EP2905455B1 - Verfahren zum Beschichten einer Bohrung und Zylinderblock eines Verbrennungsmotors - Google Patents

Verfahren zum Beschichten einer Bohrung und Zylinderblock eines Verbrennungsmotors Download PDF

Info

Publication number
EP2905455B1
EP2905455B1 EP15153047.4A EP15153047A EP2905455B1 EP 2905455 B1 EP2905455 B1 EP 2905455B1 EP 15153047 A EP15153047 A EP 15153047A EP 2905455 B1 EP2905455 B1 EP 2905455B1
Authority
EP
European Patent Office
Prior art keywords
bore
enamel coating
coating
enamel
cylinder block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15153047.4A
Other languages
English (en)
French (fr)
Other versions
EP2905455A3 (de
EP2905455A2 (de
Inventor
Carsten Weber
Jan Mehring
Kai Kuhlbach
Urban Morawitz
Maik Broda
Clemens Maria Verpoort
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ford Global Technologies LLC
Original Assignee
Ford Global Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ford Global Technologies LLC filed Critical Ford Global Technologies LLC
Publication of EP2905455A2 publication Critical patent/EP2905455A2/de
Publication of EP2905455A3 publication Critical patent/EP2905455A3/de
Application granted granted Critical
Publication of EP2905455B1 publication Critical patent/EP2905455B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/18Other cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/12Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23DENAMELLING OF, OR APPLYING A VITREOUS LAYER TO, METALS
    • C23D5/00Coating with enamels or vitreous layers
    • C23D5/005Coating with enamels or vitreous layers by a method specially adapted for coating special objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/22Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to internal surfaces, e.g. of tubes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23DENAMELLING OF, OR APPLYING A VITREOUS LAYER TO, METALS
    • C23D5/00Coating with enamels or vitreous layers
    • C23D5/02Coating with enamels or vitreous layers by wet methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B77/00Component parts, details or accessories, not otherwise provided for
    • F02B77/02Surface coverings of combustion-gas-swept parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2253/00Other material characteristics; Treatment of material
    • F05C2253/12Coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49229Prime mover or fluid pump making
    • Y10T29/49231I.C. [internal combustion] engine making

Definitions

  • the present invention relates to a method for producing a coated surface, in particular a cylinder bore of an internal combustion engine, and a cylinder block of an internal combustion engine.
  • the FR 2 179 305 A5 discloses a method for applying a layer of liquid anti-rust compound on the inner surfaces of pipes and an apparatus for performing the method.
  • Cylinder bores in internal combustion engines should have an even and slight play between their inner circumference and pistons or piston rings that move back and forth therein, ideally achieving ideal tribological conditions.
  • the DE 10 2007 023 297 A1 discloses that a two-stage method is to be provided, with a finishing being to follow a pre-processing.
  • a two-stage method is to be provided, with a finishing being to follow a pre-processing.
  • the second step towards the production of a non-circular starting form is started, i.e. before the fine machining is started, she sees DE 10 2007 023 297 A1 before applying a sliding layer on the pre-processed initial shape.
  • This can be done according to the DE 10 2007 023 297 A1 only with a thermal spraying process, whereby one considers arc wire spraying, atmospheric plasma spraying or high-speed flame spraying.
  • Plasma powder spraying can also be a suitable spraying method.
  • the DE 10 2007 023 297 A1 in particular that the layer thickness of the applied layer should not be less than at least 50 ⁇ m.
  • the surface should be pretreated thermally, mechanically, chemically or with a water jet before coating.
  • Thermal spray processes can be used to produce tribologically suitable wear protective layers.
  • such coatings are not used in practice for engine blocks made of gray cast iron material (GG material) because the honed GG surface itself is already well suited tribologically due to the graphite lamellae with their self-lubricating effect. Therefore, in GG engine blocks, worn raceways in particular are restored to their original condition by spraying on steel layers. The original diameter can then be set again by honing.
  • Such thermally spray-repaired engines are known to have a lower oil consumption or higher output than engines that have been repaired by spinning out the bore and using oversized pistons. This results in a further reduced friction between the piston ring and the porous thermal spray layer, the pores acting as an oil reservoir and providing additional oil for the piston ring, particularly in the area of the piston reversal points and thus in the area of the mixed friction.
  • thermal spray coatings show a weak point, for example with regard to the problem of sub-corrosion, e.g. if aggressive, contaminated fuels are used.
  • highly Cr-alloyed powders or wires as a filler material for thermal spray coating, which further increases the manufacturing costs.
  • condensates or acids can still attack the base material through the layer.
  • under-corrosion problems can only be prevented by additional impregnation of the layers.
  • thermal powder coatings for Zr-O2 with yttrium oxide stabilization can be used to produce thermal insulation layers for internal combustion engines or gas turbines.
  • Such plasma powder spray coatings are characterized by low heat conduction even at very high temperatures up to over 1100 ° C.
  • plasma powder spray layers cannot be mechanically loaded, such thermal insulation layers would not be suitable as a tribologically stressed coating in the cylinder race.
  • the invention is based on the object of advantageously developing a method of the type mentioned at the outset.
  • the enamel coating applied to the inner surface of the bore has particularly good thermal insulation properties and particularly good tribological properties. Undercorrosion is also reliably avoided, and costly additives such as zirconium oxide / yttrium oxide can be dispensed with.
  • a method is purposefully provided in which a suitable coating fulfills all requirements for a reliable function of the component with minimal manufacturing costs, the method according to the invention simultaneously but can also be integrated into the existing production chain for the manufacture of the engine blocks without great difficulty.
  • the enamel coating according to the invention is preferably a melt mixture.
  • the glass-forming oxides melt together to form a glass melt.
  • Glass-forming oxides can be SiO 2 , B 2 O 3 , Na 2 O, K 2 O and Al 2 O 3 .
  • Basic emails contain approx. 23 - 34% by weight (weight percent) borax, 28 - 52% by weight feldspar, 5 - 20% by weight quartz, approx. 5% by weight fluoride, as well as the rest of soda and sodium nitrate.
  • the oxides of Ti, Zr and Mo can serve as opacifiers.
  • components of cobalt, manganese or nickel oxides are provided, for example. It is still possible to use ceramic pigments, e.g. Use iron oxides, chromium oxides and spinels.
  • the substances mentioned are finely ground and melted.
  • the melt is quenched, that is to say preferably placed in water, the granular glassy frit thus formed being finely ground again in the subsequent step.
  • 30% to 40% water is added together with clay and quartz powder.
  • the opacifiers and color oxides mentioned are added.
  • an enamel slip is formed, which should rest for a better time, preferably a few days, for better mixing before the enamel slip would be used again.
  • suitable adjusting means ensures that a uniform layer thickness, e.g. after a dip coating, whereby a possible dip coating with a flood device is discussed in more detail.
  • the aqueous enamel slip can be applied by means of a rotating device, which can be moved back and forth in the vertical direction of the bore for rotation about its vertical axis.
  • the device can be designed as a lance, the material being able to be applied in several transitions, that is to say layers.
  • the lance points at least one outlet opening from which the enamel slip can emerge at its end of the order.
  • the enamel slip is thrown onto the surface to be coated.
  • several outlet openings can also be provided, which can be arranged on the lance as seen in the circumferential direction as well as in the vertical direction thereof.
  • a certain thickness of material is first applied, which is then dried before the next layer, that is to say further material, is applied.
  • This layer can be dried with an induction coil, for example.
  • the enamel coating is applied in a single step.
  • the enamel coating can also be applied in one dipping process.
  • the exterior of the cylinder block is inevitably coated, which is disadvantageous in terms of material savings.
  • the bore is flooded with the enamel slip, which is also referred to in the sense of the invention as a diving process with a flooding device.
  • the entire cylinder block is first placed on a flood device with its head side.
  • the flooding device advantageously has at least one chamber which has at least one outlet opening, a feed opening also being provided.
  • a line is connected to the feed opening, which leads the enamel slurry to the flooding device, so that a pressure is created in it, that is to say in the chamber, that the enamel slip enters the bore to be coated from the outlet opening from below.
  • sealing elements are also provided, for example in the configuration as a sealing lip on the flooding device, on which the wall of the bore to be coated can rest in the circumferential direction, so that the bore is sealed off from its wall to the flooding device.
  • the entire bore i.e. the inner surface of the same, is coated with the enamel slip.
  • a multi-stage layer structure with the optional intermediate drying of individual partial layers as well as the application of the enamel coating in one step can be provided.
  • the borehole is flooded from bottom to top. Of course it is possible to flood the hole from top to bottom with the enamel slip. To do this, the email slip is opened in the top Drilled hole, which is also considered a diving process in the sense of the invention.
  • the base body that is to say the cylinder block
  • the sand casting process being suitable as the production method. This is generally known, so it will not be discussed further.
  • the bore that is to say the cylinder bore, is then drilled out and pre-machined, the bore being drilled out to an oversize of 1 to 2 mm in diameter. It is expedient in the sense of the invention if the surface in the area of the bore, ie the inner surface of the bore, is spindled to a roughness of Ra 6 to 7 ⁇ m.
  • the enamel coating is applied.
  • the enamel coatings according to the invention are distinguished from the electroplating or thermal spray coatings by the fact that they cannot be infiltrated.
  • the enamel coating according to the invention cannot be further damaged if the layer is removed down to the base material due to local damage. Rust damage will only occur in the area of the missing enamel layer, but this will not increase further.
  • the enamel coating according to the invention is characterized by good wear resistance due to the high layer hardness of typically 600-800HV0.1. This means that the hardness is three times higher than that of the GG base material.
  • the cylinder block with the dried enamel coating is heated to 800 - 900 ° C in a protective gas oven and held for approx. 10 - 20 minutes. This is followed by rapid cooling, preferably in a molten salt, so that the cylinder block has a significantly higher strength than with conventional GG material.
  • the enamel baking treatment and this heat treatment run in the same temperature-time window, which is used with the invention. In this respect, the enamel baking treatment and this heat treatment are combined, so that this baking and quenching operation results in a cylinder block with increased mechanical strength and a cylinder bore with good thermal insulation and good wear and corrosion resistance.
  • the engine blocks are finished and honed to their final dimensions in the race track.
  • Layer thicknesses of 500-1000 ⁇ m are preferably applied.
  • This thermal insulation results from the use of oxides such as Si, Ti, Ca oxides but also from the typical air bubble inclusions in the solidified glass matrix.
  • This hard and brittle layer is very easy to work with diamond honing stones, whereby these air bubbles are cut and exposed.
  • these are not interconnected pores or pore nests as in the case of a thermally applied spray coating, so that a high hydrodynamic pressure can build up in the pores of the enamel coating according to the invention and the oil film through the piston ring does not connected pores can be pushed away.
  • the method according to the invention is suitable for coating cylinder liners of internal combustion engines.
  • the baking cycle of the enamel coating can be combined with the AGI heat treatment, so that the cylinder block subsequently has a higher strength.
  • the composition of the enamel coating can be adjusted by adding hard carbides so that the wear resistance e.g. can be raised for use in highly charged engines. Compared to Zr oxide powder (currently € 60 / kg and using the expensive powder plasma spray process), wet slurrying of enamels (currently € 2-4 / kg) is very cost-effective.
  • the invention thus provides a method for producing a wear and corrosion coating within the bore of a cylinder block of an internal combustion engine made of gray cast iron material.
  • this coating at least meets the following requirements: due to the low thermal conductivity, it reduces the heat loss in the combustion process and thus allows the heat in the combustion process to be better used thermodynamically in order to achieve a higher degree of efficiency.
  • this coating also has good tribological properties in order to cope with the friction-wear conditions of the piston group. According to the invention, these requirements are met by burning in the hard enamel coating, if necessary.
  • the necessary baking treatment of the enamel coating is combined with the AGI heat treatment, so that only very low costs are incurred for this enamelling and at the same time the cylinder block is given a higher strength than a cylinder block made of conventional GG material. It is also conceivable to provide an aluminum cylinder block, that is to say its cylinder barrel, with the enamel coating.
  • the enamel coating surface can be subjected to a final treatment, i.e. a finish, after the baking step. Provision is preferably made to machine the friction surfaces in a rotating manner and to remove the scale layer which has arisen as a result of the annealing process. It is also possible to rework the hole by regrinding, using diamond or Hard material cup wheels can be used. Post-processing by turning or spinning is conceivable, which is feasible despite the high hardness due to the brittleness, with PCD (polycrystalline diamond) indexable inserts being preferred.
  • a final treatment i.e. a finish
  • Figure 1 shows a method for coating a bore 1 with an enamel coating 2.
  • the bore 1 is made in a cylinder block 3, which is shown in FIG Figure 2 is recognizable. Of the cylinder block 3 is in Figure 1 only the inner surface 4 of the bore 1 can be seen.
  • the cylinder block 3 was produced as a base body 3 in a sand casting process from a gray cast iron.
  • the bore 1 was drilled out to an oversize of 1 to 2 mm in diameter.
  • the surface 4 in the area of the bore 1 was also spindled to a roughness of Ra 6 to 7 ⁇ m.
  • the bore 1 is provided with an enamel coating 2.
  • the enamel coating 2 is in the form of an aqueous enamel slip in the exemplary embodiment Figure 1 by means of a rotating device 6 which at the same time for rotation about its axis in the vertical direction of the bore 2 in the same back and forth is applied.
  • the movement arrows regarding rotation and back and forth are in Figure 1 drawn.
  • the device 6 can be referred to as a lance 6, the material, that is to say the aqueous enamel slip, being able to be applied in several transitions, that is to say layers.
  • a certain thickness of material is first applied, which is then dried before the next layer, that is to say further material, is applied.
  • This layer can be dried with an induction coil, for example.
  • the enamel coating is applied in a single step.
  • the enamel coating 2 can also be applied in a dipping process. Recognizable in Figure 2 is that the bore 1 is flooded with the enamel slurry from below, which is referred to as a dipping process in the sense of the invention. The entire cylinder block 3 is placed with its head side 7 standing on a flooding device 8.
  • the flooding device 8 advantageously has at least one chamber 9 which has an outlet opening 10, a feed opening 11 being provided.
  • a line 12 is connected to the feed opening 11, which leads the enamel slurry to the flooding device 8, so that pressure, such as this, arises in the chamber 9 that the enamel slip enters the bore 1 to be coated from the outlet opening 10 from below.
  • Sealing elements 13, e.g. provided in the embodiment as a sealing lip 13 on the flood device 8, on which the wall 14, that is to say on the end face of the bore 1 to be coated, can bear in the circumferential direction, so that the bore 1 is sealed via its wall 14 to the flood device 8.
  • the entire bore 1, that is to say the inner surface 4 thereof, is thus coated with the enamel slip.
  • a multi-stage layer structure with the optional intermediate drying of individual partial layers as well as the application of the enamel coating in one step can be provided.
  • the internal combustion engine that is to say the cylinder block 3 may have more than one cylinder bore 1, which is within the meaning of the invention.
  • the flood device 8 can also have more than the recognizable one chamber 9, which can be arranged one behind the other and / or next to one another. This depends on the type of internal combustion engine, for example as an in-line engine or as a V-engine.
  • a separate flooding device 8 with a single chamber 9 can also be provided for each bore 1. It is expedient if all the bores 1 are provided with the enamel coating 2 at the same time, which can of course also be done in succession. In terms of heat treatment, however, coating that is as simultaneous as possible is advantageous.
  • the enamel coating being metallurgically bonded to the base material of the bore by phase formation.
  • This post-treatment combines a heat treatment with subsequent quenching.
  • the two treatments i.e. the enamel baking process, as well as the said heat treatment take place in the same temperature-time window, so that this baking and quenching operation results in a cylinder block with increased mechanical strength and a cylinder bore with good thermal insulation and good wear - and corrosion resistance results.
  • the enamel coating 2 can then be subjected to a finish, for example using diamond honing stones.
  • the pores / air bubbles 15 present in the enamel coating 2 are cut and exposed, as in Figure 3 is recognizable.
  • the inner surface 4 of the bore 1, the enamel coating 2 and the transition zone 16 arranged between them can be seen.
  • the pores / air bubbles 15 are not interconnected pores or pore nests as in the case of a thermally applied spray coating, so that a high hydrodynamic pressure can build up in the cut and exposed pores / air bubbles of the enamel coating according to the invention and the oil film cannot be pushed into connected pores by the piston ring.

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zum Herstellen einer beschichteten Oberfläche, insbesondere einer Zylinderbohrung eines Verbrennungsmotors, sowie einen Zylinderblock eines Verbrennungsmotors.
  • Die FR 2 179 305 A5 offenbart ein Verfahren zum Auftragen einer Schicht flüssiger Rostschutzmasse auf die Innenflächen von Rohren und eine Vorrichtung zum Durchführen des Verfahrens.
  • Die US 2 048 912 A befasst sich mit einer Emaille-Spritzvorrichtung.
  • Zylinderbohrungen von Verbrennungsmotoren sollten ein gleichmäßiges und geringes Spiel zwischen ihrem Innenumfang und sich darin hin und her bewegenden Kolben bzw. Kolbenringen aufweisen, wobei bestenfalls ideale tribologische Bedingungen erreicht werden.
  • Die DE 10 2007 023 297 A1 offenbart, dass ein zweistufiges Verfahren vorgesehen sein soll, wobei sich an eine Vorbearbeitung eine Feinbearbeitung anschließen soll. Bevor der zweite Schritt zur Herstellung einer unrunden Ausgangsform angegangen wird, also bevor mit der Feinbearbeitung begonnen wird, sieht die DE 10 2007 023 297 A1 vor eine Gleitschicht auf die vorbearbeitete Ausgangsform aufzubringen. Dies kann gemäß der DE 10 2007 023 297 A1 nur mit einem thermischen Spritzverfahren erfolgen, wobei an ein Lichtbogendrahtspritzen, an ein atmosphärisches Plasmaspritzen oder an ein Hochgeschwindigkeitsflammspritzen gedacht ist. Auch Plasmapulverspritzen kann ein geeignetes Spritzverfahren sein. Dabei weist die DE 10 2007 023 297 A1 insbesondere darauf hin, dass die Schichtdicke der aufgetragenen Schicht nicht kleiner als mindestens 50µm sein soll. Zudem sollte die Oberfläche vor dem Beschichten thermisch, mechanisch, chemisch oder wasserstrahlunterstützt vorbehandelt werden.
  • Bei diesen thermischen Beschichtungsverfahren treffen aufgeschmolzene Beschichtungspartikel mit hoher Temperatur und zuweilen sehr hoher Geschwindigkeit auf die zu beschichtende Oberfläche, um die thermische Spritzschicht zu erzeugen. Ersichtlich ist dabei der Nachteil, dass der zu beschichtende Grundwerkstoff quasi einer ungesteuerten Wärmebehandlung unterzogen wird, so dass sich dessen Materialeigenschaften verändern können. Zudem wird sich der Zylinderblock, in welchem die zu beschichtende Zylinderbohrung angeordnet ist, sehr stark erwärmen, so dass sich die Weiterverarbeitung des Zylinderblockes für die Dauer der notwendigen Abkühlphase verzögert.
  • Mittels thermischer Spritzverfahren können tribologisch geeignete VerschleißSchutzschichten hergestellt werden. Solche Beschichtungen werden jedoch bei Motorblöcken aus Grauguss-Material (GG-Material) in der Praxis nicht benutzt, weil die gehonte GG-Oberfläche selber bereits tribologisch gut geeignet ist aufgrund der vorliegenden Graphit-Lamellen mit deren selbstschmierenden Wirkung. Daher werden in GG-Motorblöcken insbesondere verschlissene Laufbahnen durch Aufspritzen von Stahlschichten wieder in den Original-Zustand gebracht. Durch Honen lässt sich dann wieder der Originaldurchmesser einstellen. Von solchen thermisch spritz-reparierten Motoren ist bekannt, dass sie einen niedrigeren Ölverbrauch bzw. höhere Leistung zeigen als Motoren, die durch Ausspindeln der Bohrung und Verwendung von Übermaß-Kolben instandgesetzt wurden. Dabei stellt sich eine weiter reduzierte Reibung zwischen Kolbenring und der porösen thermischen Spritzschicht ein, wobei die Poren quasi als Ölreservoir fungieren und besonders im Bereich der Kolbenumkehrpunkte und somit im Bereich der Mischreibung zusätzliches Öl für den Kolbenring bereitstellen.
  • Bei Aluminium-Motorblöcken (Al-Motorblöcken) dagegen ist die Oberfläche vor dem Beschichten zu aktivieren und aufzurauen, was z.B. mittels Wasserstrahlen oder durch mechanisches Aufrauen geschehen kann. Beide Verfahren kommen jedoch für GG-Motorblöcke nicht in Betracht, so dass ein Ausspindeln mit höherer Rauigkeit, verbunden mit Flex-Honen oder Hammerschlagbürsten notwendig ist. Zusätzlich muss eine dünne Lage an kostenintensivem NiAl-Haftgrundmaterial thermisch aufgespritzt werden bevor die eigentliche Funktionsbeschichtung thermisch aufgetragen wird. Durch diesen 2-stufigen Prozess sind die Beschichtungskosten bei GG-Motorblöcken hoch, wodurch das thermische Spritzen hierbei benachteiligt ist. Demgegenüber fällt die Kostenrechnung bei Motorblöcken aus Al-Material günstiger aus: hier kann der Liner aus GG-Material wegfallen. Durch einfaches mechanisches Aufrauen des weichen Al-Materials wird ein Aufrauprofil mit einem Hinterschnitt erzeugt, so dass die Beschichtung direkt auf diese aufgeraute Oberfläche thermisch aufgespritzt werden kann. Durch den Hinterschnitt ergibt sich auch ohne jeden Haftgrund eine sehr hohe Haftfestigkeit.
  • Die thermischen Spritzschichten zeigen jedoch eine Schwachstelle beispielsweise hinsichtlich der Unterkorrosionsproblematik auf, z.B. wenn aggressive, verunreinigte Kraftstoffe verwendet werden. In dem Fall ist es notwendig, hoch Cr-legierte Pulver oder Drähte als Zusatzwerkstoff zum thermischen Spritzbeschichten zu verwenden, wodurch die Herstellkosten weiter steigen. Aufgrund der durchgehenden Porosität kann es dann aber trotzdem passieren, dass Kondensate oder Säuren durch die Schicht hindurch das Grundmaterial angreifen können. Nur durch zusätzliche Imprägnierung der Schichten lassen sich solche Unterkorrosionsprobleme verhindern.
  • Weiter können mittels Plasma-Pulverspritzverfahren von Zr-O2 mit Yttrium-Oxid-Stabilisierung Wärmedämmschichten für Verbrennungsmotoren oder Gasturbinen hergestellt werden. Solche Plasma-Pulverspritzschichten zeichnen sich durch niedrige Wärmeleitung auch bei sehr hohen Temperaturen bis über 1100°C aus. Auf der anderen Seite können solche Plasma-Pulverspritzschichten aufgrund ihres mikrorissigen Schichtaufbaus mechanisch nicht belastet werden, wobei solche Wärmedämmschichten als tribologisch beanspruchte Beschichtung in der Zylinderlaufbahn nicht geeignet wären.
  • Angesichts dieser Beobachtungen bieten Verfahren zum Herstellen beschichteter Bohrungsflächen, insbesondere Verfahren zur Beschichtung der Bohrung eines Zylinderblocks eines Verbrennungsmotors weiterhin Raum für Verbesserungen.
  • Vor diesem Hintergrund liegt der Erfindung die Aufgabe zugrunde, ein Verfahren der Eingangs genannten Art vorteilhaft weiterzubilden.
  • Die Lösung dieser Aufgabe gelingt mit einem Verfahren mit den Merkmalen des Anspruchs 1 und einem Zylinderblock mit den Merkmalen des Anspruchs 9.
  • Es ist darauf hinzuweisen, dass die in der nachfolgenden Beschreibung einzeln aufgeführten Merkmale sowie Maßnahmen in beliebiger, technisch sinnvoller Weise miteinander kombiniert werden können und weitere Ausgestaltungen der Erfindung aufzeigen. Die Beschreibung charakterisiert und spezifiziert die Erfindung und deren Teile insbesondere im Zusammenhang mit den Figuren zusätzlich.
  • Gemäß der Erfindung wird nachfolgend ein Verfahren zum Herstellen einer beschichteten, inneren Oberfläche einer beschichteten Bohrung eines Verbrennungsmotors vorgestellt, umfassend zumindest die Schritte:
    • Herstellen eines im Rohling vorliegenden Basiskörpers;
    • Aufbohren der Bohrung und Vorbearbeiten derselben;
    • Aufbringen einer Email-Beschichtung auf die innere Oberfläche der Bohrung,
    • Wärmenachbehandlung der beschichteten Bohrung, wobei die Email-Beschichtung zusammen mit dem Basiskörper aus GG-Substratmaterial im Durchlaufofen bei einer Temperatur zwischen 750° C und 900°C, bevorzugt bei T = 840°C, 5 bis 30 Minuten geglüht wird, oder die Email-Beschichtung zusammen mit einem Basiskörper aus einer Aluminiumlegierung bei einer Temperatur zwischen 480°C und 560°C, bevorzugt bei T=540°C, im Durchlaufofen 5 bis 30 Minuten geglüht wird so dass sich die Email-Beschichtung jeweils mit dem Grundwerkstoff der Bohrung metallurgisch durch Phasenbildung verbinden kann; und
    • Fertigbearbeiten der Email-Beschichtung derart, dass in der Email-Beschichtung vorhandene Poren angeschnitten oder offengelegt werden.
  • Die auf die innere Oberfläche der Bohrung aufgebrachte Email-Beschichtung weist eine besonders gute Wärmedämmeigenschaft und besonders gute tribologische Eigenschaften auf. Zudem wird eine Unterkorrosion sicher vermieden, wobei auf kostenintensive Zusatzstoffe wie z.B. Zirkon-Oxid/Yttrium-Oxid verzichtet werden kann. Insofern wird zielführend ein Verfahren bereitgestellt, bei dem eine geeignete Beschichtung alle Anforderungen an eine sichere Funktion des Bauteils bei minimalen Herstellkosten erfüllt, wobei das erfindungsgemäße Verfahren gleichzeitig aber auch in die bestehende Fertigungskette zum Herstellen der Motorblöcke ohne große Umstände integrierbar ist.
  • Bei der erfindungsgemäßen Email-Beschichtung handelt es sich bevorzugt um ein Schmelzgemisch. Bei der Emailtemperatur schmelzen die glasbildenden Oxide zu einer Glasschmelze zusammen. Glasbildende Oxide können dabei SiO2, B2O3, Na2O, K2O und Al2O3 sein. Grundemails weisen ca. 23 - 34 Gew% (Gewichtsprozente) Borax, 28 - 52 Gew% Feldspat, 5 - 20 Gew% Quarz, ca. 5 Gew% Fluorid, sowie als Rest Soda und Natriumnitrat auf. Als Trübungsmittel können die Oxide von Ti, Zr und Mo dienen.
  • Um zu erreichen, dass die Email-Beschichtung fest auf dem metallischem Untergrund, also auf dem Grundwerkstoff haftet, sind beispielsweise Bestandteile von Kobalt-, Mangan- oder Nickel-Oxiden vorgesehen. Möglich ist noch, keramische Pigmente, wie z.B. Eisenoxide, Chromoxide und Spinelle einzusetzen.
  • Die genannten Stoffe werden in bevorzugter Ausgestaltung fein gemahlen und geschmolzen. Die Schmelze wird abgeschreckt, also bevorzugt in Wasser gegeben, wobei die so entstehende körnige glasartige Fritte im sich anschließenden Schritt wieder fein gemahlen wird. Beim dem Mahlvorgang werden beispielsweise 30 % bis 40 % Wasser zusammen mit Ton und Quarzmehl zugesetzt. Je nach Art des Emails kommen noch die erwähnten Trübungsstoffe und Farboxide hinzu.
  • So wird ein Emailschlicker gebildet, welcher zur besseren Mischung einige Zeit, bevorzugt einige Tage ruhen sollte, bevor der Emailschlicker weiterverwendet würde. Durch Verwendung geeigneter Stellmittel wird sichergestellt, dass sich eine gleichmäßige Schichtdicke z.B. nach einer Tauchbeschichtung ergibt, wobei auf eine mögliche Tauchbeschichtung mit einer Flutvorrichtung noch näher eingegangen wird.
  • Zum Aufbringen der Email-Beschichtung, also des Emailschlickers können unterschiedliche Vorgehen gewählt werden. Zum Einen kann der wässrige Emailschlicker mittels einer rotierenden Vorrichtung, welche zugleich zur Rotation um ihre Hochachse in Hochrichtung der Bohrung in derselben hin- und herbewegbar ist aufgebracht werden. Die Vorrichtung kann als Lanze ausgeführt sein, wobei das Material in mehreren Übergängen, also Schichten aufbringbar ist. Die Lanze weist günstiger Weise an ihrem Auftragende zumindest eine Austrittsöffnung auf, aus welcher der Emailschlicker austreten kann. Durch die Rotation wird der Emailschlicker quasi auf die zu beschichtende Oberfläche geschleudert. Natürlich können auch mehrere Austrittsöffnungen vorgesehen sein, die sowohl in Umfangsrichtung gesehen als auch in Hochrichtung der Lanze an dieser angeordnet sein können. In möglicher Ausgestaltung kann vorgesehen sein, zunächst eine bestimmte Materialstärke aufzutragen, welche sodann getrocknet wird, bevor die nächste Schicht, also weiteres Material aufgebracht wird. Das Trocknen dieser Schicht kann z.B. mit einer Induktionsspule erfolgen. Natürlich kann auch vorgesehen sein, die Email-Beschichtung in einem einzigen Schritt aufzubringen.
  • Wie bereits erwähnt kann die Email-Beschichtung zum Anderen aber auch in einem Tauchvorgang aufgebracht werden. Dazu kann der gesamte Zylinderblock, in dem sich eine oder mehrere zu beschichtende Bohrungen befinden in bevorzugter Ausgestaltung mit seiner Kopfseite zuerst in das Emailschlickerbad eingebracht werden. Dabei wird zwangsläufig auch das Äußere des Zylinderblocks beschichtet, was hinsichtlich der Materialeinsparung nachteilig ist. Zielführend ist jedoch, wenn die Bohrung mit dem Emailschlicker geflutet wird, was im Sinne der Erfindung ebenfalls als Tauchvorgang mit Flutvorrichtung bezeichnet wird. Dabei wird der gesamte Zylinderblock mit seiner Kopfseite zuerst auf eine Flutvorrichtung gestellt. Die Flutvorrichtung weist günstiger Weise zumindest eine Kammer, die zumindest eine Austrittsöffnung aufweist, wobei noch eine Zuführöffnung vorgesehen ist. An die Zuführöffnung ist eine Leitung angeschlossen, welche den Emailschlicker zur Flutvorrichtung führt, so dass in dieser, also in der Kammer ein solcher Druck entsteht, dass der Emailschlicker aus der Austrittsöffnung von unten in die zu beschichtende Bohrung eintritt. Günstiger Weise sind noch Dichtelemente, z.B. in der Ausgestaltung als Dichtlippe an der Flutvorrichtung vorgesehen, an welcher sich die Wand der zu beschichtenden Bohrung in Umfangsrichtung anlegen kann, so dass die Bohrung über ihre Wand zur Flutvorrichtung abgedichtet ist. Die gesamte Bohrung, also die innere Oberfläche derselben wird so mit dem Emailschlicker beschichtet. Dabei kann ein mehrstufiger Schichtaufbau mit der optionalen oben genannten Zwischentrocknung einzelner Teilschichten genauso vorgesehen wie das Auftragen der Email-Beschichtung in einem Schritt. Der Bohrung wird so von unten nach oben geflutet. Möglich ist natürlich die Bohrung von oben nach unten mit dem Emailschlicker zu fluten. Dazu wird der Emailschlicker in die nach oben geöffnete Bohrung eingebracht, was ebenfalls als Tauchvorgang im Sinne der Erfindung angesehen wird.
  • Zielführend ist, wenn die gesamte Bohrung sowohl vollumfänglich als auch über die gesamte Hocherstreckung mit der Email-Beschichtung versehen wird.
  • Zweckmäßig ist weiter, wenn der Basiskörper, also der Zylinderblock aus einem Grauguss hergestellt ist, wobei als Herstellungsverfahren das Sandgussverfahren geeignet ist. Dieses ist allgemein bekannt, so dass darauf nicht weiter eingegangen wird. Die Bohrung, also die Zylinderbohrung wird anschließend aufgebohrt und vorbearbeitet, wobei die Bohrung durch Ausspindeln auf ein Übermaß von 1 bis 2 mm im Durchmesser aufgebohrt wird. Zielführend im Sinne der Erfindung ist, wenn die Oberfläche im Bereich der Bohrung, also die innere Bohrungsoberfläche auf eine Rauigkeit von Ra 6 bis 7 µm gespindelt wird.
  • Nach dieser Vorbearbeitung wird die Email-Beschichtung aufgebracht. Die Email-Beschichtung wird als wässrige Suspension aufgetragen und anschließend in einem Durchlaufofen z.B. bei T = 90°C für ca. 10 Minuten getrocknet. Möglich ist auch eine Trocknung durch Heizstrahler, oder ein Aufwärmen mittels der zuvor genannten Induktionsspule. Anschließend werden die Bauteile bei T = 840°C, 10 Minuten im Durchlaufofen geglüht, so dass sich die Email-Beschichtung mit dem GG-Substratmaterial des Zylinderblocks metallurgisch durch Phasenbildung verbinden kann. Bei diesem Einbrenn-Vorgang kommt es zu einer Bildung einer dichten, geschlossenen Oxid-Beschichtung, die gegenüber dem Korrosionsangriff durch Kondensate oder aggressive alternative Kraftstoffe sehr widerstandsfähig ist. Die erfindungsgemäßen Email-Beschichtungen zeichnen sich gegenüber den Galvanik- oder thermischen Spritzbeschichtungen dadurch aus, dass sie nicht unterwandert werden können. Wenn thermisch aufgebrachte Spritz-Schichten unterwandert werden, kann sich eine Fe-Oxid-Phase unter der Beschichtung ausbilden, was zu einer starken Volumenvergrößerung, verbunden mit dem Abplatzen der thermischen Spritzbeschichtung, führt. Die erfindungsgemäße Email-Beschichtung dagegen kann nicht weiter geschädigt werden, wenn durch lokalen Schaden die Schicht bis zum Grundwerkstoff abgetragen ist. Es wird dann nur im Bereich der fehlenden EmailSchicht ein Rostschaden auftreten, welcher sich aber nicht weiter vergrößert. Neben dieser guten Korrosionsbeständigkeit zeichnet sich die erfindungsgemäße Email-Beschichtung durch gute Verschleißbeständigkeit aufgrund der hohen Schichthärte von typisch 600 - 800HV0,1 aus. Dies bedeutet eine dreifach höhere Härte als bei dem GG-Basismaterial.
  • In weiterem Vorgehen zum Herstellen der Email-Beschichtung ist zweckmäßiger Weise vorgesehen, eine weitere Wärmebehandlung durchzuführen. Dazu wird der Zylinderblock mit der getrockneten Email-Beschichtung in einem Schutzgas-Ofen auf 800 - 900°C aufgeheizt und ca. 10 - 20 Minuten gehalten. Anschließend erfolgt eine schnelle Abkühlung bevorzugt in einer Salzschmelze, so dass sich eine deutliche höhere Festigkeit des Zylinderblockes ergibt als beim konventionellen GG-Material. Überraschender Weise laufen die Email-Einbrennbehandlung und diese Wärmebehandlung im gleichen Temperatur-Zeit-Fenster ab, was mit der Erfindung genutzt wird. Insofern werden die Email-Einbrennbehandlung und diese Wärmebehandlung miteinander verbunden, so dass sich durch diese Einbrenn- und Abschreckoperation also ein Zylinderblock mit erhöhter mechanischer Festigkeit sowie einer Zylinderbohrung mit guter Wärmedämmung und guter Verschleiß- und Korrosionsbeständigkeit ergibt. Die Wärmebehandlung ist zielführend als bainitische Grauguss Wärmebehandlung durchzuführen (AGI-Wärmebehandlung = Austempered Gray Iron Wärmebehandlung).
  • Nach dem Einbrennen der Email-Beschichtung werden die Motorblöcke fertig bearbeitet und in der Laufbahn auf Endmaß gehont.
  • Bevorzugt werden Schichtdicken von 500-1000µm aufgebracht. Je dicker die Email-Beschichtung ist, umso höher ist deren Wärmedämmwirkung. Diese Wärmedämmung ergibt sich durch die Verwendung von Oxiden wie Si, Ti, Ca-Oxiden aber auch durch die typischen Luftblaseneinschlüssen in der erstarrten Glasmatrix. Diese harte und spröde Schicht lässt sich durch Diamant-Honleisten sehr einfach bearbeiten, wobei diese Luftblasen angeschnitten und offengelegt werden. Besonders hervorzuheben ist die Tatsache, dass es sich dabei nicht um miteinander verbundene Poren oder Porennester handelt wie bei einer thermisch aufgebrachten Spritzbeschichtung, so dass sich in den Poren der erfindungsgemäßen Email-Beschichtung ein hoher hydrodynamischer Druck aufbauen kann und der Ölfilm durch den Kolbenring nicht in verbundene Poren weggedrückt werden kann.
  • Das erfindungsgemäße Verfahren eignet sich aufgrund der hervorragenden Korrosions- und Verschleißbeständigkeit, guten Wärmedämmung sowie des guten Reibverhaltens für die Beschichtung von Zylinderlaufbahnen von Verbrennungsmotoren. Darüber hinaus kann der Einbrennzyklus der Email-Beschichtung verbunden werden mit der AGI Wärmebehandlung, so dass der Zylinderblock anschließend eine höhere Festigkeit aufweist. Die Zusammensetzung der Email-Beschichtung kann durch Zugabe von harten Karbiden so angepasst werden, dass die Verschleißbeständigkeit z.B. für den Einsatz in hochaufgeladenen Motoren angehoben werden kann. Im Vergleich zu Zr-Oxid- Pulver (derzeit 60€/kg und Verwendung des teuren Pulver-Plasma-Spritzverfahrens) ist das Nass-Schlickern von Emails (derzeit 2-4€/kg) sehr kostengünstig.
  • Mit der Erfindung wird also ein Verfahren zur Herstellung einer Verschleiss- und Korrosionsbeschichtung innerhalb der Bohrung eines Zylinderblocks eines Verbrennungsmotors aus Grauguss-Material zur Verfügung gestellt. Diese Beschichtung erfüllt erfindungsgemäß zumindest die folgenden Anforderungen: sie reduziert infolge der niedrigen Wärmeleitfähigkeit den Wärmeverlust im Verbrennungsprozess und erlaubt dadurch die Wärme im Verbrennungsprozess thermodynamisch besser auszunutzen zur Erzielung eines höheren Wirkungsgrades. Zusätzlich weist diese Beschichtung aber auch gute tribologische Eigenschaften auf, um den Reib-Verschleiß-Bedingungen der Kolbengruppe gewachsen zu sein. Diese Anforderungen werden erfindungsmäßig gelöst durch das Einbrennen der gegebenenfalls harten Email-Beschichtung. Weiterhin wird erfindungsgemäß die notwendige Einbrennbehandlung der Email-Beschichtung verbunden mit der AGI Wärmebehandlung, so dass für diese Emaillierung nur sehr geringe Kosten anfallen und gleichzeitig der Zylinderblock eine höhere Festigkeit erhält als ein Zylinderblock aus konventionellem GG-Material. Denkbar ist auch, einen Zylinderblock aus Aluminium, also dessen Zylinderlaufbahn mit der Email-Beschichtung zu versehen.
  • Optional kann die Email-Beschichtungsoberfläche nach dem Schritt des Einbrennens noch einer Schlussbehandlung, also einem Finish unterzogen werden. Bevorzugt ist vorgesehen, die Reibflächen drehend zu bearbeiten und die Zunderschicht, welche aufgrund des Glühprozesses entstand zu entfernen. Möglich ist auch, eine Nachbearbeitung der Bohrung durch ein Nachschleifen, wobei Diamant- oder Hartstoff-Topfscheiben zum Einsatz kommen können. Denkbar ist eine Nachbearbeitung mittels Ausdrehen oder Ausspindeln, was trotz der hohen Härte aufgrund der Sprödigkeit machbar ist, wobei PKD (polykristalliner Diamant) Wendeschneidplättchen bevorzugt sind.
  • Weitere vorteilhafte Einzelheiten und Wirkungen der Erfindung sind im Folgenden anhand von unterschiedlichen, in den Figuren dargestellten Ausführungsbeispielen näher erläutert. Es zeigen:
  • Fig. 1
    ein Vorgehen zum Beschichten einer Bohrung mit einer Email-Beschichtung,
    Fig.2
    ein weiteres Vorgehen zum Beschichten einer Bohrung mit einer Email-Beschichtung, und
    Fig. 3
    eine mit der Email-Beschichtung versehene Bohrung im Längsschnitt.
  • In den unterschiedlichen Figuren sind gleiche Teile stets mit denselben Bezugszeichen versehen, so dass diese in der Regel auch nur einmal beschrieben werden.
  • Figur 1 zeigt ein Verfahren zum Beschichten einer Bohrung 1 mit einer Email-Beschichtung 2. Die Bohrung 1 ist in einem Zylinderblock 3 eingebracht, welcher als Prinzipskizze in Figur 2 erkennbar ist. Von dem Zylinderblock 3 ist in Figur 1 lediglich die innere Oberfläche 4 der Bohrung 1 erkennbar.
  • Der Zylinderblock 3 wurde als Basiskörper 3 in einem Sandgussverfahren aus einem Grauguss hergestellt. Die Bohrung 1 wurde durch Ausspindeln auf ein Übermaß von 1 bis 2 mm im Durchmesser aufgebohrt. Die Oberfläche 4 im Bereich der Bohrung 1 wurde zudem auf eine Rauigkeit von Ra 6 bis 7 µm gespindelt.
  • Die angegeben Werte sollen natürlich nur beispielhaft genannt sein. Die Bohrung 1 wird erfindungsgemäß mit einer Email-Beschichtung 2 versehen.
  • Die Email-Beschichtung 2 wird in Form eines wässrigen Emailschlickers bei dem Ausführungsbeispiel nach Figur 1 mittels einer rotierenden Vorrichtung 6, welche zugleich zur Rotation um ihre Achse in Hochrichtung der Bohrung 2 in derselben hin und her bewegbar ist aufgebracht. Die Bewegungspfeile hinsichtlich Rotation und Hin und Her bewegen sind in Figur 1 eingezeichnet. Die Vorrichtung 6 kann als Lanze 6 bezeichnet werden, wobei das Material, also der wässrige Emailschlicker in mehreren Übergängen, also Schichten aufbringbar ist. In möglicher Ausgestaltung kann vorgesehen sein, zunächst eine bestimmte Materialstärke aufzutragen, welche sodann getrocknet wird, bevor die nächste Schicht, also weiteres Material aufgebracht wird. Das Trocknen dieser Schicht kann z.B. mit einer Induktionsspule erfolgen. Natürlich kann auch vorgesehen sein, die Email-Beschichtung in einem einzigen Schritt aufzubringen.
  • Wie der Figur 2 entnehmbar ist, kann die Email-Beschichtung 2 zum anderen aber auch in einem Tauchvorgang aufgebracht werden. Erkennbar in Figur 2 ist, dass die Bohrung 1 mit dem Emailschlicker von unten geflutet wird, was im Sinne der Erfindung als Tauchvorgang bezeichnet wird. Dabei wird der gesamte Zylinderblock 3 mit seiner Kopfseite 7 aufstehend auf eine Flutvorrichtung 8 gestellt.
  • Die Flutvorrichtung 8 weist günstiger Weise zumindest eine Kammer 9 auf, die eine Austrittsöffnung 10 hat, wobei eine Zuführöffnung 11 vorgesehen ist. An die Zuführöffnung 11 ist eine Leitung 12 angeschlossen, welche den Emailschlicker zur Flutvorrichtung 8 führt, so dass in dieser, also in der Kammer 9 ein solcher Druck entsteht, dass der Emailschlicker aus der Austrittsöffnung 10 von unten in die zu beschichtende Bohrung 1 eintritt. Günstiger Weise sind noch Dichtelemente 13, z.B. in der Ausgestaltung als Dichtlippe 13 an der Flutvorrichtung 8 vorgesehen, an welcher sich die Wand 14, also an deren Stirnseite der zu beschichtenden Bohrung 1 in Umfangsrichtung anlegen kann, so dass die Bohrung 1 über ihre Wand 14 zur Flutvorrichtung 8 abgedichtet ist. Die gesamte Bohrung 1, also die innere Oberfläche 4 derselben wird so mit dem Emailschlicker beschichtet. Dabei kann ein mehrstufiger Schichtaufbau mit der optionalen oben genannten Zwischentrocknung einzelner Teilschichten genauso vorgesehen wie das Auftragen der Email-Beschichtung in einem Schritt.
  • Bei der in Figur 2 gewählten Ansicht ist lediglich eine Kammer 9 der Flutvorrichtung 8 erkennbar. Der Verbrennungsmotor, also der Zylinderblock 3 weist möglicherweise aber mehr als eine Zylinderbohrung 1 auf, was im Sinne der Erfindung liegt. Insofern kann die Flutvorrichtung 8 auch mehr als die erkennbare eine Kammer 9 aufweisen, welche hintereinander und/oder nebeneinander angeordnet sein können. Dies ist abhängig von der Art des Verbrennungsmotors z.B. als Reihenmotor oder als V-Motor. Natürlich kann auch für jede Bohrung 1 eine separate Flutvorrichtung 8 mit einer einzigen Kammer 9 vorgesehen sein. Zielführend ist, wenn alle Bohrungen 1 gleichzeitig mit der Email-Beschichtung 2 versehen werden, was natürlich auch aufeinanderfolgend geschehen kann. Im Sinne der Wärmebehandlung ist jedoch ein möglichst gleichzeitiges Beschichten vorteilhaft.
  • Zielführend ist, wenn die gesamte Bohrung 1 mit der Email-Beschichtung 2 versehen wird.
  • Anschließend wird eine Nachbehandlung der beschichteten Bohrung 1 vorgesehen, wobei sich die Email-Beschichtung mit dem Grundwerkstoff der Bohrung metallurgisch durch Phasenbildung verbindet. Mit dieser Nachbehandlung wird eine Wärmebehandlung mit anschließenden Abschrecken verbunden. Die beiden Behandlungen, also der Email-Einbrennvorgang, als auch die besagte Wärmebehandlung laufen im gleichen Temperatur-Zeit-Fenster ab, so dass sich durch diese Einbrenn- und Abschreckoperation also ein Zylinderblock mit erhöhter mechanischer Festigkeit sowie einer Zylinderbohrung mit guter Wärmedämmung und guter Verschleiß- und Korrosionsbeständigkeit ergibt. Die Wärmebehandlung ist zielführend als bainitische Grauguss Wärmebehandlung durchzuführen (AGI-Wärmebehandlung = Austempered Gray Iron Wärmebehandlung).
  • Anschließend kann die Email-Beschichtung 2 einem Finish z.B. mittels Diamant-Honleisten unterzogen werden. Dabei werden die in der Email-Beschichtung 2 vorhandenen Poren/Luftblasen 15 angeschnitten und offengelegt, wie in Figur 3 erkennbar ist. In Figur 3 ist die innere Oberfläche 4 der Bohrung 1, die Email-Beschichtung 2 sowohl die dazwischen angeordnete Übergangszone 16 erkennbar. Erkennbar ist in Figur 3 auch, dass es sich bei den besagten Poren/Luftblasen 15 nicht um miteinander verbundene Poren oder Porennester handelt wie bei einer thermisch aufgebrachten Spritzbeschichtung, so dass sich in den angeschnittenen und offengelegten Poren/Luftblasen der erfindungsgemäßen Email-Beschichtung ein hoher hydrodynamischer Druck aufbauen kann und der Ölfilm durch den Kolbenring nicht in verbundene Poren weggedrückt werden kann.

Claims (12)

  1. Verfahren zum Herstellen einer beschichteten, inneren Oberfläche (4) einer beschichteten Bohrung (1) eines Verbrennungsmotors, umfassend zumindest die Schritte:
    - Herstellen eines im Rohling vorliegenden Basiskörpers (3);
    - Aufbohren der Bohrung (1) und Vorbearbeiten derselben;
    - Aufbringen einer Email-Beschichtung (2) auf die innere Oberfläche (4) der Bohrung (1),
    - Wärmenachbehandlung der beschichteten Bohrung (1), wobei die Email-Beschichtung (2) zusammen mit dem Basiskörper (3) aus GG-Substratmaterial im Durchlaufofen bei einer Temperatur zwischen 750° C und 900°C, bevorzugt bei T = 840°C, 5 bis 30 Minuten geglüht wird, oder die Email-Beschichtung (2) zusammen mit einem Basiskörper (3) aus einer Aluminiumlegierung bei einer Temperatur zwischen 480°C und 560°C, bevorzugt bei T=540°C, im Durchlaufofen 5 bis 30 Minuten geglüht wird,
    so dass sich die Email-Beschichtung jeweils mit dem Grundwerkstoff der Bohrung (1) metallurgisch durch Phasenbildung verbinden kann; und
    - Fertigbearbeiten der Email-Beschichtung (2) derart, dass in der Email-Beschichtung (2) vorhandene Poren (15) angeschnitten oder offengelegt werden.
  2. Verfahren nach Anspruch 1, wobei
    die Bohrung (1) mittels Ausspindeln auf ein Übermaß von 1 bis 2 mm im Durchmesser aufgebohrt wird.
  3. Verfahren nach Anspruch 1 oder 2, wobei
    die Bohrung (1) an ihrer inneren Oberfläche (4) mittels spindeln eine Rauigkeit von Ra 6 bis 7 µm aufweist.
  4. Verfahren nach einem der vorhergehenden Ansprüche, wobei
    die Email-Beschichtung (2) als wässriger Emailschlicker auf die innere Oberfläche (4) aufgetragen wird und anschließend in einem Durchlaufofen bei T = 80 bis 100°C bevorzugt bei T = 90°C für 8 bis 12 bevorzugt für 10 Minuten getrocknet wird.
  5. Verfahren nach einem der vorhergehenden Ansprüche, wobei
    die Email-Beschichtung (2) mittels einer rotierenden und sich hin und her bewegenden Auftragvorrichtung aufgetragen wird.
  6. Verfahren nach einem der Ansprüche 1 bis 4, wobei
    die Email-Beschichtung (2) in einem Tauchvorgang mit einer Flutvorrichtung (8) aufgebracht wird, wobei die Flutvorrichtung (8) zumindest eine Kammer (9) aufweist, die zumindest eine Austrittsöffnung (10) hat, wobei eine Zuführöffnung (11) vorgesehen ist, an welcher eine Leitung (12) anschließt, so dass wässriger Emailschlicker in die Kammer (9) führbar ist, welcher aus der Austrittsöffnung (10) aus der Kammer (9) austretend in die Bohrung (1) eintritt.
  7. Verfahren nach einem der vorhergehenden Ansprüche, wobei
    die gesamte Bohrung (1) mit der Email-Beschichtung (2) versehen wird.
  8. Verfahren nach einem der vorhergehenden Ansprüche, wobei
    der Basiskörper (3) zusammen mit der getrockneten Email-Beschichtung (2) einer Wärmevorrichtung zugeführt wird, in welcher der Basiskörper (3) auf eine Temperatur von 800 bis 900 °C aufgeheizt wird und 10 bis 20 Minuten gehalten wird, wobei anschließend eine schnelle Abkühlung erfolgt.
  9. Zylinderblock eines Verbrennungsmotors mit einer Bohrung (1), die eine beschichtete innere Oberfläche (4) aufweist, hergestellt mittels eines Verfahrens nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Beschichtung auf der inneren Oberfläche (4) der Bohrung (1) eine Email-Beschichtung (2) ist.
  10. Zylinderblock nach Anspruch 9,
    dadurch gekennzeichnet, dass
    die Email-Beschichtung mindestens eines der glasbildenden Oxide aus der Gruppe SiO2, B2O3, Na2O, K2O und Al2O3 aufweist.
  11. Zylinderblock nach Anspruch 9 oder 10,
    dadurch gekennzeichnet, dass
    der Zylinderblock ein Grundmaterial aufweist aus der Gruppe der Materialen Magnesiumlegierung, Aluminiumlegierung, Grauguss und Stahlguss.
  12. Zylinderlaufbahn eines Zylinderblocks nach einem der Ansprüche 9 bis 11, gekennzeichnet durch
    eine Email-Beschichtung (2) welche Poren (15) aufweist, wobei in der Email-Beschichtung (2) vorhandene Poren (15) nach einer Fertigbearbeitung angeschnitten oder offengelegt sind.
EP15153047.4A 2014-02-06 2015-01-29 Verfahren zum Beschichten einer Bohrung und Zylinderblock eines Verbrennungsmotors Active EP2905455B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102014202134.0A DE102014202134A1 (de) 2014-02-06 2014-02-06 Verfahren zum Beschichten einer Bohrung und Zylinderblock eines Verbrennungsmotors

Publications (3)

Publication Number Publication Date
EP2905455A2 EP2905455A2 (de) 2015-08-12
EP2905455A3 EP2905455A3 (de) 2015-11-18
EP2905455B1 true EP2905455B1 (de) 2020-04-15

Family

ID=52462142

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15153047.4A Active EP2905455B1 (de) 2014-02-06 2015-01-29 Verfahren zum Beschichten einer Bohrung und Zylinderblock eines Verbrennungsmotors

Country Status (4)

Country Link
US (1) US9759154B2 (de)
EP (1) EP2905455B1 (de)
CN (1) CN104831278B (de)
DE (1) DE102014202134A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015111043A1 (de) * 2015-07-08 2017-01-12 Thyssenkrupp Ag Verfahren und Vorrichtung zur Benetzung der Wandung einer Bohrung
EP3368490B1 (de) * 2015-10-28 2019-12-18 Remeha B.V. Wärmetaucher und verfahren zu seiner herstellung
KR20170127903A (ko) * 2016-05-13 2017-11-22 현대자동차주식회사 인서트 주조용 실린더 라이너 및 그 제조 방법
DE102016007727A1 (de) * 2016-06-23 2017-12-28 Man Truck & Bus Ag Brennkraftmaschine, insbesondere Hubkolben-Brennkraftmaschine
US10400707B2 (en) * 2017-07-26 2019-09-03 GM Global Technology Operations LLC Method and system for processing an automotive engine block
CN108265294B (zh) * 2018-02-28 2023-03-24 珠海格力电器股份有限公司 内胆涂搪工艺封堵结构及涂搪工艺
CN108359986B (zh) * 2018-03-06 2023-03-24 珠海格力电器股份有限公司 内胆流搪工艺用封堵结构及流搪工艺
DE102019113033A1 (de) * 2019-05-17 2019-09-05 Gehring Technologies Gmbh Vorrichtung zur Herstellung von beschichteten Oberflächen, insbesondere von reibungsarmen Zylinderbohrungen für Verbrennungsmotoren
US10907569B2 (en) * 2019-06-19 2021-02-02 Ford Global Technologies, Llc Systems and methods for a cylinder bore coating fill material
CN114555864A (zh) * 2019-12-26 2022-05-27 日立金属株式会社 金属叠层成型流路构件及其制造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2048912A (en) * 1932-03-03 1936-07-28 Smith Corp A O Enamel spraying apparatus
US3061482A (en) * 1959-09-16 1962-10-30 Nicholas J Grant Ceramic coated metal bodies
US3842799A (en) * 1972-03-10 1974-10-22 E Podkletnov Apparatus for the application of liquid corrosion-preventive compound to the inner surface of pipes
JPS5575529A (en) * 1978-11-29 1980-06-06 Ngk Spark Plug Co Ltd Combustion chamber for internal combustion engine
US6001494A (en) * 1997-02-18 1999-12-14 Technology Partners Inc. Metal-ceramic composite coatings, materials, methods and products
US6732698B1 (en) * 2000-06-30 2004-05-11 Federal-Mogul World Wide, Inc. Austempered gray iron cylinder liner and method of manufacture
JP4059247B2 (ja) * 2004-12-10 2008-03-12 日産自動車株式会社 粗面化加工方法および切削工具
DE102007023297A1 (de) 2007-05-16 2008-02-14 Daimler Ag Verfahren zur Herstellung einer Bohrung in einem Gehäuse, insbesondere einer Zylinderbohrung in einer Hubkolbenmaschine in einem Zylinderkurbelgehäuse
CN101397664A (zh) * 2008-10-29 2009-04-01 张志忠 一种金属陶瓷复合缸套的加工方法
CN201554564U (zh) * 2009-11-04 2010-08-18 温岭市联树五金工具厂 一种摩托车汽缸

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN104831278B (zh) 2019-09-17
US9759154B2 (en) 2017-09-12
US20150219039A1 (en) 2015-08-06
DE102014202134A1 (de) 2015-08-06
EP2905455A3 (de) 2015-11-18
CN104831278A (zh) 2015-08-12
EP2905455A2 (de) 2015-08-12

Similar Documents

Publication Publication Date Title
EP2905455B1 (de) Verfahren zum Beschichten einer Bohrung und Zylinderblock eines Verbrennungsmotors
EP2597170B1 (de) Reparaturverfahren einer Zylinderlauffläche mittels Plasmaspritzverfahren
DE102006008910B4 (de) Kolbenbolzen mit Gleitschichten für Pleuelaugen in Verbrennungsmotoren
EP3325685B1 (de) Verfahren zur beschichtung einer zylinderlaufbahn eines zylinderkurbelgehäuses, zylinderkurbelgehäuse mit einer beschichteten zylinderlaufbahn sowie motor
EP1559806A1 (de) Durch thermisches Spritzen aufgebrachte eisenhaltige Schicht einer Gleitfläche, insbesondere für Zylinderlaufflächen von Motorblöcken
WO2013004213A1 (de) Verfahren zur herstellung einer zylinderlauffläche sowie zylinderlaufbuchse
EP3030528A1 (de) Emaillepulver, metallbauteil mit einem mit einer emaillebeschichtung versehenen flächenabschnitt und verfahren zum herstellen eines solchen metallbauteils
WO2015007497A1 (de) Verfahren zur herstellung einer bremsscheibe sowie bremsscheibe
DE102018202540B4 (de) Motorblock eines Verbrennungsmotors mit optimierten Wärmeleiteigenschaften
EP0770698B2 (de) Verfahren zum Herstellen einer Gleitfläche auf einem metallischen Werkstück
DE102017103442A1 (de) Extrudierte Zylinderbuchse
WO2019219551A1 (de) Bremskörper und verfahren zur herstellung
DE102011109071A1 (de) Rohrschmiedeverfahren mit urgeformten Hohlblock
DE102014202135B4 (de) Verfahren zum Beschichten einer Bohrung, Zylinderlaufbahn und Zylinderblock eines Verbrennungsmotors
EP3601629B1 (de) Kolbenring mit kugelgestrahlter einlaufschicht und verfahren zur herstellung
EP3433396B1 (de) Ventil für verbrennungsmotoren mit beschichtung
DE102006057839A1 (de) Zylinder für einen Verbrennungsmotor und Verfahren zu seiner Herstellung
EP1468761A1 (de) Giesswalze zum Giessen von Bändern aus Aluminium oder Aluminiumlegierungen
WO2018189380A1 (de) Komponente für eine strömungsmaschine und verfahren zur herstellung einer solchen komponente
DE102013221375A1 (de) Verfahren zur Herstellung einer beschichteten Bohrungsfläche, insbesondere einer Zylinderbohrung
EP3645210B1 (de) Verfahren zum herstellen eines kugelzapfens
WO2016139007A1 (de) Verfahren zum herstellen einer lauffläche für eine dichtung
DE102011084990A1 (de) Kolben sowie tribologisches System aus einem Kolben und einer Zylinderlauffläche eines Zylinderkurbelgehäuses für einen Verbrennungsmotor
DE102014211471B4 (de) Kurbelwellenlager für eine Brennkraftmaschine
DE3212214A1 (de) Kolbenring

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: C23D 5/02 20060101ALI20151013BHEP

Ipc: C23D 5/00 20060101ALI20151013BHEP

Ipc: F02F 1/18 20060101ALI20151013BHEP

Ipc: F02F 1/00 20060101AFI20151013BHEP

17P Request for examination filed

Effective date: 20160518

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20181211

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502015012258

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F02F0001000000

Ipc: C23D0005000000

RIC1 Information provided on ipc code assigned before grant

Ipc: B05D 7/22 20060101ALN20191216BHEP

Ipc: C23D 5/00 20060101AFI20191216BHEP

Ipc: F02B 77/02 20060101ALN20191216BHEP

Ipc: C23D 5/02 20060101ALN20191216BHEP

Ipc: B05D 1/02 20060101ALN20191216BHEP

Ipc: B05D 1/18 20060101ALN20191216BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C23D 5/00 20060101AFI20200122BHEP

Ipc: F02B 77/02 20060101ALN20200122BHEP

Ipc: B05D 1/18 20060101ALN20200122BHEP

Ipc: B05D 1/02 20060101ALN20200122BHEP

Ipc: B05D 7/22 20060101ALN20200122BHEP

Ipc: C23D 5/02 20060101ALN20200122BHEP

INTG Intention to grant announced

Effective date: 20200205

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015012258

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1257375

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200515

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200415

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200815

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200716

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200817

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015012258

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

26N No opposition filed

Effective date: 20210118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210129

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210129

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1257375

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150129

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20221215

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230620

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231218

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231214

Year of fee payment: 10