EP2889089A1 - Verfahren und Vorrichtung zum Reinigen eines Elektrofilters - Google Patents

Verfahren und Vorrichtung zum Reinigen eines Elektrofilters Download PDF

Info

Publication number
EP2889089A1
EP2889089A1 EP14195633.4A EP14195633A EP2889089A1 EP 2889089 A1 EP2889089 A1 EP 2889089A1 EP 14195633 A EP14195633 A EP 14195633A EP 2889089 A1 EP2889089 A1 EP 2889089A1
Authority
EP
European Patent Office
Prior art keywords
liquid
cleaning
exhaust gas
ash container
electrostatic precipitator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP14195633.4A
Other languages
English (en)
French (fr)
Other versions
EP2889089B1 (de
Inventor
Hans-Jürgen BRANDT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Windhager Zentralheizung Technik GmbH
Original Assignee
Windhager Zentralheizung Technik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Windhager Zentralheizung Technik GmbH filed Critical Windhager Zentralheizung Technik GmbH
Publication of EP2889089A1 publication Critical patent/EP2889089A1/de
Application granted granted Critical
Publication of EP2889089B1 publication Critical patent/EP2889089B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/74Cleaning the electrodes
    • B03C3/78Cleaning the electrodes by washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/16Plant or installations having external electricity supply wet type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/41Ionising-electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • B03C3/49Collecting-electrodes tubular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/66Applications of electricity supply techniques
    • B03C3/68Control systems therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/82Housings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/88Cleaning-out collected particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/08Ionising electrode being a rod
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/24Details of magnetic or electrostatic separation for measuring or calculating parameters, efficiency, etc.

Definitions

  • the invention relates to a method for cleaning an electrostatic filter for the exhaust gas purification of solid fuel firing, in particular pellet firing, wherein a defined amount of cleaning liquid, in particular water, is sprayed onto the electrostatic precipitator at certain time intervals and impurities are washed off on at least one electrode of the electrostatic precipitator by the cleaning liquid. Furthermore, the invention relates to a cleaning device for cleaning an electrostatic precipitator for the purification of solids firing, in particular pellet firing, with at least one controlled by a control device injector to spray a defined amount of cleaning liquid at certain time intervals on the electrostatic precipitator and wash off impurities on the electrostatic precipitator, and an ash container for Collect the solid combustion residues.
  • WO 10/057488 A1 From the WO 10/057488 A1 is a wet-cleaning electrostatic precipitator for exhaust gas purification for the exhaust gases of biomass combustion known, in which the electrostatic precipitator has a Abscheidhunt through which the exhaust gas is passed, wherein in the region of the Abscheidhunt or adjacent to this a charging device for electrostatic charging of located in the exhaust Particles is arranged.
  • a separation device In the region of the deposition chamber, a separation device is arranged, through which the charged particles flow, wherein a discharge device for a cleaning liquid sprays the region of the deposition device periodically and cleans the particles deposited on the surface of the deposition device.
  • the cleaning fluid formed by, for example, water is passed into the sewage network or reused.
  • the dirty water with the impurities washed off by the electrostatic precipitator can contain problematic substances, such as heavy metals, which must not be disposed of via the sewer system.
  • a reprocessing of the dirty water is - especially for small systems - expensive because a variety of components such as pumping equipment, etc. are required.
  • the object of the invention is to avoid these disadvantages and to allow a cost-effective and environmentally friendly cleaning of the electrostatic precipitator.
  • this is achieved by collecting the dirty liquid draining from the electrostatic precipitator in an ash container, and by causing the entire liquid portion of the collected dirty liquid in the ash container to evaporate or evaporate.
  • the drainage running ash container is placed under the electrostatic precipitator so that the entire Dirty liquid draining from the electrostatic filter can be collected in the ash container, and the entire liquid content of the collected dirty liquid in the ash container can evaporate or evaporate.
  • the heat for evaporation or vaporization of the liquid fraction in the dirty liquid is preferably provided by the exhaust gas.
  • the cleaning liquid in particular tap water from the existing water pipe with the available water pipe pressure, passed through a solenoid valve to the injector and the polluted surface of the electrostatic precipitator is supplied with the cleaning liquid via injectors, whereby adhering dirt is removed.
  • the dirty liquid flows or drips downwards and enters the ash container arranged below the electrostatic precipitator.
  • the liquid content of the dirty liquid is evaporated or evaporated, so that only the solid portions remain in the ash container and occasionally together the solid combustion residues in a conventional manner, for example with the residual waste, can be disposed of.
  • the residual moisture in the ash container can be measured via a moisture sensor. If this residual moisture is too high immediately before a planned further injection of the cleaning liquid and is above a defined limit value, then the following injection of the cleaning liquid is not released and thus fails.
  • Fig. 1 schematically shows a furnace 1 of a solid fuel 2, for example, for combustion of fuel pellets, with an arranged between the solid fuel 2 and a chimney 3 exhaust pipe 5.
  • a cleaning module 6 is arranged, wherein within the housing 7 of the cleaning module 6, a high voltage unit and an electrostatic filter 9 having a positive precipitating electrode 10 formed by, for example, a sheath electrode and a negative spraying electrode 11 formed by a center electrode, for example, are disposed in the exhaust gas flow path 12.
  • the collecting electrode 10 is arranged substantially vertically.
  • the flow also takes place within the electrostatic precipitator 9 in the vertical direction.
  • the flow within the cleaning module 6 is indicated by arrows S.
  • Upstream, ie below, of the electrostatic precipitator 9, an ash container 13, which can be removed from the housing 7, is provided for catching fly ash, which forms an ash collecting space 14.
  • an insulator for the power supply to the spray electrode 11 is designated.
  • the electrostatic filter 9 serves for the separation of the particles in the exhaust gas and works in a known manner on the basis of the electrostatic principle.
  • the deposition in the electrostatic filter 9 comprises the steps: release of electrical charges, Charging the dust particles in the electric field, transporting the charged dust particles to the collecting electrode 10, adhering the dust particles to the collecting electrode 10 and removing the dust layer from the collecting electrode 10.
  • a cleaning device 15 which has an injection device 16 for a cleaning liquid, for example water.
  • a cleaning liquid for example water.
  • the example fed with tap water a supply water line injector 16 is disposed in the ash collecting space 14 below the electrostatic precipitator 9.
  • the cleaning liquid can be injected via one or more nozzles 17 up to the collecting electrode 10, whereby the adhering dust particles are washed off.
  • the dirty cleaning liquid - the dirty liquid - flows through its own weight along with the entrained dust particles along the collecting electrode 10 down and on into the ash container 13.
  • the trained as removable from the housing 7 tray ash tray 13 is executed without running, so that the collected waste liquid remains in the ash container 13, so neither a sewer system, nor a reprocessing system is supplied.
  • the exhaust gas emitted from the solid fuel 2 passes through the inlet opening 18 in the cleaning module 6, is guided through a downpipe 19 down in and horizontally through the ash tray 13 formed by the ash tray 13, wherein it sweeps over the surface of the collected in the ash container 13 dirty liquid and these are heated. Thereafter, the exhaust gas is deflected upward and flows through the inlet hopper 20 into the electrostatic precipitator 9, wherein dust particles are charged and adhered to the collecting electrode 10. After passing through the electrostatic precipitator 9, the exhaust gas leaves the cleaning module 6 through the outlet 21 and is finally fed to the chimney 3.
  • the exhaust gas temperature T A must be sufficiently high. Therefore, it is advantageous if the exhaust gas temperature T A is measured via at least one temperature sensor 22 and / or the moisture of the residues in the ash container 13 via a humidity sensor 23 and a control unit 24 is supplied. If the exhaust gas temperature T A below a limit of, for example, 100 ° C, or indicates the moisture sensor too high a water content in the ash of the ash container 13, so there is no further injection of the cleaning liquid until the exhaust gas temperature and / or the moisture content is back within the desired range ,
  • the time interval t R between two injection events is thus dependent on the exhaust gas temperature T A , the exhaust gas volume, the surface of the dirty liquid in the ash container 13, and / or the collected amount of dirty liquid.
  • the control unit 24 calculates the time interval t R and controls the injection of the cleaning fluid via at least one valve 25 formed, for example, by a magnetic valve.
  • the control unit 24 controls the switching on and off of the current for the electrostatic filter 9, as well as the injection of the cleaning liquid.
  • the electrostatic filter 9 is always turned on when the solid fuel firing is in operation, so even during startup and shutdown of the furnace 1 system, but not with deactivated solid fuel 2.
  • the control unit 23 is a cleaning program - time-controlled and / or by the exhaust gas temperature T.
  • the drying time .DELTA.t F for the electric filter 9 may for example be 5 to 30 minutes.
  • the turn-on time t F for the electrostatic filter 9 may then be more than 2 hours, for example.
  • a cleaning of the electrostatic filter 9 can for example be done 1 to 4 times a day.
  • a quantity of cleaning liquid of, for example, 0.5 liters per injection process is sufficient.
  • water is injected under the available line pressure, whereby feed pumps can be dispensed with. If the line pressure is too low, it is of course also possible to use a self-pump for injection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Electrostatic Separation (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Reinigen eines Elektrofilters (9) für die Abgasreinigung von Feststofffeuerungen (2), insbesondere Pelletsfeuerungen, wobei eine definierte Menge an Reinigungsflüssigkeit, insbesondere Wasser, in bestimmten Zeitabständen auf den Elektrofilter (9) aufgespritzt wird und Verunreinigungen auf zumindest einer Elektrode (10, 11) des Elektrofilters (9) durch die Reinigungsflüssigkeit abgewaschen werden.
Eine kostengünstige und umweltverträgliche Reinigung des Elektrofilters (9) wird ermöglicht, wenn die vom Elektrofilter (9) abfließende Schmutzflüssigkeit in einem Aschebehälter (13) gesammelt wird und der gesamte Flüssigkeitsanteil der gesammelten Schmutzflüssigkeit im Aschebehälter (13) zum Verdunsten oder Verdampfen gebracht wird.

Description

  • Die Erfindung betrifft ein Verfahren zum Reinigen eines Elektrofilters für die Abgasreinigung von Feststofffeuerungen, insbesondere Pelletsfeuerungen, wobei eine definierte Menge an Reinigungsflüssigkeit, insbesondere Wasser, in bestimmten Zeitabständen auf den Elektrofilter aufgespritzt wird und Verunreinigungen auf zumindest einer Elektrode des Elektrofilters durch die Reinigungsflüssigkeit abgewaschen werden. Weiters betrifft die Erfindung eine Reinigungsvorrichtung zum Reinigen eines Elektrofilters für die Abgasreinigung von Feststofffeuerungen, insbesondere Pelletsfeuerungen, mit zumindest einer durch eine Steuereinrichtung gesteuerten Einspritzeinrichtung, um eine definierte Menge Reinigungsflüssigkeit in bestimmten Zeitabständen auf den Elektrofilter aufzuspritzen und Verunreinigungen am Elektrofilter abzuwaschen, sowie einen Aschebehälter zum Sammeln der festen Verbrennungsrückstände.
  • Aus der WO 10/057488 A1 ist ein nass abreinigender Elektrofilter zur Abgasreinigung für die Abgase von Biomasse-Feuerungen bekannt, bei dem der Elektrofilter eine Abscheidkammer aufweist, durch die das Abgas geleitet wird, wobei im Bereich der Abscheidkammer oder angrenzend an diese eine Aufladeeinrichtung zur elektrostatischen Aufladung von in dem Abgas befindlichen Partikeln angeordnet ist. Im Bereich der Abscheidkammer ist eine Abscheideinrichtung angeordnet, die von den aufgeladenen Partikeln durchströmt wird, wobei eine Abgabeeinrichtung für eine Reinigungsflüssigkeit den Bereich der Abscheideinrichtung periodisch besprüht und die an der Oberfläche der Abscheideinrichtung angelagerten Partikel abreinigt. Die durch beispielsweise Wasser gebildete Reinigungsflüssigkeit wird in das Abwassernetz geleitet oder wiederverwendet.
  • Das Schmutzwasser mit den vom Elektrofilter abgewaschenen Verunreinigungen kann aber Problemstoffe wie beispielsweise Schwermetalle enthalten, welche nicht über das Kanalnetz entsorgt werden dürfen. Eine Wiederaufbereitung des Schmutzwassers ist aber - insbesondere für Kleinanlagen - teuer, da eine Vielzahl von Komponenten wie Pumpen Einigungseinrichtungen, etc. erforderlich sind.
  • Aufgabe der Erfindung ist es, diese Nachteile zu vermeiden und eine kostengünstige und umweltverträgliche Reinigung des Elektrofilters zu ermöglichen.
  • Erfindungsgemäß wird dies dadurch erreicht, dass die vom Elektrofilter abfließende Schmutzflüssigkeit in einem Aschebehälter gesammelt wird, und dass der gesamte Flüssigkeitsanteil der gesammelten Schmutzflüssigkeit im Aschebehälter zum Verdunsten oder Verdampfen gebracht wird. Der ablauflos ausgeführte Aschebehälter ist dabei so unter dem Elektrofilter angeordnet, dass die gesamte vom Elektrofilter abfließende Schmutzflüssigkeit im Aschebehälter gesammelt werden kann, und der gesamte Flüssigkeitsanteil der gesammelten Schmutzflüssigkeit im Aschebehälter verdunsten bzw. verdampfen kann.
  • Die Wärme zum Verdunsten bzw. Verdampfen des Flüssigkeitsanteils in der Schmutzflüssigkeit wird vorzugsweise durch das Abgas bereitgestellt. Somit sind keine externen Heizeinrichtung zum Beheizen des Aschebehälters erforderlich. Bevorzugt wird die Reinigungsflüssigkeit, insbesondere Leitungswasser aus der vorhandenen Wasserleitung mit dem zur Verfügung stehenden Wasserleitungsdruck, über ein Magnetventil zur Einspritzeinrichtung geführt und über Einspritzdüsen die verschmutzte Oberfläche des Elektrofilters mit der Reinigungsflüssigkeit beaufschlagt, wodurch anhaftender Schmutz entfernt wird. Die Schmutzflüssigkeit fließt bzw. tropft nach unten ab und gelangt in den unter dem Elektrofilter angeordnete Aschebehälter. Im Aschebehälter wird der Flüssigkeitsanteil der Schmutzflüssigkeit verdunstet bzw. verdampft, so dass nur mehr die festen Anteile im Aschebehälter verbleiben und gelegentlich gemeinsam den festen Verbrennungsrückständen in herkömmlicher Weise, zum Beispiel mit dem Restmüll, entsorgt werden können.
  • Eine vollständige Verdunstung bzw. Verdampfung der Schmutzflüssigkeit kann ermöglicht werden, wenn der Zeitabstand zwischen zwei Einspritzungen der Reinigungsflüssigkeit in Abhängigkeit von der Abgastemperatur, vom Abgasvolumen, der Oberfläche der Schmutzflüssigkeit im Aschebehälter, und/oder der gesammelten Schmutzflüssigkeitsmenge bestimmt wird. Insbesondere kann der Zeitabstand tR zwischen zwei Einspritzvorgängen der Reinigungsflüssigkeit nach folgender Gleichung berechnet werden: t R = k T A ,
    Figure imgb0001

    wobei
  • T A
    der Mittelwert der Abgastemperatur über der gesamten Betriebszeit der Feuerung und
    k
    ein die Verdampfungswärme, den Abgasvolumenstrom, die Oberfläche der Schmutzflüssigkeit in der Aschelade, und die zu verdampfende Schmutzflüssigkeitsmenge berücksichtigender Rechenfaktor ist.
  • Wesentlich ist, dass zwischen zwei Einspritzvorgängen genügend Zeit zur Verfügung steht, um eine vollständige Verdunstung bzw. Verdampfung des Schmutzwassers zu bewirken. Über einen Feuchtigkeitssensor kann gegebenenfalls die Restfeuchtigkeit im Aschebehälter gemessen werden. Ist diese Restfeuchtigkeit unmittelbar vor einer geplanten weiteren Einspritzung der Reinigungsflüssigkeit zu hoch und liegt über einem definierten Grenzwert, so wird die folgende Einspritzung der Reinigungsflüssigkeit nicht frei gegeben und fällt somit aus.
  • Die Erfindung wird im Folgenden anhand der Fig. näher erläutert. Es zeigen:
  • Fig. 1
    schematisch eine Feuerungsanlage einer Feststofffeuerung mit einem Abgasreinigungsmodul;
    Fig. 2
    den Abgasreinigungsmodul mit der Vorrichtung zum Reinigen eines Elektrofilters in einer Schrägansicht i;
    Fig. 3
    den Abgasreinigungsmodul ohne Modulgehäuse in einer Schrägansicht;
    Fig. 4
    den Abgasreinigungsmodul in einer Schrägansicht in einem Schnitt gemäß der Linie IV - IV in Fig. 5;
    Fig. 5
    den Abgasreinigungsmodul in einer Schrägansicht in einem Schnitt gemäß der Linie V - V in Fig. 4;
    Fig. 6
    den Abgasreinigungsmodul in einem Schnitt gemäß der Linie VI - VI in Fig. 7;
    Fig. 7
    den Abgasreinigungsmodul in einer Seitenansicht; und
    Fig. 8
    die Steuerung der Einspritzung der Reinigungsflüssigkeit während des Betriebes.
  • Fig. 1 zeigt schematisch eine Feuerungsanlage 1 einer Feststofffeuerung 2, beispielsweise zur Verbrennung von Brennstoffpellets, mit einem zwischen der Feststofffeuerung 2 und einem Kamin 3 angeordneten Abgasleitung 5. In der Abgasleitung 5 ist ein Reinigungsmodul 6 angeordnet, wobei innerhalb des Gehäuses 7 des Reinigungsmoduls 6 eine Hochspannungseinheit 8 und ein Elektrofilter 9 mit einer beispielsweise durch eine Mantelelektrode gebildeten positiven Niederschlagselektrode 10 und einer beispielsweise durch eine Mittelelektrode gebildeten negativen Sprühelektrode 11 im Abgasströmungsweg 12 angeordnet sind. Die Niederschlagselektrode 10 ist im Wesentlichen vertikal angeordnet. Die Strömung erfolgt innerhalb des Elektrofilters 9 ebenfalls in vertikaler Richtung. Die Strömung innerhalb des Reinigungsmoduls 6 ist mit Pfeilen S angedeutet. Stromaufwärts, also unterhalb, des Elektrofilters 9 ist ein aus dem Gehäuse 7 entfernbarer Aschebehälter 13 zum Auffangen von Flugasche vorgesehen, welcher einen Ascheauffangraum 14 bildet. Mit 26 ist ein Isolator für die Stromzuführung zur Sprühelektrode 11 bezeichnet.
  • Die Elektrofilter 9 dient zur Abscheidung vom Partikeln im Abgas und arbeitet in bekannter Weise auf der Basis des elektrostatischen Prinzips. Die Abscheidung im Elektrofilter 9 beinhaltet die Schritte: Freisetzung von elektrischen Ladungen, Aufladung der Staubpartikel im elektrischen Feld, Transport der geladenen Staubteilchen zur Niederschlagselektrode 10, Anhaftung der Staubpartikel an der Niederschlagselektrode 10 und Entfernung der Staubschicht von der Niederschlagselektrode 10.
  • Zur Entfernung der an der Niederschlagelektroden 10 anhaftenden Staubschicht ist eine Reinigungsvorrichtung 15 vorgesehen, welche eine Einspritzeinrichtung 16 für eine Reinigungsflüssigkeit, beispielsweise Wasser, aufweist. Die beispielsweise mit Leitungswasser einer Versorgungswasserleitung gespeiste Einspritzeinrichtung 16 ist im Ascheauffangraum 14 unterhalb des Elektrofilters 9 angeordnet. Über die Einspritzeinrichtung 16 kann die Reinigungsflüssigkeit über eine oder mehrere Düsen 17 nach oben auf die Niederschlagselektrode 10 gespritzt werden, wodurch die anhaftenden Staubpartikel abgewaschen werden. Die verschmutzte Reinigungsflüssigkeit - die Schmutzflüssigkeit - fließt durch das eigene Gewicht samt dem mitgerissenen Staubpartikeln entlang der Niederschlagselektrode 10 nach unten und weiter in den Aschebehälter 13.
  • Der als aus dem Gehäuse 7 entfernbare Lade ausgebildete Aschebehälter 13 ist ablauflos ausgeführt, so dass die gesammelte Schmutzflüssigkeit im Aschebehälter 13 verbleibt, also weder einem Abwassersystem, noch einem Wiederaufbereitungssystem zugeführt wird.
  • Das aus der Feststofffeuerung 2 emittierte Abgas gelangt über die Eintrittsöffnung 18 in den Reinigungsmodul 6, wird über ein Fallrohr 19 nach unten in und horizontal durch den durch den Aschebehälter 13 gebildeten Ascheauffangraum 14 geführt, wobei es die Oberfläche der im Aschebehälter 13 aufgefangenen Schmutzflüssigkeit überstreicht und diese erwärmt. Danach wird das Abgas nach oben umgelenkt und strömt durch den Einlauftrichter 20 in den Elektrofilter 9, wobei Staubpartikel aufgeladen werden und an der Niederschlagselektrode 10 anhaften. Nach Passieren des Elektrofilters 9 verlässt das Abgas den Reinigungsmodul 6 durch den Austritt 21 und wird schließlich dem Kamin 3 zugeführt.
  • Beim Durchströmen des Ascheauffangraumes 14 durch das Abgas wird Wärme an die Schmutzflüssigkeit abgegeben und ein Verdunsten bzw. Verdampfen dieser bewirkt. Nach dem vollständigen Verdunsten bzw. Verdampfen der Flüssigkeitsanteile der Schmutzflüssigkeit verbleiben die abgewaschenen festen Bestandteile im Aschebehälter 13 und können problemlos mit den festen Verbrennungsrückständen entsorgt werden.
  • Um ein vollständiges Verdunsten bzw. Verdampfen der Schmutzflüssigkeit zu erreichen ist es wesentlich, dass jeweils zwischen zwei Einspritzvorgängen genug Zeit bleibt, um ein vollständiges Verdunsten bzw. Verdampfen zu ermöglichen. Weiters muss die Abgastemperatur TA ausreichend hoch sein. Daher ist es vorteilhaft, wenn die Abgastemperatur TA über zumindest einen Temperatursensor 22 und/oder die Feuchtigkeit der Rückstände im Aschebehälter 13 über einen Feuchtigkeitssensor 23 gemessen wird und einer Steuereinheit 24 zugeführt wird. Ist die Abgastemperatur TA unterhalb eines Grenzwertes von beispielsweise 100°C, oder zeigt der Feuchtigkeitssensor einen zu hohen Wassergehalt in der Asche des Aschebehälters 13 an, so erfolgt keine weitere Einspritzung der Reinigungsflüssigkeit, bis die Abgastemperatur und/oder der Feuchtigkeitsgehalt wieder im Sollbereich liegt.
  • Der Zeitabstand tR zwischen zwei Einspritzvorgängen ist somit abhängig von der Abgastemperatur TA, vom Abgasvolumen, der Oberfläche der Schmutzflüssigkeit im der Aschebehälter 13, und/oder der gesammelten Schmutzflüssigkeitsmenge.
  • Für die Ermittlung des Zeitabstandes tR zwischen zwei Einspritzvorgängen der Reinigungsflüssigkeit kann folgende Gleichung verwendet werden: t R = k T A ,
    Figure imgb0002

    wobei
  • T A
    der Mittelwert der Abgastemperatur TA über der gesamten Betriebszeit der Feuerung und
    k
    ein die Verdampfungswärme, den Abgasvolumenstrom, die Oberfläche der Schmutzflüssigkeit im Aschebehälter und die zu verdampfende Schmutzflüssigkeitsmenge berücksichtigender Rechenfaktor
    ist.
  • Die Steuereinheit 24 berechnet den Zeitabstand tR und steuert über zumindest ein beispielsweise durch ein Magnetventil gebildetes Ventil 25 die Einspritzung der Reinigungsflüssigkeit.
  • Die Steuereinheit 24 steuert das Ein- und Ausschalten des Stromes für den Elektrofilter 9, sowie die Einspritzung der Reinigungsflüssigkeit. Grundsätzlich ist der Elektrofilter 9 stets eingeschalten, wenn die Feststofffeuerung in Betrieb ist, also auch während des Anfahrens und Abfahrens der Feuerungsanlage 1 Anlage, aber nicht bei deaktivierter Feststofffeuerung 2. Durch die Steuereinheit 23 wird ein Reinigungsprogramm - zeitgesteuert und/oder durch die Abgastemperatur TA gesteuert - gefahren und dabei der Elektrofilter 9 abgeschaltet und die Einspritzeinrichtung 16 über das Ventil 24 kurz - zum Beispiel für 0,5 bis 1 Sekunden eingeschaltet. Mit dem erneuten Einschalten des Elektrofilters 9 wird gewartet, bis dieser wieder weitgehend abgetrocknet ist. Die Trocknungsdauer ΔtF für den Elektrofilter 9 kann beispielsweise 5 bis 30 Minuten betragen. Die Einschaltzeit tF für den Elektrofilter 9 kann dann zum Beispiel mehr als 2 Stunden betragen. Eine Reinigung des Elektrofilters 9 kann beispielsweise 1 bis 4 mal pro Tag erfolgen. Für kleinere bis mittlere Hausfeuerungsanlagen reicht beispielsweise eine Reinigungsflüssigkeitsmenge von beispielsweise 0,5 Liter pro Einspritzvorgang. Bevorzugt wird als Reinigungsflüssigkeit Wasser unter dem zur Verfügung stehenden Leitungsdruck eingespritzt, wodurch Speisepumpen entfallen können. Falls der Leitungsdruck zu gering ist, kann selbstverständlich zur Einspritzung auch eine eigen Pumpe verwendet werden.
  • In Fig. 8 ist das Steuersignal E für das Ventil 25 für die Einspritzung der Reinigungsflüssigkeit schematisch über der Zeit t dargestellt. Die Einspritzdauer ΔtR beträgt jeweils beispielsweise zwischen 0,5 Sekunden und zehn Sekunden. Das Abreinigungsintervall ergibt sich unter Anwendung der oben erwähnten Beziehung des Mindestzeitabstandes tR, der für die vollständige Verdampfung nötig ist. Weiters ist das Steuersignal F für den Elektrofilter 9 über der Zeit aufgetragen. Steuersignal E bzw. F gleich "0" bedeutet hier Deaktivierung des Ventils 25 bzw. des Elektrofilters 9, Steuersignal E bzw. F gleich "1" bedeutet Aktivierung des Ventils 25 bzw. des Elektrofilters 9. Während die Feuerungsanlage in Betrieb ist, ist die Hochspannung des Elektrofilters eingeschaltet, das Steuersignal F = 1. Ist die Abgastemperatur T größer als der definierte Grenzwert, so wird das Steuersignal G auf "1" gesetzt und die Einspritzung der Reinigungsflüssigkeit freigegeben. Um eine Einspritzung der Reinigungsflüssigkeit durchzuführen, müssen also alle drei Bedingungen für die Steuersignale E, F und G erfüllt sein:
    • E= 1,
    • F=0 und
    • G=1

Claims (10)

  1. Verfahren zum Reinigen eines Elektrofilters (9) für die Abgasreinigung von Feststofffeuerungen (2), insbesondere Pelletsfeuerungen, wobei eine definierte Menge an Reinigungsflüssigkeit, insbesondere Wasser, in bestimmten Zeitabständen auf den Elektrofilter (9) aufgespritzt wird und Verunreinigungen auf zumindest einer Elektrode (10, 11) des Elektrofilters (9) durch die Reinigungsflüssigkeit abgewaschen werden, dadurch gekennzeichnet, dass die vom Elektrofilter (9) abfließende Schmutzflüssigkeit in einem Aschebehälter (13) gesammelt wird, und dass der gesamte Flüssigkeitsanteil der gesammelten Schmutzflüssigkeit im Aschebehälter (13) zum Verdunsten oder Verdampfen gebracht wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Zeitabstand (tR) zwischen zwei Einspritzungen der Reinigungsflüssigkeit in Abhängigkeit von der Abgastemperatur (TA), vom Abgasvolumen, der Oberfläche der Schmutzflüssigkeit im Aschebehälter (13), und/oder der gesammelten Schmutzflüssigkeitsmenge bestimmt wird.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass der Zeitabstand tR zwischen zwei Einspritzungen der Reinigungsflüssigkeit nach folgender Gleichung berechnet wird: t R = k T A ,
    Figure imgb0003

    wobei
    T A der Mittelwert der Abgastemperatur über der gesamten Betriebszeit der Feuerung und
    k ein die Verdampfungswärme, den Abgasvolumenstrom, die Oberfläche der Schmutzflüssigkeit im Aschebehälter (13), und die zu verdampfende Schmutzflüssigkeitsmenge berücksichtigender Rechenfaktor
    ist.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Restfeuchtigkeit im Aschebehälter (13) gemessen wird und die folgende geplante Einspritzung der Reinigungsflüssigkeit nur dann freigegeben wird, wenn die Restfeuchtigkeit unterhalb eines definierten Grenzwertes liegt.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Abgastemperatur (TA) im Abgas gemessen wird und die folgende geplante Einspritzung der Reinigungsflüssigkeit nur dann freigegeben wird, wenn die Abgastemperatur (TA) oberhalb eines definierten Grenzwertes liegt.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die festen Rückstände der verdunsteten bzw. verdampften Schmutzflüssigkeit zusammen mit den festen Verbrennungsrückständen des Aschebehälters (13) entsorgt werden.
  7. Reinigungsvorrichtung (15) zum Reinigen eines Elektrofilters (9) für die Abgasreinigung von Feststofffeuerungen (2), insbesondere Pelletsfeuerungen, mit zumindest einer durch eine Steuereinrichtung (24) gesteuerten Einspritzeinrichtung (16), um eine definierte Menge Reinigungsflüssigkeit in bestimmten Zeitabständen auf den Elektrofilter (9) aufzuspritzen und Verunreinigungen am Elektrofilter (9) abzuwaschen, sowie einen Aschebehälter (13) zum Sammeln der festen Verbrennungsrückstände, dadurch gekennzeichnet, dass der ablauflos ausgeführte Aschebehälter (13) unterhalb des Elektrofilters (9) so angeordnet ist, dass die vom Elektrofilter (9) abfließende Schmutzflüssigkeit im Aschebehälter (13) sammelbar ist, und dass der gesamte Flüssigkeitsanteil der gesammelten Schmutzflüssigkeit im Aschebehälter (13) verdunstbar oder verdampfbar ist.
  8. Reinigungsvorrichtung (15) nach Anspruch 7, dadurch gekennzeichnet, dass die Einspritzung der Reinigungsflüssigkeit mittels zumindest eines vorzugsweise als Magnetventil ausgebildeten Ventils (25) durch die Steuereinheit (24) steuerbar ist.
  9. Reinigungsvorrichtung (15) nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass im Bereich des Aschebehälters (13) zumindest ein mit der Steuereinheit (24) verbundener Feuchtigkeitssensor (23) angeordnet ist.
  10. Reinigungsvorrichtung (15) nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass in der Abgasleitung (5) zumindest ein mit der Steuereinheit (24) verbundener Temperatursensor (22) angeordnet ist.
EP14195633.4A 2013-12-27 2014-12-01 Verfahren und Vorrichtung zum Reinigen eines Elektrofilters Active EP2889089B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ATA50858/2013A AT514928B1 (de) 2013-12-27 2013-12-27 Verfahren zum Reinigen eines Elektrofilters

Publications (2)

Publication Number Publication Date
EP2889089A1 true EP2889089A1 (de) 2015-07-01
EP2889089B1 EP2889089B1 (de) 2017-08-23

Family

ID=52101023

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14195633.4A Active EP2889089B1 (de) 2013-12-27 2014-12-01 Verfahren und Vorrichtung zum Reinigen eines Elektrofilters

Country Status (2)

Country Link
EP (1) EP2889089B1 (de)
AT (1) AT514928B1 (de)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1382037A (en) * 1917-08-11 1921-06-21 Int Precipitation Co Process and apparatus for recovering soluble constituents from furnace-fumes
DE2138247A1 (de) * 1970-08-01 1972-02-10 Masuda Senichi Elektrische Staubsammelvorrichtung
DE2749886A1 (de) * 1977-11-08 1979-05-10 Saarberg Hoelter Verfahren zur ausschleusung der salzfracht fuer rauchgas-waschanlagen, vorzugsweise bei entschwefelungsanlagen von kraftwerken und muellverbrennungsentsorgungsanlagen, aus dem waschfluessigkeitskreislauf
DE3307999A1 (de) * 1982-06-01 1984-09-13 Frank Dieter Dipl.-Phys. Dr. 8000 München Peschanel Verfahren und anlage zur verminderung von schadstoffen in gasen
US6193782B1 (en) * 1999-03-30 2001-02-27 Croll Reynolds Clean Air Technologies, Inc. Modular condensing wet electrostatic precipitators and method
US6294003B1 (en) * 1999-03-30 2001-09-25 Croll Reynolds Clean Air Technologies, Inc. Modular condensing wet electrostatic precipitators
US6488740B1 (en) * 2000-03-01 2002-12-03 Electric Power Research Institute, Inc. Apparatus and method for decreasing contaminants present in a flue gas stream
WO2010057488A1 (de) 2008-11-20 2010-05-27 Fachhochschule Gelsenkirchen Nass abreinigender elektrofilter zur abgasreinigung sowie ein hierfür geeignetes verfahren

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT406024B (de) * 1995-05-02 2000-01-25 Scheuch Alois Gmbh Anlage zur elektrostatischen reinigung von staubhaltigem abgas
US8092578B2 (en) * 2008-08-25 2012-01-10 Eisenmann Corporation Method and apparatus for eliminating or reducing waste effluent from a wet electrostatic precipitator
FI20096157A (fi) * 2009-11-06 2011-05-07 Lo Group Oy Menetelmä ilmanpuhdistimen sähköisen suodatinkennon puhdistamiseksi

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1382037A (en) * 1917-08-11 1921-06-21 Int Precipitation Co Process and apparatus for recovering soluble constituents from furnace-fumes
DE2138247A1 (de) * 1970-08-01 1972-02-10 Masuda Senichi Elektrische Staubsammelvorrichtung
DE2749886A1 (de) * 1977-11-08 1979-05-10 Saarberg Hoelter Verfahren zur ausschleusung der salzfracht fuer rauchgas-waschanlagen, vorzugsweise bei entschwefelungsanlagen von kraftwerken und muellverbrennungsentsorgungsanlagen, aus dem waschfluessigkeitskreislauf
DE3307999A1 (de) * 1982-06-01 1984-09-13 Frank Dieter Dipl.-Phys. Dr. 8000 München Peschanel Verfahren und anlage zur verminderung von schadstoffen in gasen
US6193782B1 (en) * 1999-03-30 2001-02-27 Croll Reynolds Clean Air Technologies, Inc. Modular condensing wet electrostatic precipitators and method
US6294003B1 (en) * 1999-03-30 2001-09-25 Croll Reynolds Clean Air Technologies, Inc. Modular condensing wet electrostatic precipitators
US6488740B1 (en) * 2000-03-01 2002-12-03 Electric Power Research Institute, Inc. Apparatus and method for decreasing contaminants present in a flue gas stream
WO2010057488A1 (de) 2008-11-20 2010-05-27 Fachhochschule Gelsenkirchen Nass abreinigender elektrofilter zur abgasreinigung sowie ein hierfür geeignetes verfahren

Also Published As

Publication number Publication date
AT514928A4 (de) 2015-05-15
EP2889089B1 (de) 2017-08-23
AT514928B1 (de) 2015-05-15

Similar Documents

Publication Publication Date Title
EP2672870B1 (de) Verfahren zum abreinigen eines filters eines staubsaugers sowie staubsauger zur durchführung des verfahrens
EP3291910A1 (de) Abgasbehandlungseinrichtung für abgas einer kleinfeuerungsanlage und verfahren zur behandlung von abgas einer kleinfeuerungsanlage
EP1521638A1 (de) Elektro-abscheider mit spülreinigung
EP2105206A2 (de) Elektrostatischer Abscheider mit Partikelabweisemittel und Heizsystem
EP2570736A1 (de) Dunstabzugsvorrichtung und Verfahren zum Betreiben einer Dunstabzugsvorrichtung
DE3015483C2 (de) Rußbehandlungsvorrichtung für einen Verbrennunsmotor
DE202006016244U1 (de) Elektrostatische Reinigungsvorrichtung für die Rauchgase einer Feuerungsanlage
EP2889089B1 (de) Verfahren und Vorrichtung zum Reinigen eines Elektrofilters
WO2010057488A1 (de) Nass abreinigender elektrofilter zur abgasreinigung sowie ein hierfür geeignetes verfahren
EP2867585B1 (de) Verfahren zum betreiben einer abluftanlage und abluftanlage für eine küche
DE69216813T2 (de) Filtrationsanlage für Luftbehandlungsysteme oder Küchenhauben
EP1884722A2 (de) Vorrichtung mit Mitteln zur Durchführung von Ablaufschritten zur Neutralisation von Kondensat aus einem Heizgerät sowie Verfahren hierzu
DE102016104218A1 (de) Filtervorrichtung
EP1181966A1 (de) Verfahren und Vorrichtung zum Reinigen von Filtern
DE1600473A1 (de) Stroemungsanordnung mit einer Strahlsteuereinrichtung und einer Quelle eines unter Druck stehenden,eine bestimmte Verunreinigung enthaltenden Stroemungsmediums
DE102011011054B4 (de) Verfahren zur Aufbereitung von Druckluft sowie Vorrichtung zur Aufbereitung von Druckluft
DE102019128292B4 (de) Reinigungsvorrichtung zum elektrostatischen Reinigen von Gas und Verwendungen derselben
EP0577543B1 (de) Verfahren und Anlage zum Reinigen des einen Grossdieselmotor verlassenden Abgases
DE102009035518A1 (de) Neutralisationsverfahren zum Neutralisieren von Kondensat aus einem Brennwertgerät
DE2806479C2 (de) Verfahren und Vorrichtung für das Abscheiden von Flugasche aus Rauchgasen
AT247385B (de) Trockenreinigungsverfahren für Hochofen-(Gicht-)gas
DE102007043745A1 (de) Verfahren zum Abscheiden von flüssigen und/oder festen Emissionen aus Öl enthaltendem Rohgas, insbesondere bei Maschinen zum Druckumformen, insbesondere bei Warmfließpressen
DE4323832A1 (de) Verfahren zum Reinigen von Fahrzeugbremsen
DE202011000866U1 (de) System zur Reinigung einer dielektrischen Flüssigkeit
DE202022100715U1 (de) Elektrofilter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141201

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20151105

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170518

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 920763

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014005145

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER AND PEDRAZZINI AG, CH

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170823

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171123

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171223

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171123

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171124

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014005145

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171201

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20141201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 920763

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191201

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230508

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231219

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231221

Year of fee payment: 10

Ref country code: FR

Payment date: 20231226

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231227

Year of fee payment: 10

Ref country code: CH

Payment date: 20240101

Year of fee payment: 10