EP2913691B1 - Satellitenmessungsabtastung zum Schutz der Integrität von vorhandenen Monitoren bei Vorhandensein von Amplitudenszintillation - Google Patents

Satellitenmessungsabtastung zum Schutz der Integrität von vorhandenen Monitoren bei Vorhandensein von Amplitudenszintillation Download PDF

Info

Publication number
EP2913691B1
EP2913691B1 EP15155284.1A EP15155284A EP2913691B1 EP 2913691 B1 EP2913691 B1 EP 2913691B1 EP 15155284 A EP15155284 A EP 15155284A EP 2913691 B1 EP2913691 B1 EP 2913691B1
Authority
EP
European Patent Office
Prior art keywords
amplitude scintillation
satellite
excluded
amplitude
reference receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15155284.1A
Other languages
English (en)
French (fr)
Other versions
EP2913691A1 (de
Inventor
Joseph E. Scheitlin
Mats Anders Brenner
Kim A. Class
Randy L. Reuter
Bruce G. Johnson
John M. Howard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell International Inc
Original Assignee
Honeywell International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honeywell International Inc filed Critical Honeywell International Inc
Publication of EP2913691A1 publication Critical patent/EP2913691A1/de
Application granted granted Critical
Publication of EP2913691B1 publication Critical patent/EP2913691B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/20Integrity monitoring, fault detection or fault isolation of space segment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/07Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing data for correcting measured positioning data, e.g. DGPS [differential GPS] or ionosphere corrections
    • G01S19/071DGPS corrections
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/07Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing data for correcting measured positioning data, e.g. DGPS [differential GPS] or ionosphere corrections
    • G01S19/073Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing data for correcting measured positioning data, e.g. DGPS [differential GPS] or ionosphere corrections involving a network of fixed stations
    • G01S19/074Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing data for correcting measured positioning data, e.g. DGPS [differential GPS] or ionosphere corrections involving a network of fixed stations providing integrity data, e.g. WAAS
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/08Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing integrity information, e.g. health of satellites or quality of ephemeris data

Definitions

  • GAS Ground Based Augmentation Systems
  • GNSS Global Navigation Satellite Systems
  • GAS Global Navigation Satellite Systems
  • GAS Global Navigation Satellite Systems
  • GAS Global Navigation Satellite Systems
  • Ionospheric (iono) scintillation is a fluctuation of the GPS signal amplitude and/or phase, generated as the signal passes through localized anomalies in the total electron content (TEC) in the ionosphere.
  • Ionospheric (iono) amplitude scintillation causes a rapid fluctuation of the GPS signal amplitude in signals passing through the ionosphere.
  • RODRIGUEZ IRMA et al. "Real-Time Detection of Ionospheric Scintillations and Potential Applications", proceedings of GNSS 2008 , describes the concept of detecting ionospheric phase scintillations, and excluding and readmitting the affected signals accordingly.
  • ionosphere scintillation threatens satellite systems by generating "blinding" or false trip scenarios for some of the satellite fault monitors in the ground station sub-system. Additionally, ionosphere scintillation may cause an integrity monitor's underlying test statistic and its associated bounding sigma ( ⁇ ) to be significantly different than expected and thereby unable to meet its required performance.
  • the present application relates to a method of implementing a real-time screening process for amplitude scintillation.
  • the method includes detecting an amplitude scintillation event during a sample time period at an amplitude scintillation monitor; excluding associated satellite measurement data from further use based on the detection of the amplitude scintillation event at the amplitude scintillation monitor; detecting an end to the amplitude scintillation event at the amplitude scintillation monitor; and readmitting associated satellite measurement data collected after the end of the amplitude scintillation event as determined by the amplitude scintillation monitor as defined in claim 1.
  • Ionospheric amplitude scintillation is an environmental condition which can impact the GPS satellite signal reception.
  • a screening process and system described herein screens out satellite measurement data that can potentially corrupt monitor operations.
  • the screening process described herein excludes satellite measurement data obtained during a scintillation event and readmits satellite measurement data obtained after the scintillation event is determined to be over.
  • an amplitude (signal strength) scintillation monitor and satellite measurement data exclusion and re-admittance process to screen satellite measurement data affected by an amplitude scintillation event is described herein.
  • This exclusion and re-admittance process ensures that the resultant GPS signals continue to protect system integrity; i.e., the existing monitors still meet their integrity requirements.
  • This screening process is used as part of a GBAS. GBAS is used to provide precision landing services to the aviation community. The screening process detects unfavorable satellite measurement data and prohibits its use in monitors while enabling valid data to pass. The valid satellite measurement data, which is allowed to pass thru this screening process, enables the remaining functions/monitors to operate properly to insure system integrity.
  • the scintillation monitor described herein is designed to screen satellite measurement data for amplitude scintillation and to remove that measurement data when its use degrades the system's ability to protect integrity.
  • the amplitude scintillation is monitored for each satellite measurement used in the GBAS.
  • the amplitude monitor is based on the variance of the satellite's measured signal to noise ratio (SNR) power level.
  • Figure 1 shows an aircraft 40 communicatively coupled to a satellite system 20 including a plurality of satellites 20(1-N) and a communicatively coupled GBAS 10 that provides real-time screening based on amplitude scintillation in accordance with the present application.
  • the aircraft 40 is also referred to herein as "airborne vehicle 40".
  • the GBAS 10 utilizes the received satellite signals to augment the positional accuracy in certain applications.
  • ground-based augmentation systems can increase the accuracy in precision aircraft approach applications.
  • the ground based augmentation system 10 is part of a ground station 11 that is associated with a runway 46 at an airport.
  • the horizon of the earth is represented generally at 45.
  • the ionosphere 15 is a layer of the atmosphere that is between the satellites 20(1-N) and the earth 45.
  • localized anomalies in total electron content (TEC) represented generally at 16-1 and 16-2 are in portions of the ionosphere 15.
  • the localized anomalies in TEC 16(1-2) depict all scintillation events but herein we refer to them as "amplitude scintillation events 16(1-2)" only.
  • the amplitude scintillation events 16(1-2) are signal-perturbing features of the ionosphere 15 that affect the signal amplitude and that change in time and are found in different portions of the ionosphere 15 at different times.
  • the ground based augmentation system 10 includes at least one monitor 70, a plurality of reference receivers (RRs) 60(1-4), and an amplitude scintillation monitor 13.
  • the amplitude scintillation monitor 13 includes a processor 50, storage medium 80, software 85, and optional memory 55.
  • the processor 50 is communicatively coupled to receive input from the plurality of satellites 20(1-N) via the plurality of reference receivers (RRs) 60(1-4).
  • the integrity monitors 70 and the GBAS 10 also interface with a processor and have software and memory. In order to simplify the drawings, these are not shown in Figure 1 .
  • the first reference receiver 60-1 is a distance L 1-2 from the second reference receiver 60-2.
  • the second reference receiver 60-2 is a distance L 2-3 from the third reference receiver 60-3.
  • the third reference receiver 60-3 is a distance L 3-4 from the fourth reference receiver 60-4.
  • the fourth reference receiver 60-4 is a distance L 4-1 from the first reference receiver 60-1.
  • the distances between the reference receivers 60(1-4) are referred to herein as baselines.
  • the at least one monitor 70 is also referred to herein as "integrity monitors 70". As described above, amplitude scintillation can degrade the test statistics of some integrity monitors 70. This application focuses on mitigation of the impact of the amplitude scintillation threat on these monitors 70.
  • the scintillation threat is mitigated by implementing a real-time amplitude scintillation screening process that screens satellite measurements for undesirable levels of amplitude scintillation, thereby preventing corruption of the integrity monitors 70.
  • the amplitude scintillation monitor discriminator is referred to herein as S4.
  • the real-time screening process also determines when the amplitude scintillation event is over and readmits satellite measurement data collected from the previously screened measurement source.
  • the re-admittance occurs when the amplitude scintillation monitor discriminator satisfies the re-admittance criteria, as described below.
  • Amplitude scintillation is estimated using an S4 value which is an industry standard.
  • a true S4 value is found using the receiver's signal intensity or received signal power.
  • the S4 is based on the receiver's signal-to-noise ratio, SNR.
  • the amplitude scintillation test statistic starts with the signal-to-noise ratio from the j th satellite on the i th receiver, SNR i,j .
  • the signal-to-noise ratio is then converted to power, x(i,j).
  • the amplitude scintillation monitor discriminator is computed and evaluated for all pairs of valid reference receivers and tracked satellites for which an SNR measurement is available. Every reference receiver that receives a signal from a satellite is defined to be in a reference receiver/satellite pair RR i /SV j .
  • the terms "space vehicle” (SV) and "satellite” are used interchangeably herein.
  • the reference receiver/satellite pair RR i /SV j in a current sample time period is also referred to herein as SV i,j .
  • the satellite signal is received, via wireless communication link 22-1, at the second reference receiver 60-2 from the first satellite 20-1 so the second reference receiver 60-2 and the first satellite 20-1 are a reference receiver/satellite pair RR 2 /SV 1 .
  • the same satellite signal is also received, via a wireless communication link, at the first reference receiver 60-1, if the first reference receiver 60-1 is in the reception area of the first satellite 20-1, so the first reference receiver 60-1 and the first satellite 20-1 form a reference receiver/satellite pair RR 1 /SV 1 .
  • the reception area for a satellite is that area of the earth that is able to receive (exposed to) signals from the satellite.
  • the reception area changes with time as the satellite orbits the earth and as the earth rotates.
  • a reception mask may be applied to limit acceptance of these satellite signals below a certain elevation.
  • a broadcast signal which is sent via wireless communication link 22-5 to the aircraft 40, only includes data from those satellites that are not excluded based on the amplitude scintillation monitor discriminator 13.
  • FIG. 2 shows a flow diagram of a method 200 to compute an amplitude scintillation monitor discriminator (S4) in accordance with the present application.
  • the amplitude scintillation monitor discriminator (S4) is also referred to herein as an "amplitude scintillation monitor discriminator (S4) measurement” and a "variation in an amplitude of the signal to noise power level at sample time k (S4) i,j (k)".
  • S4 i,j sample time k
  • the SNR power level is calculated.
  • Each satellite's SNR power level (x) i,j (for satellite j on each reference receiver i) is computed for reference receiver/satellite pairs.
  • the amplitude scintillation monitor discriminator (S4 i,j ) is computed for the reference receiver/satellite pairs RR i /SV j in the current sample time period.
  • FIG 3 shows a differential correction processor (DCP) processing diagram 150 used to determine if a satellite measurement of the associated amplitude scintillation monitor discriminator measurement is to be excluded in accordance with the present application.
  • DCP differential correction processor
  • the reference receivers 60(1-4) Figure 1
  • the processor 50 also receives as inputs, the S4 exclusion threshold, the S4 re-admittance threshold, the hold times, and the queue sizes.
  • this input data is stored in the memory 55 prior to being input to the processor 50.
  • the S4 exclusion threshold is also referred to herein as “a measurement exclusion threshold”, “an exclusion threshold” and “an SV measurement exclusion threshold” all of which are represented as S4_THRESHOLD.
  • the S4 re-admittance threshold is also referred to herein as “a measurement re-admittance threshold”, “a readmit threshold” and “an SV measurement re-admittance threshold” all of which are represented as S4_READMIT THRESHOLD.
  • the processor 50 receives the input and executes the amplitude monitor software 160 to determine if the associated satellite measurement data is to be excluded.
  • the amplitude monitor software 160 outputs the list of excluded satellite measurements, which are used to determine the available measurements. The available measurements are the current set of measurements less the list of excluded measurements output from the amplitude monitor software 160.
  • FIG. 4 shows a flow diagram of a method 400 of excluding satellite measurement data associated with its amplitude scintillation monitor discriminator (S4) measurement in accordance with the present application.
  • the method 400 is executed for each sample time period, k.
  • the sample time period has a duration of 1 ⁇ 2 second, although other durations for the sample time period are possible.
  • the process starts.
  • SV ij (k) If SV ij (k) is currently excluded, then SV ij was excluded in a previous sample time period (e.g., during the (k-1) th sample time period through the (k-n) th sample time period, where "n" is a positive integer), the flow proceeds to block 406 and a readmit check is performed. In this case, the flow proceeds from block 406 to block 502 of method 500 in Figure 5 , which is described below.
  • SV ij (k) is not currently excluded, the flow proceeds from block 404 to block 408.
  • block 408 it is determined if the amplitude scintillation monitor discriminator measurement S4 ij (k) has met its exclusion criteria. This process is repeated for each of the reference receiver/satellite pairs RR i /SV j .
  • the exclusion criteria is met if S4 ij (k) is greater than the exclusion threshold (e.g., the S4 threshold). In another implementation of this embodiment, the exclusion criteria is met if S4 ij (k) is greater than or equal to the S4 threshold.
  • the S4 threshold (exclusion threshold) is stored in memory 55 ( Figure 1 ) and/or the processor 50 ( Figure 1 ). In either case, the amplitude scintillation monitor discriminator measurements S4 ij (k) for the respective reference receiver/satellite pairs RR i /SV j are each compared to the exclusion threshold. Other exclusion criteria are possible.
  • S4 ij has met its exclusion criteria for one (or more) of the reference receiver/satellite pairs RR i /SV j , that one (or more) reference receiver/satellite pair RR i /SV j is an excluded reference receiver/satellite pair RR i /SV j_ excluded .
  • two or more of reference receiver/satellite pairs RR i /SV j have an S4 ij that is equal to or greater than the S4 threshold.
  • those reference receiver/satellite pairs RR i /SV j are defined to be excluded reference receiver/satellite pairs RR i /SV j_ excluded and the data sent from the satellite in the excluded reference receiver/satellite pairs RR i /SV j_ excluded is not used in the downstream monitors 70 and is not a part of the broadcast sent via wireless communication link 22-5 ( Figure 1 ). Then the flow proceeds to block 410 for the one or more excluded reference receiver/satellite pairs RR i /SV j_ excluded .
  • that one (or more) reference receiver/satellite pair RR i /SV j is identified as an excluded reference receiver/satellite pair RR i /SV j_ excluded .
  • the data from the satellite in the reference receiver/satellite pair for an excluded reference receiver/satellite pair RR i /SV j_ excluded is no longer used in the downstream monitors 70 and is not part of the broadcast sent via wireless communication link 22-5 ( Figure 1 ) when the amplitude scintillation monitor discriminator measurement for the excluded reference receiver/satellite pair RR i /SV j_ excluded is determined (upon comparison with the exclusion threshold) to be equal to or greater than an exclusion threshold (i.e., S4_THRESHOLD).
  • an exclusion threshold i.e., S4_THRESHOLD
  • S4 ij has not met its exclusion criteria, the flow proceeds from block 408 to block 412 and the flow for that one (or more) non-excluded reference receiver/satellite pair RR i /SV j exits the process for the current sample time period.
  • S4 ij (k) is less than the S4 exclusion threshold for one (or more) of the reference receiver/satellite pairs RR i /SV j , then that one (or more) of the reference receiver/satellite pairs RR i /SV j is not excluded and the satellite measurement data continues to be used in the downstream monitors 70 and remains a part of the broadcast sent via wireless communication link 22-5 ( Figure 1 ).
  • FIG 5 shows a flow diagram of a method 500 of readmitting satellite measurement data associated with an amplitude scintillation monitor discriminator (S4) measurement in accordance with the present application.
  • the satellite measurement data is readmitted when it is determined that the amplitude scintillation event has ended.
  • the method 500 is implemented for each of the reference receiver/satellite pairs RR i /SV j by processor 50 executing software 85 in the amplitude scintillation monitor 13 ( Figure 1 ).
  • the process starts.
  • the current sample time period is the k th sample time period, as used herein. In this case, the flow proceeds from block 506 to block 402 of method 400 in Figure 4 , for processing as described above.
  • the readmittance criteria is satisfied when amplitude scintillation monitor discriminator S4 ij (k) in the current sample time period is less than the S4 readmit threshold.
  • the S4 readmit threshold is preselected and is stored in memory 55 ( Figure 1 ) or in the processor 50 ( Figure 1 ).
  • the processor 50 compares the amplitude scintillation monitor discriminator S4 ij (k) for the excluded reference receiver/satellite pair RR i /SV j_ excluded to the S4 readmit threshold.
  • Other readmittance criteria are possible.
  • the readmittance criteria is satisfied when S4 ij (k) is less than the S4 readmit threshold in the current sample time period for a preselected number P (where P is a positive integer) of samples that occurred prior to the current sample time period and after the reference receiver/satellite pair RR i /SV j was excluded.
  • the processor 50 compares the amplitude scintillation monitor discriminator S4 ij (k) for the excluded reference receiver/satellite pair RR i /SV j_ excluded to the S4 readmit threshold; counts the number of samples below the threshold since the reference receiver/satellite pair RR i /SV j was excluded; and compares the counted number of samples below the threshold since the reference receiver/satellite pair RR i /SV j was excluded to the stored preselected number P.
  • the preselected number P is stored in memory 55 ( Figure 1 ) or in the processor 50 ( Figure 1 ).
  • the readmittance criteria is satisfied when S4 ij (k) in the current sample time period is less than the S4 readmit threshold for a preselected number P of consecutive samples that occurred consecutively just prior to the current sample time period. In yet another implementation not forming part of the present invention, the readmittance criteria is satisfied when a preselected number P of samples have been counted regardless of the value of S4 ij (k) for those consecutive samples. These optional readmittance criteria are used as indications that the amplitude scintillation event has ended.
  • measurement data obtained from a reference receiver/satellite pair RR i /SV j during a scintillation event is excluded from use in a navigation system and measurement data from that excluded reference receiver/satellite pair RR i /SV j_ excluded is readmitted after the scintillation event has ended for the excluded reference receiver/satellite pair RR i /SV j- _excluded .
  • the presence/non-presence of scintillation using SNR is determined from 4 reference receivers.
  • the SNR used to detect amplitude scintillation is based on an S4 exclusion threshold of 0.6 (unitless) and a readmit threshold of 0.12 (unitless) for 10 consecutive samples.
  • the methods and techniques described here may be implemented in digital electronic circuitry, or with at least one processor (for example, a programmable processor, a special-purpose processor, a general-purpose processor such as a computer, or the processor 50 of Figure 1 ) firmware, software, or in any combination of them.
  • Apparatus embodying these techniques may include appropriate input and output devices, a processor, and a storage medium tangibly embodying program instructions for execution by the processor.
  • a process embodying these techniques may be performed by at least one processor executing a program of instructions to perform desired functions by operating on input data and generating appropriate output.
  • the techniques may advantageously be implemented in one or more programs that are executable on a programmable system including at least one processor coupled to receive data and instructions from, and to transmit data and instructions to, a data storage system, at least one input device, and at least one output device.
  • a processor will receive instructions and data from a read-only memory and/or a random access memory.
  • Storage devices suitable for tangibly embodying computer program instructions and data include all forms of non-volatile memory, including by way of example semiconductor memory devices, such as EPROM, EEPROM, and flash memory devices; magnetic disks such as internal hard disks and removable disks; magneto-optical disks; and DVD disks. Any of the foregoing may be supplemented by, or incorporated in, specially-designed application-specific integrated circuits (ASICs).
  • semiconductor memory devices such as EPROM, EEPROM, and flash memory devices
  • magnetic disks such as internal hard disks and removable disks
  • magneto-optical disks and DVD disks.
  • ASICs application-specific integrated circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Security & Cryptography (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Radio Relay Systems (AREA)

Claims (6)

  1. Verfahren zum Implementieren eines Echtzeitscreeningprozesses für Amplitudenszintillation, das Verfahren umfassend:
    Detektieren eines Amplitudenszintillationsereignisses (16-1) in der Ionosphäre während eines Probenzeitraums an einem Amplitudenszintillationsmonitor (13), wobei das Detektieren des Amplitudenszintillationsereignisses (16-1) während des Probenzeitraums an dem Amplitudenszintillationsmonitor (13) das Ermitteln eines Amplitudenszintillationsmonitor-Diskriminators (S4ij(k)) in einem aktuellen (k.) Probenzeitraum auf Basis des Leistungspegels des Signal-Rausch-Verhältnisses (SNR) für mindestens ein Referenzempfänger/Satelliten-Paar (RRi/SVj), das Ausschlusskriterien erfüllt, umfasst;
    Ausschließen von zugehörigen Satellitenmessdaten von der weiteren Verwendung auf Basis des Detektierens des Amplitudenszintillationsereignisses (16-1) auf dem Amplitudenszintillationsmonitor (13);
    Detektieren eines Endes des Amplitudenszintillationsereignisses an dem Amplitudenszintillationsmonitor (13) auf Basis zumindest teilweise des ermittelten Amplitudenmonitor-Diskriminators in dem aktuellen Probenzeitraum; und
    Wiederzulassen von ausgeschlossenen Satellitenmessdaten, die nach dem Ende des Amplitudenszintillationsereignisses entsprechend der Ermittlung durch den Amplitudenszintillationsmonitor (13) erfasst wurden, mittels:
    Zählen der Anzahl von Proben, für welche der Amplitudenszintillationsmonitor-Diskriminator für ein ausgeschlossenes Referenzempfänger/Satelliten-Paar unter einem Wiederzulassungsgrenzwert (S4_READMIT THRESHOLD) liegt;
    Vergleichen der gezählten Anzahl von Proben unter dem Grenzwert, die vor dem aktuellen Probenzeitraum und nach dem Ausschluss des Referenzempfänger/Satelliten-Paars aufgetreten sind, mit einer vorher ausgewählten Anzahl von Proben (P).
  2. Verfahren nach Anspruch 1, wobei das Ermitteln des Amplitudenszintillationsmonitor-Diskriminators (S4ij(k)) in dem aktuellen (k.) Probenzeitraum für mindestens ein Referenzempfänger/Satelliten-Paar (RRi/SVj), das Ausschlusskriterien erfüllt, Folgendes umfasst:
    Ermitteln, dass der Amplitudenszintillationsmonitor-Diskriminator in dem aktuellen Probenzeitraum für das mindestens eine Referenzempfänger/Satelliten-Paar eines aus Folgendem ist: größer als ein Ausschlussgrenzwert (S4_THRESHOLD); oder gleich dem Ausschlussgrenzwert (S4_THRESHOLD).
  3. Verfahren nach Anspruch 1, ferner umfassend:
    Ermitteln eines Amplitudenszintillationsmonitor-Diskriminators (S4ij(k)) in einem aktuellen (k.) Probenzeitraum für ein ausgeschlossenes Referenzempfänger/Satelliten-Paar (RRi/SVj_ausgeschlossen).
  4. Verfahren nach Anspruch 1, wobei die vorher ausgewählte Anzahl (P) von Proben eine vorher ausgewählte Anzahl aufeinanderfolgender Proben umfasst.
  5. Verfahren nach Anspruch 1, ferner umfassend:
    Berechnen des Leistungspegels des Signal-Rausch-Verhältnisses (SNR) in einem aktuellen (k.) Probenzeitraum für Referenzempfänger/Satelliten-Paare (RRi/SVj); und
    Errechnen eines Amplitudenszintillationsmonitor-Diskriminators (S4ij(k)) in dem aktuellen Probenzeitraum für die Referenzempfänger/Satelliten-Paare.
  6. Amplitudenszintillationsmonitor (13), um ein Echtzeitscreening für Amplitudenszintillation bereitzustellen, der Amplitudenszintillationsmonitor umfassend:
    mindestens einen Prozessor (50), der kommunikativ dazu gekoppelt ist, eine Eingabe von einer Vielzahl von Referenzempfängern (60(1-4)) zu empfangen; und
    ein Speichermedium (80), das konkret Programmanweisungen für eine Ausführung durch den Prozessor (50) enthält, wobei die Programmanweisungen dazu betreibbar sind, wenn sie von mindestens einem Prozessor (50) ausgeführt werden, den Amplitudenszintillationsmonitor (13) zu Folgendem zu veranlassen:
    ein Amplitudenszintillationsereignis (16-1) in der Ionosphäre während eines Probenzeitraums zu detektieren, durch Ermitteln eines Amplitudenszintillationsmonitor-Diskriminators (S4ij(k)) in einem aktuellen (k.) Probenzeitraum auf Basis des Leistungspegels des Signal-Rausch-Verhältnisses (SNR) für mindestens ein Referenzempfänger/Satelliten-Paar (RRi/SVj), das Ausschlusskriterien (S4_THRESHOLD) erfüllt;
    zugehörige Satellitenmessdaten von der weiteren Verwendung auf Basis des Detektierens des Amplitudenszintillationsereignisses auszuschließen;
    ein Ende des Amplitudenszintillationsereignisses auf Basis zumindest teilweise des ermittelten Amplitudenszintillationsmonitor-Diskriminators zu detektieren; und
    ausgeschlossene zugehörige Satellitenmessdaten, die nach dem Ende des Amplitudenszintillationsereignisses erfasst wurden, wieder zuzulassen;
    wobei die Programmanweisungen, die dazu betreibbar sind, ausgeschlossene Satellitenmessdaten wieder zuzulassen, Programmanweisungen beinhalten, die dazu betreibbar sind, wenn sie von dem mindestens einen Prozessor (50) ausgeführt werden:
    die Anzahl von Proben zu zählen, für welche der Amplitudenszintillationsmonitor-Diskriminator (S4ij(k)) für ein ausgeschlossenes Referenzempfänger/Satelliten-Paar (RRi/SVj_ausgeschlossen) unter einem Wiederzulassungsgrenzwert (S4_READMIT THRESHOLD) liegt;
    die gezählte Anzahl von Proben unter dem Grenzwert, die vor dem aktuellen Probenzeitraum und nach dem Ausschluss des Referenzempfänger/Satelliten-Paars aufgetreten sind, mit einer vorher ausgewählten Anzahl von Proben (P) zu vergleichen.
EP15155284.1A 2014-02-28 2015-02-16 Satellitenmessungsabtastung zum Schutz der Integrität von vorhandenen Monitoren bei Vorhandensein von Amplitudenszintillation Active EP2913691B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/193,759 US9678212B2 (en) 2014-02-28 2014-02-28 Satellite measurement screening to protect the integrity of existing monitors in the presence of amplitude scintillation

Publications (2)

Publication Number Publication Date
EP2913691A1 EP2913691A1 (de) 2015-09-02
EP2913691B1 true EP2913691B1 (de) 2024-05-01

Family

ID=52468950

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15155284.1A Active EP2913691B1 (de) 2014-02-28 2015-02-16 Satellitenmessungsabtastung zum Schutz der Integrität von vorhandenen Monitoren bei Vorhandensein von Amplitudenszintillation

Country Status (4)

Country Link
US (1) US9678212B2 (de)
EP (1) EP2913691B1 (de)
JP (1) JP6585903B2 (de)
RU (1) RU2015106320A (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016034252A1 (en) * 2014-09-05 2016-03-10 Fugro Intersite B.V. Ionospheric scintillation prediction
WO2017211432A1 (en) * 2016-06-10 2017-12-14 European Space Agency Method and apparatus for determining integrity information for users of global navigation satellite system receiver devices
CN109946722B (zh) * 2019-04-01 2023-04-11 成都新橙北斗智联有限公司 一种多系统多频段定位方法及系统
US11038606B1 (en) 2019-04-19 2021-06-15 The Government of the Unites States of Ameroica as represented by the Secretary of the Air Force Source discrimination of fluctuating radio signals
US11988752B2 (en) 2020-01-30 2024-05-21 Rohde & Schwarz Gmbh & Co. Kg Method of analyzing a ground-based augmentation system signal and test system for testing a ground-based augmentation system

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3504141B2 (ja) * 1998-04-17 2004-03-08 株式会社東芝 シインチレーション監視装置
US6693979B1 (en) 2000-01-13 2004-02-17 The Aerospace Corporation Adaptive smoothing system for fading communication channels
US6826476B2 (en) * 2002-11-01 2004-11-30 Honeywell International Inc. Apparatus for improved integrity of wide area differential satellite navigation systems
US7400292B2 (en) * 2003-11-04 2008-07-15 The Boeing Company GPS Navigation system with integrity and reliability monitoring channels
DE102007050034A1 (de) * 2007-10-17 2009-04-23 Astrium Gmbh Verfahren und Vorrichtung zur Integritätsüberwachung von Satellitennavigationssignalen
EP2279426B1 (de) 2008-04-11 2012-05-23 Technische Universität München Verfahren zur vektorphasenverfolgung einer vielzahl von trägersignalen globaler positionsbestimmungssatelliten
DE102008025064A1 (de) * 2008-05-26 2009-12-03 Astrium Gmbh Verfahren zum Verbessern der Kontinuität bei einem Zweifrequenz-Satellitennavigationssystem
FR2943868A1 (fr) * 2009-03-27 2010-10-01 Thales Sa Procedes de calcul de la position d'un recepteur gnss a partir de pseudo-mesures bi et mono frequences
EP2333581A1 (de) * 2009-12-09 2011-06-15 Technische Universität München Schätzung von Phasen- und Codeverschiebungen auf mehreren Frequenzen mit einem Kalmanfilter
US8094064B2 (en) 2010-03-04 2012-01-10 Honeywell International Inc. Ground-based system and method to monitor for excessive delay gradients
JP5365593B2 (ja) * 2010-09-13 2013-12-11 日本電気株式会社 信頼度の高いgps測位信号のみを用いた衛星航法補強システム
JP5408109B2 (ja) * 2010-11-15 2014-02-05 日本電気株式会社 閾値決定装置、閾値決定方法およびプログラム
DE102011015871B4 (de) * 2011-04-01 2012-12-20 Astrium Gmbh Erfüllen erhöhter Integritätsanforderungen mit einem Erweiterungssystem eines Satellitennavigationssystems
KR101300080B1 (ko) * 2012-01-26 2013-08-30 삼성전자주식회사 위성 수신 장치에서 위성 상태를 확인하기 위한 장치 및 방법
US9405012B2 (en) * 2012-04-12 2016-08-02 Trimble Navigation Limited Advanced global navigation satellite systems (GNSS) positioning using precise satellite information
US9759816B2 (en) * 2013-01-11 2017-09-12 Schweitzer Engineering Laboratories, Inc. Multi-constellation GNSS integrity check for detection of time signal manipulation
WO2015020552A1 (en) * 2013-08-07 2015-02-12 Llc "Topcon Positioning Systems" Mitigation of scintillations in signals of global navigation satellite systems caused by ionospheric irregularities

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
RODR?GUEZ IRMA ET AL: "Real-Time Detection of Ionospheric Scintillations and Potential Applications", GNSS 2008 - PROCEEDINGS OF THE 21ST INTERNATIONAL TECHNICAL MEETING OF THE SATELLITE DIVISION OF THE INSTITUTE OF NAVIGATION (ION GNSS 2008), THE INSTITUTE OF NAVIGATION, 8551 RIXLEW LANE SUITE 360 MANASSAS, VA 20109, USA, 19 September 2008 (2008-09-19), pages 277 - 288, XP056002707 *
THEODORE L BEACH ET AL: "Development and Use of a GPS Ionospheric Scintillation Monitor", IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, IEEE SERVICE CENTER, PISCATAWAY, NJ, US, vol. 39, no. 5, 1 May 2001 (2001-05-01), XP011021742, ISSN: 0196-2892 *
TSUJII TOSHIAKI ET AL: "MEASUREMENT AND SIMULATION OF EQUATORIAL IONOSPHERIC PLASMA BUBBLES TO ASSESS THEIR IMPACT ON GNSS PERFORMANCE", JOURNAL OF KOREAN SOCIETY OF SURVEYING, GEODESY, PHOTOGRAMMETRY AND CARTOGRAPHY, 30 December 2012 (2012-12-30), pages 607 - 61330, XP055818244, Retrieved from the Internet <URL:https://www.koreascience.or.kr/article/JAKO201212656356905.pdf> *

Also Published As

Publication number Publication date
US20150247932A1 (en) 2015-09-03
JP2015165231A (ja) 2015-09-17
RU2015106320A (ru) 2016-09-20
US9678212B2 (en) 2017-06-13
JP6585903B2 (ja) 2019-10-02
RU2015106320A3 (de) 2018-08-28
EP2913691A1 (de) 2015-09-02

Similar Documents

Publication Publication Date Title
EP3086138B1 (de) Verwendung von code-minusträgermessungen zur abschwächung von räumlichen dekorrelationsfehlern infolge von ionosphärenverzögerungen
EP2913691B1 (de) Satellitenmessungsabtastung zum Schutz der Integrität von vorhandenen Monitoren bei Vorhandensein von Amplitudenszintillation
US10215862B2 (en) Systems and methods for a code carrier divergence high-pass filter monitor
US10473791B1 (en) GBAS integrity performance evaluation method based on pseudorange error distribution model
EP3073288B1 (de) Systeme und verfahren mit mehrfachfrequenzsatellitenmessungen zur minderung von durch ionosphärenverzögerungen verursachten räumlichen dekorrelationsfehlern
US11409002B2 (en) Method for operating a plurality of GNSS receivers for detecting satellite signal deformation
JP5572877B2 (ja) 異常な擬似距離測定値から無線ナビゲーション受信機ユーザを保護するための方法
US8610623B2 (en) RAIM algorithm
KR101811760B1 (ko) Gbas 지상시스템 기반의 쿨백-라이블러 발산을 이용한 전리층 이상 감시장치 및 방법
EP2618181B1 (de) Satellitennavigationserweiterungssystem und satellitennavigationserweiterungsverfahren
US9297904B2 (en) Systems and methods for monitoring broadband radio frequency interference
EP3570073A1 (de) Mehrfrequenzmonitor zur erfassung ionosphärischer und troposphärischer störungen
EP2913692B1 (de) Satellitenmessungsabtastung zum Schutz der Integrität von vorhandenen Monitoren bei Vorhandensein von Phasenszintillation
Morrissey et al. GPS receiver performance characterization under realistic ionospheric phase scintillation environments
Kannemans The Generalized Extreme Value statistical method to determine the GNSS integrity performance
Yoon et al. Multi-dimensional verification methodology of ionospheric gradient observation during plasma bubble events in the Brazilian region
Blanch et al. Analysis of GNSS constellation performance for advanced RAIM
Blanch et al. Near term improvements to WAAS availability
Paimblanc et al. Cycle Slip Detection in Galileo Widelane Signals Tracking
US10514463B2 (en) Ground-based system and method to monitor for excessive delay gradients using long reference receiver separation distances
CN117826192A (zh) 北斗导航系统全球可用性评估方法、装置、设备及介质

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150216

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HONEYWELL INTERNATIONAL INC.

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20181123

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230421

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20240118

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015088517

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D