EP2922901A1 - Thermoverformbarer melaminharzschaumstoff mit partikelförmigem füllmaterial - Google Patents

Thermoverformbarer melaminharzschaumstoff mit partikelförmigem füllmaterial

Info

Publication number
EP2922901A1
EP2922901A1 EP13802271.0A EP13802271A EP2922901A1 EP 2922901 A1 EP2922901 A1 EP 2922901A1 EP 13802271 A EP13802271 A EP 13802271A EP 2922901 A1 EP2922901 A1 EP 2922901A1
Authority
EP
European Patent Office
Prior art keywords
melamine
formaldehyde
foam
filler material
thermoformable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13802271.0A
Other languages
English (en)
French (fr)
Inventor
Tobias Heinz Steinke
Horst Baumgartl
Werner Lenz
Klaus Hahn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to EP13802271.0A priority Critical patent/EP2922901A1/de
Publication of EP2922901A1 publication Critical patent/EP2922901A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0023Use of organic additives containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0033Use of organic additives containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/20Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08L61/26Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds
    • C08L61/28Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds with melamine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/05Open cells, i.e. more than 50% of the pores are open
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2361/20Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08J2361/26Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds
    • C08J2361/28Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds with melamine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/10Homopolymers or copolymers of propene
    • C08J2423/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2463/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2469/00Characterised by the use of polycarbonates; Derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2475/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2477/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/14Applications used for foams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/30Applications used for thermoforming

Definitions

  • Thermoformable melamine resin foam with particulate filler Description
  • the present invention relates to thermocompressible melamine resin foams, processes for their preparation and their use.
  • Open-cell, elastic foams based on melamine / formaldehyde resins and processes for their preparation by heating with hot air, water vapor or microwave radiation with foaming and crosslinking of a blowing agent-containing solution or dispersion of a melamine / formaldehyde precondensate are known and are described, for example, in European Pat. A 17672 and EP-A 37470.
  • FR-A 1 108336 discloses pressing a foam which is in the hardening state but which is still deformable, and then curing the thus compacted foam.
  • US-A-3 504 064 and EP-A-464 490 describe processes in which the foam is treated with water or steam and deformed before or after.
  • EP-A 1 1 1860 describes the pressing of melamine resin foams at 60 to 300 ° C and at least 1, 2 bar abs.
  • the molded articles of melamine / formaldehyde resin obtained by the above-mentioned processes contain residual amounts of unreacted formaldehyde which are continuously released into the ambient air over a long period of time. These formaldehyde emissions increase with increasing temperature and humidity. They are undesirable and particularly disadvantageous when using the moldings in closed rooms.
  • WO 01/94436 teaches a process for the production of melamine / formaldehyde foams with reduced formaldehyde emission, to which a melamine / formaldehyde precondensate having a molar ratio of formaldehyde: melamine greater than 2: 1, is used.
  • the mixture to be foamed, blowing agent-containing mixture is foamed by heating to, for example, quasi-shaped strands or blocks. Thereafter, the expanded foam blocks are annealed for 1 to 180 minutes at 120 to 300 ° C and cured. Although the foams obtained in this way are low in formaldehyde, they are not thermoformable.
  • EP-A 1 505 105 describes a process for the production of molded parts from melamine / formaldehyde foams with low formaldehyde emission, in which the foam is tempered after production and before thermoforming at temperatures between 100 and 160 ° C.
  • the foams can be provided on one or both sides with cover layers or laminated in the thermoforming, for example with paper, cardboard, glass fleece, Wood, gypsum boards, metal sheets or foils or plastic films, which may also be foamed if necessary. After pressing in an account tool, a good impression of the pressing tool with stable, closed, mechanically loadable edge lips is achieved.
  • WO06 / 134083 describes a process for the preparation of thermoformable melamine / formaldehyde foams with low formaldehyde emission and the production of molded parts by thermoforming.
  • the low formaldehyde emissions are achieved by using a melamine / formaldehyde precondensate with a molar ratio of melamine: formaldehyde less than 1: 2, and by using formaldehyde scavengers.
  • WO 2012/1 13740 describes the foaming of particulate organic or inorganic filler materials with melamine-formaldehyde condensation products. It can be provided in this way filled melamine resin foams, which largely maintain the good mechanical properties of the unfilled foams. Furthermore, this document indicates that the foam blocks or plates with particulate filler material can be thermocompressed in a further process step.
  • WO 201 1/095409 describes melamine / formaldehyde foams which contain microcapsules having an average particle diameter of 0.5-100 ⁇ m.
  • the microcapsules are preferably incorporated in the nodes or webs of the foam structure.
  • WO 201 1/061 178 describes melamine / formaldehyde foams containing expanded hollow microspheres having an average particle diameter of 70-250 ⁇ m.
  • the hollow microspheres are preferably incorporated in the pores of the foam structure.
  • the incorporation into the pores is achieved by a multi-stage production process in which the melamine / formaldehyde foam is produced in a first step and the microballoons are introduced into the foam in a second, additional impregnation step.
  • the object of the invention was, starting from a melamine / formaldehyde precondensate with a molar ratio of formaldehyde: melamine greater than 2, to provide a corresponding thermoformable melamine / formaldehyde foam, which in addition to good mechanical properties at the same time, preferably even before thermoforming into moldings , shows low formaldehyde emissions of, for example, less than 0.1 ppm.
  • a further object of the present invention is to provide a process for producing this thermoformable foam or for producing corresponding molded parts.
  • thermoformable melamine / formaldehyde foam containing 0.1 to 50 wt .-% of at least one particulate filler, wherein the wt .-% on the total weight of the melamine / formaldehyde precondensate used for foam production and Fill material are referred to, wherein the we- at least one particulate filler has a melting point of at most 220 ° C and an average particle diameter of 5 ⁇ to 750 ⁇ .
  • thermoformable melamine / formaldehyde foams according to the invention contain from 0.1 to 50% by weight, preferably from 1 to 40% by weight, more preferably from 5 to 35% by weight, very preferably from 10 to 30% by weight of one or more, ie 1 to 10, preferably 1 to 5, particularly preferably 1 to 3, in particular 1 or 2, very particularly preferably 1 particulate fillers, wherein the wt .-% in each case on the total weight from the melamine / formaldehyde precondensate used for the production of foam and particulate Golfmate - Rial are related.
  • the particulate fillers have an average particle diameter of 5 ⁇ m to 750 ⁇ m, preferably 50 to 600 ⁇ m, particularly preferably 100 to 500 ⁇ m (d 50 value, number average, determined by means of light or electron microscopy in conjunction with image evaluation).
  • the particle size distribution of the particulate fillers may be mono-, bi- or multimodal.
  • the present invention therefore relates to the thermoformable melamine / formaldehyde foam according to the invention, wherein the at least one particulate filler material has an average particle diameter of 5 ⁇ m to 750 ⁇ m, preferably 50 ⁇ m to 600 ⁇ m, particularly preferably 100 ⁇ m to 500 ⁇ m (dso). Value, number-average, determined by means of light or electron microscopy in conjunction with image evaluation).
  • the individual particles of the particulate fillers may themselves be composed of smaller agglomerated particles, which are often referred to as primary particles.
  • the particulate fillers may be employed in the form of agglomerate particles having the particle diameters described above, each agglomerate consisting of smaller primary particles.
  • Such particles present in agglomerate form are generally known to the person skilled in the art and are described in the literature. They can be obtained, for example, by adding agglomeration aids to the primary particles and subsequent mixing.
  • the filling materials are present in particle form; the ratio of the longest spatial axis to the shortest spatial axis of the particles is preferably in the range from 4: 1 to 1: 1; spherical preforms are particularly preferred.
  • the present invention therefore preferably relates to the thermoformable melamine / formaldehyde foam according to the invention, organic oligomers or polymers being used as at least one particulate filler material.
  • the organic oligomers or polymers preferably used according to the invention as particulate fillers have a molecular weight of, for example, 1000 to 1 000 000 g / mol, preferably 1 000 to 100 000 g / mol, more preferably 2 000 to 50 000 g / mol, in particular 2 000 to 20 000 g / mol, up.
  • the particulate fillers used according to the invention have a melting point of at most 220 ° C., preferably at most 200 ° C., particularly preferably at most 180 ° C.
  • the particulate fillers used according to the invention generally have a melting point of at least 100 ° C.
  • the at least one particulate filler has an average particle diameter of from 5 .mu.m to 750 .mu.m, preferably from 50 .mu.m to 600 .mu.m, more preferably from 100 .mu.m to 500 .mu.m (d.sub.50 value, number average, determined) by means of light or electron microscopy in conjunction with image evaluation), and a melting point of at most 220 ° C, preferably at most 200 ° C, particularly preferably at most 180 ° C, on.
  • thermoformable melamine / formaldehyde foam made of a non-thermoformable Duroplast which has a very good thermoformability and after thermoforming, a particularly advantageous combination of high edge lip strength, good mechanical properties and low formaldehyde emission has
  • suitable organic oligomers and polymers having a melting point of at most 220 ° C. which are suitable according to the invention are selected, for example, from the group consisting of polyethylene, for example LDPE wax, polypropylene, polystyrene, polyesters, polycarbonates, polyamides, thermoplastic elastomers, for example thermoplastic polyurethane, and mixtures from that.
  • thermoplastic materials Ullmann's Encyclopedia of Industrial Chemistry (Wiley) contains the following chapters on the thermoplastic materials mentioned: a) Polyethylene, Edition 6, Vol. 28, 2003, pp. 393-427; b) Polypropylene, Edition 6, Vol. 28, 2003, p. 428-461; c) Polyester, Edition 6, Vol. 28, 2003, pp. 75-102; d) Polycarbonates, Edition 6, Vol. 28, 2003, pp. 55-63; e) Polyamides, Edition 6, Vol. 28, 2003, pp. 25-54; f) Polyurethanes: Edition 6, Vol. 28, 2003, pp. 667-722; g) Polystyrene and Styrene Copolymers, Edition 6, Vol. 28, 2003, pp. 455-488 and h) Thermoplastic Elastomers, Edition 6, Vol. 36, 2003, pp. 667-722.
  • particle-shaped filling materials which melt on account of their melting point of not more than 220 ° C. in the thermoforming step. Have a flow viscosity and allow a uniform coating of the three-dimensional, open-cell web structure.
  • a particularly preferred example is LDPE (Low Density Polyethylene) wax, available under the trade name LUWAX A from BASF SE, in particular with an average particle diameter of 50 to 600 ⁇ m, for example 0.42 mm, (in each case dso value, measured by weight) - Telt, determined by light or electron microscopy in conjunction with image analysis) mentioned.
  • the melamine / formaldehyde foams according to the invention are generally an open-cell foam skeleton which contains a multiplicity of interconnected, three-dimensionally branched webs and in which the particulate fillers are preferably embedded in the pore structure.
  • the particle size preferably corresponds to the mean pore diameter of the foam structure, wherein this average pore diameter is preferably in the range from 10 .mu.m to 1000 .mu.m, in particular in the range from 50 .mu.m to 600 .mu.m (d 50 value, number average, determined by means of light or electron microscopy Connection with image analysis).
  • the particulate fillers can thus be integrated into the pore structure of the open-cell foam in an ideal manner and fixed on all sides of the pore structure. Such a structure can not be produced by subsequently impregnating the foam with filling materials, since for this purpose the particle size of the fillers must always be chosen so that the particle size is smaller than the pore size of the foam in order to ensure a distribution throughout the foam.
  • the present invention therefore preferably relates to the inventive thermoformable melamine / formaldehyde foam, wherein the at least one particulate filler material is embedded in the pore structure of the foam and the average particle diameter corresponds to the average pore diameter of the foam structure.
  • the melamine-formaldehyde precondensates used to prepare the melamine-formaldehyde foams according to the invention generally have a molar ratio of formaldehyde to melamine greater than 2, preferably 2.5: 1 to 3.5: 1.
  • These melamine / formaldehyde condensation products may in addition to melamine 0 to 50 wt .-%, preferably 0 to 40 wt .-%, particularly preferably 0 to 30 wt .-%, in particular 0 to 20 wt .-%, each based on the melamine - / formaldehyde precondensate , other thermoset and formaldehyde 0 to 50 wt .-%, preferably 0 to 40 wt .-%, particularly preferably 0 to 30 wt .-%, in particular 0 to 20 wt .-%, each based on the melamine / formaldehyde precondensate, other aldehydes a condensed contained. Preference is given to unmodified melamine / formaldehyde precondensates.
  • thermoset-forming agents are, for example, alkyl- and aryl-substituted melamine, urea, urethanes, carboxamides, dicyandiamide, guanidine, sulfurylamide, sulfonamides, aliphatic amines, glycols, phenol or derivatives thereof.
  • Suitable aldehydes are, for example, acetaldehyde, trimethylolacetaldehyde, acrolein, benzaldehyde, furfural, glyoxal, glutaraldehyde, phthalaldehyde, terephthalaldehyde or mixtures thereof. Further details on melamine / formaldehyde condensation products can be found in Houben-Weyl, Methods of Organic Chemistry, Vol. 14/2, 1963, pages 319 to 402.
  • the present invention further relates to the inventive melamine / formaldehyde foam, which has a formaldehyde emission, measured according to DIN 55666, of 0.1 ppm or less.
  • the melamine / formaldehyde foams according to the invention can be prepared as follows:
  • the particulate fillers may be added prior to and / or during resin synthesis from melamine and formaldehyde, but preferably to the preformed melamine / formaldehyde condensate prior to and / or during the foaming process.
  • a melamine-formaldehyde precondensate and a solvent with an acid, a dispersant, a blowing agent and at least one corresponding particulate filler can be foamed at temperatures above the boiling point of the blowing agent, dried and then at a temperature above 200 ° C.
  • the present invention therefore furthermore relates to a process for the preparation of a thermoformable melamine / formaldehyde foam according to the invention, wherein at least one melamine-formaldehyde precondensate in a solvent with an acid, a dispersing agent, a blowing agent and at least one particulate filler at temperatures foamed above the boiling point of the blowing agent, dried and then annealed at a temperature above 200 ° C.
  • Suitable melamine / formaldehyde precondensates are specially prepared, see the following overviews: a) W. Woebcken, Kunststoffhandbuch 10. Duroplaste, Kunststoff, Vienna
  • the melamine-formaldehyde precondensates generally have a molar ratio of formaldehyde to melamine greater than 2, preferably 2.5: 1 to 3.5: 1.
  • thermoformable melamine / formaldehyde foam according to the invention comprises the steps:
  • the present invention also further relates to a method for producing molded parts by thermoforming a thermoformable foam of the invention.
  • step (3) of the abovementioned process is preferably converted into step (4):
  • the method according to the invention for producing a molded part therefore preferably comprises the steps (1), (2), (3) and (4).
  • step (1) In the preparation of the melamine / formaldehyde precondensate in step (1), alcohols, for example methanol, ethanol or butanol, may be added in order to obtain partly or completely etherified condensates.
  • alcohols for example methanol, ethanol or butanol
  • the formation of the ether groups can influence the solubility of the melamine / formaldehyde precondensate and the mechanical properties of the fully cured material.
  • anionic, cationic and nonionic surfactants and mixtures thereof can be used.
  • Suitable anionic surfactants are, for example, selected from the group consisting of diphenylene oxide sulfonates, alkane and alkylbenzenesulfonates, alkylnaphthalenesulfonates, olefinsulfonates, alkyl ether sulfonates, fatty alcohol sulfates, ether sulfates, ⁇ -sulfofatty acid esters, acylaminoalkanesulfonates, acylisothionates, alkylethercarboxylates, N-acylsarcosinates, alkyl and alkyl ethers phosphates and mixtures thereof.
  • Suitable nonionic surfactants are, for example, selected from the group consisting of alkylphenol polyglycol ethers, fatty alcohol polyglycol ethers, fatty acid polyglycol ethers, fatty acid alkanolamides, ethylene oxide / propylene oxide block copolymers, amine oxides, glycerol fatty acid esters, sorbitan esters, alkyl polyglycosides and mixtures thereof.
  • Suitable cationic emulsifiers are, for example, selected from the group consisting of alkyltriammonium salts, alkylbenzyldimethylammonium salts, alkylpyridinium salts and mixtures thereof.
  • the dispersants or emulsifiers can be used in amounts of 0.2 to 5 wt .-%, based on the melamine / formaldehyde precondensate.
  • the dispersants or emulsifiers and / or protective colloids can in principle be added to the crude dispersion at any time.
  • the mixture contains a propellant.
  • the amount of blowing agent in the mixture usually depends on the desired density of the foam.
  • Suitable blowing agents are "physical” or “chemical” blowing agents, see Encyclopedia of Polymer Science and Technology, Vol. I, 3rd ed., Chapter Additives, page 203 to 218, 2003.
  • suitable "physical" blowing agents are hydrocarbons, such as pentane, hexane, halogenated, in particular chlorinated and / or fluorinated, hydrocarbons, for example methylene chloride, chloroform, trichloroethane, chlorofluorohydrocarbons, partially halogenated chlorofluorocarbons (HCFCs), alcohols, for example Methanol, ethanol, n- or iso-propanol, ethers, ketones and esters, for example methyl formate, ethyl formate, methyl acetate or ethyl acetate in liquid form or air, nitrogen or carbon dioxide as gases.
  • hydrocarbons such as pentane, hexane, halogenated, in particular chlorinated and / or fluorinated
  • hydrocarbons for example methylene chloride, chloroform, trichloroethane, chlorofluorohydrocarbons, partially halogenated chlorofluorocarbon
  • Suitable "chemical" blowing agents are, for example, isocyanates mixed with water, carbon dioxide being released as the effective blowing agent, carbonates and bicarbonates being admixed with acids which also produce carbon dioxide, and azo compounds, for example azodicarbonamide.
  • the mixture generally contains at least one blowing agent in an amount of 0.5 to 60 wt .-%, preferably 1 to 40 wt .-%, particularly preferably 1, 5 to 30 wt .-%, each based on the melamine / formaldehyde precondensate.
  • a physical blowing agent having a boiling point between 0 and 80 ° C. is preferably added.
  • a hardener acids can be used, which catalyze the further condensation of the melamine resin.
  • the amount of these hardeners is generally 0.01 to 20 wt .-%, preferably 0.05 and 5 wt .-%, each based on the precondensate.
  • Suitable acids are inorganic and organic acids, for example selected from the group consisting of hydrochloric acid, sulfuric acid, phosphoric acid, nitric acid, formic acid, acetic acid, oxalic acid, Tolu- olsulfonklaren, Amidosulfonklaren, acid anhydrides and mixtures thereof.
  • the mixture in addition to the melamine / formaldehyde precondensate of the foam to be produced and the corresponding filling materials, the mixture also contains an emulsifier and optionally a hardener and optionally a blowing agent. In a further embodiment, the mixture is free of further additives.
  • additives for example Fibers, dyes, flame retardants, UV stabilizers, means to reduce the fire gas toxicity or to promote the charring, fragrances, optical brighteners or pigments to add.
  • additives are preferably distributed homogeneously in the foam.
  • dyes preference is given to using water-soluble dyes, for example metal complex dyes. These dyes may be previously blended with the fillers.
  • the foaming of the precondensate is generally carried out by heating the suspension of the melamine / formaldehyde precondensate and the at least one particulate filler of step (1) to obtain a foam containing the at least one particulate Contains filler.
  • the suspension is usually heated to a temperature above the boiling point of the blowing agent used and foamed in a closed mold.
  • the energy input can preferably be effected by electromagnetic radiation, for example by high-frequency irradiation with 5 to 400 kW, preferably 5 to 200 kW, particularly preferably 9 to 120 kW, in each case per kilogram of the mixture used, in a frequency range from 0.2 to 100 GHz 0.5 to 10 GHz.
  • a radiation source for dielectric radiation magnetrons are suitable, with one or more magnetrons can be irradiated simultaneously.
  • step (3) of the process according to the invention the foam obtained in step (2) is tempered at a temperature above 200 ° C.
  • the annealing temperature is preferably from 200 to 280 ° C., in particular from 220 to 260 ° C.
  • Postcuring takes place, d. h., That the foam hardens further.
  • residues of volatile ingredients such as monomer residues, propellants and other auxiliaries, can be largely removed.
  • the density of the thermoformable foam is generally from 3 to 50 kg / m 3 , preferably from 5 to 40 kg / m 3 , more preferably from 8 to 30 kg / m 3 , particularly preferably from 10 to 25 kg / m 3 .
  • step (4) of the process according to the invention the tempered foam obtained in step (3) is thermoformed, preferably in a press, i. H. pressed.
  • Step (4) of the process according to the invention is generally carried out at a temperature of 160 to 240 ° C, preferably 170 to 210 ° C.
  • Step (4) of the method according to the invention generally takes place at an absolute pressure in the pressing tool of 0.001 to 100 bar, preferably 0.02 to 1 bar.
  • thermoforming according to step (4) of the process according to the invention is generally carried out within 15 to 120 seconds.
  • step (4) of the process according to the invention at a temperature (pressing temperature) of 180 to 200 ° C, and an absolute pressure (compression pressure) of 0.03 to 0.5 bar compressed.
  • the particularly preferred pressing time is 30 to 60 seconds.
  • the contour accuracy is optionally improved in the method according to the invention in that the still closed pressing tool is cooled after the high-temperature phase by means of suitable cooling media.
  • the cooling channels required for this purpose can be arranged equidistantly to the tool cavity, or, for example, for components with different thicknesses in the areas of larger component thicknesses, it can be located closer to the cavity and in the areas of smaller component thicknesses at greater distances to the cavity.
  • Suitable cooling media are water at mold temperatures ⁇ 100 ° C or oils at temperatures> 100 ° C.
  • the pressing temperatures, pressures and times to be selected in the individual case depend in the usual way on the composition of the foam, for example on the type and amount of the hardener, and on the density, thickness and hardness of the foam to be pressed, for example also after the pretreatment of the foam Foam, which also includes the annealing in step (3).
  • Press temperature, pressure and time are preferably set such that the molded part obtained in step (4) substantially already has the desired final spatial form.
  • Pressing temperature and pressure can be constant over the entire pressing time, or varied in a suitable manner. In general, it is pressed under constant conditions, but in particular in the case of large or complicated shaped parts, temperature or pressure programs may also be advantageous.
  • step (4) Thermoforming, d. H. Pressing, according to step (4) is done in a conventional manner and preferably discontinuously, by the obtained in step (3) of the method according to the invention tempered foam - preferably as a foam sheet, layer or
  • the mold (the pressing tool) is usually tempered, for example by electrical heating or heating by means of a heat transfer medium, and the press is usually provided with an ejector.
  • contour tools are particularly suitable good to produce such moldings that should have precisely shaped edges or edges, for example, profiled edges or edge lips.
  • Suitable presses are, for example, devices known to the person skilled in the art, for example conventional floor presses (single or multi-day presses), toggle presses, top presses, transfer presses (vacuum presses), vacuum presses and automatic presses. After pressing, the press is usually opened and the finished molded part with an ejector removed from the press. In the described method, foam blocks or plates are produced, which can be cut to any shapes.
  • the moldings can be used as such, d. H. with untreated, in particular uncoated surfaces.
  • one or more molding surfaces are provided with cover layers or laminated, for example with glass fiber or textile layers, in particular nonwovens or fabrics, metal sheets, fabrics or films, plastic layers, fabrics, nonwovens or foils, which are also foamed can.
  • cover layers for example with glass fiber or textile layers, in particular nonwovens or fabrics, metal sheets, fabrics or films, plastic layers, fabrics, nonwovens or foils, which are also foamed can.
  • textile layers nonwoven fabrics or fiber fabrics based on glass fibers, polyester fibers, carbon fibers, aramid fibers, or flame-retardant treated natural fibers can be used.
  • the cover layer or lamination can be applied in a customary manner to the molding surface, for example by bonding with suitable adhesives, in particular for nonwovens and fabrics, also by sewing, quilting, stapling, needling or riveting. You can apply the topcoat or lamination subsequently on the finished molding, or - preferably - attach already in the production of the molding. For example, during compression of the foam in step (4), the foam can be covered with appropriate cover layers or laminations and then pressed. You can also insert the cover layers or laminations in the mold and press with the foam.
  • multilayer laminations are also possible, for example by successive application of further layers to the finished molded part or already during the production of molded parts by pressing on one another superimposed layers which have previously been arranged in the desired sequence.
  • one or more molding surfaces are laminated with a hydrophobic or oleophobic textile layer.
  • Suitable hydrophobic textile layers are, for example, glass fibers, polyester fibers or polyamide fibers which are hydrophobic with paraffin, silicone or fluoroalkane emulsions.
  • the melamine / formaldehyde foam obtainable by the process according to the invention preferably has an open-cell structure with an open-cell content, measured according to DIN ISO 4590, of more than 50%, in particular more than 80%.
  • the mean pore diameter is preferably in the range of 10 to 1000 ⁇ m, in particular in the range of 50 to 600 ⁇ m.
  • the foam according to the invention is preferably elastic.
  • melamine / formaldehyde foam can be used in a variety of ways for heat and sound insulation in construction and automotive, ship and rail vehicle, the construction of spacecraft or in the upholstery industry, for example, for thermal insulation in building or as sound-insulating material, for example in automobiles, airplanes, trains, ships, etc. in passenger compartments or in the engine compartment or for upholstering seating and lying surfaces, as well as for back and armrests.
  • fields of application are in areas which require high temperature stability and low flammability, for example in pore burners.
  • the present invention therefore also relates to the use of a melamine / formaldehyde foam according to the invention for acoustic or thermal insulation in construction, in the automotive, ship and rail vehicle, the construction of spacecraft, in the upholstery industry or for the isolation of pipelines.
  • a lamination known in principle to those skilled in the art.
  • Such lamination or lamination can be done, for example, while maintaining the acoustic properties with so-called "open” systems, such as perforated plates, or even with "closed” systems, such as films or sheets of plastic, metal or wood, especially as mentioned above.
  • the melamine / formaldehyde foams according to the invention which contain from 0.01 to 50% by weight of at least one particulate filler, can be used for thermocompression.
  • stamp pressure measurements for assessing the mechanical quality of the melamine resin foams were made in accordance with US Pat. No. 4,666,948 A.
  • a cylindrical stamp having a diameter of 8 mm and a height of 10 cm was inserted into a cylindrical sample with a diameter of 11 cm and a height of 5 cm in the foaming at one Angle of 90 ° pressed until the sample cracked.
  • the breaking force [N] also referred to below as the stamp pressure value, provides information about the mechanical quality of the foam.
  • the obtained melamine / formaldehyde foam has a density of 7.2 g / l and a stamp pressure value of 19.9 N.
  • LDPE wax low-density polyethylene wax
  • a spray-dried melamine / formaldehyde precondensate (molar ratio 1: 3) were dissolved in 25 parts by weight of water, 3% by weight of formic acid, 2% by weight of a Na-Ci2 / Ci4- Alkyl sulfate, 20 wt .-% of pentane, wherein the wt .-% each based on the precondensate, and 25 parts by weight of LDPE wax, ground from Luwax A granules, grain size: 0.8 to 1, 2 mm, average Particle diameter 1.0 mm (d.sub.50 value, number average, determined by light or electron microscopy in conjunction with image evaluation), melting point: 101.degree.
  • melamine / formaldehyde precondensate 70 parts by weight of a spray-dried melamine / formaldehyde precondensate (molar ratio 1: 1, 6) and 5.25 parts by weight of urea are dissolved in water. 3% by weight of formic acid, 2% by weight of a Na-C 12 / C 14 -alkyl sulfate and 10% by weight of pentane, in each case based on the precondensate, are added to this resin solution. It is vigorously stirred and then foamed in a foaming mold made of polypropylene by irradiation of microwave energy. The foam was dried and then annealed in a hot air blower at 1 10 ° C for 10 min. The obtained melamine / formaldehyde foam has a density of 7.8 g / l and a plunger pressure value of 9.2 N.
  • a spray-dried melamine / formaldehyde precondensate (molar ratio 1: 3) were dissolved in 25 parts by weight of water, 3% by weight of formic acid, 2% by weight of a Na-Ci2 / Ci4- Alkyl sulfate, 20 wt .-% of pentane, wherein the wt .-% each based on the precondensate, and 25 parts by weight of LDPE wax (Luwax A, BASF SE, grain size: 0.3 to 0.7 mm, average Particle diameter 0.42 mm (d 50 value, number average, determined by light or electron microscopy in conjunction with image evaluation), melting point: 101-109 ° C. (DIN 51007, DSC) were added, then stirred and then in a polypropylene ( After foaming, the mixture was dried for 30 minutes and then tempered in a hot air blower at 220 ° C. for 10 minutes.
  • LDPE wax Liwax A,
  • the obtained melamine-formaldehyde foam has a density of 10.0 g / l and a stamping pressure of 20.1 N.
  • Example 1 and Comparative Examples VA and VB have almost identical formaldehyde emissions in the range of 0.02 to 0.03 ppm according to DIN 55666 ppm on.
  • the foam of Comparative Example VC has a formaldehyde emission of 0.08 ppm.
  • the formaldehyde emissions of the foams are thus below the limit of 0.1 ppm laid down in the Chemical Prohibition Ordinance ⁇ 1.
  • the annealed foams of Example 1 and Comparative Examples V-A, V-B and V-C were cut into 21 mm-thick plates.
  • the blank was covered on both its upper and lower sides with a hydrophobic textile fleece made from a mixture of PET and cellulose viscose fibers.
  • the textile nonwovens were equipped on one side with adhesive (polymer blend, phenolic resin, melamine resin). Thereafter, the individual components were pressed together in a contour tool for 60 seconds at a pressing temperature of 190 ° C. and a piston pressure of 45 bar (absolute). The individual foam segments were compressed by 25 to 100%. Subsequently, the moldings were removed from the pressing tool and assessed the contour accuracy and edge lip strength.
  • Comparative Examples V-A and V-B show an incomplete molding of the geometry of the pressing tool with non-closed edge lips, and were therefore useless. In contrast, the molding according to Example 1 shows a significant improvement in the contour accuracy and edge lip strength. Comparative Example V-C shows a very good impression of the geometry of the pressing tool with stable, closed edge lips. Comparative Example V-A shows that formaldehyde-rich melamine resins could also be used to produce low-formaldehyde molded parts. For this purpose, a tempering temperature of 240 ° C is required. However, the resulting molded article was rejected since it had insufficient edges. Comparative Example V-B shows that the particle size of the polymeric granules is an important size for thermocompression. The particle size in this comparative example is not in the range according to the invention. The thermoforming of this
  • Comparative Example V-C allows the preparation of thermoformable melamine resin foams, but the mechanical properties of these foams, determined by the stamping pressure, are significantly lower.
  • the examples show that, starting from melamine / formaldehyde precondensate having a molar ratio of formaldehyde: melamine greater than 2, thermoformable melamine / formaldehyde foams having good mechanical properties are accessible but which at the same time have low formaldehyde emissions, if at least one particulate filler material is used, which has a melting temperature of at most 220 ° C and a mean particle diameter of 5 ⁇ to 750 ⁇ .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Emergency Medicine (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

Die vorliegende Erfindung betrifft einen thermoverformbaren Melamin-/Formaldehyd-Schaumstoff, enthaltend 0,1 bis 50 Gew.-% wenigstens eines partikelförmigen Füllmaterials, wobei die Gew.-% auf das Gesamtgewicht aus zur Schaumstoffherstellung eingesetztem Melamin-/Formaldehyd-Vorkondensat und Füllmaterial bezogen sind, wobei das wenigstens eine partikelförmige Füllmaterial einen Schmelzpunkt von höchstens 220 °C und einen mittleren Teilchendurchmesser von 5 µm bis 750 µm aufweist, ein Verfahren zur Herstellung des thermoverformbaren Melamin-/Formaldehyd-Schaumstoffes, sowie die Verwendung des Melamin-/Formaldehyd-Schaumstoffes zur akustischen oder thermischen Isolierung im Bauwesen, im Automobil-, Schiffs- und Schienenfahrzeugbau, dem Bau von Raumfahrzeugen, in der Polsterindustrie oder zur Isolierung von Rohrleitungen.

Description

Thermoverformbarer Melaminharzschaumstoff mit partikelförmigem Füllmaterial Beschreibung Die vorliegende Erfindung betrifft thermokomprimierbare Melaminharzschaumstoffe, Verfahren zu deren Herstellung sowie deren Verwendung.
Offenzellige, elastische Schaumstoffe auf Basis von Melamin/Formaldehyd-Harzen sowie Verfahren zu ihrer Herstellung durch Erwärmen mit Heißluft, Wasserdampf oder Mikrowellenbe- Strahlung unter Aufschäumen und Vernetzen einer treibmittelhaltigen Lösung oder Dispersion eines Melamin/Formaldehyd-Vorkondensates sind bekannt und werden beispielsweise in EP-A 17672 und EP-A 37470 beschrieben.
Während sich einfache Formteile, beispielsweise Platten oder Streifen, aus dem Schaumstoff durch Schneiden oder Sägen herstellen lassen, sind für Formteile mit komplizierterer Raumform aufwändigere Formgebungsverfahren erforderlich. Solche kompliziert geformten Teile sind beispielsweise in Kraftfahrzeugen, beispielsweise Motorraumisolierung, oder Maschinen enthalten oder dienen als Rohrisolierung. Zur Herstellung solcher Teile offenbart die FR-A 1 108336, einen im aushärtenden Zustand befindlichen, aber noch verformbaren Schaum zu verpressen und anschließend den so verdichteten Schaum auszuhärten. Die US-A 3 504 064 und die EP-A 464 490 beschreiben Verfahren, bei denen der Schaum mit Wasser oder Wasserdampf behandelt und davor oder danach verformt wird. Die EP-A 1 1 1 860 beschreibt das Verpressen von Melaminharz-Schaumstoffen bei 60 bis 300 °C und mindestens 1 ,2 bar abs. Die nach den vorgenannten Verfahren erhaltenen Formteile aus Melamin/Formaldehyd-Harz enthalten Restmengen an nicht umgesetztem Formaldehyd, die über lange Zeit kontinuierlich an die Umgebungsluft abgegeben werden. Diese Formaldehyd-Emissionen steigen mit zunehmender Temperatur und Feuchte an. Sie sind unerwünscht und insbesondere bei Verwendung der Formteile in geschlossenen Räumen nachteilig.
Die WO 01/94436 lehrt ein Verfahren zur Herstellung von Melamin/Formaldehyd- Schaumstoffen mit verminderter Formaldehyd-Emission, wozu ein Melamin-/Formaldehyd- Vorkondensat mit einem Molverhältnis Formaldehyd : Melamin größer als 2:1 , eingesetzt wird. Die zu verschäumende, treibmittelhaltige Mischung wird durch Erhitzen zu beispielsweise qua- derförmigen Strängen oder Blöcken aufgeschäumt. Danach werden die expandierten Schaumblöcke 1 bis 180 min bei 120 bis 300 °C getempert und ausgehärtet. Die auf diese Weise erhaltenen Schaumstoffe sind zwar formaldehydarm, jedoch nicht thermoformbar.
Die EP-A 1 505 105 beschreibt ein Verfahren zur Herstellung von Formteilen aus Mela- min/Formaldehyd-Schaumstoffen mit geringer Formaldehyd-Emission, bei dem der Schaumstoff nach der Herstellung und vor dem Thermoformen bei Temperaturen zwischen 100 und 160 °C getempert wird. Die Schaumstoffe können in der Thermoverformung ein- oder beidseitig mit Deckschichten versehen oder kaschiert werden, beispielsweise mit Papier, Pappe, Glasvlies, Holz, Gipsplatten, Metallblechen oder -folien oder Kunststoff-Folien, die gegebenenfalls auch geschäumt sein können. Nach dem Pressen in einem Kontorwerkzeug wird eine gute Abfor- mung des Presswerkzeugs mit stabilen, geschlossenen, mechanisch belastbaren Randlippen erzielt.
Die WO06/134083 beschreibt ein Verfahren zur Herstellung thermoverformbarer Mela- min/Formaldehyd-Schaumstoffe mit geringer Formaldehydemission sowie die Herstellung von Formteilen durch Thermoformen. Die niedrigen Formaldehydemissionen werden durch Verwendung eines Melamin-/Formaldehyd-Vorkondensats mit einem Molverhältnis Melamin : For- maldehyd kleiner als 1 :2, sowie durch die Verwendung von Formaldehydfängern erzielt.
Aus der WO 2012/1 13740 ist das Verschäumen von partikelförmigen organischen oder anorganischen Füllmaterialien mit Melamin-Formaldehyd-Kondensationsprodukten beschrieben. Es können auf diese Weise gefüllte Melaminharzschaumstoffe bereitgestellt werden, die die guten mechanischen Eigenschaften der ungefüllten Schaumstoffe weitgehend erhalten. Des Weiteren weist diese Schrift darauf hin, dass die Schaumstoffblöcke bzw. -platten mit partikelförmigem Füllmaterial in einem weiteren Verfahrensschritt thermokomprimiert werden können.
In der WO 201 1/095409 werden beispielsweise Melamin/Formaldehyd-Schaumstoffe beschrie- ben, die Mikrokapseln mit einem mittleren Teilchendurchmesser von 0,5 - 100 μηη enthalten. Die Mikrokapseln sind dabei bevorzugt in die Knotenpunkte oder Stege der Schaumstruktur eingebaut.
In der WO 201 1/061 178 werden Melamin/Formaldehyd-Schaumstoffe beschrieben, die expan- dierte Mikrohohlkugeln mit einem mittleren Teilchendurchmesser von 70 - 250 μηη enthalten. Die Mikrohohlkugeln sind dabei bevorzugt in die Poren der Schaumstruktur eingebaut. Der Einbau in die Poren wird durch ein mehrstufiges Herstellverfahren erreicht, bei dem in einem ersten Schritt der Melamin/Formaldehyd-Schaumstoff hergestellt und in einem zweiten, zusätzlichen Imprägnierschritt die Mikrohohlkugeln in den Schaumstoff eingebracht werden.
Aufgabe der Erfindung war es, ausgehend von einem Melamin/Formaldehyd-Vorkondensat mit einem Molverhältnis Formaldehyd : Melamin größer als 2, einen entsprechenden thermover- formbaren Melamin/Formaldehyd-Schaumstoff bereitzustellen, der neben guten mechanischen Eigenschaften gleichzeitig, bevorzugt bereits vor dem Thermoformen zu Formteilen, geringe Formaldehyd-Emissionen von beispielsweise weniger als 0,1 ppm zeigt. Eine weitere Aufgabe der vorliegenden Erfindung ist es, ein Verfahren zur Herstellung dieses thermoverformbaren Schaumstoffes bzw. zur Herstellung von entsprechenden Formteilen bereitzustellen.
Diese Aufgaben werden erfindungsgemäß gelöst durch einen thermoverformbaren Melamin- /Formaldehyd-Schaumstoff, enthaltend 0,1 bis 50 Gew.-% wenigstens eines partikelförmigen Füllmaterials, wobei die Gew.-% auf das Gesamtgewicht aus zur Schaumstoffherstellung eingesetztem Melamin-/Formaldehyd-Vorkondensat und Füllmaterial bezogen sind, wobei das we- nigstens eine partikelförmige Füllmaterial einen Schmelzpunkt von höchstens 220 °C und einen mittleren Teilchendurchmesser von 5 μηη bis 750 μηη aufweist.
Die erfindungsgemäßen thermoverformbaren Melamin-/Formaldehyd-Schaumstoffe enthalten 0,1 bis 50 Gew. %, bevorzugt 1 bis 40 Gew. %, besonders bevorzugt 5 bis 35 Gew. %, ganz besonders bevorzugt 10 bis 30 Gew.% eines oder mehrerer, also 1 bis 10, bevorzugt 1 bis 5, besonders bevorzugt 1 bis 3, insbesondere 1 oder 2, ganz besonders bevorzugt 1 partikelförmiger Füllmaterialien, wobei die Gew.-% jeweils auf das Gesamtgewicht aus zur Schaumstoffherstellung eingesetztem Melamin-/Formaldehyd-Vorkondensat und partikelförmigen Füllmate- rial bezogen sind.
Die partikelförmigen Füllmaterialien haben erfindungsgemäß einen mittleren Teilchendurchmesser von 5 μηη bis 750 μηη, bevorzugt 50 bis 600 μηη, besonders bevorzugt 100 bis 500 μηη (d5o-Wert, zahlengemittelt, bestimmt mittels Licht-oder Elektronenmikroskopie in Verbindung mit Bildauswertung). Die Teilchengrößenverteilung der partikelförmigen Füllmaterialien kann mono- , bi- oder multimodal sein.
Die vorliegende Erfindung betrifft daher den erfindungsgemäßen thermoverformbaren Melamin- /Formaldehyd-Schaumstoff, wobei das wenigstens eine partikelförmige Füllmaterial einen mitt- leren Teilchendurchmesser von 5 μηη bis 750 μηη, bevorzugt 50 μηη bis 600 μηη, besonders bevorzugt 100 μηη bis 500 μηη (dso-Wert, zahlengemittelt, bestimmt mittels Licht-oder Elektronenmikroskopie in Verbindung mit Bildauswertung), aufweist.
Die einzelnen Partikel der partikelförmigen Füllmaterialien können selbst aus kleineren agglo- merierten Teilchen, welche oftmals als Primärpartikel bezeichnet werden, aufgebaut sein. Beispielsweise können die partikelförmigen Füllmaterialien in Form von Agglomerat-Partikeln mit den vorstehend beschriebenen Teilchendurchmessern eingesetzt werden, wobei jedes Agglomerat aus kleineren Primärpartikeln besteht. Solche in Agglomeratform vorliegenden Partikel sind dem Fachmann grundsätzlich bekannt und in der Literatur beschrieben. Sie lassen sich beispielsweise durch Zugabe von Agglomerisierungshilfsmitteln zu den Primärpartikeln und anschließendes Vermischen erhalten.
Die Füllmaterialien liegen erfindungsgemäß in Partikelform vor, bevorzugt liegt das Verhältnis der längsten Raumachse zur kürzesten Raumachse der Partikel im Bereich von 4:1 bis 1 :1 , besonders bevorzugt sind sphärische Füllmaterialien.
Als partikelförmige Füllmaterialien kommen grundsätzlich alle Stoffe in Betracht, bevorzugt dem Fachmann bekannte und in der Literatur beschriebene organische Oligomere und Polymere. Die vorliegende Erfindung betrifft daher bevorzugt den erfindungsgemäßen thermoverformbaren Melamin-/Formaldehyd-Schaumstoff, wobei als wenigstens ein partikelförmiges Füllmaterial organische Oligomere oder Polymere eingesetzt werden. Die erfindungsgemäß bevorzugt als partikelförmige Füllmaterialien eingesetzten organischen Oligomere oder Polymere weisen ein Molekulargewicht von beispielsweise 1000 bis 1 .000.000 g/mol, bevorzugt 1 .000 bis 100.000 g/mol, besonders bevorzugt 2.000 bis 50.000 g/mol, insbesondere 2.000 bis 20.000 g/mol, auf.
Die erfindungsgemäß eingesetzten partikelförmigen Füllmaterialien weisen einen Schmelzpunkt von höchstens 220 °C, bevorzugt höchstens 200 °C, besonders bevorzugt höchstens 180 °C, auf. Die erfindungsgemäß eingesetzten partikelförmigen Füllmaterialien weisen im Allgemeinen einen Schmelzpunkt von wenigstens 100 °C auf.
In dem erfindungsgemäßen thermoverformbaren Melamin-/Formaldehyd-Schaumstoff weist das wenigstens eine partikelförmige Füllmaterial einen mittleren Teilchendurchmesser von 5 μηη bis 750 μηη, bevorzugt 50 μηη bis 600 μηη, besonders bevorzugt 100 μηη bis 500 μηη (dso-Wert, zah- lengemittelt, bestimmt mittels Licht- oder Elektronenmikroskopie in Verbindung mit Bildauswer- tung), und einen Schmelzpunkt von höchstens 220 °C, bevorzugt höchstens 200 °C, besonders bevorzugt höchstens 180 °C, auf.
Der erfindungsgemäß wesentliche Schmelzpunkt in Kombination mit den erfindungsgemäß bevorzugten Partikelgrößen des wenigstens einen partikelförmigen Füllmaterials, bevorzugt der organischen Oligomere oder Polymere, führt zu einem Aufschmelzen der Polymerpartikel während des Thermoformprozesses, so dass erfindungsgemäß ein thermoverformbarer Mela- min/Formaldehyd-Schaumstoff aus einem nicht thermoformbaren Duroplasten erhalten wird, der eine sehr gute Thermoformbarkeit aufweist und nach dem Thermoverformen, eine besonders vorteilhafte Kombination aus hoher Randlippenfestigkeit, guten mechanischen Eigenschaf- ten und niedriger Formaldehydemission aufweist
Entsprechend geeignete organische Oligomere und Polymere mit einem erfindungsgemäß geeigneten Schmelzpunkt von höchstens 220 °C sind beispielsweise ausgewählt aus der Gruppe bestehend aus Polyethylen, beispielsweise LDPE-Wachs, Polypropylen, Polystyrol, Polyestern, Polcarbonaten, Polyamiden, thermoplastischen Elastomeren, beispielsweise thermoplastisches Polyurethan, und Mischungen davon.
In Ullmann's Encyclopedia of Industrial Chemistry (Wiley) finden sich folgende Kapitel zu den genannten thermoplastischen Materialien: a) Polyethylene, Edition 6, Vol. 28, 2003, S. 393 - 427; b) Polypropylene, Edition 6, Vol. 28, 2003, S. 428 - 461 ; c) Polyesters, Edition 6, Vol. 28, 2003, S. 75 -102; d) Polycarbonates, Edition 6, Vol. 28, 2003, S. 55 - 63; e) Polyamides, Edition 6, Vol. 28, 2003, S. 25 - 54; f) Polyurethanes: Edition 6, Vol. 28, 2003, S. 667 - 722; g) Polysty- rene and Styrene Copolymers, Edition 6, Vol. 28, 2003, S. 455 - 488 und h) Thermoplastic Elastomers, Edition 6, Vol. 36, 2003, S. 667 - 722.
Erfindungsgemäß besonders bevorzugt sind partikelförmige Füllmaterialien, die aufgrund ihres Schmelzpunktes von höchstens 220 °C im Thermoverformungsschritt aufschmelzen, eine nied- rige Fließviskosität aufweisen und eine gleichmäßige Beschichtung der dreidimensionalen, of- fenzelligen Stegstruktur erlauben.
Als besonders bevorzugtes Beispiel sei LDPE-(Low Density Polyethylene)-Wachs, erhältlich unter dem Handelsnamen LUWAX A von der BASF SE, insbesondere mit einem mittleren Teilchendurchmesser von 50 bis 600 μηη, beispielsweise 0,42 mm, (jeweils dso-Wert, zahlengemit- telt, bestimmt mittels Licht- oder Elektronenmikroskopie in Verbindung mit Bildauswertung), erwähnt. Bei den erfindungsgemäßen Melamin/-Formaldehyd-Schaumstoffen handelt es sich im Allgemeinen um ein offenzelliges Schaumstoffgerüst, welches eine Vielzahl miteinander verbundener, dreidimensional verzweigter Stege enthält und bei denen die partikelförmigen Füllstoffe bevorzugt in die Porenstruktur eingebettet sind. Die Partikelgröße entspricht vorzugsweise dem mittleren Porendurchmesser der Schaumstruktur, wobei dieser mittlere Porendurchmesser be- vorzugt im Bereich von 10 μηη bis 1000 μηη, insbesondere im Bereich von 50 μηη bis 600 μηη liegt (dso-Wert, zahlengemittelt, bestimmt mittels Licht-oder Elektronenmikroskopie in Verbindung mit Bildauswertung). Die partikelförmigen Füllstoffe können somit in idealer Weise in die Porenstruktur des offenzelligen Schaumstoffs eingebunden und von allen Seiten des Porengerüstes fixiert werden. Eine derartige Struktur kann durch nachträgliches Imprägnieren des Schaumstoffs mit Füllmaterialien nicht erzeugt werden, da hierfür die Teilchengröße der Füllstoffe immer so gewählt werden muss, dass die Teilchengröße kleiner als die Porengröße des Schaumstoffs ist, um eine Verteilung im gesamten Schaumstoff zu gewährleisten.
Die vorliegende Erfindung betrifft daher bevorzugt den erfindungsgemäßen thermoverformba- ren Melamin-/Formaldehyd-Schaumstoff, wobei das wenigstens eine partikelförmige Füllmaterial in die Porenstruktur des Schaumstoffs eingebettet ist und der mittlere Teilchendurchmesser dem mittleren Porendurchmesser der Schaumstruktur entspricht.
Die zur Herstellung der erfindungsgemäßen Melamin-Formaldehyd-Schaumstoffe eingesetzten Melamin-Formaldehyd-Vorkondensate weisen in der Regel ein Molverhältnis von Formaldehyd zu Melamin größer 2, bevorzugt 2,5:1 bis 3,5:1 auf.
Diese Melamin/Formaldehyd-Kondensationsprodukte können neben Melamin 0 bis 50 Gew.-%, bevorzugt 0 bis 40 Gew.-%, besonders bevorzugt 0 bis 30 Gew.-%, insbesondere 0 bis 20 Gew.-%, jeweils bezogen auf das Melamin-/Formaldehyd-Vorkondensat,, anderer Duroplastbildner und neben Formaldehyd 0 bis 50 Gew.-%, bevorzugt 0 bis 40 Gew.-%, besonders bevorzugt 0 bis 30 Gew.-%, insbesondere 0 bis 20 Gew.-%, jeweils bezogen auf das Melamin- /Formaldehyd-Vorkondensat, anderer Aldehyde ein kondensiert enthalten. Bevorzugt sind un- modifizierte Melamin/Formaldehyd-Vorkondensate.
Als Duroplastbildner eignen sich beispielsweise alkyl- und arylsubstituiertes Melamin, Harnstoff, Urethane, Carbonsäureamide, Dicyandiamid, Guanidin, Sulfurylamid, Sulfonsäureamide, aliphatische Amine, Glykole, Phenol oder deren Derivate. Als Aldehyde eignen sich beispielsweise Acetaldehyd, Trimethylolacetaldehyd, Acrolein, Benzaldehyd, Furfural, Glyoxal, Glutaraldehyd, Phthalaldehyd, Terephthalaldehyd oder deren Gemische. Weitere Einzelheiten über Melamin/Formaldehyd-Kondensationsprodukte finden sich in Houben-Weyl, Methoden der organischen Chemie, Band 14/2, 1963, Seiten 319 bis 402.
Die vorliegende Erfindung betrifft des Weiteren den erfindungsgemäßen Melamin- /Formaldehyd-Schaumstoff, wobei dieser eine Formaldehydemission, gemessen nach DIN 55666, von 0,1 ppm oder weniger aufweist.
Die erfindungsgemäßen Melamin-/Formaldehyd-Schaumstoffe lassen sich wie folgt herstellen:
Die partikelförmigen Füllmaterialien können bereits vor und/oder während der Harzsynthese aus Melamin und Formaldehyd, bevorzugt jedoch dem vorgefertigten Melamin/Formaldehyd- Kondensat vor und/oder während des Schäumprozesses, zugefügt werden.
Bevorzugt können ein Melamin-Formaldehyd-Vorkondensat und ein Lösungsmittel mit einer Säure, einem Dispergiermittel, einem Treibmittel und wenigstens einem entsprechenden partikelförmigem Füllmaterial bei Temperaturen oberhalb der Siedetemperatur des Treibmittels ver- schäumt, getrocknet und anschließend bei einer Temperatur oberhalb 200°C werden.
Die vorliegende Erfindung betrifft daher des Weiteren ein Verfahren zur Herstellung eines erfindungsgemäßen thermoverformbaren Melamin-/Formaldehyd-Schaumstoffes, wobei wenigstens ein Melamin-Formaldehyd-Vorkondensat in einem Lösungsmittel mit einer Säure, einem Dis- pergiermittel, einem Treibmittel und wenigstens einem partikelförmigen Füllmaterial bei Temperaturen oberhalb der Siedetemperatur des Treibmittels verschäumt, getrocknet und anschließend bei einer Temperatur oberhalb von 200°C getempert wird.
Als Melamin-/Formaldehyd-Vorkondensate eignen sich eigens hergestellte, siehe dazu folgende Übersichtsschriften: a) W. Woebcken, Kunststoffhandbuch 10. Duroplaste, München, Wien
1988, b) Encyclopedia of Polymer Science and Technology, 3. Aufl., Vol.1 , Kap. Amino Resins, S. 340 bis 370, 2003 c) Ullmann's Encyclopedia of Industrial Chemistry, 6. Aufl., Vol. 2, Kap. Amino Resins, S. 537 bis 565. Weinheim 2003, oder handelsübliche Vorkondensate der beiden Komponenten Melamin und Formaldehyd. Die Melamin-Formaldehyd-Vorkondensate weisen in der Regel ein Molverhältnis von Formaldehyd zu Melamin größer 2, bevorzugt 2,5 : 1 bis 3,5 : 1 auf.
Eine bevorzugte Verfahrensvariante zur Herstellung des erfindungsgemäßen thermoverformbaren Melamin/Formaldehyd-Schaumstoffes umfasst die Stufen:
(1 ) Herstellen einer Suspension enthaltend ein Melamin/Formaldehyd-Vorkondensat des herzustellenden Schaumstoffs, entsprechende partikelförmige Füllstoffe und gegebenenfalls weitere Zusatzkomponenten, (2) Aufschäumen des Vorkondensates durch Erhitzen der Suspension aus Schritt (1 ) auf eine Temperatur oberhalb der Siedetemperatur des Treibmittels,
(3) Trocknen und Tempern des aus Schritt (2) erhaltenen Schaumstoffs. Die vorliegende Erfindung betrifft auch des Weiteren ein Verfahren zur Herstellung von Formteilen durch Thermoformen eines erfindungsgemäßen thermoverformbaren Schaumstoffs.
Bevorzugt wird zur Herstellung eines Formteils aus dem erfindungsgemäßen thermoverformbaren Melamin/Formaldehyd-Schaumstoff der in Schritt (3) des oben genannten Verfahrens erhal- tene Schaumstoff in Schritt (4) überführt:
(4) Thermoverformung des aus Schritt (3) erhaltenen Schaumstoffs.
Das erfindungsgemäße Verfahren zur Herstellung eines Formteils umfasst daher bevorzugt die Schritte (1 ), (2), (3) und (4).
Die einzelnen Schritte des erfindungsgemäßen Verfahrens und die verschiedenen Variationsmöglichkeiten werden nachfolgend näher ausgeführt. Es können bei der Herstellung des Melamin-/Formaldehyd-Vorkondensates in Schritt (1 ) Alkohole, beispielsweise Methanol, Ethanol oder Butanol zugesetzt werden, um teilweise oder vollständig veretherte Kondensate zu erhalten. Durch die Bildung der Ethergruppen können die Löslichkeit des Melamin-/Formaldehyd-Vorkondensates und die mechanischen Eigenschaften des vollständig ausgehärteten Materials beeinflusst werden.
Als Dispergiermittel bzw. Emulgator können anionische, kationische und nicht ionische Tenside sowie Mischungen davon eingesetzt werden.
Geeignete anionische Tenside sind beispielsweise ausgewählt aus der Gruppe bestehend aus Diphenylenoxidsulfonat, Alkan- und Alkylbenzolsulfonaten, Alkylnaphthalinsulfonaten, Olefinsul- fonaten, Alkylethersulfonaten, Fettalkohol-sulfaten, Ethersulfaten, a-Sulfofettsäureestern, Acylaminoalkansulfonaten, Acylisothionaten, Alkylethercarboxylaten, N-Acylsarcosinaten, Alkyl- und Alkylether-phosphaten und Mischungen davon. Geeignete nicht ionische Tenside sind beispielsweise ausgewählt aus der Gruppe bestehend aus Alkylphenolpolyglykolethern, Fettalkoholpolyglykolethern, Fettsäurepolyglykolethern, Fett- säurealkanolamiden, Ethylenoxid/-Propylenoxid-Blockcopolymeren, Aminoxiden, Glycerin- fettsäureestern, Sorbitanestern, Alkylpolyglykosiden und Mischungen davon.
Geeignete kationische Emulgatoren sind beispielsweise ausgewählt aus der Gruppe bestehend aus Alkyltriammoniumsalzen, Alkylbenzyldimethylammoniumsalzen, Alkylpyridiniumsalzen und Mischungen davon. Die Dispergiermittel bzw. Emulgatoren können in Mengen von 0,2 bis 5 Gew.-%, bezogen auf das Melamin-/Formaldehyd-Vorkondensat, eingesetzt werden.
Die Dispergiermittel bzw. Emulgatoren und/oder Schutzkolloide können im Prinzip zu einem beliebigen Zeitpunkt zur Rohdispersion gegeben werden.
Abhängig von der Wahl des Melamin-/Formaldehyd-Vorkondensates enthält die Mischung ein Treibmittel. Dabei richtet sich die Menge des Treibmittels in der Mischung in der Regel nach der erwünschten Dichte des Schaumstoffs.
Als Treibmittel eignen sich„physikalische" oder„chemische" Treibmittel, siehe Encyclopedia of Polymer Science and Technology, Vol. I, 3. Aufl., Kapitel Additives, Seite 203 bis 218, 2003.
Als„physikalische" Treibmittel eignen sich beispielsweise Kohlenwasserstoffe, wie Pentan, He- xan, halogenierte, insbesondere chlorierte und/oder fluorierte, Kohlenwasserstoffe, beispielsweise Methylenchlorid, Chloroform, Trichlorethan, Fluorchlorkohlenwasserstoffe, teilhalogenier- te Fluorchlorkohlenwasserstoffe (H-FCKW), Alkohole, beispielsweise Methanol, Ethanol, n- o- der iso-Propanol, Ether, Ketone und Ester, beispielsweise Ameisensäuremethylester, Ameisen- säureethylester, Essigsäuremethylester oder Essigsäureethylester in flüssiger Form oder Luft, Stickstoff oder Kohlendioxid als Gase.
Als„chemische" Treibmittel eignen sich beispielsweise Isocyanate im Gemisch mit Wasser, wobei als wirksames Treibmittel Kohlendioxid freigesetzt wird. Ferner sind Carbonate und Bi- carbonate im Gemisch mit Säuren geeignet, welche ebenfalls Kohlendioxid erzeugen. Auch geeignet sind Azoverbindungen, beispielsweise Azodicarbonamid.
Gemäß der vorliegenden Erfindung enthält die Mischung im Allgemeinen wenigstens ein Treibmittel in einer Menge von 0,5 bis 60 Gew.-%, bevorzugt 1 bis 40 Gew.-%, besonders bevorzugt 1 ,5 bis 30 Gew.-%, jeweils bezogen auf das Melamin-/Formaldehyd-Vorkondensat.
Erfindungsgemäß bevorzugt wird ein physikalisches Treibmittel mit einem Siedepunkt zwischen 0 und 80 °C zugesetzt.
Als Härter können Säuren eingesetzt werden, die die Weiterkondensation des Melaminharzes katalysieren. Die Menge dieser Härter beträgt in der Regel 0,01 bis 20 Gew.-%, bevorzugt 0,05 und 5 Gew.-%, jeweils bezogen auf das Vorkondensat. Geeignete Säuren sind anorganische und organische Säuren, zum Beispiel ausgewählt aus der Gruppe bestehend aus Salzsäure, Schwefelsäure, Phosphorsäure, Salpetersäure, Ameisensäure, Essigsäure, Oxalsäure, Tolu- olsulfonsäuren, Amidosulfonsäuren, Säureanhydride und Mischungen davon.
In einer weiteren Ausführungsform enthält die Mischung neben dem Melamin-/Formaldehyd- Vorkondensat des herzustellenden Schaumstoffes und den entsprechenden Füllmaterialien auch einen Emulgator sowie gegebenenfalls einen Härter und gegebenenfalls ein Treibmittel. In einer weiteren Ausführungsform ist die Mischung frei von weiteren Zusatzstoffen. Für manche Zwecke kann es jedoch günstig sein, 0,1 bis 20 Gew.-%, bevorzugt 0,1 bis 10 Gew.%, bezogen auf das Melamin-/Formaldehyd-Vorkondensat, an üblichen, von den partikelförmigen Füllmaterialien verschiedenen Zusatzstoffen, beispielsweise Fasern, Farbstoffe, Flammschutzmittel, UV-Stabilisatoren, Mittel zur Herabsetzung der Brandgastoxizitat oder zur Förderung der Verkohlung, Duftstoffe, optische Aufheller oder Pigmente zuzusetzen. Diese Zusatzstoffe sind bevorzugt homogen in dem Schaumstoff verteilt. Als Farbstoffe werden bevorzugt wasserlösliche Farbstoffe, beispielsweise Metallkomplexfarbstoffe, eingesetzt. Diese Farbstoffe können zuvor mit den Füllmaterialien vermengt werden.
Im nachfolgenden Schritt (2) des erfindungsgemäßen Verfahrens erfolgt das Aufschäumen des Vorkondensates im Allgemeinen durch Erhitzen der Suspension des Melamin-/Formaldehyd- Vorkondensates und des wenigstens einen partikelförmigen Füllmaterials aus Schritt (1 ), um einen Schaumstoff zu erhalten, der das wenigstens eine partikelförmige Füllmaterial enthält. Dazu wird die Suspension in der Regel auf eine Temperatur oberhalb des Siedepunktes des verwendeten Treibmittels erwärmt und in einer geschlossenen Form verschäumt. Bevorzugt kann der Energieeintrag durch elektromagnetische Strahlung erfolgen, beispielsweise durch Hochfrequenzbestrahlung mit 5 bis 400 kW, bevorzugt 5 bis 200 kW, besonders bevorzugt 9 bis 120 kW, jeweils pro Kilogramm der eingesetzten Mischung, in einem Frequenzbereich von 0,2 bis 100 GHz, bevorzugt 0,5 bis 10 GHz. Als Strahlungsquelle für dielektrische Strahlung sind Magnetrone geeignet, wobei mit einem oder mehreren Magnetronen gleichzeitig bestrahlt werden kann.
In Schritt (3) des erfindungsgemäßen Verfahrens wird der in Schritt (2) erhaltene Schaumstoff bei einer Temperatur oberhalb 200 °C getempert. Bevorzugt beträgt die Tempertemperatur 200 bis 280 °C, insbesondere 220 bis 260 °C. Beim Tempern findet eine sog. Nachhärtung statt, d. h., dass der Schaumstoff weiter aushärtet. Außerdem können durch das Tempern Reste flüchtiger Inhaltsstoffe, beispielsweise Monomerreste, Treibmittel und sonstige Hilfsmittel, weitgehend entfernt werden.
Die Dichte des thermoverformbaren Schaumstoffs beträgt im Allgemeinen 3 bis 50 kg/m3, be- vorzugt 5 bis 40 kg/m3, besonders bevorzugt 8 bis 30 kg/m3, insbesondere bevorzugt 10 bis 25 kg/m3.
In Schritt (4) des erfindungsgemäßen Verfahrens wird der in Schritt (3) erhaltene, getemperte Schaumstoff, bevorzugt in einer Presse, thermoverformt, d. h. verpresst.
Schritt (4) des erfindungsgemäßen Verfahrens erfolgt im Allgemeinen bei einer Temperatur von 160 bis 240 °C, vorzugsweise 170 bis 210 °C. Schritt (4) des erfindungsgemäßen Verfahrens erfolgt im Allgemeinen bei einem Absolutdruck im Presswerkzeug von 0,001 bis 100 bar, vorzugsweise 0,02 bis 1 bar.
Das Thermoverformen gemäß Schritt (4) des erfindungsgemäßen Verfahrens erfolgt im Allge- meinen innerhalb von 15 bis 120 sec.
Besonders bevorzugt wird in Schritt (4) des erfindungsgemäßen Verfahrens bei einer Temperatur (Presstemperatur) von 180 bis 200 °C, und einem Absolutdruck (Pressdruck) von 0,03 bis 0,5 bar verpresst. Die besonders bevorzugte Presszeit beträgt 30 bis 60 sec.
Die Konturgenauigkeit wird in dem erfindungsgemäßen Verfahren optional dadurch verbessert, dass das noch geschlossene Presswerkzeug nach der Hochtemperaturphase mittels geeigneter Kühlmedien abgekühlt wird. Die dazu erforderlichen Kühlkanäle können äquidistant zur Werk- zeugkavität angeordnet werden, oder beispielsweise bei Bauteilen mit unterschiedlichen Dicken in den Bereichen größerer Bauteildicken vorzugsweise näher und in den Bereichen kleiner Bauteildicken in größeren Abständen zur Kavität angesiedelt werden. Als Kühlmedien eignen sich Wasser bei Werkzeugtemperaturen < 100 °C bzw. Öle bei Temperaturen > 100 °C.
Die im Einzelfall zu wählenden Presstemperaturen, -drücke und -zeiten richten sich in üblicher Weise nach der Zusammensetzung des Schaums, beispielsweise nach Art und Menge des Härters, und nach der Dichte, Dicke und Härte des zu verpressenden Schaums, beispielsweise auch nach der Vorbehandlung des Schaums, zu der auch das Tempern in Schritt (3) gehört. Außerdem sind u.a. die Dichte, Dicke, Gestalt und Härte des gewünschten Formteils, und ggf. vorhandene Kaschierungen bzw. Deckschichten, siehe unten, zu berücksichtigen. Presstempe- ratur, -druck und -zeit sind bevorzugt derart einzustellen, dass das in Schritt (4) erhaltene Formteil im Wesentlichen bereits die gewünschte, endgültige Raumform aufweist.
Dabei erfordern möglicherweise Formteile mit großer Fläche bzw. großem Volumen eine längere Presszeit als kleinere Formteile. Außerdem kann der Pressdruck ggf. umso höher und/oder die Presszeit umso länger sein, je härter bzw. dicker der getemperte Schaum ist, und höher die gewünschte Dichte des fertigen Formteils sein soll. Presstemperatur und Pressdruck können über die gesamte Presszeit konstant sein, oder in geeigneter Weise variiert werden. Im Allgemeinen wird bei konstanten Bedingungen verpresst, jedoch können insbesondere bei großen oder kompliziert geformten Teilen auch Temperatur- oder Druckprogramme vorteilhaft sein.
Das Thermoverformen, d. h. Verpressen, gemäß Schritt (4) geschieht in üblicher weise und bevorzugt diskontinuierlich, indem man den in Schritt (3) des erfindungsgemäßen Verfahrens erhaltenen getemperten Schaumstoff - bevorzugt als Schaumstoffplatte, -schicht bzw.
-zuschnitt - in eine geeignete Presse einlegt und verpresst. Die Pressform (das Presswerkzeug) ist in der Regel temperierbar, beispielsweise durch elektrische Beheizung oder Beheizung mittels eines Wärmeträgermediums, und die Presse ist üblicherweise mit einer Auswurfvorrichtung versehen. Gut geeignet als Pressform sind sog. Konturwerkzeuge, mit denen sich besonders gut solche Formteile herstellen lassen, die präzise geformte Kanten bzw. Ränder, beispielsweise profilierte Kanten oder Randlippen, aufweisen sollen.
Geeignete Pressen sind beispielsweise dem Fachmann bekannte Vorrichtungen, beispielswei- se übliche Etagenpressen (Ein- oder Mehretagenpressen), Kniehebelpressen, Oberdruckpressen, Spritzpressen (Transferpressen), Unterdruckpressen, sowie Pressautomaten. Nach dem Verpressen wird üblicherweise die Presse geöffnet und das fertige Formteil mit einer Auswurfvorrichtung aus der Presse entfernt. Bei dem beschriebenen Verfahren entstehen Schaumstoffblöcke bzw. -platten, die zu beliebigen Formen zurechtgeschnitten werden können.
Die Formteile können als solche verwendet werden, d. h. mit unbehandelten, insbesondere un- kaschierten Oberflächen. In einer bevorzugten Ausführungsform sind eine oder mehrere Formteiloberflächen mit Deckschichten versehen oder kaschiert, beispielsweise mit Glasfaser- oder Textilschichten, insbesondere Vliesen oder Geweben, Metallblechen, -geweben oder -folien, Kunststoffschichten, -geweben, -vliesen oder -folien, die auch geschäumt sein können. Als Textilschichten sind Faservliese bzw. Fasergewebe auf Basis von Glasfasern, Polyesterfasern, Carbonfasern, Aramidfasern, oder flammwidrig ausgerüstete Naturfasern verwendbar.
Die Deckschicht bzw. Kaschierung kann in üblicher Weise auf die Formteiloberfläche aufgebracht werden, beispielsweise durch Verkleben mit dazu geeigneten Klebern, insbesondere bei Vliesen und Geweben auch durch Vernähen, Versteppen, Tackern, Nadeln oder Vernieten. Man kann die Deckschicht bzw. Kaschierung nachträglich auf das fertige Formteil aufbringen, oder - bevorzugt - bereits bei der Herstellung des Formteils anbringen. Beispielsweise kann man beim Verpressen des Schaumstoffs in Schritt (4), den Schaumstoff mit entsprechenden Deckschichten bzw. Kaschierungen abdecken und danach verpressen. Man kann auch die Deckschichten bzw. Kaschierungen in die Pressform einlegen und mit dem Schaumstoff verpressen. Soll beispielsweise ein flächiges Formteil auf seiner Unterseite mit einem Vlies A und auf seiner Oberseite mit einem Vlies B kaschiert werden, so kann man die Schichten in der Reihenfolge A-S-B anordnen und anschließend verpressen (S = Schaumstoffschicht), wodurch in einem Arbeitsgang das beidseitig kaschierte Formteil entsteht.
Es versteht sich, dass auch mehrschichtige Kaschierungen möglich sind, beispielsweise durch sukzessives Aufbringen weiterer Schichten auf das fertige Formteil oder bereits bei der Formteilherstellung durch Verpressen aufeinanderliegender Schichten, die zuvor in der gewünschten Reihenfolge angeordnet wurden. Natürlich kann man auch eine erste Kaschierung beim Verpressen, und eine zusätzliche Kaschierung nachträglich anbringen. Besonders bevorzugt sind eine oder mehrere Formteiloberflächen mit einer hydrophoben oder oleophoben Textilschicht kaschiert. Als hydrophobe Textilschicht eignen sich beispielsweise Glasfasern, Polyesterfasern oder Polyamidfasern, die mit Paraffin-, Silikon- oder Fluoralkanemulsionen hydrophob ausgerüstet sind. Als oleophobe Textilschicht kommen beispielsweise Glasfasern, Polyesterfasern oder Polyamidfasern, die mit Fluoralkanemulsionen oleophob ausgerüstet sind, in Betracht. Der nach dem erfindungsgemäßen Verfahren erhältliche Melamin-/Formaldehyd-Schaumstoff hat bevorzugt eine offenzellige Struktur mit einer Offenzelligkeit, gemessen nach DIN ISO 4590, von mehr als 50%, insbesondere mehr als 80%.
Der mittlere Porendurchmesser liegt bevorzugt im Bereich von 10 bis 1000 μηη, insbesondere im Bereich von 50 bis 600 μηη.
Der erfindungsgemäße Schaumstoff ist bevorzugt elastisch.
Der nach dem erfindungsgemäßen Verfahren erhältliche Melamin-/Formaldehyd-Schaumstoff kann auf vielfältige Weise zur Wärme- und Schalldämmung im Bauwesen und im Automobil-, Schiffs- und Schienenfahrzeugbau, dem Bau von Raumfahrzeugen oder in der Polsterindustrie eingesetzt werden, beispielsweise zur Wärmedämmung im Hausbau oder als schalldämmen- des Material, beispielsweise in Automobilen, Flugzeugen, Bahnen, Schiffen, etc. in Fahrtgastzellen oder im Motorraum oder zur Bepolsterung von Sitz- und Liegeflächen sowie für Rücken- und Armlehnen. Vorzugsweise liegen Anwendungsfelder in Bereichen, die eine hohe Temperaturstabilität und geringe Entflammbarkeit voraussetzen, beispielsweise in Porenbrennern. Die vorliegende Erfindung betrifft daher auch die Verwendung eines erfindungsgemäßen Mela- min-/Formaldehyd-Schaumstoffes zur akustischen oder thermischen Isolierung im Bauwesen, im Automobil-, Schiffs- und Schienenfahrzeugbau, dem Bau von Raumfahrzeugen, in der Polsterindustrie oder zur Isolierung von Rohrleitungen. Für bestimmte Anwendungsbereiche kann es vorteilhaft sein, die Oberfläche der erfindungsgemäßen Schaumstoffe mit einer dem Fachmann grundsätzlich bekannten Kaschierung oder La- minierung zu versehen. Solche Kaschierungen oder Laminierungen können beispielsweise unter weitgehender Erhaltung der akustischen Eigenschaften mit sogenannten„offenen" Systemen, wie beispielweise Lochplatten erfolgen, oder aber auch mit„geschlossenen" Systemen, beispielsweise Folien oder Platten aus Kunststoff, Metall oder Holz, insbesondere wie oben genannt.
Die erfindungsgemäßen Melamin-/Formaldehyd-Schaumstoffe, die 0,01 bis 50 Gew.-% wenigstens eines partikelförmigen Füllmaterials enthalten, können zur Thermokomprimierung einge- setzt werden.
Beispiele:
Die im Folgenden genannten Stempeldruckmessungen zur Beurteilung der mechanischen Güte der Melaminharzschaumstoffe erfolgten nach US 4,666,948 A. Dazu wurde ein zylindrischer Stempel mit einem Durchmesser von 8 mm und einer Höhe von 10 cm in eine zylindrische Probe mit dem Durchmesser von 1 1 cm und einer Höhe von 5 cm in Schäumrichtung bei einem Winkel von 90° gedrückt, bis die Probe riss. Die Durchreißkraft [N], im Folgenden auch Stempeldruckwert genannt, gibt Auskunft über die mechanische Güte des Schaumstoffs.
Vergleichsbeispiel V-A
Herstellung eines Melamin-/Formaldehyd-Schaumstoffes mit einem Melamin-/Formaldehyd- Vorkondensat (Molverhältnis 1 : 3,0) ohne Füllmaterialien 75 Gew.-Teile eines sprühgetrockneten Melamin-/Formaldehyd-Vorkondensates (Molverhältnis 1 :3) wurden in 25 Gew.-Teilen Wasser gelöst, 3 Gew.-% Ameisensäure, 2 Gew.-% eines Na- Ci2/Ci4-Alkylsulfats, 20 Gew.-% Pentan, wobei die Gew.-% jeweils bezogen sind auf das Vorkondensat, wurden zugesetzt, anschließend gerührt und dann in einer Form aus Polypropylen (zum Schäumen) durch Einstrahlung von Mikrowellenenergie verschäumt. Nach dem Ver- schäumen wurde 30 Minuten getrocknet und anschließend im Heißluftgebläse bei 220 °C für 10 min getempert.
Der erhaltene Melamin-/Formaldehyd-Schaumstoff hat eine Dichte von 7,2 g/l und einen Stempeldruckwert von 19,9 N.
Vergleichsbeispiel V-B
Herstellung eines Melamin-/Formaldehyd-Schaumstoffes mit 25 Gew.-% Low Density Polyethy- len-Wachs (LDPE-Wachs), bezogen auf das Gesamtgewicht aus zur Schaumstoffherstellung eingesetztem Melamin-/Formaldehyd-Vorkondensat und partikelförmigen Füllmaterial als Füllmaterial.
75 Gew.-Teile eines sprühgetrockneten Melamin-/Formaldehyd-Vorkondensates (Mol-verhältnis 1 :3) wurden in 25 Gew.-Teilen Wasser gelöst, 3 Gew.-% Ameisensäure, 2 Gew.-% eines Na- Ci2/Ci4-Alkylsulfats, 20 Gew.-% Pentan, wobei die Gew.-% jeweils bezogen sind auf das Vorkondensat, und 25 Gew.-Teile LDPE-Wachs, gemahlen aus Luwax A Granulat, Korngröße: 0,8 bis 1 ,2 mm, mittlerer Teilchendurchmesser 1 ,0 mm (dso-Wert, zahlengemittelt, bestimmt mittels Licht-oder Elektronenmikroskopie in Verbindung mit Bildauswertung), Schmelzpunkt: 101 bis 109°C (DIN 51007, DSC) wurden zugesetzt, anschließend gerührt und dann in einer Form aus Polypropylen (zum Schäumen) durch Einstrahlung von Mikrowellenenergie verschäumt. Nach dem Verschäumen wurde 30 Minuten getrocknet und anschließend im Heißluftgebläse bei 220 °C für 10 min getempert. Der erhaltene Melamin-/Formaldehyd-Schaumstoff hat eine Dichte von 10,1 g/l und einen Stempeldruckwert von 19,7 N. Vergleichsbeispiel V-C
Herstellung eines Melamin-/Formaldehyd-Schaumstoffes mit einem Melamin-/Formaldehyd- Vorkondensat (Molverhältnis 1 : 1 ,6) ohne Füllmaterialien
70 Gew.-Teile eines sprühgetrockneten Melamin/Formaldehyd-Vorkondensats (Molverhältnis 1 : 1 ,6) und 5,25 Gew.-Teile Harnstoff werden in Wasser gelöst. Dieser Harzlösung werden 3 Gew.-% Ameisensäure, 2 Gew.-% eines Na-Ci2/Ci4-Alkylsulfats und 10 Gew.-% Pentan, jeweils bezogen auf das Vorkondensat, zugesetzt. Es wird kräftig gerührt und anschließend in einer Schäumform aus Polypropylen durch Einstrahlung von Mikrowellenenergie verschäumt. Der Schaumstoff wurde getrocknet und anschließend im Heißluftgebläse bei 1 10 °C für 10 min getempert. Der erhaltene Melamin-/Formaldehyd-Schaumstoff hat eine Dichte von 7,8 g/l und einen Stempeldruckwert von 9,2 N.
Beispiel 1 (erfindungsgemäß)
Herstellung eines Melamin-/Formaldehyd-Schaumstoffes mit 25 Gew.-% LDPE-Wachs, bezogen auf das Gesamtgewicht aus zur Schaumstoffherstellung eingesetztem Melamin- /Formaldehyd-Vorkondensat und partikelförmigen Füllmaterial, als Füllmaterial. 75 Gew.-Teile eines sprühgetrockneten Melamin-/Formaldehyd-Vorkondensates (Mol-verhältnis 1 :3) wurden in 25 Gew.-Teilen Wasser gelöst, 3 Gew.-% Ameisensäure, 2 Gew.-% eines Na- Ci2/Ci4-Alkylsulfats, 20 Gew.-% Pentan, wobei die Gew.-% jeweils bezogen sind auf das Vorkondensat, und 25 Gew.-Teile LDPE-Wachs (Luwax A, BASF SE, Korngröße: 0,3 bis 0,7 mm, mittlerer Teilchendurchmesser 0,42 mm (dso-Wert, zahlengemittelt, bestimmt mittels Licht- oder Elektronenmikroskopie in Verbindung mit Bildauswertung), Schmelzpunkt: 101 - 109°C (DIN 51007, DSC) wurden zugesetzt, anschließend gerührt und dann in einer Form aus Polypropylen (zum Schäumen) durch Einstrahlung von Mikrowellenenergie verschäumt. Nach dem Ver- schäumen wurde 30 Minuten getrocknet und anschließend im Heißluftgebläse bei 220 °C für 10 min getempert.
Der erhaltene Melamin-Formaldehyd-Schaumstoff hat eine Dichte von 10,0 g/l und einen Stempeldruckwert von 20,1 N.
Formaldehydemissionen
Die Schaumstoffe aus Beispiel 1 und den Vergleichsbeispielen V-A und V-B weisen nahezu identische Formaldehydemissionen im Bereich von 0,02 bis 0,03 ppm gemäß DIN 55666 ppm auf. Der Schaumstoff aus Vergleichsbeispiel V-C weist eine Formaldehydemission von 0,08 ppm auf. Die Formaldehydemissionen der Schaumstoffe liegen somit unter dem in der Chemikalienverbotsverordnung § 1 festgelegten Grenzwert von 0,1 ppm.
Thermokomprimierung
Die getemperten Schaumstoffe aus Beispiel 1 und den Vergleichsbeispielen V-A, V-B und V-C wurden zu 21 mm dicken Platten zerschnitten. Der Zuschnitt wurde auf seiner Ober- und Unter- seite jeweils mit einem hydrophoben Textilvlies aus einer Mischung aus PET- und Zellulose- Viskosefasern, abgedeckt. Die Textilvliese waren einseitig mit Klebstoff ausgerüstet (Polymermischung, Phenolharz, Melaminharz). Danach verpresste man die einzelnen Komponenten miteinander in einem Konturwerkzeug 60 sec bei einer Presstemperatur von 190 °C und einem Kolbenpressdruck von 45 bar (absolut). Die einzelnen Schaumstoffsegmente wurden dabei um 25 bis 100% komprimiert. Anschließend wurden die Formteile aus dem Presswerkzeug entnommen und die Konturgenauigkeit und Randlippenfestigkeit beurteilt.
Die Formteile gemäß den Vergleichsbeispielen V-A und V-B zeigen eine unvollständige Abfor- mung der Geometrie des Presswerkzeugs mit nicht geschlossenen Randlippen, und waren deshalb unbrauchbar. Demgegenüber zeigt das Formteil gemäß Beispiel 1 eine deutliche Verbesserung der Konturgenauigkeit und Randlippenfestigkeit. Vergleichsbeispiel V-C zeigt eine sehr gute Abformung der Geometrie des Presswerkzeugs mit stabilen, geschlossenen Randlippen. Das Vergleichsbeispiel V-A zeigt, dass sich auch aus formaldehydreichen Melaminharzen for- maldehydarme Formteile herstellen ließen. Hierzu ist eine Tempertemperatur von 240 °C erforderlich. Das erhaltene Formteil war jedoch Ausschussware, da es unzureichende Ränder aufwies. Das Vergleichsbeispiel V-B zeigt, dass die Teilchengröße der polymeren Granulate eine wichtige Größe für die Thermokomprimierung darstellt. Die Teilchengröße in diesem Ver- gleichsbeispiel liegt nicht im erfindungsgemäßen Bereich. Die Thermoverformung dieses
Schaumstoffs führt zu einem fehlerhaften Formteil. Vergleichsbeispiel V-C erlaubt die Herstellung thermoverformbarer Melaminharzschäume, aber die mechanischen Eigenschaften dieser Schaumstoffe, bestimmt anhand des Stempeldrucks, sind deutlich niedriger. Die Beispiele belegen, dass ausgehend von Melamin/Formaldehyd-Vorkondensat mit einem Molverhältnis Formaldehyd : Melamin größer als 2, thermoverformbare Melamin-/Formaldehyd- Schaumstoffe mit guten mechanischen Eigenschaften zugänglich sind, die aber gleichzeitig geringe Formaldehyd-Emissionen aufweisen, falls wenigstens ein partikelförmiges Füllmaterial eingesetzt wird, das eine Schmelztemperatur von höchstens 220 °C und einen mittleren Teil- chendurchmesser von 5 μηη bis 750 μηη aufweist.

Claims

Patentansprüche
Thermoverformbarer Melamin-/Formaldehyd-Schaumstoff, enthaltend 0,1 bis 50 Gew.-% wenigstens eines partikelförmigen Füllmaterials, wobei die Gew.-% auf das Gesamtgewicht aus zur Schaumstoffherstellung eingesetztem Melamin-/Formaldehyd- Vorkondensat und Füllmaterial bezogen sind, dadurch gekennzeichnet, dass das wenigstens eine partikelförmige Füllmaterial einen Schmelzpunkt von höchstens 220 °C und einen mittleren Teilchendurchmesser von 5 μηη bis 750 μηη aufweist.
Thermoverformbarer Melamin-/Formaldehyd-Schaumstoff nach Anspruch 1 , dadurch gekennzeichnet, dass als wenigstens ein partikelförmiges Füllmaterial organische Oli- gomere oder Polymere eingesetzt werden.
Thermoverformbarer Melamin-/Formaldehyd-Schaumstoff nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass als wenigstens ein partikelförmiges Füllmaterial ein organisches Polymer ausgewählt aus der Gruppe bestehend aus Polyethylen, Polypropylen, Polystyrol, Polyester, Polcarbonat, Polyamid, thermoplastisches Elastomere, und Mischungen davon eingesetzt wird.
Thermoverformbarer Melamin-/Formaldehyd-Schaumstoff nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das wenigstens eine partikelförmige Füllmaterial in die Porenstruktur des Schaumstoffs eingebettet ist und der mittlere Teilchendurchmesser dem mittleren Porendurchmesser der Schaumstruktur entspricht.
Thermoverformbarer Melamin-/Formaldehyd-Schaumstoff nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Molverhältnis Formaldehyd/Melamin des Me- lamin/Formaldehyd-Vorkondensates größer 2, bevorzugt 2,5 bis 3,5, ist.
Thermoverformbarer Melamin-/Formaldehyd-Schaumstoff nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Melamin-/Formaldehyd-Schaumstoff eine Formaldehydemission, gemessen nach DIN 55666, von 0,1 ppm oder weniger aufweist.
Verfahren zur Herstellung eines thermoverformbaren Melamin-/Formaldehyd- Schaumstoffes nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass wenigstens ein Melamin-Formaldehyd-Vorkondensat in einem Lösungsmittel mit einer Säu re, einem Dispergiermittel, einem Treibmittel und wenigstens einem partikelförmigen Füllmaterial bei Temperaturen oberhalb der Siedetemperatur des Treibmittels verschäumt, getrocknet und anschließend bei einer Temperatur oberhalb von 200°C getempert wird.
Verfahren zur Herstellung von Formteilen durch Thermoformen eines Schaumstoffs nach einem der Ansprüche 1 bis 6.
9. Verwendung eines Melamin-/Formaldehyd-Schaumstoffes nach einem der Ansprüche 1 bis 6 zur akustischen oder thermischen Isolierung im Bauwesen, im Automobil-, Schiffsund Schienenfahrzeugbau, dem Bau von Raumfahrzeugen, in der Polsterindustrie oder zur Isolierung von Rohrleitungen.
EP13802271.0A 2012-11-26 2013-11-25 Thermoverformbarer melaminharzschaumstoff mit partikelförmigem füllmaterial Withdrawn EP2922901A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13802271.0A EP2922901A1 (de) 2012-11-26 2013-11-25 Thermoverformbarer melaminharzschaumstoff mit partikelförmigem füllmaterial

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP12194173.6A EP2735584A1 (de) 2012-11-26 2012-11-26 Thermoverformbarer Melaminharzschaumstoff mit partikelförmigem Füllmaterial
PCT/EP2013/074547 WO2014080003A1 (de) 2012-11-26 2013-11-25 Thermoverformbarer melaminharzschaumstoff mit partikelförmigem füllmaterial
EP13802271.0A EP2922901A1 (de) 2012-11-26 2013-11-25 Thermoverformbarer melaminharzschaumstoff mit partikelförmigem füllmaterial

Publications (1)

Publication Number Publication Date
EP2922901A1 true EP2922901A1 (de) 2015-09-30

Family

ID=47227674

Family Applications (2)

Application Number Title Priority Date Filing Date
EP12194173.6A Withdrawn EP2735584A1 (de) 2012-11-26 2012-11-26 Thermoverformbarer Melaminharzschaumstoff mit partikelförmigem Füllmaterial
EP13802271.0A Withdrawn EP2922901A1 (de) 2012-11-26 2013-11-25 Thermoverformbarer melaminharzschaumstoff mit partikelförmigem füllmaterial

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP12194173.6A Withdrawn EP2735584A1 (de) 2012-11-26 2012-11-26 Thermoverformbarer Melaminharzschaumstoff mit partikelförmigem Füllmaterial

Country Status (6)

Country Link
US (1) US20150299413A1 (de)
EP (2) EP2735584A1 (de)
JP (1) JP2015535541A (de)
KR (1) KR20150091124A (de)
CN (1) CN104812815A (de)
WO (1) WO2014080003A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024094552A1 (en) 2022-11-03 2024-05-10 Basf Se Melamine resin foams by oxidation reaction

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106479116A (zh) * 2016-09-30 2017-03-08 美的集团股份有限公司 泡沫型隔热材料及其制备方法和应用
KR102375999B1 (ko) 2016-10-11 2022-03-21 오스튀링기쉬 마테리알프리프게젤샤프트 퓌어 텍스틸 운트 쿤스트스토페 엠베하 저방출 멜라민 포름알데히드 부직물 및 부직 재료
CN106633629A (zh) * 2016-12-29 2017-05-10 成都玉龙超聚新材料有限公司 热压成型的密胺泡沫及其制备方法
EP3530689B1 (de) 2018-02-21 2021-04-07 Basf Se Mischung und verfahren zur herstellung eines formteils
CN114290471B (zh) * 2021-11-17 2023-04-07 濮阳绿宇新材料科技股份有限公司 一种轻质蜜胺级阻燃泡沫木屑板及其制备方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE532009A (de) 1953-09-23
US3504064A (en) 1968-02-26 1970-03-31 Floral Dev Corp Method of compressing and subsequently re - expanding urea - formaldehyde foam
US3600340A (en) * 1969-06-30 1971-08-17 Basf Wyandotte Corp Polyurethane foam
DE3011769A1 (de) 1980-03-27 1981-10-01 Basf Ag, 6700 Ludwigshafen Verfahren zur herstellung von elastischen schaumstoffen auf basis eines melamin/formaldehyd-kondensationsprodukts
DE2915457A1 (de) 1979-04-17 1980-10-30 Basf Ag Elastischer schaumstoff auf basis eines melamin/formaldehyd-kondensationsproduktes
DE3246538A1 (de) 1982-12-16 1984-06-20 Basf Ag, 6700 Ludwigshafen Verfahren zum modifizieren von elastischen aminoplast-schaumstoffen
DE3534738A1 (de) 1985-09-28 1987-04-09 Basf Ag Verfahren zur herstellung von elastischen melamin-schaumstoffen
EP0464490A3 (en) 1990-06-29 1992-12-23 Basf Aktiengesellschaft Method for manufacturing three-dimensional objects of open cell, elastic thermosetting foam materials
US6100307A (en) * 1998-03-17 2000-08-08 Shell Oil Company Compositions of polycondensed branched polyester polymers and aromatic polycarbonates, and the closed cell polymer foams made therefrom
DE10027770A1 (de) 2000-06-07 2001-12-13 Basf Ag Verfahren zur Herstellung von Schaumstoffen aus Melamin/Formaldehyd-Kondensaten
DE10047717A1 (de) * 2000-09-27 2002-04-18 Basf Ag Hydrophile, offenzellige, elastische Schaumstoffe auf Basis von Melamin/Formaldehyd-Harzen, ihre Herstellung und ihre Verwendung in Hygieneartikeln
DE10335957A1 (de) 2003-08-04 2005-02-24 Basf Ag Formteile aus Melamin/Formaldehyd-Schaumstoffen mit geringer Formaldehyd-Emission
DE102005027552A1 (de) 2005-06-14 2006-12-21 Basf Ag Thermoformbare Melamin/Formaldehyd-Schaumstoffe mit geringer Formaldehydemission
DE102006034608A1 (de) * 2006-07-21 2008-02-14 Ami-Agrolinz Melamine International Gmbh Thermoplastisch verarbeitbare Duroplastformmassen mit verbessertem Eigenschaftsspektrum
KR20090040373A (ko) * 2006-08-10 2009-04-23 바스프 에스이 저 포름알데히드 수지 발포체 복합체
CN102639620B (zh) 2009-11-20 2014-01-22 巴斯夫欧洲公司 含有微珠的树脂泡沫
CN102741331A (zh) 2010-02-03 2012-10-17 巴斯夫欧洲公司 包含掺入结构中的微胶囊的蜜胺/甲醛泡沫
WO2011113795A2 (de) * 2010-03-17 2011-09-22 Basf Se Flammgeschützter verbundschaumstoff
ES2604687T3 (es) * 2011-02-24 2017-03-08 The Procter & Gamble Company Método para limpiar una superficie dura usando un utensilio limpiador basado en una espuma de melanina formaldehído que comprende partículas abrasivas
ES2583104T3 (es) 2011-02-24 2016-09-19 Basf Se Espuma de resina de melamina que tiene material de carga en forma de partículas

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2014080003A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024094552A1 (en) 2022-11-03 2024-05-10 Basf Se Melamine resin foams by oxidation reaction

Also Published As

Publication number Publication date
KR20150091124A (ko) 2015-08-07
JP2015535541A (ja) 2015-12-14
EP2735584A1 (de) 2014-05-28
US20150299413A1 (en) 2015-10-22
WO2014080003A1 (de) 2014-05-30
CN104812815A (zh) 2015-07-29

Similar Documents

Publication Publication Date Title
EP2922901A1 (de) Thermoverformbarer melaminharzschaumstoff mit partikelförmigem füllmaterial
EP2678379B1 (de) Melaminharzschaumstoff mit partikelförmigem füllmaterial
EP2010729B1 (de) Mehrschichtiges schaumstoff-verbundelement mit aussparungen
EP2563849B1 (de) Verfahren zur herstellung elastischer, komprimierter schaumstoffe auf basis von melamin/formaldehydharzen
EP1505105B1 (de) Formteile aus Melamin/Formaldehyd-Schaumstoffen mit geringer Formaldehyd-Emission
EP2635627B1 (de) Melaminharzschaumstoff mit anorganischem füllmaterial
EP0037470B1 (de) Verfahren zur Herstellung von elastischen Schaumstoffen auf Basis eines Melamin/Formaldehyd-Kondensationsprodukts
EP3464436B1 (de) Faserverstärkung von reaktivschaumstoffen aus einem doppelbandschäum- oder einem blockschäumverfahren
EP3464437B1 (de) Faserverstärkung von reaktivschaumstoffen aus einem formschäumverfahren
EP2649119A1 (de) Melaminharzschaumstoffe mit nanoporösen füllstoffen
DE102007009127A1 (de) Faserverstärkter Schaumstoff auf Basis von Melaminharzen
EP2531551B1 (de) Melamin-/formaldehyd-schaumstoff mit in die struktur eingebauten mikrokapseln
EP2550159B1 (de) Schäume und formteile aus trägermaterialien enthaltend schäumfähige reaktivharze
EP2616505B1 (de) Verfahren zur herstellung von melamin/formaldehyd-schaumstoffen
EP2895538B1 (de) Melaminharzschaumstoff mit anorganischem füllmaterial mit hoher dichte
DE3037683A1 (de) Elastische duroplast-schaumstoffe
US20110237145A1 (en) Foams and moldings of support materials comprising foamable reactive resins
EP2710057B1 (de) Melamin-/formaldehyd-schaumstoff enthaltend mikrohohlkugeln
DE3109929A1 (de) Verfahren zur herstellung von elastischen schaumstoffen auf basis eines melamin-formaldehyd-kondensationsprodukts
DE102011009397A1 (de) Verbundschaumstoff zur Schalldämmung
DE102010025402A1 (de) Treibmittel zum Herstellen von Schäumen unter Mikrowellenbestrahlung
WO2011117294A1 (de) Verfahren zur herstellung von formschäumen aus melamin-/formaldehyd-kondensationsprodukten
WO2011023433A1 (de) Treibmittel zum herstellen von schäumen unter mikrowellenbestrahlung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150626

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C08J 9/14 20060101AFI20160303BHEP

Ipc: C08J 9/00 20060101ALI20160303BHEP

Ipc: C08L 61/28 20060101ALI20160303BHEP

INTG Intention to grant announced

Effective date: 20160321

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20160613