sein, zumindest aber vorhersehbar sein muss, um aus den Kompassinformationen den Ort des Ziels oder der Signalquelle anpeilen zu können. Neben der kompassbasierten Ziel- oder Signalquellennachführung ist es auch bekannt, die Richtungscharakteristik im Antennendiagramm von Hochfrequenz-Reflektorantennen zyklisch oder in wiederkehrenden Mustern zu variieren und aus der Korrelation des Empfangssignalverhaltens Richtungsinformationen des im Verhältnis zur Antennenausrichtung sich räumlich verändernden Ziels oder der sich im Verhältnis zur Antennenausrichtung örtlich verändernden Signalquelle abzuleiten.
  • In der deutschen Offenlegungsschrift DE 198 48 202 A1 wird eine Hochfrequenz-Reflektorantenne offenbart, welche in unmittelbarer Umgebung eines Subreflektors ein mechanisch umlaufendes, passives Element aufweist, welches die richtungsabhängige Empfangscharakteristik im Antennendiagramm der gesamten Antennenanlage bewusst stört. Sofern eine angepeilte Signalquelle oder ein angepeiltes Ziel im Zentrum oder im Fokus der Antennenanordnung liegt, führt die Störung des umlaufenden Elements zu keiner merklichen Änderung des Empfangssignals, weil die Intensitätsverteilung des im Fokus befindlichen Empfangssignals kreissymmetrische Eigenschaften aufweist. Sofern aber das Ziel oder die Signalquelle außerhalb des Fokus der Reflektorantenne angeordnet ist und damit die Antennenanordnung eine Fehlausrichtung aufweist, so korreliert die Signalempfangsstärke der Antennenanordnung mit der augenblicklichen Position des umlaufenden Störelements. In dem kurzen Moment, in welchem das Störelement aus Sicht des zentralen Horns die Richtung des Ziels oder der Signalquelle überdeckt, so verringert sich die Empfangssignalstärke und, wenn sich das umlaufende Störelement außerhalb der Richtung der Signalquelle befindet, so erhöht sich die Empfangssignalstärke wieder. Bei einem umlaufenden Störelement wird so die Empfangsstärke zyklisch variiert und es findet eine mechanische Modulation des Empfangssignals statt. Der Einsatz des mechanisch umlaufenden, passiven Störelements führt zu brauchbaren Ergebnissen, die zur automatischen Ziel- oder Signalquellennachführung verwendet werden können. Gleichwohl bedeutet die ständige Präsenz des umlaufenden Störelements eine ständige, nicht abschaltbare Signalempfangsstörung, wodurch die Empfangsleistung unnötig dauerhaft verringert wird. Bei starken Signalquellen ist die bewusst herbeigeführte Störung hinnehmbar. Bei schwächeren Signalen oder Signalen, die leicht gestört werden können, ist diese Art der Erzeugung eines Nachführsignals aber weniger gut geeignet. Da das umlaufende Störelement nach der eingangs erwähnten DE 198 48 202 A1 in unmittelbarer Nähe des Subreflektors angeordnet ist, müssen die geometrischen Abmessungen und damit die Störeigenschaften des Störelements sehr sorgfältig ausgewählt werden, da im Nah- und Mittelfeldbereich des Horns der elektrische und der magnetische Vektor des Empfangssignals nicht mehr senkrecht aufeinander stehen und die elektromagnetischen Welleneigenschaften in diesem Bereich der Hochfrequenz-Reflektorantenne nur sehr komplex theoretisch modellierbar und daher sehr schwer vorhersagbar sind. In unmittelbarer Nähe eines Horns, allgemein einer Hochfrequenz-Reflektorantenne ist also die Störwirkung eines Störelements schwer vorhersagbar und bei sehr geringer Änderung der Eigenschaften des Störelements können sehr große Änderungen der Störwirkung hervorgerufen werden.
  • Nach der Lehre der deutschen Offenlegungsschrift DE 100 41 996 A1 wurde das Verfahren nach der eingangs erwähnten DE 198 48 202 A1 weiter ausgebildet. Statt eines mechanisch umlaufenden Störelements, das sich ständig im Nahfeldbereich zwischen Horn und Subreflektor befindet, wurde für eine vorgewählte Polarisation des Empfangssignals eine nur für diese Polarisation gewählte stationäre Anordnung aus Elementen vorgeschlagen, welche elektronisch schaltbar sind. Hierzu wird nach der Lehre der DE 198 48 202 A1 im Mittelfeldbereich zwischen Hauptreflektor und Subreflektor, also im Strahlengang etwas entfernt vom Horn, eine Schar von kleinen elektronisch schaltbaren Dipolantennen in den Strahlengang platziert. Die kleinen Dipolantennen können beispielsweise über eine PIN-Diode in Resonanzbedingung mit dem Empfangssignal geschaltet und wieder ausgeschaltet werden. Durch eine umlaufende Aktivierung der elektronisch schaltbaren Dipolantennen wird so das Antennendiagramm der Hochfrequenz-Reflektorantenne bewusst geändert. Die umlaufende, elektronisch schaltbare Veränderung der Richtcharakteristik kann sodann mit einem dazu synchron intern elektronisch umlaufenden Vektorsignal mit der Variation der Empfangssignalstärke korreliert werden. Aus der Korrelation der zeitlich und örtlich aktivierten Störelemente mit der dazu synchron variierenden Ziel- oder Empfangssignalstärke kann so wie bei dem mechanisch umlaufenden Störelement eine Richtungsinformation abgeleitet werden, in welcher sich ein außerhalb des Fokus der Hochfrequenz-Reflektorantenne befindliches Ziel oder befindliche Signalquelle befindet. Diese weitergebildete Hochfrequenz-Reflektorantenne hat den Vorteil, dass die Störelemente, die elektronisch schaltbaren Dipolantennen, elektronisch aktivierbar und deaktivierbar sind. Gleichwohl ist die Verwendung dieser Hochfrequenz-Reflektorantenne reduziert auf eine einmal vorgewählte Polarisation eines Sendesignals. Für den Empfang einer anders polarisierten Signalquelle ist es mithin notwendig, die elektronisch schaltbaren Elemente zwischen Subreflektor und Hauptreflektor mechanisch zu verändern und auf die neue Polarisation auszurichten.
  • Eine Hochfrequenz-Reflektorantenne, die gleichzeitig zum Empfangen und zum Senden eingesetzt wird, weist im Nah- und Mittelfeldbereich Unterschiede in den räumlichen Leistungsdichten des Hochfrequenzfeldes zwischen Empfang und Senden auf, die sich um bis zu 120 dB unterscheiden. Sofern nur der Empfang zur Richtungsdetektion beeinflusst werden soll, ist die Anordnung nach der Lehre der DE 100 41 996 A1 ausreichend. Sofern aber die Hochfrequenz-Reflektorantenne gleichzeitig oder wechselweise in den Sendebetrieb geschaltet wird, so können die elektronisch schaltbaren Störelemente und/oder die in unmittelbarer Nähe vorliegenden elektronischen Verschaltungen auch die Sendeleistung der Hochfrequenz-Reflektorantenne in unerwünschter Weise empfangen. Daher ist es notwendig, die räumliche Positionierung der elektronisch schaltbaren Störelemente extrem präzise zu wählen. Bereits bei geringfügigen Änderungen der räumlichen Position der elektronisch schaltbaren Störelemente, beispielswese bei starker Erschütterung oder nach unsachgemäßer Justage der Hochfrequenz-Reflektorantenne, können die fehlpositionierten, elektronisch schaltbaren Störelemente durch die hohe Sendeleistung im besten Fall die Sendeleistung unerwünscht empfangen und in die Antennenelektronik rückkoppeln und im schlechtesten Fall die Elektronik der Hochfrequenz-Reflektorantenne zerstören.
  • Experimentelle Messungen der Feldeigenschaften im Mittelfeldbereich zwischen Hauptreflektor und Subreflektor einer Hochfrequenz-Reflektorantenne haben als Ergebnis, dass die Anordnung von Störelementen in diesem räumlichen Bereich zu brauchbaren Ergebnissen führt für eine stabile mechanische Anordnung und vergleichsweise geringe Empfindlichkeit der elektronisch schaltbaren Störelemente gegenüber einer erhöhten Sendeleistung bei geringfügiger ungewollter Dejustage. Der Mittelfeldbereich zwischen Hauptreflektor und Subreflektor ist in Bezug auf die Platzierung von elektronisch schaltbaren Störelementen aber ungeeignet, um dort gleichermaßen für verschiedene Polarisationen der Signalquelle geeignete, elektronisch schaltbare Störelemente unterzubringen.
  • In der deutschen Offenlegungsschrift DE 10 2007 007 707 A1 wird die Verwendung von unbeweglich angeordneten, ansteuerbaren Strahlerelementen zur Beeinflussung der Richtungscharakteristik von Reflektorantennen offenbart. Die Strahlerelemente sind im Mittelfeldbereich des Horns im Strahlengang zwischen Subreflektor und Hauptreflektor angeordnet. Die Möglichkeiten einer richtungsabhängigen Beeinflussung der Empfangscharakteristik der Reflektorantenne in dem auch gegenüber geringfügigen Störungen sehr empfindlichen Nahfeldbereich sind dabei stark begrenzt.
  • Nach der Lehre der US 4 387 378 A können bei einer Antenne mit Hauptreflektor und Horn zur Beeinflussung der richtungsabhängigen Empfangscharakteristik stabartige Elemente mit einstellbarer Reaktanz im Horn angeordnet werden. Eine polarisationsspezifische Beeinflussung ist mit diesen Elementen jedoch nicht möglich.
  • Aufgabe der Erfindung ist es, eine Hochfrequenz-Reflektorantenne mit elektronisch schaltbaren Störelementen zur elektronischen Nachführung eines Ziels oder einer Signalquelle zur Verfügung zu stellen, die unempfindlich gegenüber geringfügiger Dejustage sind und die gleichzeitig eine sehr spezifische Wechselwirkung mit unterschiedlich polarisierter Sendersignalstrahlung zur Verfügung zu stellen.
  • Die der Erfindung zu Grunde liegende Aufgabe wird dadurch gelöst, dass die Elemente in die Aperturfläche des Horns hinein ragen und somit im Nahfeldbereich des Horns angeordnet sind. Weitere vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben. Ein dazu korrespondierendes Verfahren zum elektronischen Nachführen der Hochfrequenz-Reflektorantenne ist in den Ansprüchen 5 bis 9 angegeben.
  • Nach der Erfindung ist vorgesehen, elektronisch schaltbare Elemente zur Beeinflussung der richtungsabhängigen Empfangscharakteristik so anzuordnen, dass diese in die freie Aperturfläche des Horns hineinragen und somit im Nahfeldbereich des Horns angeordnet sind. Erfindungsgemäß ist ferner vorgesehen, dass dabei die Elemente zur Beeinflussung der richtungsabhängigen Empfangscharakteristik schaltbare Dipolelemente sind, welche für die Beeinflussung der Empfangscharakteristik von elliptisch bis zirkular polarisierter Hochfrequenzstrahlung mit ihrer Dipolachse entlang einer Tangente einer zur Hornachse koaxialen Helix angeordnet sind, oder für die Beeinflussung der Empfangscharakteristik von linear polarisierter Hochfrequenzstrahlung mit ihrer Dipolachse wechselweise parallel zu einer Tangente einer Mantelfläche des Horns und parallel zur Hornachse angeordnet sind, oder für die Beeinflussung der Empfangscharakteristik von linear polarisierter Hochfrequenzstrahlung mit ihrer Dipolachse wechselweise parallel zu einer Tangente einer Mantelfläche des Horns und radial zur Hornachse ausgerichtet sind und nur mit einem Teil ihrer Länge in die freie Aperturfläche des Horns hinein ragen.
  • Überraschender Weise hat sich gezeigt, dass gerade in dem sehr gegenüber geringfügigen Störungen empfindlichen Nahfeldbereich eine richtungsabhängige Beeinflussung der Empfangscharakteristik der Hochfrequenz-Reflektorantenne möglich ist, und dabei in diesem Bereich sogar auch eine polarisationsspezifische Störung der richtungsabhängigen Empfangscharakteristik möglich ist.
  • Durch die Wahl der Anordnung von schaltbaren elektronischen Dipolen, die mit ihrer Dipolachse auf einer Tangente zu einer zum Horn koaxialen Helix angeordnet sind, ist deren Wechselwirkung in der Hochfrequenz-Reflektorantenne mit dem Feld einer zirkular polarisierten Sendersignalstrahlung einerseits so gering, dass eine Zerstörung oder eine unerwünschte Rückkopplung des Sendesignals in die Elektronik zur Erzeugung eines Nachführungssignals und in die damit gekoppelte Empfangselektronik der Hochfrequenz-Reflektorantenne ausgeschlossen oder zumindest mit geringfügigen Mitteln unterdrückbar ist. Andererseits ist die zuvor genannte Wechselwirkung stark genug, um das Empfangssignal der Hochfrequenz-Reflektorantenne richtungsabhängig zu beeinflussen, um so die korrekte Richtung eines aus dem Fokus der Hochfrequenz-Reflektorantenne abgewanderten Ziels oder Signalquelle ableiten zu können.
  • Durch die Wahl der Anordnung von schaltbaren elektronischen Dipolen, die mit ihrer Dipolachse wechselweise entweder auf einer Parallelen zu einer Tangente zur Mantelfläche des Horns oder parallel zur Hornachse angeordnet sind, ist deren Wechselwirkung in der Hochfrequenz-Reflektorantenne mit dem Feld einer wahlweise vertikal oder horizontal polarisierten Sendersignalstrahlung einerseits so gering, dass eine Zerstörung oder eine unerwünschte Rückkopplung des Sendesignals in die Elektronik zur Erzeugung eines Nachführungssignals und in die damit gekoppelte Empfangselektronik der Hochfrequenz-Reflektorantenne ausgeschlossen oder zumindest mit geringfügigen Mitteln unterdrückbar ist. Andererseits ist die zuvor genannte Wechselwirkung stark genug, um das Empfangssignal der Hochfrequenz-Reflektorantenne richtungsabhängig zu stören, um so die korrekte Richtung eines aus dem Fokus der Hochfrequenz-Reflektorantenne abgewanderten Ziels oder Signalquelle ableiten zu können.
  • Um die richtungsabhängige Empfangscharakteristik im Antennendiagramm zu beeinflussen, hat es sich als besonders vorteilhaft erwiesen, wenn die Dipollänge für das Ku-Band zwischen 11 mm und 15 mm, bevorzugt etwa 13 mm und für das Ka-Band zwischen 6 mm und 10 mm, bevorzugt etwa 8 mm beträgt. Um diese kurzen Dipollängen elektronisch zu schalten, hat es sich daher als vorteilhaft erwiesen, wenn die einzelnen Dipole aus zwei kurzen, einander kollinear gegenüberliegenden elektrischen Leiterflächen bestehen, die von in SMD-Bauweise hergestellten, schaltbaren PIN-Dioden miteinander verschaltet werden. Um zu verhindern, dass Energie aus dem Hochfrequenzfeld durch in unmittelbarer Nähe zur PIN-Diode angeordnete Leiterbahnen empfangen oder durch diese Leiterbahnen abgeleitet wird, ist in vorteilhafter Ausgestaltung der Erfindung vorgesehen, dass die elektrischen Versorgungsleitungen für die elektronischen Komponenten senkrecht zur Hornachse, also radial dazu geführt werden und erst deutlich außerhalb der freien Aperturfläche des Horns eine axiale Richtungskomponente aufweisen, um dort eine elektrische Verbindung mit weiteren elektronischen Schaltelementen zur Verfügung zu stellen, wie beispielsweise Widerstände, Kondensatoren, Spulen oder als geometrische Figuren ausgebildete Leiterflächen, die als sogenannte Stubs eine Hochfrequenzwellenfalle bilden, innerhalb derer sich unerwünschte Wellenenergie totläuft und daher in Wärme verwandelt oder Widerstände und Kondensatoren zur Ausbildung eines Tiefpasses zur Blockierung der Weiterleitung von hochfrequenter Energie in die elektronischen Komponenten der weiteren Elektronik.
  • Um die richtungsabhängige Empfangscharakteristik gezielt zu beeinflussen, ist es nach einer Ausgestaltung der Erfindung vorgesehen, dass die Elemente zur Beeinflussung der richtungsabhängigen Empfangscharakteristik einzeln und/oder in Gruppen aktivierbar sind, bevorzugt durch ein hochfrequenzfähiges, elektronisches Schaltelement ein- und ausschaltbar oder abstimmbar sind. Es sollen also die einzelnen Störelemente wahlweise einzeln und/oder in Gruppen aktivierbar oder abstimmbar sein.
  • Sofern zur Aktivierung eines Dipols eine PIN-Diode verwendet wird, ist eine Aktivierung durch Einschalten der PIN-Diode vorgesehen. Es ist aber auch möglich, beispielsweise mit Hilfe von Tunnel-Dioden jeweils ein abstimmbares Element im Nahfeldbereich des Horns zu platzieren.
  • Es ist bekannt, zur Verbesserung der Richtungscharakteristik der Gesamtantenne beim Senden in Bezug auf die abgestrahlte Leistung das Horn mit einem Aufsatz zu versehen. Dieser Aufsatz weist in der Regel zur Innenseite verschiedene axiale oder radiale Umfangsnuten auf, um diese als Wellenfallen zu nutzen. In den Wellenfallen des Aufsatzes verlieren sich nach außen vagabundierende Strahlungskomponenten, die ohne die Verwendung des englischsprachig "corrugated horn" genannten Aufsatzes Strahlungsmaxima außerhalb eines vorgeschrieben kleinen Winkelbereiches erzeugen und damit womöglich zum angepeilten Satellit benachbarte Satelliten stören würden. Da ein solcher Aufsatz die Aperturfläche des Horns um seine eigene Länge verschiebt und die Aperturfläche vergrößert, ist im Sinne der Erfindung gemeint, dass bei Verwendung des zuvor beschriebenen Aufsatzes anstelle der "freien Aperturfläche des Horns" die freie Aperturfläche des Aufsatzes tritt.
  • Die Erfindung wird anhand der folgenden Figuren näher erläutert. Es zeigt:
  • Fig. 1
    eine Ansicht auf eine erfindungsgemäße Hochfrequenz-Reflektorantenne vom Cassegrain- oder Gregory-Typ,
    Fig. 2
    eine Ausschnittsvergrößerung aus Figur 1 mit Darstellung der Elemente zur Beeinflussung der richtungsabhängigen Empfangscharakteristik,
    Fig. 3
    eine Seitenansicht der Aperturöffnung des Horns mit darüber angeordneten Elementen zur Beeinflussung der richtungsabhängigen Empfangscharakteristik,
    Fig. 4...
    eine Draufsicht auf die Hornöffnung mit zwei Gruppen ringförmig angeordneter Elemente zur Beeinflussung der richtungsabhängigen Empfangscharakteristik, darin
    Fig. 4.1
    für zirkular polarisierte Sendestrahlung, und
    Fig. 4.2
    für linear polarisierte Sendestrahlung,
    Fig. 5...
    zwei Skizzen einer relativen Anordnung von Signalquelle und Hochfrequenz-Reflektorantenne mit eingezeichnetem, dreidimensionalen Antennendiagramm, darin
    Fig. 5.1
    für ein unverändertes Antennendiagramm,
    Fig. 5.2
    für ein verändertes Antennendiagramm,
    Fig. 6
    eine Skizze einer Abfolge unterschiedlich aktivierter Elemente zur Beeinflussung der richtungsabhängigen Empfangscharakteristik mit dazu eingezeichneter Signalempfangsstärke und Richtungsinformation am Beispiel für die Elemente, die zirkular polarisierte Sendestrahlung beeinflussen,
    Fig. 7
    eine Skizze eines Aufsatzes auf dem Horn als Wellenfalle zur Verdeutlichung der freien Aperturfläche, wenn ein solcher Aufsatz verwendet wird.
  • In Figur 1 ist eine gattungsgemäße Hochfrequenz-Reflektorantenne 1 vom Cassegrain oder Gregory-Typ dargestellt, aufweisend einen Hauptreflektor 2, einen Subreflektor 3 und ein Horn 4 zur Konvertierung der zu empfangenden, richtungsgebundenen elektromagnetischen Strahlung. In der hier dargestellten Hochfrequenz-Reflektorantenne 1 sind die nach dem Gedanken der Erfindung angeordneten Elemente 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7 und 5.8 zur Beeinflussung der richtungsabhängigen Empfangscharakteristik der Hochfrequenz-Reflektorantenne 1 verwirklicht, welche in die freie Aperturfläche 6 des Horns 4 hinein ragen und somit im Nahfeldbereich 7 des Horns 4 angeordnet sind. Der eingekreiste Bereich A um den Subreflektor 3 und das Horn 4 ist in der folgenden Figur, Figur 2 , vergrößert dargestellt.
  • In Figur 2 befinden sich am Rand des Horns 4 insgesamt acht Elemente 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7 und 5.8 zur Beeinflussung der richtungsabhängigen Empfangscharakteristik der Hochfrequenz-Reflektorantenne 1, wobei jeweils vier der acht Elemente 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7 und 5.8, nämlich eine erste Gruppe G1 bestehend aus Elementen 5.1, 5.3, 5.5 und 5.7 sowie eine zweite Gruppe G2, bestehend aus Elementen 5.2, 5.4, 5.6 und 5.8 je eine gemeinsame Gruppe von Elementen zur Beeinflussung gegenläufig zirkular polarisierter Hochfrequenzstrahlung bilden. Diese in zwei Gruppen G1 und G2 aufgeteilten Elemente 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7 und 5.8 ragen soweit in die freie Aperturfläche 6 des Horns 4 hinein, dass sie gerade eben in den sehr gegenüber Störungen empfindlichen Nahfeldbereich 7 hineinragen. Um die Wechselwirkung der Elemente 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7 und 5.8 im Sendebetrieb der Hochfrequenz-Reflektorantenne 1 mit dem Hochfrequenzfeld der Sendestrahlung auszuschließen, weisen die auf den Elementen 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7 und 5.8 vorhandenen Dipole 5.1.1, 5.2.1, 5.3.1, 5.4.1, 5.5.1, 5.6.1, 5.7.1 und 5.8.1 eine für die Frequenz des zu empfangenden Senders spezifische Länge auf, die bei der Sendefrequenz eine deutlich geringere Wechselwirkung mit dem Hochfrequenzfeld der Sendestrahlung zeigen. Dennoch bedeutet jedwede Positionierung von metallischen Leitern im Nahfeldbereich 7 des Horns 4 einer Hochfrequenz-Reflektorantenne 1 eine nur schwer bis gar nicht vorhersehbare Störung des dort vorherrschenden Hochfrequenzfeldes, die es nach Möglichkeit zu vermeiden gilt. Überraschender Weise bleibt jedoch eine Beeinflussung des Hochfrequenzfeldes im Nahfeldbereich 7 im Sendebetrieb der Hochfrequenz-Reflektorantenne 1 aus, zumindest aber ist die Wechselwirkung zwischen den Elementen 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7 und 5.8 und der Hochfrequenzstrahlung im Nahfeldbereich 7 so gering, dass die hohe Leistung der Hochfrequenz-Reflektorantenne 1 im Sendebetrieb nicht in eine hier nicht dargestellte Steuerungselektronik 10, die dem Horn 4 und den Elementen 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7 und 5.8 nachgeschaltet ist, zurück gekoppelt wird. Das überraschende Verhalten der Elemente 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7 und 5.8 wird mutmaßlich darauf zurückgeführt, dass im Sendebetrieb der Hochfrequenz-Reflektorantenne das Nahfeld 11 des Horns 4 anders strukturiert ist als im Empfangsbetrieb der Hochfrequenz-Reflektorantenne 1. Die unterschiedliche Strukturierung des Nahfelds 11 mag noch nachvollziehbar sein, da die für den Sendebetrieb notwendige, hier nicht dargestellte Strahlungsquelle 12 am Ende des mit dem Horn 4 verbundenen, hier nicht dargestellten Hohlleiters 13 ein geringfügig anderes Nahfeld 11' aufbaut, als dies im Empfangsbetrieb der Hochfrequenz-Reflektorantenne 1 dort vorliegt. Die exakte Strukturierung des Nahfeldes 11 und 11' ist aber selbst mit computerunterstützten Mitteln zur theoretischen Simulation der Welleneigenschaften im Nahfeld 11 und 11' einer Cassegrain- oder einer Gregory-Antenne nur unzureichend möglich.
  • Um eine in Bezug auf eine zirkulare Polarisation der Hochfrequenzstrahlung spezifische Signalquellenverfolgung zu ermöglichen, sind die Elemente 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7 und 5.8 in den beiden Gruppen G1, bestehend aus den hier ungerade bezifferten Elementen 5.1, 5.3, 5.5 und 5.7, und G2 mit den hier gerade bezifferten Elementen 5.2, 5.4, 5.6 und 5.8, so angeordnet, dass auf diesen Elementen 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7 und 5.8 angeordnete, elektronisch schaltbare Dipolanordnungen 5.1.1, 5.3.1, 5.5.1, 5.7.1 und 5.2.1, 5.4.1, 5.6.1 und 5.8.1 mit ihrer Dipolachse 15 (Figur 4.1) tangential an einer zur Hornachse 16 koaxialen Helix 17 angeordnet sind.
  • Um eine in Bezug auf eine lineare Polarisation der Hochfrequenzstrahlung spezifische Signalquellenverfolgung zu ermöglichen, sind die Elemente 5.1', 5.2', 5.3', 5.4', 5.5', 5.6', 5.7' und 5.8' in den beiden Gruppen G1', bestehend aus den hier ungerade bezifferten Elementen 5.1', 5.3', 5.5' und 5.7', und G2' mit den hier gerade bezifferten Elementen 5.2', 5.4', 5.6' und 5.8', so angeordnet, dass auf diesen Elementen 5.1', 5.2', 5.3', 5.4', 5.5', 5.6', 5.7' und 5.8' angeordnete, elektronisch schaltbare Dipolanordnungen 5.1.1', 5.3.1', 5.5.1', 5.7.1' und 5.2.1', 5.4.1', 5.6.1' und 5.8.1' wechselweise mit ihrer Dipolachse 15' (Figur 4.2) einmal parallel zu einer Tangente 4.2 der Mantelfläche 4.1 und einmal parallel zur Hornachse 16 angeordnet sind.
  • In Figur 3 ist eine seitliche Ansicht des Horns 4 gemeinsam mit dem Subreflektor 3, hier der Subreflektor einer Cassegrain-Antenne, dargestellt. In Figur 3 ist zur Verdeutlichung der zu einer Helix 17 tangential ausgerichteten, elektronisch schaltbaren Dipolanordnungen 5.1.1, 5.3.1, 5.5.1, 5.7.1 sowie 5.2.1, 5.4.1, 5.6.1 und 5.8.1 eine gedachte Helix 17 dargestellt, wobei die Steigung der Helix 17 nicht unbedingt der Steigung des zu empfangenden elektrischen, zirkular polarisierten Feldes entspricht. Bei einer Wellenlänge des Hochfrequenzfeldes von wenigen Millimetern ist diese in Figur 3 skizzierte Steigung deutlich zu flach. Vielmehr entspricht die Steigung der gedachten Helix 17, an welcher die schaltbaren Dipolanordnungen 5.1.1, 5.3.1, 5.5.1, 5.7.1 sowie 5.2.1, 5.4.1, 5.6.1 und 5.8.1 tangential angeordnet sind, mutmaßlich der Ausrichtung des örtlich ausgedehnten elektrischen Feldes im Nahfeldbereich 7 des Horns 4.
  • Die eingangs erwähnten, schaltbaren Dipolanordnungen sind in den beiden Figuren 4 . 1 und 4.2 durch eine Aufsicht auf das offene Horn 4 dargestellt.
  • Deutlich ist Figur 4 . 1 zu entnehmen, dass für die Zirkularpolarisation auf den Elementen 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7 und 5.8 schaltbare Dipolanordnungen 5.1.1, 5.3.1, 5.5.1, 5.7.1 sowie 5.2.1, 5.4.1, 5.6.1 und 5.8.1 aufsitzen, die mit ihrer Dipolachse 15 entlang einer tangentialen Richtung einer rechts- und einer links gewundenen Helix 17 und 17' ausgerichtet sind. Die schaltbaren Dipolanordnungen 5.1.1, 5.3.1, 5.5.1, 5.7.1 sowie 5.2.1, 5.4.1, 5.6.1 und 5.8.1 bestehen dabei jeweils aus auf einen dielektrischen Träger aufgebrachten Leiterbahnenelementen 18 und 18', die koaxial einander gegenüberliegen und in der vorliegenden Schaltung über ein elektronisches Schaltelement 19, beispielsweise eine PIN-Diode, miteinander elektrisch leitend verbunden werden. Im elektrisch leitfähigen Zustand des elektronischen Schaltelements 19 bilden die Leiterplattenelemente 18 und 18' gemeinsam mit dem leitfähigen elektronischen Schaltelement 19 eine sehr kleine Dipolantenne, die bei deren Aktivierung eine im Zeitverlauf rampenartige, räumlich lokal begrenzte Impedanzveränderung des Nahfeldbereiches 7 bewirken. Sofern das elektronische Schaltelement 19 zwischen zwei Leiterbahnelementen 18 und 18' in einen nicht leitfähigen Zustand gebracht wird, bei PIN-Dioden durch Abschaltung einer Gleichspannung über den beiden Leiterplattenelementen 18 und 18', wird die Resonanzbedingung unterbrochen, zumindest aber die Impedanzveränderung des Nahfeldbereiches 7 verringert, die unter anderem von der Länge des elektrisch leitfähigen Dipols abhängt. Da die individuelle Dipolanordnung nach Abschalten des elektronischen Schaltelements 19 nicht mehr in Resonanz mit dem lokalen Hochfrequenzfeld steht, zumindest aber die Impedanz des Nahfeldbereiches 7 nur noch geringfügig verändert, absorbiert sie keine, zumindest aber weniger Strahlung und beeinflusst daher nicht oder zumindest in weit geringerem Maße das elektromagnetische Hochfrequenzfeld im Nahfeldbereich 7. Nach dem Gedanken der Erfindung ist nicht unbedingt vorgesehen, etwa einen Teil der Empfangsleistung im räumlichen Bereich, der durch die schaltbaren Dipolanordnungen 5.1.1, 5.3.1, 5.5.1, 5.7.1 sowie 5.2.1, 5.4.1, 5.6.1 und 5.8.1 abgeschattet wird, der Gesamtempfangsleistung durch elektrische Ableitung zu entnehmen, sondern es ist vielmehr Gedanke der Erfindung, im Nahfeldbereich 7 Knotenstellen zu positionieren, welche die Ausbildung der im Nahfeldbereich 7 stehenden Welle verändert. Diese Veränderung der Randbedingungen zur Ausbildung einer komplex strukturierten Nahfeldwelle unterscheidet sich deutlich von beispielsweise seitlich an das Horn 4 angebrachte Hohlleiter mit einem schaltbaren Element zum regelrechten Kurzschluss von einer vorgewählten, unerwünschten Mode, beispielsweise einer TEM00, TEM01 oder anderen Moden, zum selektiven Frequenzempfang einer nicht kurz geschlossenen Mode.
  • Um die Wechselwirkung der elektrischen Versorgungsleitungen 20 für das elektronische Schaltelement 19 mit dem lokalen Hochfrequenzfeld zu minimieren, ist nach einer vorteilhaften Ausgestaltung der Erfindung vorgesehen, dass diese als Leiterbahnen ausgestalteten Versorgungsleitungen 20 radial zur Hornachse 16 verlaufen und erst deutlich außerhalb der freien Aperturfläche 6 des Horns 4 eine zur Hornachse 16 parallele Richtungskomponente aufweisen. Durch diese Anordnung der Versorgungsleitungen 20 wird verhindert, dass elektromagnetische Strahlung im Sendebetrieb in unerwünschter Weise in die hier nicht dargestellte Steuerungselektronik 10 rückgekoppelt wird.
  • Figur 4 . 2 ist zu entnehmen, dass für die lineare Polarisation auf den Elementen 5.1', 5.2', 5.3', 5.4', 5.5', 5.6', 5.7' und 5.8' schaltbare Dipolanordnungen 5.1.1', 5.3.1', 5.5.1', 5.7.1' sowie 5.2.1', 5.4.1', 5.6.1' und 5.8.1' aufsitzen, die mit ihrer Dipolachse 15' wechselweise mit ihrer Dipolachse 15' einmal parallel zu einer Tangente 4.2 der Mantelfläche 4.1 und einmal parallel zur Hornachse 16 angeordnet sind. Die Elemente 5.1', 5.2', 5.3', 5.4', 5.5', 5.6', 5.7' und 5.8' wirken im Prinzip identisch wie die für die Zirkularpolarisation beschriebenen Elemente 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7 und 5.8, jedoch ist deren räumliche Ausrichtung gegenüber der räumlichen Ausrichtung der Elemente für die Zirkularpolarisation verändert. Wie die Elemente für die Zirkularpolarisation sind die Elemente 5.1', 5.2', 5.3', 5.4', 5.5', 5.6', 5.7' und 5.8' für die zueinander senkrechte horizontale und vertikale Polarisation in zwei Gruppen aufgeteilt, nämlich Gruppe G1' bestehend aus den Elementen 5.1', 5.3', 5.5', und 5.7' und Gruppe G2' bestehend aus den Elementen 5.2', 5.4', 5.6', und 5.8'. Die erste Gruppe G1' weist also etwa in der 12:00-Position und etwa in der 06:00-Position jeweils ein Element 5.1' und 5.5' auf, deren darauf positionierter Dipol 5.1.1' und 5.5.1' jeweils parallel zur Hornachse 16 axial ausgerichtet ist. In der ca. 09:00-Position und der ca. 03:00 Position hingegen sind Elemente 5.3' und 5.7' angeordnet, deren Dipole 5.3.1' und 5.7.1' parallel zu einer Tangente 4.2 der Mantelfläche 4.1 des Horns 4 ausgerichtet sind.
  • Diese erste Gruppe G1' zeigt eine Wechselwirkung mit einer in dieser Ansicht vertikalen Linearpolarisation der sich auf die Aperturfläche 6 des Horns 4 zu bewegenden Wellenfront. Bezogen auf den vertikal ausgerichteten elektrischen Vektor der Vertikalpolarisation sind die beiden Dipole 5.3.1' und 5.7.1' korrespondierend dazu vertikal ausgerichtet und die beiden Dipole 5.1.1' und 5.5.1' der Elemente 5.1' und 5.5' sind axial ausgerichtet, entsprechend dem räumlichen Phasenunterschied des Hochfrequenzfeldes in der Ausbreitungsrichtung der sich auf die Aperturfläche 6 zu bewegenden Wellenfront. Die räumliche Ausrichtung der Dipole 5.1.1' und 5.5.1', nämlich die axiale Richtung des Horns 4, die mit der Ausbreitungsrichtung der sich auf die Aperturfläche 6 zu bewegenden Wellenfront einher geht, ist dafür ursächlich, dass diese Dipole sowohl von horizontal polarisierten Wellenfronten wie auch mit vertikal polarisierten Wellenfronten in Wechselwirkung stehen. Jede Gruppe von G1' und G2' hat also je zwei Elemente, die polarisationsspezifisch und zwei Elemente, die polarisationsunspezifisch wirken. Um die Wechselwirkung aller Dipole polarisationsspezifisch zu machen, ist vorgesehen, dass die Dipole auf den Elementen 5.1' und 5.5' sich in radialer Richtung erstrecken und dabei mit einem geringen Teil der Dipollänge in die freie Aperturfläche 6 des Horns 4 hinein ragen.
  • Die zweite Gruppe G2' zeigt eine Wechselwirkung mit einer in dieser Ansicht horizontalen Linearpolarisation der sich auf die Aperturfläche 6 des Horns 4 zu bewegenden Wellenfront. Bezogen auf den horizontal ausgerichteten elektrischen Vektor der Horizontalpolarisation sind die beiden Dipole 5.8.1' und 5.4.1' korrespondierend dazu etwa horizontal ausgerichtet und die beiden Dipole 5.2.1' und 5.6.1' der Elemente 5.2' und 5.6' sind axial ausgerichtet, entsprechend dem räumlichen Phasenunterschied des Hochfrequenzfeldes in der Ausbreitungsrichtung der sich auf die Aperturfläche 6 zu bewegenden Wellenfront. Die räumliche Ausrichtung der Dipole 5.2.1' und 5.6.1', nämlich die axiale Richtung des Horns 4, die mit der Ausbreitungsrichtung der sich auf die Aperturfläche 6 zu bewegenden Wellenfront einher geht, ist dafür ursächlich, dass diese Dipole sowohl von horizontal polarisierten Wellenfronten wie auch mit vertikal polarisierten Wellenfronten in Wechselwirkung stehen. Um die Wechselwirkung aller Dipole polarisationsspezifisch zu machen, ist vorgesehen, dass die Dipole auf den Elementen 5.2' und 5.6' sich in radialer Richtung erstrecken und dabei mit einem geringen Teil der Dipollänge in die freie Aperturfläche 6 des Horns 4 hinein ragen.
  • Die Auswirkung der Beeinflussung der Empfangscharakteristik einer Hochfrequenz-Reflektorantenne ist in Figur 5 dargestellt. In Figur 5 ist ein Reflektor 30 mit einer darauf projizierten Empfangskeule 31 dargestellt. Empfangskeule 31 ist ein dreidimensional dargestellter Graph, der den räumlich abhängigen Antennengewinn, als Verbesserung der Empfangssignalstärke gegenüber einer Antenne ohne Reflektor als zusammenhängende Fläche einer in Polarkoordinaten dargestellten Auftragung abbildet. Empfangskeule 31 hat also keine räumliche Ausdehnung oder eine sonst wie geartete räumliche Struktur. Vielmehr bildet sie in Abhängigkeit zweier Raumwinkel, nämlich Azimuth, welcher auf der Erdoberfläche in mittleren Breitengraden im Wesentlichen der Himmelsrichtung entspricht, und Elevation, welche auf der Erdoberfläche in mittleren Breitegraden im Wesentlichen dem Winkel über dem Horizont entspricht, die oben genannte Verbesserung als linearer oder logarithmischer Faktor ab. In Richtung der Symmetrieachse 32 des Reflektors 30 weist die Hochfrequenz-Reflektorantenne den höchsten Antennengewinn auf. Für einen möglichst signalstarken Empfang einer Signalquelle, beispielsweise eines Satellitensignals von hier skizziertem Satellit 33, ist die Symmetrieachse 32 exakt auf die Position des angepeilten Satelliten 33 ausgerichtet. Diese ideale Situation ist in der linken Unterfigur 5.1 von Figur 5 dargestellt. Satelliten, die sich aufgrund ihres Alters auf einem sogenannten Inclined-Orbit, einer nicht mehr exakt geostationären Bahn um die Erde mit gegenüber der idealen Eklipse angewinkelten Eklipse mit zumeist elliptischer Bahn befinden, beschreiben gegenüber dem bewegten Beobachter auf der Erdoberfläche eine achtförmige Bahn 34. Um diese Bahn 34 mit einer kleinen Hochfrequenz-Reflektorantenne zu verfolgen ist vorgesehen, dass die Ausrichtung der Hochfrequenz-Reflektorantenne beispielsweise eines mobilen Übertragungswagens einer Rundfunkanstalt oder auch die Ausrichtung einer Kommunikationsantenne eines Handels-, Passagier- oder Kriegsschiffes, schließlich auch die Kommunikationsantenne eines Flugzeuges oder die einer Rakete stets der veränderlichen, relativen Position des Satelliten 33 folgt. Hierzu werden die schaltbaren Dipolanordnungen 5.1.1, 5.3.1, 5.5.1, 5.7.1 sowie 5.2.1, 5.4.1, 5.6.1 und 5.8.1 in veränderlichen Mustern, meist jedoch der Reihe nach, aktiviert und während der Aktivierung wird die Signalempfangsstärke 41 der Signalquelle gemessen. Sofern die Signalempfangsstärke 41 bei einem vorgegeben transienten Aktivierungsmuster deutlich schwächer wird oder auch stärker, weil die Empfangskeule 31 von ihrer Struktur her verändert ist, so ist dies ein Indikator für eine Signalquelle außerhalb der Ausrichtung der Symmetrieachse 32 der Hochfrequenz-Reflektorantenne 1. Durch Korrelation des Aktivierungsmusters der elektronisch schaltbaren Dipolanordnungen 5.1.1, 5.3.1, 5.5.1, 5.7.1 sowie 5.2.1, 5.4.1, 5.6.1 und 5.8.1 mit der Signalempfangsstärke 41, die mit dem Antennendiagramm 40 korreliert, lässt sich eine Richtungsinformation ableiten, in welche Richtung die Hochfrequenz-Reflektorantenne 1 durch elektromechanische oder hydraulische Stellorgane bewegt werden kann, um die Symmetrieachse 32 der Hochfrequenz-Reflektorantenne 1, die je nach Stellung der Empfangseinheit an der Hochfrequenz-Reflektorantenne 1 durch die Symmetrieachse 32 der Empfangskeule 31 vorgegeben ist, wieder auf die Symmetrieachse 32 der Empfangskeule 31 auszurichten.
  • In der rechten Unterfigur 5.2 von Figur 5 ist dargestellt, wie die Empfangskeule 31' durch gezielte Veränderung der räumlichen Empfangscharakteristik eine Einbuchtung aufweist, was mit einer Verringerung der Empfangssignalstärke 41 in diesem räumlichen Bereich einhergeht. Um die Empfangskeule zweidimensional darzustellen, ist über der eingedellten Empfangskeule 31' ein dazu zweidimensionales, perspektivisch verzerrtes Antennendiagramm 40 eingezeichnet.
  • Die Veränderlichkeit der Empfangskeule 31 mit unterschiedlichen Aktivierungsmustern der elektronisch schaltbaren Dipolanordnungen ist in der nächsten Figur, Figur 6, dargestellt.
  • In Figur 6 ist ein Blick in das offene Horn 4 entlang der Symmetrieachse 32 der Empfangskeule 31' mit acht verschiedenen Aktivierungsmustern der elektronisch schaltbaren Dipolanordnungen 5.1.1, 5.3.1, 5.5.1, 5.7.1 sowie 5.2.1, 5.4.1, 5.6.1 und 5.8.1 dargestellt. In dieser Skizze bedeutet eine schwarz ausgefüllte Fläche des jeweils eingezeichneten Elements 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7 und 5.8 die Aktivierung der jeweils auf dem jeweiligen Element 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7 und 5.8 aktvierten Dipolanordnung 5.1.1, 5.3.1, 5.5.1, 5.7.1 sowie 5.2.1, 5.4.1, 5.6.1 und 5.8.1. Um die skizzierte Öffnung des Horns 4 mit den Elementen 5.1.1, 5.3.1, 5.5.1, 5.7.1 sowie 5.2.1, 5.4.1, 5.6.1 und 5.8.1 ist das Profil der Empfangskeule 31', des nur für den Azimuth dargestellten, zweidimensionalen Antennendiagramms 40 dargestellt, wie es sich in Figur 5.2 aus Sicht des Ziels oder der Signalquelle darstellen würde. An der linken oberen Ecke in Figur 6 angefangen, ist eine elektronisch schaltbare Dipolanordnung 5.1.1 auf dem geschwärzt dargestellten Element 5.1 in 09:00-Position aktiviert. In Folge dessen wird -hier beispielhaft angenommen-, die Empfangssignalstärke 41 im Signalintensitäts-Zeit-Diagramm 42, das Signalintensität I gegenüber der Zeit t darstellt, einer in Bezug in diese Richtung abgewanderte Signalquelle verringert, wie es in dem nahezu kreisrunden Antennendiagramm 40 mit einer Einbuchtung in 09:00-Position dargestellt ist. In diesem Beispiel werden die elektronisch schaltbaren Dipolanordnungen 5.1.1, 5.3.1, 5.5.1, 5.7.1 der Reihe nach und einander in den Schaltzeiten t=1, t=2, t=3, t=4, t=5, t=6, t=7 und t=8 überlappend aktiviert, was mit einer Verringerung der Empfangssignalstärke 41 einer in die jeweilige Richtung abgewanderten Signalquelle korreliert. Sofern eine Signalquelle -hier beispielhaft- in ca. 11:00-Richtung abgewandert ist, wird die Empfangssignalstärke 41 über einen Zyklus bei exakt diesem Aktivierungsmuster, in diesem Beispiel bei t=2 verringert werden, was durch die zeitlich aufgetragene Empfangssignalstärke 41 dargestellt ist. Die Hochfrequenz-Reflektorantenne 1 müsste zum Nachführen also in die ca. 11:00-Richtung nachgeführt werden, um die Signalempfangsstärke 41 für alle Aktivierungsmuster bei t=1, t=2, t=3, t=4, t=5, t=6, t=7 und t=8 zu vereinheitlichen. Es ist an dieser Stelle wichtig herauszustellen, dass durch die elektronisch schaltbaren Dipole die Ausbildung des Nahfeldes 11 in der Hochfrequenz-Reflektorantenne 1 verändert wird. Somit ist die Korrelation des Aktivierungsmusters bei t=1, t=2, t=3, t=4, t=5, t=6, t=7 und t=8 mit einer Veränderung der Signalempfangsstärke 41 abhängig von der exakten Ausbildung der Hochfrequenzwelle im Nahfeld 11. Die in Figur 5, Unterfigur 5,2 dargestellte, eingedellte Empfangskeule 31' ist hier nur beispielhaft dargestellt. Die tatsächliche Änderung des dreidimensionalen Antennendiagramms ist weit komplexer und geht mit einer Verzerrung und auch Verdrehung der Keulenform einher. Zur Messung der Abwanderung eines Ziels oder einer Signalquelle werden die in Figur 6 beispielhaft acht dargestellten Muster der Reihe nach aktiviert und gleichzeitig mit der Aktivierung wird die Signalintensitätsstärke 41 gemessen. Dabei durchläuft die Messung einen Zyklus von t=1 über t=2, t=3, t=4, t=5, t=6, t=7 bis t=8 und beginnt dort wieder mit einem weiteren Zyklus, der identisch abläuft wie beim Start bei t=1. Dieser Zyklus wird mit einer Frequenz von 10 Hz bis 100 Hz, von 100 Hz bis 1.000 Hz oder von 1.000 Hz bis 1 MHz durchlaufen und wenn eine Abschwächung der Signalempfangsstärke festgestellt wird, dann wird entsprechend des bekannten Aktivierungsmusters eine Richtungsinformation erzeugt, in welche die Hochfrequenz-Reflektorantenne nachgeführt werden muss. Es ist zum Nachführen nicht notwendig, dass die Signalstörung ständig durchgeführt wird. Vielmehr ist es auch möglich, die Messung der Ziel- oder Signalquellendrift auch intermittierend durchzuführen.
  • Das erfindungsgemäße Verfahren zeichnet sich also aus durch einzelnes oder gruppenweises Aktivieren und/oder Abstimmen der Elemente zur Beeinflussung der richtungsabhängigen Empfangscharakteristik, Korrelieren mindestens einer Signalstärke von mindestens einer Empfangseinheit mit dem Aktivierungs- und/oder Abstimmungsmuster der Elemente zur Beeinflussung der Empfangscharakteristik und das Bereitstellen von Steuersignalen zur mechanischen Richtungsveränderung der Hochfrequenz-Reflektorantenne in Abhängigkeit der gemessenen Korrelation. Dabei ist vorgesehen, dass die Steuersignale zur mechanischen Richtungsveränderung der Hochfrequenz-Reflektorantenne aus der Korrelation eines mit der gruppenweisen Aktivierung und/oder Abstimmung der Elemente zur Beeinflussung der richtungsabhängigen Empfangscharakteristik einhergehenden Veränderung der Signalstärke von mindestens einer Empfangseinheit erzeugt werden. Dabei können die Elemente zur Beeinflussung der richtungsabhängigen Empfangscharakteristik in Bezug auf ihre räumliche Anordnung punktsymmetrisch, rotierend oder zufällig mit gleichbleibender oder zufällig variabler Frequenz aktiviert und/oder abgestimmt werden. Die Aktivierungsmusterfolge ist dabei von untergeordneter Bedeutung, sofern die Musterabfolge schnell genug geschieht, beispielsweise 10 Hz bis 100 Hz, 100 Hz bis 1.000 Hz oder auch 1.000 Hz bis 1 MHz, um einen unterbrechungsfreien Empfang zu gewährleisten.
  • Da die Empfangssignalstärke 41 stark und variieren kann, was von atmosphärischen Störungen, unerwünschten Schwebungen mit benachbarten Frequenzen oder anderen Störeinflüssen abhängen kann, ist in Ausgestaltung der Erfindung vorgesehen, die Empfangssignalstärke 41 nicht statisch mit der Aktivierung eines spezifischen Aktivierungsmusters zu Zeiten t=1, t=2, t=3, t=4, t=5, t=6, t=7 und t=8 zu korrelieren, sondern die einzelnen Aktivierungsmuster mit einer vorgegebenen Frequenz der Reihe nach in einer Schleife durchlaufen zu lassen, so dass die in Figur 5.2 dargestellte Einbuchtung im Antennendiagramm im Kreis läuft. Die so modulierte Empfangssignalstärke 41 wird über mit einen Lock-In-Verstärker einer weiteren Stufe zur Phasenkorrelation zugeführt, wobei diese Stufe zur Phasenkorrelation die Phase des Aktivierungsmusters, das kreisrund läuft, mit der Phase des Signals aus dem Lock-In-Verstärker korreliert. Aus der Phasenkorrelation lässt sich so ebenfalls eine Richtungsinformation ableiten, die im Unterschied zur statischen Korrelation von Aktivierungsmuster zu Richtung den Vorteil hat, dass störende und in unerwünschter Weise auf das zu empfangende Hochfrequenz-Signal aufmodulierte Frequenzen unterdrückt und Richtungsinformationen sicherer abgeleitet werden können.
  • Um die Richtung der Hochfrequenz-Reflektorantenne 1 zu ändern, kann eine elektromechanische Stelleinrichtung vorgesehen sein oder eine hydraulische Verstelleinrichtung. Schließlich kann für hochpräzise Ausrichtung der Hochfrequenz-Reflektorantenne 1 auch ein peristaltischer Piezo-Motor die Stellung der Freiheitsgrade der ausrichtbaren Hochfrequenz-Reflektorantenne verändern. Um zu verhindern, dass bei bewegten Hochfrequenz-Reflektorantennen, beispielsweise bei einem fahrenden Übertragungswagen einer Rundfunkanstalt, einem auf See befindlichen Schiff, einem in Bewegung befindlichen Flugzeug oder einer im Flug befindlichen Rakete mechanische Resonanzfrequenzen der Hochfrequenz-Reflektorantenne 1 mit Dimensionen von 40 cm Spiegeldurchmesser bis 3 m Spiegeldurchmesser und des Trägersystems angeregt werden, ist nach einer vorteilhaften Ausgestaltung der Erfindung vorgesehen, dass die Aktivierungsmuster entfernt von einer gemessenen, mechanischen Resonanzfrequenz oder zufällig variiert werden mit zufällig variierender Frequenz. Dies sorgt dafür, dass Befestigungen und Trägerelemente sich nicht durch resonante Schwingungen über die Einsatzzeit lösen.
  • In Figur 7 ist schließlich ein Aufsatz auf ein Horn dargestellt, ein sogenannter Rillenhornstrahler 50, welcher als Wellenfalle zur Vermeidung unerwünschter Nebenmaxima eines gerichteten Strahles dient. Wenn ein Rillenhornstrahler als Wellenfalle und zur besseren Fokussierung des Sendestrahls eingesetzt wird, dann tritt an die Stelle der freien Aperturfläche 6 des Horns 4 die freie Aperturfläche 51 des Rillenhornstrahlers 50, zur Platzierung der Elemente. BEZUGSZEICHENLISTE
    1 Hochfrequenz-Reflektorantenne 5.5 Element
    5.5' Element
    2 Hauptreflektor 5.5.1 Dipolanordnung
    3 Subreflektor 5.5.1' Dipolanordnung
    4 Horn 5.6 Element
    4.1 Mantelfläche 5.6' Element
    4.2 Tangente 5.6.1 Dipolanordnung
    5.1 Element 5.6.1' Dipolanordnung
    5.1' Element 5.7 Element
    5.1.1 Dipolanordnung 5.7' Element
    5.1.1' Dipolanordnung 5.7.1 Dipolanordnung
    5.2 Element 5.7.1' Dipolanordnung
    5.2' Element 5.8 Element
    5.2.1 Dipolanordnung 5.8' Element
    5.2.1' Dipolanordnung 5.8.1 Dipolanordnung
    5.3 Element 5.8.1' Dipolanordnung
    5.3' Element 6 Aperturfläche
    5.3.1 Dipolanordnung 7 Nahfeldbereich
    5.3.1' Dipolanordnung 10 Steuerungselektronik
    5.4 Element 11 Nahfeld
    5.4' Element 11' Nahfeld
    5.4.1 Dipolanordnung 12 Strahlungsquelle
    5.4.1' Dipolanordnung 13 Hohleiter
    15 Dipolachse 33 Satellit
    15' Dipolachse 34 Bahn
    16 Hornachse
    17 Helix 41 Signalempfangsstärke
    17' Helix 42 Signalintensitäts-Zeit-Diagramm
    18 Leiterplattenelement
    18' Leiterplattenelement 50 Rillenhornstrahler
    19 Schaltelement 51 Aperturfläche
    30 Reflektor
    31 Empfangskeule I Signalintensität
    31' Empfangskeule t Zeit
    32 Symmetrieachse

Claims (9)

  1. Hochfrequenz-Reflektorantenne (1), aufweisend
    - einen Hauptreflektor (2),
    - mindestens einen Subreflektor (3) und
    - mindestens ein Horn (4),
    wobei im Strahlengang zwischen Hauptreflektor (2) und Horn (4) stationäre Elemente (5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8) zur Beeinflussung der richtungsabhängigen Empfangscharakteristik vorhanden sind,
    dadurch gekennzeichnet, dass
    die Elemente (5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8) in die freie Aperturfläche (6) des Horns (4) hinein ragen und somit im Nahfeldbereich (7) des Horns (4) angeordnet sind, wobei
    die Elemente (5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8) zur Beeinflussung der richtungsabhängigen Empfangscharakteristik schaltbare Dipolelemente (5.1.1, 5.2.1, 5.3.1, 5.4.1, 5.5.1, 5.6.1, 5.7.1, 5.8.1) sind, welche
    für die Beeinflussung der Empfangscharakteristik von elliptisch bis zirkular polarisierter Hochfrequenzstrahlung mit ihrer Dipolachse (15) entlang einer Tangente einer zur Hornachse (16) koaxialen Helix (17, 17') angeordnet sind, oder
    für die Beeinflussung der Empfangscharakteristik von linear polarisierter Hochfrequenzstrahlung mit ihrer Dipolachse (15) wechselweise parallel zu einer Tangente (4.2) einer Mantelfläche (4.1) des Horns (4) und parallel zur Hornachse (16) angeordnet sind, oder
    für die Beeinflussung der Empfangscharakteristik von linear polarisierter Hochfrequenzstrahlung mit ihrer Dipolachse (15) wechselweise parallel zu einer Tangente (4.2) einer Mantelfläche (4.1) des Horns (4) und radial zur Hornachse (16) ausgerichtet sind und nur mit einem Teil ihrer Länge in die freie Aperturfläche (6) des Horns hinein ragen.
  2. Hochfrequenz-Reflektorantenne nach Anspruch 1,
    dadurch gekennzeichnet, dass
    dass die Dipollänge der Elemente (5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8) in Richtung der Dipolachse (15) für das Ku-Band zwischen 11 mm und 15 mm, bevorzugt etwa 13 mm, und für das Ka-Band zwischen 6 mm und 10 mm, bevorzugt etwa 8 mm beträgt.
  3. Hochfrequenz-Reflektorantenne nach einem der Ansprüche 1 bis 2,
    dadurch gekennzeichnet, dass
    die Elemente (5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8) zur Beeinflussung der richtungsabhängigen Empfangscharakteristik einzeln und/oder in Gruppen aktivierbar sind, bevorzugt durch ein hochfrequenzfähiges, elektronisches Schaltelement (19) ein- und ausschaltbar sind oder abstimmbar sind.
  4. Hochfrequenz-Reflektorantenne nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet, dass
    mindestens eine Steuereinheit (10) vorhanden ist, welche
    a) die Elemente (5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8) zur Beeinflussung der richtungsabhängigen Empfangscharakteristik einzeln und/oder in Gruppen aktiviert und/oder abstimmt, und
    b) mindestens eine Signalstärke (41) von mindestens einer Empfangseinheit mit dem Aktivierungs- und/oder Abstimmungsmuster der Elemente (5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8) zur Beeinflussung der Empfangscharakteristik korreliert, und
    c) in Abhängigkeit des Korrelationsmusters Steuersignale zur mechanischen Richtungsveränderung der Hochfrequenz-Reflektorantenne zur Verfügung stellt.
  5. Verfahren zur elektronischen Nachführung von Hochfrequenz-Reflektorantennen, aufweisend
    - einen Hauptreflektor (2),
    - mindestens einen Subreflektor (3) und
    - mindestens ein Horn (4),
    wobei im Strahlengang zwischen Hauptreflektor (2) und Horn (4) Elemente (5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8) zur Beeinflussung der richtungsabhängigen Empfangscharakteristik vorhanden sind,
    gekennzeichnet durch
    - Anordnen der Elemente (5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8), so dass diese in die freie Aperturfläche (6) des Horns (4) hinein ragen und somit im Nahfeldbereich (7) des Horns (4) angeordnet sind, wobei die Elemente (5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8) zur Beeinflussung der richtungsabhängigen Empfangscharakteristik schaltbare Dipolelemente (5.1.1, 5.2.1, 5.3.1, 5.4.1, 5.5.1, 5.6.1, 5.7.1, 5.8.1) sind, welche
    für die Beeinflussung der Empfangscharakteristik von elliptisch bis zirkular polarisierter Hochfrequenzstrahlung mit ihrer Dipolachse (15) entlang einer Tangente einer zur Hornachse (16) koaxialen Helix (17, 17') angeordnet sind, oder
    für die Beeinflussung der Empfangscharakteristik von linear polarisierter Hochfrequenzstrahlung mit ihrer Dipolachse (15) wechselweise parallel zu einer Tangente (4.2) einer Mantelfläche (4.1) des Horns (4) und parallel zur Hornachse (16) angeordnet sind, oder
    für die Beeinflussung der Empfangscharakteristik von linear polarisierter Hochfrequenzstrahlung mit ihrer Dipolachse (15) wechselweise parallel zu einer Tangente (4.2) einer Mantelfläche (4.1) des Horns (4) und radial zur Hornachse (16) ausgerichtet sind und nur mit einem Teil ihrer Länge in die freie Aperturfläche (6) des Horns hinein ragen,
    - einzelnes oder gruppenweises Aktivieren und/oder Abstimmen der Elemente (5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8) zur Beeinflussung der richtungsabhängigen Empfangscharakteristik,
    - Korrelieren mindestens einer Signalstärke (41) von mindestens einer Empfangseinheit mit dem Aktivierungs- und/oder Abstimmungsmuster der Elemente (5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8) zur Beeinflussung der Empfangscharakteristik,
    - Bereitstellen von Steuersignalen zur mechanischen Richtungsveränderung der Hochfrequenz-Reflektorantenne in Abhängigkeit der gemessenen Korrelation.
  6. Verfahren nach Anspruch 5,
    dadurch gekennzeichnet, dass
    die Steuersignale zur mechanischen Richtungsveränderung der Hochfrequenz-Reflektorantenne aus der Korrelation eines mit der gruppenweisen Aktivierung und/oder Abstimmung der Elemente (5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8) zur Beeinflussung der richtungsabhängigen Empfangscharakteristik einhergehenden Veränderung der Empfangssignalstärke (41) von mindestens einer Empfangseinheit erzeugt werden.
  7. Verfahren nach einem der Ansprüche 5 bis 6,
    dadurch gekennzeichnet, dass
    Elemente (5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8) zur Beeinflussung der richtungsabhängigen Empfangscharakteristik in Bezug auf ihre räumliche Anordnung punktsymmetrisch, rotierend oder zufällig mit gleichbleibender oder zufällig variabler Frequenz aktiviert und/oder abgestimmt werden.
  8. Verfahren nach Anspruch 6,
    dadurch gekennzeichnet, dass
    die Veränderung des Aktivierungs- und/oder Abstimmungsmusters entfernt von einer mechanischen Resonanzeigenfrequenz der Hochfrequenz-Reflektorantenne (1) vorgenommen wird.
  9. Verfahren nach einem der Ansprüche 5 bis 8,
    dadurch gekennzeichnet, dass
    die Aktivierung der Elemente (5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8) zur Beeinflussung der richtungsabhängigen Empfangscharakteristik intermittierend durchgeführt wird.
EP13782939.6A 2012-12-21 2013-10-01 Anordnung und verfahren zur elektronischen nachführung von hf-reflektorantennen Active EP2936613B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012025123.8A DE102012025123A1 (de) 2012-12-21 2012-12-21 Anordnung und Verfahren zur elektronischen Nachführung von HF-Reflektorantennen
PCT/DE2013/000554 WO2014094698A1 (de) 2012-12-21 2013-10-01 Anordnung und verfahren zur elektronischen nachführung von hf-reflektorantennen

Publications (2)

Publication Number Publication Date
EP2936613A1 EP2936613A1 (de) 2015-10-28
EP2936613B1 true EP2936613B1 (de) 2018-12-19

Family

ID=49486319

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13782939.6A Active EP2936613B1 (de) 2012-12-21 2013-10-01 Anordnung und verfahren zur elektronischen nachführung von hf-reflektorantennen

Country Status (6)

Country Link
US (1) US9847572B2 (de)
EP (1) EP2936613B1 (de)
KR (1) KR20150099512A (de)
CN (1) CN104838540B (de)
DE (1) DE102012025123A1 (de)
WO (1) WO2014094698A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9716320B2 (en) 2014-10-10 2017-07-25 Cambium Networks Limited Patch antenna-based wideband antenna system
US9952019B2 (en) * 2016-03-03 2018-04-24 Raytheon Company Ultrasonic electro-optic seeker
CN109768391B (zh) * 2018-12-29 2020-12-15 京信通信技术(广州)有限公司 天线、天线电下倾角的显示系统及其传动机构

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2677766A (en) * 1949-05-18 1954-05-04 Sperry Corp Scalloped limacon pattern antenna
US2989746A (en) * 1956-08-21 1961-06-20 Marconi Wireless Telegraph Co Scanning antenna system utilizing polarization filters
US3935576A (en) * 1974-06-03 1976-01-27 E-Systems, Inc. Broadband beacon antenna system
US4387378A (en) * 1978-06-28 1983-06-07 Harris Corporation Antenna having electrically positionable phase center
FR2594260B1 (fr) 1981-05-22 1989-01-13 Thomson Csf Source primaire hyperfrequence pour antenne a balayage conique et antenne l'incorporant.
DE19848202A1 (de) 1998-10-20 2000-04-27 Sucker Udo Diagrammsteuerbares Flächenstrahlersystem
DE10041996A1 (de) 2000-08-10 2002-03-07 Frank E Woetzel Anordnung zur Beeinflussung und Steuerung elektromagnetischer Wechselfelder und/oder Antennen und Antennendiagrammen
US8031129B2 (en) * 2004-08-18 2011-10-04 Ruckus Wireless, Inc. Dual band dual polarization antenna array
US7965252B2 (en) * 2004-08-18 2011-06-21 Ruckus Wireless, Inc. Dual polarization antenna array with increased wireless coverage
DE102007007707A1 (de) 2007-02-13 2008-08-21 Häßner, Katrin Anordnung zur Beeinflussung der Strahlungscharakteristik einer Reflektorantenne, insbesondere einer zentral fokussierten Reflektorantenne
CN101505006B (zh) * 2009-02-24 2012-09-26 中国航天科技集团公司第五研究院第五○四研究所 副反射器与馈源共用的馈源结构及其构成的双频段天线
GB0919948D0 (en) * 2009-11-13 2009-12-30 Sec Dep For Business Innovatio Smart antenna
EP2780979A4 (de) * 2011-11-15 2015-06-03 Saab Ab Antennenanordnung mit schirmstruktur
US9490535B2 (en) * 2014-06-30 2016-11-08 Huawei Technologies Co., Ltd. Apparatus and assembling method of a dual polarized agile cylindrical antenna array with reconfigurable radial waveguides

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
KR20150099512A (ko) 2015-08-31
US20150303566A1 (en) 2015-10-22
US9847572B2 (en) 2017-12-19
CN104838540B (zh) 2017-11-28
CN104838540A (zh) 2015-08-12
DE102012025123A1 (de) 2014-06-26
WO2014094698A1 (de) 2014-06-26
EP2936613A1 (de) 2015-10-28

Similar Documents

Publication Publication Date Title
EP2981980B1 (de) Induktive ladeeinrichtung, elektrofahrzeug, ladestation und verfahren zum induktiven laden
DE69216998T2 (de) Breitbandige konforme Gruppenantenne aus geneigten Schlitzleitungen
EP2296227B1 (de) Antenne für den Empfang Zirkular Polarisierter Satellitenfunksignale
DE2809498A1 (de) Betriebsueberwachungsanordnung fuer sende-empfangssysteme, insbesondere radaranlagen
EP2424036B1 (de) Empfangsantenne für Zirkular Polarisierte Satellitenfunksignale
DE10335216B4 (de) Im Bereich einer Außenfläche eines Fluggeräts angeordnete phasengesteuerte Antenne
DE10209060B4 (de) Empfangsantennenanordnung für Satelliten- und/oder terrestrische Funksignale auf Fahrzeugen
DE2726956A1 (de) Antennensystem
EP2965382B1 (de) Antennenanordnung mit veränderlicher richtcharakteristik
EP2936613B1 (de) Anordnung und verfahren zur elektronischen nachführung von hf-reflektorantennen
DE1286594B (de) Nachrichtensystem zum UEbermitteln von Nachrichten zwischen Raumflugkoerpern und einer Basisstelle
DE3130350A1 (de) Ukw - drehfunkfeuer - antenne
DE3042456A1 (de) Antenne mit einer einrichtung zur drehung der polarisationsebene
WO2009019177A1 (de) Mehrteilige antenne mit zirkularer polarisation
DE2341312A1 (de) Radaranlage
DE2752680A1 (de) Richtantenne fuer sehr kurze elektromagnetische wellen
WO1998027612A1 (de) Verfahren und vorrichtung zur richtungsselektiven abstrahlung elektromagnetischer wellen
DE3529914A1 (de) Mikrowellenstrahler
EP2118963B1 (de) Anordnung zur beeinflussung der strahlungscharakteristik einer reflektorantenne, insbesondere einer zentralfokussierten reflektorantenne
DE2048709A1 (de) Radarsystem ,-nrt Strahlschwenkung durch Frequenzänderung
EP0249753A1 (de) Nach dem Strahlschwenkverfahren arbeitendes Mikrowellenlandesystem
DE2510268A1 (de) Antennenanordnung mit elektronischer strahlschwenkung
DE1902884C (de) Antennensystem fur den VHF und UHF Bereich zur Richtungsbestimmung
DE2342904A1 (de) Richtantenne
DE2317501A1 (de) Mittelwellenantenne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150430

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180725

RIN1 Information on inventor provided before grant (corrected)

Inventor name: NOWACK, MARIO

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013011866

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1079677

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190115

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190319

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190319

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181219

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181219

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181219

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181219

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181219

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181219

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181219

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181219

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181219

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181219

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190419

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181219

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190419

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181219

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181219

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181219

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013011866

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181219

26N No opposition filed

Effective date: 20190920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181219

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191001

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191001

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191001

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1079677

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181219

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20131001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181219

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20241022

Year of fee payment: 12