EP2921813A1 - Switchable charge variants with hole pattern inserts - Google Patents
Switchable charge variants with hole pattern inserts Download PDFInfo
- Publication number
- EP2921813A1 EP2921813A1 EP15000787.0A EP15000787A EP2921813A1 EP 2921813 A1 EP2921813 A1 EP 2921813A1 EP 15000787 A EP15000787 A EP 15000787A EP 2921813 A1 EP2921813 A1 EP 2921813A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- holder
- active charge
- cylindrical active
- switchable
- splitter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42B—EXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
- F42B12/00—Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
- F42B12/02—Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect
- F42B12/20—Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of high-explosive type
- F42B12/22—Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of high-explosive type with fragmentation-hull construction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42C—AMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
- F42C19/00—Details of fuzes
- F42C19/08—Primers; Detonators
- F42C19/0838—Primers or igniters for the initiation or the explosive charge in a warhead
- F42C19/0842—Arrangements of a multiplicity of primers or detonators, dispersed within a warhead, for multiple mode selection
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42C—AMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
- F42C19/00—Details of fuzes
- F42C19/08—Primers; Detonators
- F42C19/095—Arrangements of a multiplicity of primers or detonators, dispersed around a warhead, one of the primers or detonators being selected for directional detonation effects
Definitions
- HE High Explosive pellets
- the design parameters have to be adapted to the new situation. So the functionality goes back, if the hole size has fallen below a certain critical threshold. Typical hole sizes are about 5 mm, but this also depends on the outer explosive charge: initiation sensitivity and mechanical strength. In general, it can be said that (as with the HE pellets), the entire initiator system now has to be parametrically matched to one another for the "air pellets".
- the big advantage of the new method is that you no longer need to fill the holes with explosive charge, which saves time and money.
- Figure 2 shows a sketch (cross section) of a possible charge design with an integrated shadow mask.
- the two indicated ignition chains (ZK1 and ZK2) allow the above-mentioned switchability.
- the various explosive charges HE for booster, transformer plate, outer explosive charge layer and inner main charge
- Figure 4 shows sections of the shadow mask and at the same sketchy sketch indicates the rotation or displacement of the two hollow cylinders relative to each other, whose functionality is now described.
- the above-described hollow cylinder with the drilled holes was supplemented by another.
- One of the two hollow cylinders is provided with a rotating and / or sliding mechanism, so that both cylinders can be rotated relative to one another peripherally or axially displaced.
- Figure 5 indicates such a possibility.
- the holes taper from the larger diameter D towards the outer explosive charge, to the smaller diameter d.
- the swath flow is now slowed down and mitigated.
- this reduction is different and can thus be adapted to the sensitivity of the explosive charge.
- Another possible embodiment is, if one closes the holes with webs / "grafting" at the end of the channel, as in Figure 6 outlined as an example. Then the swath flow is stopped and transferred into a shock wave through this web. On the other hand, then the explosive is initiated by this shock wave.
- the bar can be integrated directly into the pellet holder and made of the same material. But it can also be made of denser material (eg metals such as steel) and then by the higher impedance (density multiplied by shock wave velocity) the point-like initiation facilitate.
- the "plug" can also be designed as a flying plate, the hole then serves as an acceleration tube. Further embodiments of this method are conceivable, but should not be further elaborated here.
- Figure 7 shows a sketch (cross-section) of a further charge design with an integrated shadow mask, but this time with asymmetric holes relative to the detonation front.
- the second middle detonation chain has been replaced by a second front detonation chain.
- the direction of the detonation front can now be selected via the ignition of ZK1 or ZK2.
- the different functionality of the holes depending on the direction of the detonation front is in Figure 8 discussed.
- this method can also be combined with the asymmetrical holes with the tapering of the holes discussed above or with the bridge method.
- the methods with the shadow masks are described here in radial charge configurations with cylindrical metal sheaths. However, they can also be used in axial charge configurations with metal assignments (disk-shaped). The procedure for the axial application is analogous to the radial application discussed in detail herein, and therefore will not be discussed further.
- the fast particle beams for explosive charge initiation, they can also be used for splitter sub-decomposition.
- the hole cylinder is enlarged in diameter and brought directly into contact with the outer metal shell ( Figure 9 ).
- This consists not now of a continuous metal shell, but rather of individual preformed splinters.
- the number and pattern of the preformed construction splitter (K-splitter) of the charge jacket harmonize with those of the holes in the shadow mask, so that each individual splitter is acted upon by a particle beam.
- K-splitters The material quality of these K-splitters is matched to the intensity of the particle beams, so that a direct application of the "hard” particle beam completely subdivides the K-splitters. Experiments have shown that this sintered metals are particularly well suited. The sintering can be adjusted so ("weak") that the cohesion of the sintered particles is not sufficient to survive such aggressive radiation (see. Fig. 10 left: at central initiation with ZK2).
- Very small splinters have a large surface / volume ratio and are therefore slowed down in the air very quickly, whereas large K-splinters largely unchecked and thus fly very far. That You can switch the effective radius in large limits (for example, 100 m vs. 2000 m).
- FIG. 11 Another embodiment of this design is in Figure 11 outlined. This time, the design of the holes in the shadow mask is not symmetrical, but asymmetrical with respect to the directions of the two detonation fronts. The central ignition chain was replaced by an opposite frontal ignition chain.
- Figure 12 shows sections of the shadow mask of Figure 11 and outlines the different mode of action of the holes, depending on which ZK was ignited, ie from which direction the detonation fronts come (dashed, whose propagation is indicated by numbers).
- the particle beams from the detonation front can flow into the holes facing the front ( Fig. 12 Left).
- the brittle and porous splinter material does not withstand this load, it disassembles.
- the particle beam would have to flow around corners of almost 180 °, which is not possible. Rather, the pressure load on the shadow mask in the region of the holes is so large that the mask material (plastics or low-strength metals) flows away and closes the holes. There is no high radiation load due to the swath particles and the fragment remains integer and flies away as a whole.
- the various switchable technologies mentioned above provide possibilities for leaving intact or subdividing sintered splinters.
- the splitter will now turn off Reactive material sintered so that it is subzero by the activated particle beam, or in closed hole pattern, this particle beam is not exposed and therefore remains intact.
- a thorough sub-decomposition is necessary, if you want to let the generated reactive metal particles with the Lucassaurestoff abreact.
- the shock wave heats up the material to the extent that the reaction is triggered with the oxygen.
- Figure 14 outlined (exemplarily for all other possible combinations) an action system that combines the switchability with the shadow mask method (as described in Section 3.2), with the scalability already known from the art, using an integrated detonation cord.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Powder Metallurgy (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
Eine umschaltbare zylindrische Wirkladung eines Gefechtskopfes mit einer rohrförmigen Halterung ist so ausgeführt, dass sie Durchbrüche durch die Halterung aufweist, dass deren Vorzugsrichtung etwa senkrecht zur inneren oder äußeren Oberfläche der Halterung verläuft und die Durchbrüche eine Öffnungsweite im Bereich von 3 mm bis 10 mm aufweisen, wobei die Halterung zwischen einem inneren Teil und einem äußeren Teil der Sprengladung angeordnet ist.A reversible cylindrical active charge of a warhead with a tubular support is designed so that it has openings through the holder, that their preferred direction is approximately perpendicular to the inner or outer surface of the holder and the apertures have an opening width in the range of 3 mm to 10 mm, wherein the holder is disposed between an inner part and an outer part of the explosive charge.
Description
Aus früheren Anmeldungen sind bereits zielangepasst kontrollierbare und/oder umschaltbare Splitterladungen bekannt:
- 1. Umschaltbare Ladung (Pellet-Methode,
EP 2312259, 19.04.2007 - 2. Zylindrische Wirkladung (mehrere Zündketten,
DE 102006048299, 12.10.2006 - 3. Umschaltbare Wirkladung (Sintermaterialien,
DE 102010048570, 18.10.2010
- 1. Switchable charge (pellet method,
EP 2312259, 19.04.2007 - 2. Cylindrical active charge (several ignition chains,
DE 102006048299, 12.10.2006 - 3. Switchable Wirkladung (sintered materials,
DE 102010048570, 18.10.2010
Aufbauend auf diesen EMs werden neuartige Ideen und Konzepte vorgestellt, die in erweiterten Wirkladungen Eingang finden.Based on these EMs, novel ideas and concepts are introduced, which find their way into extended effective charges.
Die bereits bekannten Methoden zur zielangepassten Umschaltbarkeit der Splitterwirkungen sollen erweitert werden, bzgl.:
- "Pellet-Methode" mit vereinfachter Technologie
- "Pellet-Methode" zur Splitter-Subzerlegung
- Einbeziehung Reaktiver Struktur-Materialien (RSM)
- Kombination: Umschaltbarkeit mit Skalierbarkeit
- "Pellet method" with simplified technology
- "Pellet method" for splinter sub-decomposition
- Inclusion of Reactive Structure Materials (RSM)
- Combination: switchability with scalability
Diese neuen Möglichkeiten und Technologien eröffneten sich nicht durch "Nachdenken am Schreibtisch", sondern erforderten zusätzliche numerische Simulationen bzw. erneute Versuche zur Validation dieser Ideen.These new opportunities and technologies did not come from "desk thinking" but required additional numerical simulations or re-attempts to validate those ideas.
Die genannten Erweiterungen und Neuerungen werden im Folgenden vorgestellt und beschrieben.The mentioned extensions and innovations are presented and described below.
Die oben in Punkt (1) erläuterte Pellet-Methode (sh.
Numerische Simulationen und Versuche zeigten nun aber, das die Sprengladungsfüllung der Pellet alternativ auch weggelassen, d.h. stattdessen mit "Luft aufgefüllt" werden kann ("Neue Technologie"). Es war nicht von vorne herein klar, dass dies möglich ist. Die Funktionsweise ändert sich "global", also im Endeffekt nicht, "lokal" jedoch schon: Nun kann nämlich keine Detonationsfront mehr durch die HE-Pellets laufen. Stattdessen bilden sich am Ort der Löcher schnelle dichte Partikel-Strahlen aus den Sprengladungsschwaden, deren Geschwindigkeit in der gleichen Größenordnung wie die der Detonationsgeschwindigkeit liegt. Auf diese Weise gelingt es, die Sprengladung auf der gegenüber liegenden Seite des Loches zu initiieren. Es ergibt sich also ebenfalls eine Multi-Punkt-Initiierung mit den gleichen Folgen, als wären die Löcher mit HE gefüllt.Numerical simulations and experiments have shown, however, that the explosive charge filling of the pellet alternatively also omitted, ie instead can be filled with "air"("newtechnology"). It was not clear from the outset that this was possible. The functionality changes "globally", so in the end not, "local" but already: Namely no detonation front can run through the HE pellets. Instead, at the location of the holes fast dense particle-rays form from the explosive charge swaths, whose velocity lies in the same order of magnitude as the detonation velocity. In this way manages to initiate the explosive charge on the opposite side of the hole. It also results in a multi-point initiation with the same consequences, as if the holes were filled with HE.
Natürlich müssen die Auslegungsparameter der neuen Situation angepasst werden. So geht die Funktionalität zurück, wenn die Lochgröße eine bestimmte kritische Schwelle unterschritten hat. Typische Lochgrößen liegen bei etwa 5 mm, dies hängt jedoch auch ab von der äußeren Sprengladung: Initiier-Empfindlichkeit und mechanische Festigkeit. Allgemein kann gesagt werden, dass, (wie bei den HE-Pellets) nun auch für die "Luft-Pellets" das ganze Initiier-System parametrisch aufeinander abgestimmt werden muss.Of course, the design parameters have to be adapted to the new situation. So the functionality goes back, if the hole size has fallen below a certain critical threshold. Typical hole sizes are about 5 mm, but this also depends on the outer explosive charge: initiation sensitivity and mechanical strength. In general, it can be said that (as with the HE pellets), the entire initiator system now has to be parametrically matched to one another for the "air pellets".
Der große Vorteil der neuen Methode ist nun, dass man die Löcher nicht mehr mit Sprengladung auffüllen muss, was Zeit und Kosten spart.The big advantage of the new method is that you no longer need to fill the holes with explosive charge, which saves time and money.
Die prinzipielle Funktionalität mit den beiden Zündketten ist in
- Kontrollierte vs. natürliche Splitter, bei einer kontinuierlichen Ladungs-Metallhülle
- Große vs. kleine (zerlegte) Splitter, bei einer Ladungs-Belegung mit großen vorgeformten Splittern (Konstruktionssplitter)
- Controlled vs. natural splinters, in a continuous charge metal shell
- Great vs. Vs. small (disassembled) fragments, with a charge occupancy with large preformed splinters (construction splitter)
Die Umschaltbarkeit lässt sich aber noch durch eine weitere Möglichkeit realisieren.
Der oben beschriebene Hohlzylinder mit den gebohrten Löchern wurde durch eine weiteren ergänzt. Einer der beiden Hohlzylinder ist mit einem Dreh- und/oder Schiebemechanismus versehen, so dass beide Zylinder relativ zueinander peripher verdreht bzw. axial verschoben werden können.The above-described hollow cylinder with the drilled holes was supplemented by another. One of the two hollow cylinders is provided with a rotating and / or sliding mechanism, so that both cylinders can be rotated relative to one another peripherally or axially displaced.
Die Lochmuster in den beiden Hohlzylindern bestimmen das spätere Muster der kontrollierten Splitterbildung. Diese Lochmuster können nun zwar beliebig ausgestaltet sein, sollen aber relativ zueinander dergestalt harmonisiert werden, dass (durch Rotation / Verschiebung) entweder alle Löcher geöffnet bzw. verschlossen werden können, oder nur ein Teil davon geschlossen werden kann, der Rest bleibt offen. Auf diese Weise lässt sich also (mechanisch) umschalten zwischen den Splitter-Modi:
- Kontrollierte vs. natürliche Splitter, bei einer kontinuierlichen Ladungs-Metallhülle
- Große vs. kleine kontrollierte Splitter, bei einer kontinuierlichen Ladungs-Metallhülle
- Große vs. kleine (zerlegte) Splitter bei einer Ladungs-Belegung mit großen vorgeformten Konstruktions-Splitter
- Controlled vs. natural splinters, in a continuous charge metal shell
- Great vs. Vs. small controlled splinters, in a continuous charge metal shell
- Great vs. Vs. small (disassembled) chips at a charge occupancy with large preformed construction splitter
Versuche mit der Methode der "Luft-Pellets" haben gezeigt, dass je nach Wahl der Parameter für die äußere Sprengladung wie: Initiier-Empfindlichkeit / Festigkeit / mechanische Beschaffenheit etc., diese Sprengladung von der Schwadenströmung auch rein mechanisch perforiert werden kann, ohne das es zu einer unmittelbaren punktförmigen Initiierung kommt. Diese findet dann erst zu einem etwas späteren Zeitpunkt statt (möglicherweise aber zu spät). Eine solche punktförmige initiierung ist in etwa vergleichbar mit der Initiierung durch einen Hohlladungsstachel. Man kann in einer solchen Situation dann entweder diese HE-Parameter anpassen (wenn nicht andere Anforderungen das verbieten), oder alternativ die Lochauslegung in der Lochmaske.Experiments with the method of "air pellets" have shown that, depending on the choice of the parameters for the external explosive charge such as: initiation sensitivity / strength / mechanical properties, etc., this explosive charge from the swath flow can also be purely mechanically perforated, without the it comes to an immediate point-like initiation. This then takes place at a later date (but possibly too late). Such a punctiform initiation is roughly comparable to the initiation by a shaped charge sting. In such a situation, one can then either adjust these HE parameters (unless other requirements prohibit this), or alternatively the hole design in the shadow mask.
Eine weitere mögliche Ausgestaltung ist, wenn man die Löcher mit Stegen / "Pfropfen" am Ende des Kanals abschließt, wie in
In
Natürlich kann diese Methode mit den asymmetrischen Löchern auch kombiniert werden mit der oben diskutierten Verjüngung der Löcher bzw. mit der Steg-Methode.Of course, this method can also be combined with the asymmetrical holes with the tapering of the holes discussed above or with the bridge method.
Die Methoden mit den Lochmasken sind hier in radialen Ladungskonfigurationen mit zylindrischen Metallhüllen beschrieben. Sie können aber ebenfalls in axialen Ladungskonfigurationen mit Metallbelegungen (scheibenförmig) angewandt werden. Die Vorgehensweise bei den Auslegungen zur axialen Anwendung ist analog zur hier umfassend diskutierten radialen Anwendung und soll daher nicht weiter diskutiert werden.The methods with the shadow masks are described here in radial charge configurations with cylindrical metal sheaths. However, they can also be used in axial charge configurations with metal assignments (disk-shaped). The procedure for the axial application is analogous to the radial application discussed in detail herein, and therefore will not be discussed further.
Statt, wie oben erläutert, die schnellen Partikelstrahlen zur Sprengladungsinitiierung zu nutzen, können sie auch zur Splitter-Subzerlegung eingesetzt werden. Zu diesem Zweck wird der Lochzylinder im Durchmesser vergrößert und direkt in Kontakt zur äußeren Metallhülle gebracht (
Die Material-Qualität dieser K-Splitter ist auf die Intensität der Partikelstrahlen dergestalt abgestimmt, so dass eine direkte Beaufschlagung mit dem "harten" Partikelstrahl die K-Splitter völlig subzerlegt. Versuche haben gezeigt, dass dazu Sintermetalle besonders gut geeignet sind. Die Sinterung kann so ("schwach") eingestellt werden, dass der Zusammenhalt der Sinterteilchen nicht ausreicht, solch aggressive Strahlen zu überstehen (sh.
Kommt die Detonationsfront allerdings nicht frontal, sondern streifend (sh.
- Intakte vs. subzerlegte vorgeformte Konstruktions-Splitter
- Intact Vs. subdivided preformed construction splitter
Sehr kleine Splitter haben ein großes Oberflächen- / Volumenverhältnis und werden deshalb in der Luft sehr schnell abgebremst, wohingegen große K-Splitter weitgehend ungebremst und damit sehr weit fliegen. D.h. man kann den Wirkradius in großen Grenzen (z.B. 100 m vs. 2000 m) hin- und herschalten.Very small splinters have a large surface / volume ratio and are therefore slowed down in the air very quickly, whereas large K-splinters largely unchecked and thus fly very far. That You can switch the effective radius in large limits (for example, 100 m vs. 2000 m).
Eine weitere Ausgestaltung dieser Auslegung ist in
Wird ZK1 gezündet, können die Partikelstrahlen aus der Detonationsfront in die der Front zugewandten Löcher einströmen (
Eine weitere Möglichkeit eine Umschaltung zu realisieren, besteht in der Anwendung der oben bereits erwähnten doppelten Lochmaske, bestehend aus relativ zueinander beweglichen Doppelzylindern (Ausschnitte der Doppel-Lochmaske und ihre Funktionalität in
Man kann mit dieser Methode hin- und herschalten zwischen den Splitter-Modi:
- Intakte vs. subzerlegte vorgeformte Konstruktions-Splitter
- Teilweise intakte vs. teilweise subzerlegte vorgeformte Konstruktions-Splitter
- Intact Vs. subdivided preformed construction splitter
- Partially intact vs. partially subdivided preformed construction splitter
Neben Sprengladungen als schnelle Energielieferanten, haben zwar metallischinerte, aber chemisch reaktive Materialien zunehmend an Bedeutung für den Einsatz in Wirksystemen gewonnen. Diese Materialien können wegen ihrer zumeist hohen Festigkeit und Dichte auch als (reaktive) Strukturmaterialien (RSM, z.B. als Ladungshüllen) eingesetzt werden.In addition to explosive charges as fast energy suppliers, metallically inert but chemically reactive materials have increasingly gained in importance for use in active systems. These materials, because of their mostly high strength and density, can also be used as (reactive) structural materials (RSM, e.g., as charge hulls).
Man kann folgende Reaktive Materialien unterscheiden:
- Inter-Metalle (z.B. Ni/Al)
- Metastabile Intermolekulare Verbindungen oder Thermite (z.B. FeO2/Al)
- Verbindungen von Metall-Halogeniden (z.B. Mo/Ti & Teflon)
- Poröse, reaktive Sintermetalle (z.B. Mo, WSM)
- Inter-metals (eg Ni / Al)
- Metastable Intermolecular Compounds or Thermites (eg FeO 2 / Al)
- Compounds of metal halides (eg Mo / Ti & Teflon)
- Porous, reactive sintered metals (eg Mo, WSM)
Es handelt sich also zumeist um Metallverbindungen, die entweder, wie Sprengladungen, ihren Sauerstoff (allg. Oxidator) mittragen (zumindest Teile davon), oder aber um solche, die den Sauerstoff der Luft benötigen. Erstere müssen durch die Stoßwelle, die die Detonationsfront erzeugt, zur Reaktion getriggert werden (so genannte Schock-induzierte Reaktion). Letztere werden durch die Stoßwelle nur aufgeheizt und subzerlegt, um dann mit dem Sauerstoff der Luft zu reagieren.So it is mostly about metal compounds, which either as explosive charges, their oxygen (general oxidizer) carry along (at least parts thereof), or to those who need the oxygen of the air. The former must be triggered by the shockwave generated by the detonation front (so-called shock-induced reaction). The latter will heated and subdivided by the shock wave only to then react with the oxygen of the air.
Dies bietet mit den oben vorgestellten Technologien weitere VariationsMöglichkeiten:This offers further variations with the technologies presented above:
Die oben genannten vielfältigen Technologien zur Umschaltbarkeit stellen Möglichkeiten zur Verfügung (sh. insbesondere Abschnitt 3.2), zwischen zwei Detonationsfronten hin und her zuschalten:
- Streifende, unstrukturierte Detonationsfront, die Stoßwellen geringerer Amplituden erzeugt
- Frontale, strukturierte und aggressive Detonationsfront, die entsprechend harte (zumeist lokal wirkende) Stoßwellen mit Spannungsspitzen hoher Amplituden erzeugt
- Striking, unstructured detonation front that generates shock waves of lesser amplitudes
- Frontal, structured and aggressive detonation front that generates correspondingly hard (mostly local) shock waves with high amplitude voltage peaks
Harmonisiert man nun das Reaktive Material entsprechend so, dass eine harte Stoßwelle die Reaktion triggert (stoßwellen-induziert), eine schwache streifende hingegen nicht, so kann man hin- und herschalten zwischen den Splitter-Modi:
- Stoßwellen-induziert reagierender Splitter, der im Nahabstand Blast-Energie liefert, im Fernabstand keine Wirkung hat, da er abreagiert ist.
- Nicht zur Reaktion getriggerter Splitter, der im Nah- und Fernabstand wie ein normaler mechanischer Splitter wirkt.
- Shock-induced reacting splitter, which provides near-distance blast energy, has no effect at a distance because it is reacted.
- Non-responsive splitter that acts as a normal mechanical splitter at near and far distances.
Die oben genannten vielfältigen Technologien zur Umschaltbarkeit (sh. insbesondere Abschnitt 3.2) stellen Möglichkeiten zur Verfügung, gesinterte Splitter intakt zu lassen bzw. zu subzerlegen. Hier ist beispielsweise die oben diskutierte Möglichkeit mit Partikelstrahlen zu nennen. Der Splitter wird nun aus Reaktivem Material derart gesintert, dass er durch den aufgeschalteten Partikelstrahl subzerlegt, bzw. bei geschlossenem Lochmuster, diesem Partikelstrahl nicht ausgesetzt wird und daher intakt bleibt. Eine gründliche Subzerlegung ist notwendig, wen man die dabei erzeugten reaktiven Metallpartikel mit dem Luftsaurestoff abreagieren lassen möchte. Die Stoßwelle heizt das Material soweit auf, dass die Reaktion mit dem Sauerstoff getriggert wird.The various switchable technologies mentioned above (see in particular section 3.2) provide possibilities for leaving intact or subdividing sintered splinters. Here is, for example, the possibility discussed above with particle beams. The splitter will now turn off Reactive material sintered so that it is subzero by the activated particle beam, or in closed hole pattern, this particle beam is not exposed and therefore remains intact. A thorough sub-decomposition is necessary, if you want to let the generated reactive metal particles with the Luftsaurestoff abreact. The shock wave heats up the material to the extent that the reaction is triggered with the oxygen.
Man kann also hin- und herschalten zwischen den Splitter-Modi:
- Subzerlegung des Splitters mit anschließender Nachverbrennung mit Luftsauerstoff
- Keine Subzerlegung; Splitter wirkt wie normaler inerter vorgeformter Splitter.
- Sub-decomposition of the splitter with subsequent afterburning with atmospheric oxygen
- No sub-decomposition; Sliver looks like normal inert preformed splinter.
Zusammenfassend bieten also die Möglichkeiten der Kombination von Material einerseits:
- Splitterhülle von ausschließlich inertem, ausschließlich reaktivem bzw. Mischungen zwischen beiden. Vorgeformte Splitter bzw. kontinuierliche Metallhülle
- Detonationsfronten / Stoßwellenfronten mit oben genannten Technologien
- Splinter shell of exclusively inert, exclusively reactive or mixtures between the two. Preformed splinters or continuous metal shell
- Detonation fronts / shockwave fronts with the above technologies
Eine weitere Kombinationsmöglichkeit soll nun im letzten Punkt genannt werden.Another combination option should now be mentioned in the last point.
Es kann als bekannt vorausgesetzt werden, dass eine integrierte, beispielsweise mittige Detonationsschnur wie in
Es kann aber genauso gut die oben beschriebene Lochmaske zur Multi-Punkt-Initiierung herangezogen werden, um so eine Überlagerung von Detonationsfronten mit kontrollierter Zerlegung der Hülle herbeizuführen. Dem findigen Konstrukteur bleibt es überlassen, jedwede weitere Kombinationen der vorgestellten Technologien zu benutzen, um so das Spektrum der Anpassbarkeit und Umschaltbarkeit zu erweitern.But it can just as well be used the multi-point initiation shadow mask described above, so as to cause a superposition of detonation fronts with controlled disassembly of the shell. It is up to the resourceful designer to use any other combination of the technologies presented to extend the range of adaptability and switchability.
An dieser Stelle sei nur eine Möglichkeit beschrieben, wie exemplarisch in
Man hat hier insgesamt drei Zündketten (ZK):
- Die stirnseitige ZK1 initiiert eine streifende Detonationsfront. Sie bildet keine Partikelströmung in den Löchern und beschleunigt nur die vorgeformten Splitter
- Die mittige ZK2 initiiert eine mittige Detonationsfront, die frontal zur Außenhülle läuft. In den Löchern entstehen Partikelströmungen, die die entsprechend schwach gesinterten vorgeformten Splitter subzerlegen.
- Alternativ: Bei Einsatz einer inneren Lochmaske entsteht eine Multi-Punkt-Initiierung, welche eine kontinuierliche Metallhülle kontrolliert zerlegen würde.
- Die gegenüberliegende ZK3 initiiert schließlich die Detonationsschnur, die die Sprengladung deflagrativ umsetzt, die vorgeformten Splitter integer lässt, und sie auf weitaus geringere Geschwindigkeit beschleunigt.
- Weitere Kombinationsmöglichkeiten bieten sich durch den (optional gemischten) Einsatz von vorgeformten Splittern aus Reaktivem Material (optional gemischt mit Inertem Material).
- The frontal ZK1 initiates a grazing detonation front. It does not form any particle flow in the holes and only accelerates the preformed fragments
- The central ZK2 initiates a central detonation front, which runs frontally to the outer shell. In the holes arise particle flows, which subdroplate the corresponding weakly sintered preformed splinters.
- Alternatively: When using an inner shadow mask, a multi-point initiation occurs, which would disperse a continuous metal shell in a controlled manner.
- The opposing ZK3 finally initiates the detonation cord that deflagrates the explosive charge, allowing the preformed splitter to be integer, and accelerating it to much lower velocity.
- Further combination possibilities are offered by the (optionally mixed) use of preformed splitters made of reactive material (optionally mixed with inert material).
Weitere Möglichkeiten ergeben sich bei Zündung zweier (oder aller) Zündketten mit entsprechenden relativen Zeitverzögerungen. Further possibilities arise with ignition of two (or all) ignition chains with corresponding relative time delays.
Beispiele:
- Zündung von ZK3 und nach einer Zeitverzögerung von ZK1: Ein unterer Teil der Ladung deflagriert und der obere detoniert: Kombination von langsamen und schnellen vorgeformten Splittern. Die Zeitverzögerung bestimmt das Mischungsverhältnis.
- Zündung von ZK3 und nach einer Zeitverzögerung von ZK2: Ein unterer Teil der Ladung deflagriert und der obere detoniert: Kombination von langsamen vorgeformten Splittern und schnellen subzerlegten Splittern (die nachreagieren könnten, bei Einsatz von RSM). Die Zeitverzögerung bestimmt das Mischungsverhältnis.
- Ignition of ZK3 and after a time delay of ZK1: Deflagration of a lower part of the charge and detonation of the upper one: Combination of slow and fast preformed splinters. The time delay determines the mixing ratio.
- Ignition of ZK3 and after a time delay of ZK2: Deflagration of a lower part of the charge and detonation of the upper one: Combination of slow preformed splinters and fast subdivided splinters (which could react after using RSM). The time delay determines the mixing ratio.
- AA
- Ausnehmung, DurchbruchRecess, breakthrough
- d, Dd, D
- Querabmessung von ATransverse dimension of A
- HH
- Halterungbracket
- HE1, HE2HE1, HE2
- Teile der SprengladungParts of the explosive charge
- HE3HE3
- Verteilerladungdistributed charge
- HUHU
- Hülleshell
- LL
- Längsachselongitudinal axis
- OO
- Oberfläche der HalterungSurface of the holder
- TT
- Quersteg(e)Transverse web (e)
- T1, T2T1, T2
- Teile der HalterungParts of the bracket
- ZK1, ZK2, ZK3ZK1, ZK2, ZK3
- Zündeinrichtungenignition devices
- αα
- Neigungswinkel der DurchbrücheInclination angle of the breakthroughs
Claims (10)
dadurch gekennzeichnet, dass die Ausnehmungen (A) als Durchbrüche durch die Halterung (H) ausgeführt sind, deren Vorzugsrichtung etwa senkrecht zur inneren oder äußeren Oberfläche (O) der Halterung verläuft, und die eine Öffnungsweite im Bereich von 3 mm bis 10 mm aufweisen, und wobei die Halterung (H) zwischen einem inneren Teil (HE1) und einem äußeren Teil (HE2) der Sprengladung angeordnet ist.Switchable cylindrical active charge of a warhead comprising a tubular and at least one part holder (H) with a plurality of recesses (A), wherein holder (H) within a fragment-forming sheath (HU) of the warhead is arranged, wherein the holder of a the Detonationsfront strongly damping material, and wherein in the effective charge at least two ignition devices (ZK1, ZK2) in the region of the longitudinal axis (L) of the active charge are arranged,
characterized in that the recesses (A) are designed as apertures through the holder (H) whose preferred direction is approximately perpendicular to the inner or outer surface (O) of the holder, and which have an opening width in the range of 3 mm to 10 mm, and wherein the holder (H) between an inner part (HE1) and an outer part (HE2) of the explosive charge is arranged.
dadurch gekennzeichnet, dass die Ausnehmungen (A) als Durchbrüche (A) durch die Halterung (H) ausgeführt sind, deren Vorzugsrichtung etwa senkrecht zur inneren oder äußeren Oberfläche (O) der Halterung verläuft, und die eine Öffnungsweite im Bereich von 3 mm bis 10 mm aufweisen, und wobei die Halterung (H) an der Innenseite der Hülle (HU) formschlüssig anliegt.Switchable cylindrical active charge of a warhead comprising a tubular and at least one part holder (H) with a plurality of recesses (A), wherein holder (H) is disposed within a fragment-forming shell (HU) of the warhead, wherein the holder (H) consists of a material strongly attenuating the detonation front, and wherein in the active charge at least two ignition devices (ZK1, ZK2) are arranged in the region of the longitudinal axis (L) of the active charge,
characterized in that the recesses (A) are designed as apertures (A) through the holder (H) whose preferred direction is approximately perpendicular to the inner or outer surface (O) of the holder, and which has an opening width in the range of 3 mm to 10 mm, and wherein the holder (H) on the inside of the shell (HU) rests positively.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18162152.5A EP3351890B1 (en) | 2014-03-19 | 2015-03-17 | Switchable charge variants with hole pattern inserts |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102014003893.9A DE102014003893A1 (en) | 2014-03-19 | 2014-03-19 | Switchable charge variants with perforated inserts and alternatively with reactive structural materials (RSM) |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18162152.5A Division EP3351890B1 (en) | 2014-03-19 | 2015-03-17 | Switchable charge variants with hole pattern inserts |
EP18162152.5A Division-Into EP3351890B1 (en) | 2014-03-19 | 2015-03-17 | Switchable charge variants with hole pattern inserts |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2921813A1 true EP2921813A1 (en) | 2015-09-23 |
EP2921813B1 EP2921813B1 (en) | 2018-09-26 |
Family
ID=52784873
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18162152.5A Active EP3351890B1 (en) | 2014-03-19 | 2015-03-17 | Switchable charge variants with hole pattern inserts |
EP15000787.0A Not-in-force EP2921813B1 (en) | 2014-03-19 | 2015-03-17 | Switchable charge variants with hole pattern inserts |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18162152.5A Active EP3351890B1 (en) | 2014-03-19 | 2015-03-17 | Switchable charge variants with hole pattern inserts |
Country Status (2)
Country | Link |
---|---|
EP (2) | EP3351890B1 (en) |
DE (1) | DE102014003893A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3130882A1 (en) * | 2015-08-08 | 2017-02-15 | TDW Gesellschaft für verteidigungstechnische Wirksysteme mbH | Method and device for controlling the power type and power emission of a warhead |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102019201176A1 (en) * | 2019-01-30 | 2020-07-30 | Atlas Elektronik Gmbh | Ordnance with a deflagration primer and method for operating such an ordnance |
DE102019003222B4 (en) | 2019-05-07 | 2022-07-14 | TDW Gesellschaft für verteidigungstechnische Wirksysteme mbH | Laser initiated warhead |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3510431A1 (en) * | 1985-03-22 | 1986-10-02 | Christoph Dr. 8898 Schrobenhausen Helwig | Warhead, especially for anti-surface-ship rockets, for producing defined fragmentation |
DE102006048299B3 (en) | 2006-10-12 | 2008-09-25 | TDW Gesellschaft für verteidigungstechnische Wirksysteme mbH | Cylindrical active charge |
EP2194354A2 (en) * | 2008-12-05 | 2010-06-09 | TDW Gesellschaft für verteidigungstechnische Wirksysteme mbH | Process and device for generating different sized fragments |
EP2312259A1 (en) | 2006-04-21 | 2011-04-20 | TDW Gesellschaft für verteidigungstechnische Wirksysteme mbH | Switchable charge |
EP2442065A2 (en) * | 2010-10-18 | 2012-04-18 | TDW Gesellschaft für verteidigungstechnische Wirksysteme mbH | Switchable explosive charge |
DE102010048570A1 (en) | 2010-10-18 | 2012-04-19 | TDW Gesellschaft für verteidigungstechnische Wirksysteme mbH | Switchable Wirkladung |
US8272329B1 (en) * | 2011-07-28 | 2012-09-25 | The United States Of America As Represented By The Secretary Of The Army | Selectable lethality warhead patterned hole fragmentation insert sleeves |
US8522685B1 (en) * | 2010-02-22 | 2013-09-03 | The United States Of America As Represented By The Secretary Of The Army | Multiple size fragment warhead |
-
2014
- 2014-03-19 DE DE102014003893.9A patent/DE102014003893A1/en not_active Withdrawn
-
2015
- 2015-03-17 EP EP18162152.5A patent/EP3351890B1/en active Active
- 2015-03-17 EP EP15000787.0A patent/EP2921813B1/en not_active Not-in-force
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3510431A1 (en) * | 1985-03-22 | 1986-10-02 | Christoph Dr. 8898 Schrobenhausen Helwig | Warhead, especially for anti-surface-ship rockets, for producing defined fragmentation |
EP2312259A1 (en) | 2006-04-21 | 2011-04-20 | TDW Gesellschaft für verteidigungstechnische Wirksysteme mbH | Switchable charge |
DE102006048299B3 (en) | 2006-10-12 | 2008-09-25 | TDW Gesellschaft für verteidigungstechnische Wirksysteme mbH | Cylindrical active charge |
EP2194354A2 (en) * | 2008-12-05 | 2010-06-09 | TDW Gesellschaft für verteidigungstechnische Wirksysteme mbH | Process and device for generating different sized fragments |
US8522685B1 (en) * | 2010-02-22 | 2013-09-03 | The United States Of America As Represented By The Secretary Of The Army | Multiple size fragment warhead |
EP2442065A2 (en) * | 2010-10-18 | 2012-04-18 | TDW Gesellschaft für verteidigungstechnische Wirksysteme mbH | Switchable explosive charge |
DE102010048570A1 (en) | 2010-10-18 | 2012-04-19 | TDW Gesellschaft für verteidigungstechnische Wirksysteme mbH | Switchable Wirkladung |
US8272329B1 (en) * | 2011-07-28 | 2012-09-25 | The United States Of America As Represented By The Secretary Of The Army | Selectable lethality warhead patterned hole fragmentation insert sleeves |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3130882A1 (en) * | 2015-08-08 | 2017-02-15 | TDW Gesellschaft für verteidigungstechnische Wirksysteme mbH | Method and device for controlling the power type and power emission of a warhead |
US9903692B2 (en) | 2015-08-08 | 2018-02-27 | TDW Gesellschaft für verteidigungstechnische Wirksysteme mbH | Method and device for controlling the power type and power emission of a warhead |
Also Published As
Publication number | Publication date |
---|---|
EP3351890A1 (en) | 2018-07-25 |
EP2921813B1 (en) | 2018-09-26 |
DE102014003893A1 (en) | 2015-09-24 |
EP3351890B1 (en) | 2019-11-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2312259B1 (en) | Warhead with switchable charge | |
DE102009017160B3 (en) | Disassembling device for the explosive charge of a warhead | |
EP3351890B1 (en) | Switchable charge variants with hole pattern inserts | |
DE102005012059A1 (en) | Laser-irradiated hollow cylinder as a lens for ion beams | |
EP1912037A1 (en) | Cylindrical explosive charge | |
DE102005021348B3 (en) | Protection module for the protection of objects with electric current against threats, in particular by shaped charges | |
EP3130882B1 (en) | Method and device for controlling the power type and power emission of a warhead | |
EP2194354B1 (en) | Fragmentation warhead | |
DE102005031588B3 (en) | Controllable charge of a warhead | |
EP2154470B1 (en) | Switchable cylindrical explosive charge | |
EP2024706A1 (en) | Projectile, active body or warhead for fighting massive, structured and planar targets | |
DE102010048570B4 (en) | Switchable Wirkladung | |
DE102007035551B4 (en) | Support device for an explosive charge of a penetrator | |
DE102011010351A1 (en) | Switchable operating load for warhead, has cover that forms splinter, in which tubular holder is arranged with multiple pellets that are arranged in distributing manner | |
EP2827094B1 (en) | Device for the controlled initiation of the deflagration of an explosive charge | |
EP2679948B1 (en) | Penetrator with a hollow charge | |
DE10130324B4 (en) | Shatter-generating warhead | |
DE102007063681B4 (en) | Support device consists of front and rear-ward section loading located in shell with separating wall and initiator to trigger separating wall | |
EP2442065B1 (en) | Switchable explosive charge | |
EP1936319B1 (en) | Penetrating projectile and method for creating such a projectile | |
DE10151573A1 (en) | Splinter protection to minimize collateral damage | |
DE10251676A1 (en) | Explosive charge, for underwater blasting, has an outer charge with a faster detonation speed than an inner charge giving a focused blasting zone using smaller charges | |
DE1578221C (en) | Projectile, especially against flying objects | |
EP3034990A1 (en) | Bullet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
17P | Request for examination filed |
Effective date: 20160318 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20170313 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20180525 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1046524 Country of ref document: AT Kind code of ref document: T Effective date: 20181015 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502015006034 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20180926 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181227 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: T2 Effective date: 20180926 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190126 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SI Payment date: 20181108 Year of fee payment: 17 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190126 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502015006034 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20190627 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190317 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20190331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190331 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190317 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20200323 Year of fee payment: 6 Ref country code: SE Payment date: 20200323 Year of fee payment: 6 Ref country code: NO Payment date: 20200326 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20200320 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20200318 Year of fee payment: 6 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502015006034 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201001 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1046524 Country of ref document: AT Kind code of ref document: T Effective date: 20200317 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20150317 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200317 |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: MMEP |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20210317 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210331 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210317 Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210318 Ref country code: NO Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210317 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 |