EP2888344A1 - Additifs ameliorant la resistance a l'usure et au lacquering de carburants de type gazole ou biogazole - Google Patents

Additifs ameliorant la resistance a l'usure et au lacquering de carburants de type gazole ou biogazole

Info

Publication number
EP2888344A1
EP2888344A1 EP13756345.8A EP13756345A EP2888344A1 EP 2888344 A1 EP2888344 A1 EP 2888344A1 EP 13756345 A EP13756345 A EP 13756345A EP 2888344 A1 EP2888344 A1 EP 2888344A1
Authority
EP
European Patent Office
Prior art keywords
additives
polyols
fuel
diesel
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13756345.8A
Other languages
German (de)
English (en)
Inventor
Thomas Dubois
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TotalEnergies Marketing Services SA
Original Assignee
Total Marketing Services SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Total Marketing Services SA filed Critical Total Marketing Services SA
Publication of EP2888344A1 publication Critical patent/EP2888344A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/04Use of additives to fuels or fires for particular purposes for minimising corrosion or incrustation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/19Esters ester radical containing compounds; ester ethers; carbonic acid esters
    • C10L1/191Esters ester radical containing compounds; ester ethers; carbonic acid esters of di- or polyhydroxyalcohols
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/188Carboxylic acids; metal salts thereof
    • C10L1/1881Carboxylic acids; metal salts thereof carboxylic group attached to an aliphatic carbon atom
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/222Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
    • C10L1/224Amides; Imides carboxylic acid amides, imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/236Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/02Inorganic or organic compounds containing atoms other than C, H or O, e.g. organic compounds containing heteroatoms or metal organic complexes
    • C10L2200/0259Nitrogen containing compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0461Fractions defined by their origin
    • C10L2200/0469Renewables or materials of biological origin
    • C10L2200/0476Biodiesel, i.e. defined lower alkyl esters of fatty acids first generation biodiesel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2270/00Specifically adapted fuels
    • C10L2270/02Specifically adapted fuels for internal combustion engines
    • C10L2270/026Specifically adapted fuels for internal combustion engines for diesel engines, e.g. automobiles, stationary, marine

Definitions

  • the subject of the present invention is additives making it possible to limit the formation of soaps and / or varnishes in the internal parts of the fuel injection systems of engines of the (bio) diesel fuel type, that is to say in particular to increase their resistance to lacquering.
  • Diesel or diesel is a fuel for a diesel engine (compression engine) comprising middle distillates with a boiling point between 100 and 500 ° C.
  • a diesel can be a mixture of fossil-based middle distillates and biofuels.
  • biofuel we mean fuels obtained from organic matter (biomass), as opposed to fuels from fossil fuels.
  • biofuels include biodiesels (also known as biodiesels) and alcohols.
  • Biodiesel or biodiesel is an alternative to conventional diesel fuel.
  • This biofuel is obtained from a vegetable or animal oil (including used cooking oil) transformed by a chemical process called transesterification, reacting this oil with an alcohol to obtain fatty acid esters.
  • transesterification a chemical process called transesterification, reacting this oil with an alcohol to obtain fatty acid esters.
  • fatty acid methyl esters (EMAG) and fatty acid ethyl esters (EEAG) are obtained respectively.
  • B99 contains 99% biodiesel and 1% middle distillates of fossil origin, B20, 20% biodiesel and 80% middle distillates of fossil origin, etc.
  • B0 type gasoil fuels which do not contain oxygenates are distinguished from Bx type biodiesel fuels which contain x% (v / v) of vegetable oil or fatty acid esters, most often esters. methyl esters (EMHV or EMAG).
  • EMHV methyl esters
  • B100 When biodiesel is used alone in engines, the term fuel is termed B100.
  • Processes for preparing low-sulfur diesel or diesel fuel bases for example hydrotreatment processes in addition to reducing the sulfur content, also reduce the content of these diesel fuel gasoline bases to polycyclic aromatic compounds and in polar compounds.
  • diesel or diesel fuels at low (less than 100 ppm) or very low sulfur content have a reduced ability to lubricate the engine injection system, so that for example the injection pump motor fuel can fail prematurely during the life of the engine, for example failure in high-pressure fuel injection systems, such as high-pressure rotary distributors, in-line pumps , combined pumps, with injectors.
  • high-grade fuel of diesel or biodiesel type is understood to mean any diesel fuel or biodiesel fuel supplemented with at least 50 ppm by weight of reducing additives (s) and / or detergents and / or dispersants (s). ).
  • FIG. 1 is a photograph of a high pressure direct injection diesel engine injector
  • FIG. 2 is a photograph of a needle of a diesel engine injector with direct injection, fouled by soap and / or lacquering deposit (lacquering)
  • FIG. 3 is a photograph of a nozzle of a diesel engine injector with indirect injection, fouled by coking type deposit (in English "coking")
  • FIG. 4 is a photograph of a needle of a direct injection diesel engine injector, fouled by soap and / or varnish deposition (in English "lacquering")
  • the lacquering phenomenon does not concern deposits which are present outside the injection system 5 or 5 '(FIGS. 1 and 3) and which are related to coking ("coking" in English) at the origin of fouling and partial or total blockage of the injection nozzles 4 or 4 '("nozzle coking" or "fouling" in English).
  • Coking is a phenomenon that appears only downstream of a Diesel injection system.
  • the deposits 5 'formed are characterized in that they consist of pyrolysis of the hydrocarbons entering the combustion chamber and have the appearance of carbonaceous deposits.
  • the tendency to coking is much less marked. This coking is conventionally simulated by the standard engine test CEC F098-08 DW10B, especially when the test fuel is contaminated with metallic zinc.
  • Lacquering is a phenomenon that occurs only in direct injection diesel engines and occurs only upstream of the i.e combustion chamber in the injection system.
  • injectors 3 of direct injection diesel engines comprise a needle 2 whose lifting makes it possible to precisely control the quantity of fuel injected at high pressure directly into the combustion chamber.
  • Lacquering induces the appearance of deposits 1 which appear specifically at the level of the needles 2 of the injectors 3 ( Figures 1 and 2).
  • the lacquering phenomenon is related to the formation of soap and / or varnish in the internal parts of the engine injection systems for (bio) diesel fuels.
  • Lacquering deposit 1 can be located on the end 4 of the needles 2 of injectors 3, both on the head and on the body of the needles 2 of the fuel injection system but also throughout the control system of the Needle lift (valves not shown) of the injection system. This phenomenon is particularly noticeable for engines using high quality (bio) diesel fuels. When these deposits are present in large quantities, the mobility of the needle 2 of the injector 3 fouled by these deposits 1 is compromised. This lacquering phenomenon can eventually generate a loss of injected fuel flow and thus a loss of engine power.
  • lacquering can also cause increased engine noise and sometimes startup problems. Indeed, the parts of the needles 2 fouled by the deposits of soap and / or varnish 1 may stick to the inner walls of the injector 3. The needles 2 are then blocked and the fuel no longer passes.
  • lacquering deposits There are usually two types of lacquering deposits:
  • Transesterification catalysts for vegetable oils for the production of (m) ethyl esters of fatty acid esters such as sodium methanoate;
  • sodium can also come from corrosion inhibitors used to transport petroleum products in some pipes, such as sodium nitrite;
  • Possible sources of acids in type Bx fuels can be multiple, for example:
  • o corrosion inhibitors used for the transport of petroleum products in certain pipes such as DDSA (dodecenylsuccinic anhydride) or HDSA (hexadecenylsuccinic anhydride) or some of their functional derivatives such as acids.
  • DDSA dodecenylsuccinic anhydride
  • HDSA hexadecenylsuccinic anhydride
  • these salts are insoluble in diesel fuels with low sulfur content, and as they exist in the form of fine particles, they pass through the diesel fuel filters and are deposited inside the injectors.
  • this publication the development of a motor test is described and reproduces the deposits. The publication emphasizes that only diacids generate deposits, unlike the mono carboxylic acids or the neutral esters of organic acids.
  • partial esters of polyols are known per se; they may for example be prepared by esterification of fatty acid (s) and linear and / or branched polyols optionally comprising (hetero) rings of 5 to 6 atoms supporting hydroxyl functions.
  • the product (s) resulting from this esterification reaction comprises a distribution in ester units, hydroxyl units and ether units such that x varies from 1 to 4, y varies from 1 to 7 and z varies from 1 to 3.
  • this type of synthesis leads to a mixture of mono-, di-, tri- and optionally tetraesters as well as small amounts of unreacted fatty acid (s) and polyols.
  • the polyol esters are obtained by esterification of fatty acid (s) and of linear and / or branched polyols optionally comprising heterocycles of 4 to 5 carbon atoms and an oxygen atom, supporting functions. hydroxyls.
  • the polyols will be chosen from linear polyols comprising more than three hydroxyl functions and polyols comprising at least one (hetero) ring of 5 or 6 atoms, preferably heterocycles of 4 to 5 carbon atoms. and an oxygen atom, possibly substituted by hydroxyl groups, these polyols can be taken alone or in mixture.
  • the linear or branched hydrocarbon-chain polyols comprise at least four units represented in formula (I) below:
  • the linear or branched hydrocarbon-chain polyols comprise at least four units represented in formula (I I) below:
  • R1 and R2 are identical or different and represent either the hydrogen atom or a group -CH 3 or - C 2 H 5 , a -CH 2 -OH group.
  • polyols R some comprise at least one (hetero) ring of 4 or 5 carbon atoms and an oxygen atom, optionally substituted by hydroxyl groups and correspond to the general formula (I II) below:
  • polyols R some comprise at least two heterocycles of 4 or 5 carbon atoms and one oxygen atom, connected by the formation of an acetal bond between a hydroxyl function of each ring, which is optionally substituted by hydroxyl groups.
  • the polyols are selected from the group consisting of erythritol, xylitol, D-arabitol, L-arabitol, ribitol, sorbitol, malitol, risomalitol, lactitol, sorbitan, volemitol, mannitol , pentaerythritol, 2-hydroxymethyl-1,3-propanediol, 1,1,1-tri (hydroxymethyl) ethane, trimethylolpropane and carbohydrates such as sucrose, fructose, maltose, glucose and sucrose, preferably sorbitan.
  • the partial esters of polyols are chosen from partial esters of sorbitan, preferably sorbitan monooleate, taken alone or as a mixture.
  • the fatty acids from which the esters according to the invention are derived can be chosen from fatty acids whose chain length varies from 10 to 24 carbon atoms and / or at least one diacid substituted by at least one polymer, for example from poly (iso) butene comprising from 8 to 100 carbon atoms. They are preferably chosen for the mono acids from stearic, isostearic, linolenic, oleic, linoleic, behenic, arachidonic, ricinoleic, palmitic, myristic, lauric and capric acids, and mixtures thereof and for the diacids among alkyl or alkenylsuccinic acids. , alkyl-or alkenylmaleic.
  • the fatty acids can come from the trans-esterification or saponification of vegetable oils and / or animal fats.
  • Preferred vegetable oils and / or animal fats will be selected according to their concentration of oleic acid. For example, see Table 6.21 in Chapter 6 of the book Fuels & Engines by J.C. Guibet and E. Faure, 2007 edition, which lists the compositions of several vegetable oils and animal fats.
  • the fatty acids may also be derived from tall oil fatty acids (Tall Oil Fatty Acids) which comprise a major amount of fatty acids, typically greater than or equal to 90% by mass, as well as resin acids and unsaponifiables in a minor amount. , ie in quantities generally less than 10%.
  • Preferred additives according to the invention capable of improving the lacquering resistance of high quality (bio) diesel fuels include partial esters of sorbitan.
  • additives comprise at least 50% by weight of mono- and / or diester (s) of isobutylene-succinic acid and polyols according to one of the formulas I to II.
  • additives comprise at least 50% by weight of mono- and / or diester (s) of monocarboxylic acids of 12 to 24 carbon atoms and polyols according to one of formulas I to III
  • the invention also relates to a package of additives for (biofuel) fuels containing at least one lacquering resistance additive as defined above and at least one or more other functional additives, such as deposition / dispersant reducing agents, -oxidants, combustion improvers, corrosion inhibitors, cold-strength additives (cloud point-improving, sedimentation rate, filterability and / or cold flow), dyes, demulsifiers, metal deactivators, defoamers, cetane improvers, compatibilizers, lubricity additives, anti-wear agents and / or friction modifiers, and one or more solvents or co-solvents .
  • functional additives such as deposition / dispersant reducing agents, -oxidants, combustion improvers, corrosion inhibitors, cold-strength additives (cloud point-improving, sedimentation rate, filterability and / or cold flow), dyes, demulsifiers, metal deactivators, defoamers, cetane improvers, compatibilizers,
  • the use of the additives according to the invention makes it possible to improve lacquering resistance at the fuel injectors, thus limiting the formation (deposition) of soap and / or varnish in the presence of additives such as deposit reducing agents and and / or detergent and / or dispersants.
  • additives such as deposit reducing agents and and / or detergent and / or dispersants.
  • the use of these additives in (bio) diesel fuels reduces the rate of clogging and deterioration of the fuel intake or injection system, in particular on the injection pump.
  • the (bio) diesel fuels according to the invention may comprise middle distillates with a boiling point of between 100 and 500 ° C .; their starting crystallization temperature TCC is often greater than or equal to -20 ° C, generally between -15 ° C and +10 ° C.
  • These distillates are mixtures of bases which can be chosen, for example, from distillates obtained by the direct distillation of petroleum or crude hydrocarbons, vacuum distillates, hydrotreated distillates, distillates obtained from catalytic cracking and / or distillate hydrocracking under vacuum, distillates resulting from processes conversion type ARDS (atmospheric residue desulfurization) and / or visbreaking.
  • the (bio) diesel fuels can also contain light cuts such as distillate spirits, catalytic or thermal cracking units, isomerization alkylation units, desulfurization units, steam cracking units.
  • (bio) diesel fuels may contain new sources of distillates, among which may be mentioned in particular:
  • alcohols such as methanol, ethanol, butanols, ethers, (MTBE,
  • ETBE Certainly generally used in combination with petrol fuels, but sometimes with heavier fuels of the diesel type,
  • oils and / or their esters such as the Methyl or Ethyl Esters of Vegetable Oils or of Fatty Acids (EMHV, EEHV, EMAG, EEAG);
  • the (biofuel) fuels can be used alone or mixed with conventional petroleum distillates as fuel base (s); they generally comprise long paraffinic chains of 10 carbon atoms and more, preferably C u to C 3 o-
  • the (biofuel) fuels have a sulfur content of less than or equal to 500 mass ppm, advantageously less than or equal to 100 ppm by weight, and capable of falling to a content of less than or equal to 50 ppm mass or even less than or equal to 10 ppm mass (this is the case of diesel fuels for current vehicles whose sulfur content according to the European standard EN 590 currently in force must be less than or equal to 10 ppm mass).
  • the lacquering resistance additives that is to say the formation of soap and / or varnish in the internal parts of the fuel injection systems of the (bio) diesel fuel engines according to the invention can be incorporated into the fuels. up to a value of up to 10% by mass.
  • the concentration of partial esters according to the invention in the final fuel will be between 20 and 1000 ppm by weight, and preferably between 30 and 200 ppm by weight m / m, that is to say ppm by weight relative to the total mass of the fuel additive.
  • the compositions of (bio) diesel fuel of higher quality comprise at least 20 ppm by weight of at least one additive according to the invention, and optionally at least one and / or more other functional additives.
  • concentration of additive according to the invention in the composition that is to say the concentration of partial esters can vary from 20 to 1000ppm by mass, and more particularly from 30 to 200ppm mass m / m.
  • the lacquering resistance additives of the present invention may be used alone or in admixture with deposition and / or detergent and / or dispersant reducers, antioxidants, combustion improvers, corrosion-resistant additives (cloud point improving, sedimentation rate, filterability and / or cold flow), dyes, demulsifiers, metal deactivators, defoamers, agents improving the cetane number, and anti-wear additives, lubricity and / or friction modifiers, co-solvents, compatibilizers, etc.
  • the other functional additive (s) may be chosen from:
  • procetane additives for fuels of the diesel type, mention may be made of procetane additives, in particular (but not limited to) selected from alkyl nitrates, preferably 2-ethyl hexyl nitrate, aryl peroxides, preferably benzyl peroxide. and alkyl peroxides, preferably di-tert-butyl peroxide; for petrol-type fuels, there may be mentioned additives improving the octane number; for fuels such as heating oil, heavy fuel oil, marine fuel, mention may be made of methylcyclopentadienyl manganese tricarbonyl (MMT);
  • MMT methylcyclopentadienyl manganese tricarbonyl
  • ⁇ anti-oxidant additives such as aliphatic, aromatic amines, hindered phenols, such as BHT, BHQ;
  • ⁇ anti-foam additives in particular (but not limited to) chosen, for example, from polysiloxanes, oxyalkylated polysiloxanes, and fatty acid amides derived from vegetable or animal oils; examples of such additives are given in EP 861 182, EP 663 000, EP 736 590;
  • ⁇ detergent or dispersant additives in particular (but not limited to) selected from the group consisting of amines, succinimides, succinamides, alkenylsuccinimides, polyalkylamines, polyalkyl polyamines, polyetheramines, Mannich bases; examples of such additives are given in EP 938,535;
  • ⁇ anti-corrosion additives such as ammonium salts of carboxylic acids
  • ⁇ chelating agents and / or metal sequestering agents such as triazoles, disalicylidene alkylene diamines, and especially N, N 'bis (salicylidene) 1, 3-propane diamine;
  • ⁇ cold-holding additives and especially cloud-point-improving additives in particular (but not limited to) selected from the group consisting of long-chain olefin terpolymers / (meth) acrylic ester / maleimide, and ester polymers of fumaric / maleic acids.
  • additives examples include EP 71 513, EP 100 248, FR 2 528 051, FR 2 528 423, EP 1 12 195, EP 1 727 58, EP 271 385, EP 291367; anti-sedimentation additives and / or paraffin dispersants in particular (but not exclusively) selected from the group consisting of polyamine-amidated (meth) acrylic acid / alkyl (meth) acrylate copolymers, alkenylsuccinimides derived from polyamines phthalamic acid and double chain fatty amine derivatives; alkyl phenol / aldehyde resins; examples of such additives are given in EP 261,959, EP 593,331, EP 674,689, EP 327,423, EP 512,889, EP 832,172; US 2005/0223631; US 5,998,530; WO 93/14178; polyfunctional cold operability additives chosen in particular from the group consisting of olefin and alkeny
  • CFI additives such as EVA and / or EVP copolymers
  • ⁇ metal passivators such as triazoles, alkylated benzotriazoles
  • ⁇ acid neutralizers such as cyclic alkyl amines
  • markers in particular markers imposed by the regulations, for example dyes specific to each type of fuel or fuel.
  • lubricant additives especially (but not exclusively) selected from the group consisting of fatty acids and their ester or amide derivatives, in particular glycerol monooleate and mono- and polycyclic carboxylic acid derivatives; examples of such additives are given in the following documents: EP 680 506, EP 860 494, WO 98/04656, EP 915 944, FR 2 772 783, FR 2 772 784.
  • the possible other additives are generally incorporated in amounts ranging from 50 to 1, 500 ppm m / m, that is to say, mass ppm based on the total weight of the additive fuel.
  • additives may be incorporated into the fuels according to any known method; for example, the additive or the mixture of additives may be incorporated in the form of a concentrate comprising the additive (s) and a solvent, compatible with the (bio) diesel fuel, the additive being dispersed or dissolved in the solvent.
  • concentrates generally contain from 20 to 95% by weight of solvents.
  • Solvents are organic solvents which generally contain hydrocarbon solvents.
  • hydrocarbon solvents such as naphtha, kerosene, heating oil; aliphatic and / or aromatic hydrocarbons such as hexane, pentane, decane, pentadecane, toluene, xylene, and / or ethylbenzene and alkoxyalkanols such as 2-butoxyethanol and / or or mixtures thereof.
  • hydrocarbons such as commercial solvent mixtures such as Solvarex 10, Solvarex LN, Solvent Naphtha, Shellsol AB, Shellsol D, Solvesso 150, Solvesso 150 ND, Solvesso 200, Exxsol, ISOPAR and optionally co-solvents or compatibilizers, such as 2-ethylhexanol, decanol, isodecanol and / or isotridecanol.
  • the invention relates to the use of at least one additive composition according to the invention incorporated in a fuel of the (bio) diesel fuel type of higher quality to improve the resistance to lacquering, ie fouling on the head and / or on the body of the needles of the fuel injection system but also throughout the system of control of the lifting of needles (valves) of the system injection, especially for engines equipped with high-pressure direct injection systems fitted to the majority of vehicles complying with the Euro 3 and most recent regulations.
  • the object of the present invention also relates to the use of a (bio) diesel fuel composition as described above, to limit the deposit of soap and / or varnish in the parts.
  • internal engine injection systems using said composition preferably direct injection engines, in particular high pressure direct injection engines.
  • the object of the present invention is also a method for limiting the deposition of soap and / or varnish in internal parts of the injection system of a motor for (diesel) fuels (Diesel engine) having a sulfur content less than or equal to 500 ppm by mass, said process comprising the combustion in said engine of a (bio) diesel fuel composition as defined above.
  • the method applies to direct injection engines, in particular high pressure direct injection engines.
  • the method according to the invention avoids and prevents the formation of soap deposits and / or varnish in the internal parts of the engine injection system, for a "keep-clean" action for maintaining the cleanliness of said engine.
  • the method according to the present invention eliminates the deposit of soap and / or varnish in the internal parts of the engine injection system, for a curative "clean-up" action of cleaning the engine.
  • the engine used is a four-cylinder, 16-valve diesel engine with high-pressure Common Rail injection, with a displacement of 1,500 cm 3 and a power of 80 hp: the fuel injection pressure regulation is carried out in the high pressure part of the pump.
  • the power point at 4,000 rpm is used for a period of 40 hours; the position of the injector in the chamber is lowered by 1 mm from its nominal position, which on the one hand promotes the release of thermal energy from combustion, and on the other hand brings the injector closer to the chamber of combustion.
  • the injected fuel flow rate is adjusted to obtain an exhaust temperature of 750 ° C at the start of the test.
  • the injection advance has been increased by 1.5 ° crankshaft compared to the nominal setting (we go from + 12.5 ° to + 14 ° crankshaft) always in order to increase the thermal stresses experienced by the nozzle of the injector.
  • the injection pressure has been increased by 10 MPa compared to the nominal pressure (that is to say from 140 MPa to 150 MPa) and the temperature is regulated. at 65 ° C at the high pressure pump inlet.
  • the technology used for the injectors requires a high fuel return, which promotes fuel degradation since it can be subjected to several cycles in the pump and the high pressure chamber before being injected into the combustion chamber.
  • Lot 1 2 injectors having seen 20h of high quality fuel known for its tendency to generate lacquering.
  • Lot 2 2 injectors having seen 20h of high quality fuel known for its tendency to generate lacquering + 20h of product to be evaluated.
  • the characteristic temperatures of the various fluids make it possible to check the validity of the tests.
  • the fuel is regulated at 65 ° C at the pump inlet
  • the coolant is regulated at 90 ° C at the motor output.
  • the flue gas values make it possible to control the ignition timing at the beginning of the test (target value of 3FSN) and to ensure that it is repeatable from one test to another.
  • the injectors are disassembled at the end of the test to visualize and dimension the deposits formed along the needles.
  • the procedure for quoting the selected hands is as follows:
  • the scale of the notes varies from -2.5 (case of a large deposit) to 10 (case of a new needle without any deposit).
  • the final grade is a weighted average of the notes on all the rated surfaces of the needle, ie the cone portion and the body or cylinder part of the needle.
  • the zone of the cylinder (following directly the conical part) represents 68% of the overall quotation of the needle and the zone of the cone represents 32% of the overall quotation of the needle; To facilitate the quotation, each of these two zones is divided into 4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Combustion & Propulsion (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Lubricants (AREA)

Abstract

La présente invention concerne de nouveaux additifs anti-lacquering pour carburants de type gazole ou biogazole ayant une teneur en soufre inférieure ou égale à 500 ppm massiques. Ces nouveaux additifs améliorent également la résistance au lacquering des carburants de type gazole ou biogazole ayant une teneur en soufre inférieure ou égale à 500 ppm massiques de qualité supérieure.

Description

ADDITIFS AMELIORANT LA RESISTANCE A L'USURE ET AU LACQU ERING DE CARBURANTS DE TYPE GAZOLE OU BIOGAZOLE
La présente invention a pour objet des additifs permettant de limiter la formation de savons et/ou de vernis dans les parties internes des systèmes d'injection des moteurs pour carburants de type (bio)gazole, c'est à dire notamment d'augmenter leur résistance au lacquering.
Le gazole ou Diesel (en anglais gas-oil, ou encore gasoil) est un carburant pour moteur Diesel (moteur à compression) comprenant des distillats moyens de température d'ébullition comprise entre 100 et 500 °C.
Un gazole peut être constitué par un mélange de distillats moyens d'origine fossile et de biocarburants.
Par biocarburant, on entend des carburants obtenus à partir de matière organique (biomasse), par opposition aux carburants issus de ressources fossiles. On peut citer, à titre d'exemple de biocarburants connus, les biogazoles (ou encore appelés biodiesel) et les alcools.
Le biodiesel ou biogazole est une alternative au carburant pour moteur Diesel classique. Ce biocarburant est obtenu à partir d'huile végétale ou animale (y compris huiles de cuisson usagées) transformée par un procédé chimique appelé transestérification faisant réagir cette huile avec un alcool afin d'obtenir des esters d'acide gras. Avec le méthanol et l'éthanol on obtient respectivement des esters méthyliques d'acides gras (EMAG) et des esters éthyliques d'acides gras (EEAG).
Les mélanges de distillats moyens d'origine fossile et de biogazole sont désignés pas la lettre "B" suivie par un nombre indiquant le pourcentage de biogazole contenu dans le gazole. Ainsi, un B99 contient 99% de biogazole et 1 % de distillats moyens d'origine fossile, le B20, 20% de biogazole et 80% de distillats moyens d'origine fossile etc..
On distingue donc les carburants gazoles de type B0 qui ne contiennent pas de composés oxygénés des carburants biogazoles de type Bx qui contiennent x% (v/v) d'esters d'huiles végétales ou d'acides gras, le plus souvent esters méthyliques (EMHV ou EMAG). Lorsque le biogazole est utilisé seul dans les moteurs, on désigne le carburant par le terme B100.
Dans la suite de la présente demande, nous utiliserons le terme (bio)gazole pour identifier les carburants de type B0 ou Bx pour moteur Diesel (moteur à compression).
La teneur en soufre des carburants de type (bio)gazole a fait l'objet d'une réduction très importante dans de nombreux pays pour des raisons d'environnement, notamment pour réduire les émissions de SO2. Par exemple, en Europe, la teneur maximale en soufre des carburants de type gazole routier est actuellement de 10 ppm massiques.
Les procédés de préparation des bases carburants gazole ou diesel à basse teneur en soufre, par exemple les procédés d'hydrotraitement outre le fait de réduire la teneur en soufre, réduisent également la teneur de ces bases carburants gazole pour moteur Diesel en composés aromatiques polycycliques et en composés polaires. Or, il est connu que les carburants gazole ou Diesel à basse (inférieure à 100 ppm) voire très basse teneur en soufre possèdent une aptitude réduite à lubrifier le système d'injection du moteur, ce qui fait que par exemple la pompe d'injection de carburant du moteur peut tomber en panne de manière précoce pendant la durée de vie du moteur, la panne se produisant par exemple dans des systèmes d'injection de carburant sous haute pression, tels que des distributeurs rotatifs sous haute pression, des pompes en ligne, des pompes combinées, avec des injecteurs.
Pour compenser la perte de composés assurant le caractère lubrifiant de ces carburants, de nombreux additifs de lubrifiance et/ou anti-usure et/ou modificateur de frottement ont été introduits dans les carburants commercialisés. Leurs caractéristiques sont largement décrites dans les brevets EP 915944, EP 839174 et EP680506.
On sait que les carburants Diesel commercialisés doivent respecter des spécifications nationales ou supranationales (par exemple la norme EN 590 pour les carburants diesel dans l'UE). Pour les carburants commerciaux, il n'existe aucune obligation légale concernant l'incorporation d'additifs dits de performance (composés chimiques incorporés dans les carburants pour en améliorer les propriétés, par exemple des additifs détergents, des additifs réducteurs de frottement, des additifs anticorrosion, des additifs anti-mousse, des additifs améliorant la tenue à froid) ; les compagnies pétrolières et les distributeurs sont libres d'ajouter ou non des additifs à leurs carburants. Du point de vue commercial, dans le domaine de la distribution des carburants, on distingue les carburants « standard ou d'entrée de gamme », pas ou peu additivés, des carburants de qualité supérieure dans lesquels sont incorporés un ou plusieurs additifs pour en améliorer les performances (au-delà des performances réglementaires).
Au sens de la présente invention, on entend par carburant de qualité supérieure de type gazole ou biogazole tout carburant gazole ou biogazole additivé avec au moins 50 ppm massiques d'additifs réducteur(s) de dépôts et/ou détergents et/ou dispersant(s). FIGURES
- la figure 1 est une photographie d'un injecteur de moteur Diesel à injection directe haute pression
- la figure 2 est une photographie d'une aiguille d'un injecteur de moteur Diesel à injection directe, encrassée par dépôt de type savon et/ou vernis (en anglais « lacquering »)
- la figure 3 est une photographie d'une buse d'un injecteur de moteur Diesel à injection indirecte, encrassée par dépôt de type cokage (en anglais « coking »)
- la figure 4 est une photographie d'une aiguille d'un injecteur de moteur Diesel à injection directe, encrassée par dépôt de type savon et/ou vernis (en anglais « lacquering »)
Comme représenté aux figures 1 et 2, on a constaté que lors de l'utilisation de certains carburants (bio)gazole de qualité supérieure, des dépôts 1 apparaissaient sur les aiguilles 2 d'injecteur 3 des systèmes d'injection de moteurs Diesel, notamment ceux de type Euro 3 à Euro 6. Ainsi, l'utilisation d'additifs antiusure et/ ou modificateur de frottement et/ ou anti-dépôts de type cokage ont parfois présenté une résistance au lacquering non satisfaisante, voire très insuffisante. Ceci se traduit par la formation de dépôt 1 généralement couvert par le terme anglais de lacquering qui sera utilisé dans tout ce qui suit ou sous l'acronyme anglais I DID (Internai Diesel Injector Deposits).
Au sens de la présente invention, le phénomène de lacquering ne concerne pas les dépôts qui sont présents à l'extérieur du système d'injection 5 ou 5' (figure 1 et 3) et qui sont liés à du cokage (« coking » en anglais) à l'origine de l'encrassement et du bouchage partiel ou total des buses d'injection 4 ou 4' (« nozzle coking » ou « fouling » en anglais).
Le lacquering et le cokage sont deux phénomènes bien distincts tant par :
- les causes de ces dépôts,
- les conditions d'apparition de ces dépôts et,
- le lieu où se produisent ces dépôts.
Le cokage est un phénomène qui apparaît uniquement en aval d'un système d'injection Diesel.
Comme représenté à la figure 3, les dépôts 5' formés se caractérisent en ce qu'ils sont constitués par pyrolyse des hydrocarbures entrant dans la chambre à combustion et ont l'aspect de dépôts charbonneux. Dans le cas des motorisations Diesel à injection directe haute pression, il a été constaté que la tendance au cokage est nettement moins marquée. Ce cokage est simulé classiquement par l'essai moteur standard CEC F098-08 DW10B, en particulier lorsque le carburant testé est contaminé par du zinc métallique.
Dans le cas des moteurs à injection indirecte, l'injection du carburant ne se fait pas directement dans la chambre de combustion comme pour les moteurs à injection directe. Comme décrit par exemple dans le document US4604102, il existe une pré-chambre avant la chambre de combustion dans laquelle s'effectue l'injection du carburant. La pression et la température dans une pré-chambre sont inférieures à celles d'une chambre à combustion de moteurs à injection directe.
Dans ces conditions, la pyrolyse du carburant produit des particules charbonneuses qui se déposent à la surface des buses 4' des injecteurs (« throttling diesel nozzle en anglais ») et bouchent les orifices 6 des buses 4' (figure 3). Seules les surfaces de la buse 4' exposées aux gaz de combustion présentent un risque de dépôt de charbon (cokage). En termes de performance, le phénomène de coking induit une perte de puissance moteur.
Le lacquering est un phénomène qui apparaît uniquement dans les moteurs Diesel à injection directe et ne se produit qu'en amont de la chambre à combustion i.e. dans le système d'injection.
Comme représenté aux figures 1 et 2, les injecteurs 3 de moteurs Diesel à injection directe comprennent une aiguille 2 dont la levée permet de contrôler précisément la quantité de carburant injectée à haute pression directement dans la chambre à combustion.
Le lacquering induit l'apparition de dépôts 1 qui apparaissent spécifiquement au niveau des aiguilles 2 des injecteurs 3 (figures 1 et 2). Le phénomène de lacquering est lié à la formation de savon et/ou de vernis dans les parties internes des systèmes d'injection des moteurs pour carburants de type (bio) gazole. Le dépôt lacquering 1 peut être localisé sur l'extrémité 4 des aiguilles 2 d'injecteurs 3, à la fois sur la tête et sur le corps des aiguilles 2 du système d'injection du carburant mais aussi dans tout le système de commande de la levée d'aiguilles (clapets non représentés) du système d'injection. Ce phénomène est particulièrement notable pour les moteurs utilisant des carburants (bio)gazole de qualité supérieure. Lorsque ces dépôts sont présents en quantité importante, la mobilité de l'aiguille 2 de l'injecteur 3 encrassée par ces dépôts 1 est compromise. Ce phénomène de lacquering peut, à terme, générer une perte de débit de carburant injecté et donc une perte de puissance du moteur.
En outre, contrairement au cokage, le lacquering peut également provoquer une augmentation du bruit du moteur et parfois des problèmes de démarrage. En effet, les parties des aiguilles 2 encrassées par les dépôts de savon et/ou de vernis 1 peuvent coller aux parois internes de l'injecteur 3. Les aiguilles 2 sont alors bloquées et le carburant ne passe plus.
On distingue en général 2 types de dépôts de type lacquering :
1 . des dépôts plutôt blanchâtres et pulvérulents ; par analyse, on constate que ces dépôts consistent essentiellement en des savons de sodium
(carboxylates de sodium, par exemple) et/ou de calcium (dépôts de type 1 ) ;
2. des dépôts organiques assimilables à des vernis colorés localisés sur le corps de l'aiguille (dépôts de type 2) Pour ce qui concerne les dépôts de type 1 , les sources de sodium dans les carburants biogazole de type Bx peuvent être multiples :
• les catalyseurs de transestérification des huiles végétales pour la production des esters de type esters (m)éthyliques d'acides gras tel que le méthanoate de sodium ;
• le sodium peut aussi provenir des inhibiteurs de corrosion utilisés pour le transport de produits pétroliers dans certains pipes, tel que le nitrite de sodium ;
• enfin des pollutions exogènes accidentelles, via l'eau ou l'air par exemple, peuvent contribuer à introduire du sodium dans les carburants (le sodium étant un élément très répandu).
Les sources possibles d'acides dans les carburants de type Bx peuvent être multiples, par exemple :
o les acides résiduels des biocarburants (voir la norme EN14214 qui fixe un taux maximal d'acides autorisé)
o les inhibiteurs de corrosion utilisés pour le transport de produits pétroliers dans certains pipes tels que le DDSA (anhydride dodécénylsuccinique) ou le HDSA (anhydride hexadécénylsuccinique) ou certains de leurs dérivés fonctionnels tels que les acides.
Pour ce qui concerne les dépôts organiques de type 2, certaines publications précisent qu'ils peuvent notamment provenir de réactions entre des réducteurs de dépôts/dispersants utilisés pour prévenir le cokage (par exemple les détergents de type PIBSI dérivés des polyamines) et les acides (qui seraient présents entre autres en tant qu'impuretés des esters d'acides gras du biogazole).
Dans la publication SAE 880493, Reduced Injection Needle Mobility Caused by Lacquer Deposits from Sunflower 0/7, les auteurs M Ziejewski et HJ Goettler décrivent le phénomène de lacquering et ses conséquences néfastes pour le fonctionnement de moteurs fonctionnant avec des huiles de tournesol comme carburant. Dans la publication SAE 2008-01 -0926, Investigation into the Formation and Prévention of Internai Diesel Injector Deposits, les auteurs J Ullmann, M Geduldig, H Stutzenberger (Robert Bosch GmbH) et R Caprotti, G Balfour (Infineum) décrivent aussi les réactions entre les acides et les réducteurs de dépôts/dispersants pour expliquer les dépôts de type 2.
Par ailleurs, dans la publication SAE International, 2010-01 -2242, Internai Injector Deposits in High-Pressure Common Rail Diesel Engines, les auteurs S. Schwab, J. Bennett, S. Dell, JGalante-Fox, AKulinowski et Keith T. Miller expliquent que les parties internes des injecteurs sont généralement recouvertes par un dépôt légèrement coloré et visible à l'œil nu. Leurs analyses ont permis de déterminer qu'il s'agissait majoritairement de sels de sodium d'acides alkényl- (hexadécényl- ou dodécényl-)-succiniques ; le sodium provenant de desséchants, d'eau caustique utilisée en raffinerie, d'eau de fonds de bacs ou d'eau de mer, et les diacides succiniques étant utilisés comme inhibiteurs de corrosion ou présents dans les paquets multifonctionnels d'additifs. Une fois formés, ces sels sont insolubles dans les carburants Diesel à basse teneur en soufre, et comme ils existent sous forme de fines particules, ils passent au travers des filtres gazole et viennent se déposer à l'intérieur des injecteurs. Dans cette publication, le développement d'un essai moteur est décrit et permet de reproduire les dépôts. La publication insiste sur le fait que seuls les diacides génèrent des dépôts, contrairement aux monoacides carboxyliques ou aux esters neutres des acides organiques.
Dans la publication SAE International, 2010-01 -2250, Deposit Control in Modem Diesel Fuel Injection System, les auteurs, R. Caprotti, N. Bhatti and G. Balfour, étudient aussi le même type de dépôts internes dans les injecteurs et affirment que l'apparition de dépôts n'est pas liée spécifiquement à un type de carburant (B0 ou contenant des EMAG(Bx)) ni à un type de véhicules (véhicules légers ou poids lourds) équipés de motorisations modernes (common rail). Ils montrent la performance d'un nouveau réducteur de dépôts/dispersant, efficace sur tous types de dépôts (coking et lacquering). La présente invention propose des additifs aux effets préventifs et curatifs, permettant de limiter le dépôt de savon et/ou de vernis dans les parties internes des systèmes d'injection, c'est-à-dire d'améliorer la résistance au phénomène de lacquering des moteurs utilisant des carburants de type (bio) gazole et/ou (bio) Diesel, de qualité supérieure, dont le taux de soufre est inférieur ou égal à 500ppm massique, et qui comprennent au moins 50 ppm massiques de réducteur(s) de dépôts et/ou détergents et/ou dispersant(s). Ces additifs empêchent donc que ces dépôts se forment (préventifs), et permettent quand ils sont formés de les retirer en rendant les injecteurs plus propres (curatifs).
Ces problèmes de résistance au lacquering de carburants de type (bio)gazole sont résolus par l'utilisation d'au moins un additif qui comprend au moins 50 % en masse d'ester(s) partiels de polyols, lesdits esters de polyols comprenant x motifs esters, y motifs hydroxylés et z motifs éther, x, y et z étant des nombres entiers tels que x varie de 1 à 10, y varie de 1 à 10, et z varie de 0 à 6, de préférence x varie de 1 à 10, y varie de 3 à 10, et z varie de 0 à 6.
La synthèse d'esters partiels de polyols est connue en soi ; ils peuvent par exemple être préparés par estérification d'acide(s) gras et de polyols linéaires et/ou ramifiés comprenant éventuellement des (hétéro)cycles de 5 à 6 atomes supportant des fonctions hydroxyles. Le et/ou les produit(s) issu(s) de cette réaction d'estérification comprend une répartition en motifs esters, motifs hydroxylés et motifs éthers tel que x varie de 1 à 4, y varie de 1 à 7 et z varie de 1 à 3. Généralement ce type de synthèse conduit à un mélange de mono-, di- , tri- et éventuellement de tétra- esters ainsi que de faibles quantités d'acide(s) gras et de polyols qui n'ont pas réagi.
Selon un mode de réalisation, les esters de polyols sont obtenus par estérification d'acide(s) gras et de polyols linéaires et/ou ramifiés comprenant éventuellement des hétérocycles de 4 à 5 atomes de carbone et un atome d'oxygène, supportant des fonctions hydroxyles.
Dans le cadre de la présente invention, on choisira les polyols parmi les polyols linéaires comprenant plus de trois fonctions hydroxyles et les polyols comprenant au moins un (hétéro)cycle de 5 ou 6 atomes, de préférence des hétérocycles de 4 à 5 atomes de carbone et un atome d'oxygène, éventuellement substitué par des groupements hydroxyles, ces polyols pouvant être pris seuls ou en mélange.
Dans la suite de la présente discussion, ces polyols seront référencés R dans les formulations citées ci-après.
Parmi les polyols R, les polyols à chaîne hydrocarbonée linéaire ou ramifiées comprennent au moins quatre motifs représentés dans la formule (I) ci-après :
H - (OCH2)p-(CHOH)q-(CH2OH) (I)
Avec p et q des nombres entiers, p étant égal ou supérieur à 0, q est supérieur à 2, ces nombres ne pouvant excéder 10.
Parmi les polyols R, les polyols à chaîne hydrocarbonée linéaire ou ramifiées comprennent au moins quatre motifs représentés dans la formule (I I) ci- après :
H-(OCH2)P-(CR1 R2)q-(CH2OH) (I I)
Avec p et q des nombres entiers, p étant égal ou supérieur 0, q est supérieur à 1 , ces nombres ne pouvant excéder 5, R1 et R2 sont identiques ou différents et représentent soit l'atome d'hydrogène, soit un groupement -CH3 ou - C2H5, soit un groupement -CH2-OH.
Parmi les polyols R, certains comprennent au moins un (hétéro)cycle de 4 ou 5 atomes de carbone et d'un atome d'oxygène, éventuellement substitué par des groupements hydroxyles et correspondent à la formule générale (I II) ci-après :
O
/ \
HO-CH2-(CHOH)s-[HC-(CHOH),] (I II) avec s et t des nombres entiers, avec quand s égal 1 , t égal à 3 et quand s est zéro, t est égal à 4.
Parmi les polyols R, certains comprennent au moins deux hétérocycles de 4 ou 5 atomes de carbone et d'un atome d'oxygène, reliés par la formation d'une liaison acétal entre une fonction hydroxyle de chaque cycle, lesquels étant éventuellement substitué par des groupements hydroxyles. De préférence, les polyols sont choisis dans le groupe comprenant l'érythritol, le xylitol, le D-arabitol, le L-arabitol, le ribitol, le sorbitol, le malitol, risomalitol, le lactitol, le sorbitan, le volemitol, le mannitol, le pentaérythritol, le 2- hydroxyméthyl-1 ,3-propanediol, le 1 , 1 , 1 - tri(hydroxyméthyl)éthane, le triméthylolpropane et les glucides comme le sucrose, le fructose, le maltose, le glucose et le saccharose, de préférence le sorbitan.
Selon une variante préférée, les esters partiels de polyols sont choisis parmi les esters partiels de sorbitan, de préférence le monooléate de sorbitan, pris seuls ou en mélange.
Les acides gras dont sont issus les esters selon l'invention peuvent être choisis parmi les acides gras dont la longueur de chaînes varie de 10 à 24 atomes de carbone et/ou au moins un diacide substitué par au moins un polymère, par exemple de poly(iso)butène comprenant de 8 à 100 atomes de carbone. Ils sont de préférence choisis pour les mono acides parmi les acides stéarique, isostéarique, linolénique, oléique, linoléique, béhénique, arachidonique, ricinoléique, palmitique, myristique, laurique, caprique, et leurs mélanges et pour les diacides parmi les acides alkyl- ou alkenylsuccinique, alkyl-ou alkénylmaléique.
Les acides gras peuvent provenir de la trans-estérification ou de la saponification d'huiles végétales et/ou de graisses animales. Les huiles végétales et/ou les graisses animales préférées seront choisies en fonction de leur concentration en acide oléique. On pourra se reporter par exemple au Tableau 6.21 du chapitre 6 de l'ouvrage Carburants & Moteurs de J.C. Guibet et E. Faure, édition 2007 dans lequel sont indiquées les compositions de plusieurs huiles végétales et graisses animales.
Les acides gras peuvent également provenir d'acides gras dérivés de tall oil (Tall Oil Fatty Acids) qui comprennent une quantité majoritaire d'acides gras, typiquement supérieure ou égale à 90 % massiques ainsi que des acides résiniques et d'insaponifiables en quantité minoritaire, i-e en quantités en général inférieures à 10 %. Des additifs préférés selon l'invention susceptibles d'améliorer la résistance au lacquering de carburants (bio)diesel de qualité supérieure comprennent des esters partiels de sorbitan.
D'autres additifs préférés comprennent au moins 50 % en masse de mono- et/ou de diester(s) d'acide isobutylènesuccinique et de polyols selon l'une des formules I à I II.
D'autres additifs préférés comprennent au moins 50 % en masse de mono- et/ou de diester(s) d'acides monocarboxyliques de 12 à 24 atomes de carbone et de polyols selon l'une des formules I à III
L'invention concerne également un paquet d'additifs pour carburants (bio) gazole contenant au moins un additif de résistance au lacquering tel que défini précédemment et au moins un ou plusieurs autres additifs fonctionnels, tels que les réducteurs de dépôt/dispersants, les anti-oxydants, les améliorants de combustion, les inhibiteurs de corrosion, les additifs de tenue à froid (améliorant le point de trouble, la vitesse de sédimentation, la filtrabilité et/ou l'écoulement à froid), les colorants, les désémulsionnants, les désactivateurs de métaux, les agents anti-mousse, les agents améliorant l'indice de cétane, les agents compatibilisants, des additifs de lubrifiance, des agents anti-usure et/ou des modificateurs de frottement, et un ou plusieurs solvant ou co-solvants.
L'utilisation des additifs selon l'invention permet d'améliorer la résistance au lacquering au niveau des injecteurs de carburant, donc limite la formation ( le dépôt) de savon et/ou de vernis en présence des additifs tels que les réducteurs de dépôt et/ou détergent et/ou dispersants. L'utilisation de ces additifs dans des carburants (bio)gazole permet de réduire la vitesse de bouchage et de détérioration du système d'admission ou d'injection du carburant, notamment sur la pompe d'injection.
Les carburants (bio)gazole selon l'invention (carburants liquides pour moteurs à compression) peuvent comprendre des distillats moyens de température d'ébullition comprise entre 100 et 500 °C ; leur température de cristallisation commençante TCC est souvent supérieure ou égale à -20 °C, en général comprise entre -15°C et +10 °C. Ces distillats sont des mélanges de bases pouvant être choisies par exemple parmi les distillais obtenus par distillation directe de pétrole ou d'hydrocarbures bruts, les distillais sous vide, les distillais hydrotraités, des distillais issus du craquage catalytique et/ou de l'hydrocraquage de distillais sous vide, les distillats résultant de procédés de conversion type ARDS (par désulfuration de résidu atmosphérique) et/ou de viscoréduction.
Les carburants (bio)gazole peuvent également contenir des coupes légères comme les essences issues de la distillation, des unités de craquage catalytique ou thermique, des unités d'alkylation d'isomérisation, de désulfuration, des unités de vapocraquage.
En outre, les carburants (bio)gazole peuvent contenir de nouvelles sources de distillats, parmi lesquelles on peut notamment citer :
- les coupes les plus lourdes issues des procédés de craquage et de viscoréduction concentrées en paraffines lourdes, comprenant plus de 18 atomes de carbone,
- les distillats synthétiques issus de la transformation du gaz tels que ceux issus du procédé Fischer Tropsch,
- les distillats synthétiques résultant du traitement de la biomasse d'origine végétale et/ou animale, comme notamment le NexBTL, pris seuls ou en mélange,
- les gazoles de coker,
- les alcools, tels que méthanol, éthanol, butanols, les éthers, (MTBE,
ETBE, ...) en général utilisés en mélange avec les carburants essence, mais parfois avec des carburants plus lourds de type gazole,
- les huiles végétales et/ou animales et/ou leurs esters, tels que les Esters Méthyliques ou Ethyliques d'Huiles Végétales ou d'Acides Gras (EMHV, EEHV, EMAG, EEAG) ;
- les huiles végétales et/ou animales hydrotraitées et/ou hydrocraquées et/ou hydrodéoxygénées (H DO).
Ces nouvelles bases carburants et combustibles peuvent être utilisées seules ou en mélange avec des distillats moyens pétroliers classiques comme base(s) carburant ; elles comprennent en général de longues chaînes paraffiniques de 10 atomes de carbone et plus, préférentiellement de Cu à C3o- Dans le cadre de la présente invention, les carburants (bio)gazole ont une teneur en soufre inférieure ou égale à 500 ppm massiques, avantageusement inférieure ou égale à 100 ppm massiques, et pouvant s'abaisser à une teneur inférieure ou égale à 50 ppm massique, voire même inférieure ou égale à 10 ppm massiques (c'est le cas des carburants diesel pour véhicules actuels dont le taux de soufre selon la norme européenne EN 590 actuellement en vigueur doit être inférieur ou égal à 10 ppm massiques).
Les additifs de résistance au lacquering, c'est-à-dire à la formation de savon et/ou de vernis dans les parties internes des systèmes d'injection des moteurs pour carburants (bio)gazole selon l'invention peuvent être incorporés aux carburants jusqu'à une valeur allant jusqu'à 10 % massiques. Avantageusement la concentration en esters partiels selon l'invention dans le carburant final sera comprise entre 20 et 1000 ppm massiques, et de préférence entre 30 et 200 ppm massiques m/m, c'est-à dire ppm massiques rapportés à la masse totale du carburant additivé.
Selon un mode de réalisation, les compositions de (bio)gazole de qualité supérieure, comprennent au moins 20 ppm massique d'au moins un additif selon l'invention, et éventuellement au moins un et/ou plusieurs autres additifs fonctionnels. De préférence, la concentration en additif selon l'invention dans la composition, c'est-à-dire la concentration en ester partiels peut varier de 20 à 1000ppm massique, et plus particulièrement de 30 à 200ppm massique m/m.
Parmi les autres additifs fonctionnels, les additifs de résistance au lacquering de la présente invention peuvent être utilisés seuls ou en mélange avec des réducteurs de dépôt et/ou détergents et/ou dispersants, des anti-oxydants, des améliorants de combustion, des inhibiteurs de corrosion, les additifs de tenue à froid (améliorant le point de trouble, la vitesse de sédimentation, la filtrabilité et/ou l'écoulement à froid), des colorants, des désémulsionnants, des désactivateurs de métaux, des agents anti-mousse, des agents améliorant l'indice de cétane, et des additifs anti-usure, de lubrifiance et/ou modificateurs de frottement, des co-solvants, des agents compatibilisants, ... De manière non exhaustive, le ou les autres additifs fonctionnels peuvent être choisis parmi :
❖ les additifs améliorant de combustion ; pour les carburants de type gazole, on peut citer les additifs procétane, notamment (mais non limitativement) choisis parmi les nitrates d'alkyle, de préférence le nitrate de 2-éthyl hexyle, les peroxydes d'aryle, de préférence le peroxyde de benzyle, et les peroxydes d'alkyle, de préférence le peroxyde de di ter-butyle; pour les carburants de type essence, on peut citer les additifs améliorant l'indice d'octane; pour les combustibles tels que fioul domestique, fioul lourd, fioul marine, on peut citer le méthylcyclopentadiényl manganèse tricarbonyle (MMT) ;
❖ les additifs anti-oxydants, tels que des aminés aliphatiques, aromatiques, les phénols encombrés, tels que BHT, BHQ ;
❖ les désémulsionnants ou désémulsifiants ;
❖ les additifs anti-statiques ou améliorants de conductivité ;
❖ les colorants ;
❖ les additifs anti-mousse, notamment (mais non limitativement) choisis par exemple parmi les polysiloxanes, les polysiloxanes oxyalkylés, et les amides d'acides gras issus d'huiles végétales ou animales; des exemples de tels additifs sont donnés dans EP 861 182, EP 663 000, EP 736 590 ;
❖ les additifs détergents ou dispersants, notamment (mais non limitativement) choisis dans le groupe constitué par les aminés, les succinimides, les succinamides, les alkénylsuccinimides, les polyalkylamines, les polyalkyles polyamines, les polyétheramines, les bases de Mannich ; des exemples de tels additifs sont donnés dans EP 938 535 ;
❖ les additifs anti-corrosion tels que les sels d'ammonium d'acides carboxyliques ;
❖ les agents chélatants et/ou les agents séquestrants de métaux, tels que les triazoles, les disalicylidène alkylène diamines, et notamment le N, N' bis (salicylidène) 1 ,3-propane diamine ; ❖ les additifs de tenue à froid et notamment les additifs améliorant le point de trouble, notamment (mais non limitativement) choisis dans le groupe constitué par les terpolymères oléfine à chaîne longue/ester (méth)acrylique/maléimide, et les polymères d'esters d'acides fumarique /maléique. Des exemples de tels additifs sont donnés dans EP 71 513, EP 100 248, FR 2 528 051 , FR 2 528 423, EP1 12 195, EP 1 727 58, EP 271 385, EP 291367 ; les additifs d'anti-sédimentation et/ou dispersants de paraffines notamment (mais non limitativement) choisis dans le groupe constitué par les copolymères acide (méth)acrylique/(méth)acrylate d'alkyle amidifié par une polyamine, les alkénylsuccinimides dérivés des polyamines, les dérivés d'acide phtalamique et d'amine grasse à double chaîne; des résines alkyl phénol/aldéhyde ; des exemples de tels additifs sont donnés dans EP 261 959, EP 593 331 , EP 674 689, EP 327 423, EP 512 889, EP 832 172 ; US 2005/0223631 ; US 5 998 530 ; WO 93/14178; les additifs polyfonctionnels d'opérabilité à froid choisis notamment dans le groupe constitué par les polymères à base d'oléfine et de nitrate d'alkényle tels que décrits dans EP 573 490 ;
❖ d'autres additifs améliorant la tenue à froid et la filtrabilité (CFI), tels que les copolymères EVA et/ou EVP ;
❖ les passivateurs de métaux, tels que les triazoles, les benzotriazoles alkylés ;
❖ les neutralisateurs d'acidité tels que les alkylamines cycliques ;
❖ les marqueurs, notamment les marqueurs imposés par la réglementation, par exemple les colorants spécifiques à chaque type de carburant ou combustible.
❖ les agents parfumants ou masquants d'odeurs, tels que ceux décrits dans EP 1 591 514 ;
❖ d'autres additifs de lubrifiance, agents anti-usure et/ou modificateurs de frottement que ceux décrits précédemment, notamment (mais non limitativement) choisis dans le groupe constitué par les acides gras et leurs dérivés ester ou amide, notamment le monooléate de glycérol, et les dérivés d'acides carboxyliques mono- et polycycliques; des exemples de tels additifs sont donnés dans les documents suivants: EP 680 506, EP 860 494, WO 98/04656, EP 915 944, FR2 772 783, FR 2 772 784.
Les éventuels autres additifs sont en général incorporés en quantités variant de 50 à 1 .500 ppm m/m, c'est-à dire ppm massiques rapportés à la masse totale du carburant additivé.
Ces additifs peuvent être incorporés aux carburants selon tout procédé connu ; à titre d'exemple, l'additif ou le mélange d'additifs peut être incorporé sous forme de concentré comprenant le(s) additif(s) et un solvant, compatible avec le carburant (bio) diesel, l'additif étant dispersé ou dissout dans le solvant. De tels concentrés contiennent en général de 20 à 95 % en masse de solvants.
L'homme du métier adaptera aisément la concentration en additifs selon l'invention en fonction de la dilution éventuelle de l'additif dans un solvant, la présence éventuelle d'autres composants issus par exemple de la réaction d'estérification et/ou d'autres additifs fonctionnels incorporés dans le carburant final.
Les solvants sont des solvants organiques qui contiennent en général des solvants hydrocarbonés. A titre d'exemple de solvants, on peut citer les fractions de pétrole, telles que le naphta, le kérosène, l'huile de chauffe ; les hydrocarbures aliphatiques et/ou aromatiques tels que l'hexane, le pentane, le décane, le pentadécane, le toluène, le xylène, et/ou l'éthylbenzène et les alcoxyalcanols tels que le 2-butoxyéthanol et/ou ou les mélanges d'hydrocarbures tels que les mélanges de solvants commerciaux comme par exemple Solvarex 10, Solvarex LN, Solvent Naphta, Shellsol AB, Shellsol D, Solvesso 150, Solvesso 150 ND, Solvesso 200, Exxsol, ISOPAR et éventuellement des co-solvants ou des compatibilisants, comme le 2-éthylhexanol, le décanol, l'isodécanol et/ou l'isotridécanol.
L'invention concerne l'utilisation d'au moins une composition d'additifs selon l'invention incorporée dans un carburant de type (bio)gazole de qualité supérieure pour améliorer la résistance au lacquering, i-e encrassement sur la tête et/ou sur le corps des aiguilles du système d'injection du carburant mais aussi dans tout le système de commande de la levée d'aiguilles (clapets) du système d'injection, notamment pour les moteurs pourvus des système d'injection directe haute pression équipant la majorité des véhicules respectant les réglementations Euro 3 et les plus récentes.
Selon un mode de réalisation particulier, l'objet de la présente invention concerne également l'utilisation d'une composition de carburant (bio)gazole telle que décrite ci-dessus, pour limiter le dépôt de savon et/ou de vernis dans les parties internes des systèmes d'injection des moteurs utilisant ladite composition, de préférence des moteurs à injection directe, en particulier les moteurs à injection directe haute pression.
L'objet de la présente invention vise également un procédé pour limiter le dépôt de savon et/ou de vernis dans des parties internes du système d'injection d'un moteur pour carburants (bio)gazole (moteur Diesel) ayant un taux de soufre inférieur ou égal à 500 ppm massique, ledit procédé comprenant la combustion dans ledit moteur d'une composition de carburant (bio)gazole telle que définie ci- dessus. De préférence, le procédé s'applique à des moteurs à injection directe, en particulier les moteurs à injection directe haute pression.
Ainsi, le procédé selon l'invention évite et empêche la formation de dépôts de savon et/ou de vernis dans les parties internes du système d'injection du moteur, pour une action « keep-clean » de maintien de la propreté dudit moteur. Avantageusement, le procédé selon la présente invention élimine le dépôt de savon et/ou de vernis dans les parties internes du système d'injection du moteur, pour une action curative « clean-up » de nettoyage du moteur.
EXEMPLES
Afin de tester les performances de ces additifs selon l'invention, les inventeurs ont également mis au point une nouvelle méthode fiable et robuste pour évaluer la sensibilité des carburants (bio)gazole, notamment ceux de qualité supérieure, au lacquering. Cette méthode, à la différence des méthodes décrites dans les publications citées précédemment, n'est pas une méthode de laboratoire mais est basée sur des essais moteurs et donc présente un intérêt technique et permet de quantifier l'efficacité des additifs ou des compositions d'additifs contre le lacquering. La méthode de mesure du lacquering mise au point par les inventeurs est détaillée ci-dessous :
- Le moteur utilisé est un moteur quatre cylindres et 16 soupapes diesel à injection haute pression Common Rail d'une cylindrée de 1 .500 cm3 et d'une puissance de 80 CV : la régulation de pression d'injection du carburant se faisant dans la partie haute pression de la pompe.
- Le point de puissance à 4.000 trs/min est utilisé pendant une durée de 40h ; la position de l'injecteur dans la chambre est descendue de 1 mm par rapport à sa position nominale, ce qui d'une part favorise le dégagement d'énergie thermique de la combustion, et d'autre part rapproche l'injecteur de la chambre de combustion.
- Le débit de carburant injecté est ajusté de manière à obtenir une température à l'échappement de 750 °C en début d'essai.
- L'avance à l'injection a été augmentée de 1 ,5° vilebrequin par rapport au réglage nominal (on passe de + 12,5° à + 14° vilebrequin) toujours dans le but d'augmenter les contraintes thermiques subies par la buse de l'injecteur.
- Enfin, pour augmenter les contraintes subies par le carburant, la pression d'injection a été augmentée de 10 MPa par rapport à la pression nominale (c'est-à- dire passage de 140 MPa à 150 MPa) et la température est régulée à 65 °C en entrée pompe haute pression.
La technologie utilisée pour les injecteurs nécessite un retour carburant élevé, ce qui favorise la dégradation du carburant puisqu'il peut être soumis à plusieurs cycles dans la pompe et la chambre haute pression avant d'être injecté dans la chambre de combustion.
Une variante de la méthode pour tester l'effet clean-up (i-e nettoyage des dépôts de type 1 et/ ou de type 2) a également été développée. Elle se base sur la méthode précédente mais est séparée en deux parties de 20h :
• Les 20 premières heures sont effectuées avec un gazole B7 de qualité supérieure (contenant du détergent de type PIBSI et un produit acide) connu pour sa tendance à générer du lacquering. Après 20h, deux des quatre injecteurs sont démontés et côtés afin de valider la quantité de dépôts qui sont présents et deux injecteurs neufs sont alors installés à la place.
• Les 20 dernières heures de l'essai sont réalisées avec le produit à évaluer. A la fin de l'essai (40h au total), les injecteurs sont démontés et côtés.
A la fin de l'essai, trois lots de deux injecteurs sont disponibles :
• Lot 1 : 2 injecteurs ayant vu 20h de carburant de qualité supérieure connu pour sa tendance à générer du lacquering.
• Lot 2 : 2 injecteurs ayant vu 20h de carburant de qualité supérieure connu pour sa tendance à générer du lacquering + 20h de produit à évaluer.
• Lot 3 : 2 injecteurs ayant vu 20h de produit à évaluer.
Expression des résultats
Pour s'assurer de la validité du résultat, différents paramètres sont contrôlés durant l'essai : puissance, couple et consommation de carburant indiquent si l'injecteur s'encrasse ou si son fonctionnement est détérioré par une formation de dépôts puisque le point de fonctionnement est le même tout au long de l'essai.
Les températures caractéristiques des différents fluides (liquide de refroidissement, carburant, huile) permettent de contrôler la validité des essais. Le carburant est régulé à 65°C en entrée pompe, le liquide de refroidissement est régulé à 90 °C en sortie moteur.
Les valeurs de fumées permettent de contrôler le calage de la combustion en début d'essai (valeur cible de 3FSN) et de s'assurer qu'elle est bien répétable d'un essai à l'autre.
Les injecteurs sont démontés en fin d'essai pour visualiser et coter les dépôts formés le long des aiguilles. La procédure de cotation des aiguilles retenue est la suivante:
L'échelle des notes varie de -2,5 (cas d'un important dépôt) à 10 (cas d'une aiguille neuve sans aucun dépôt). La note finale est une moyenne pondérée des notes sur toutes les surfaces cotées de l'aiguille soit la partie cône et la partie corps ou cylindre de l'aiguille. Ainsi la zone du cylindre (suivant directement la partie conique) représente 68 % de la cotation globale de l'aiguille et la zone du cône représente 32 % de la cotation globale de l'aiguille ; Pour faciliter la cotation, chacune de ces deux zones est divisée en 4. Dans la figure 4, les % indiqués correspondent au quart de la surface des aiguilles : la pondération surfacique globale est donc de 17x4 = 68 %.
Un seuil de performance produit a été déterminé par rapport à cette procédure de cotation : Résultat < 4 = Non satisfaisant, résultat > 4 = Satisfaisant
Les exemples suivants illustrent l'invention sans la limiter.
Exemple 1 - mesures de résistance au lacquerinq
Selon la procédure de mesure de la résistance au lacquering décrite précédemment, on évalue la performance de plusieurs paquets d'additifs introduits dans une matrice gazole représentative du marché France (B7 = gazole fabriqué en France contenant 7% d'EMAG (ester méthylique d'acides gras) et répondant à ΙΈΝ 590). Le détail de chaque composition de carburant testée, ainsi que les résultats obtenus sont indiqués dans le tableau 1 .
Les quantités indiquées dans le tableau 1 sont des quantités massiques
(m/m)
Tableau 1
Ces essais démontrent bien l'efficacité des produits de l'invention à prévenir et à limiter la formation de dépôts de types vernis ou savons (action keep-clean), puisque les résultats de cotation des aiguilles en fin d'essai sont nettement supérieurs au résultat de cotation obtenu lorsque le carburant ne contient qu'un PiBSI apte à former des savons sur les aiguilles des injecteurs. Exemple 2- mesures de résistance au lacquerinq
Selon la procédure de mesure de la résistance au lacquering dans sa version clean-up décrite précédemment, on évalue la performance de plusieurs paquets d'additifs introduits dans une matrice gazole représentative du marché France (B7 = gazole fabriqué en France contenant 7% d'EMAG (ester méthylique d'acides gras) et répondant à ΙΈΝ 590). Le détail de chaque composition de carburant testée, ainsi que les résultats obtenus sont indiqués dans le tableau 2. Attention, les essais G, G' et G" correspondent au même essai, G correspondant au résultat pour le lot d'injecteurs 1 , G' correspondant au résultat pour le lot d'injecteurs 2 et G" correspondant au résultat pour le lot d'injecteurs 3.
Les quantités indiquées dans le tableau 2 sont des quantités massiques (m/m)
Tableau 2
Ces essais démontrent l'efficacité curative (action clean up) des produits de l'invention c'est-à-dire à éliminer les dépôts de types vernis ou savons déjà formés sur les aiguilles puisque la cotation du jeu d'injecteurs G' est supérieur à celle du lot d'injecteur G (il y a eu un début de nettoyage signicatif de l'aiguille), et confirme également leur efficacité préventive (action keep-clean) puisque la cotation du jeu d'injecteurs G" est nettement élevé.

Claims

REVENDICATIONS
1. Additifs pour limiter le dépôt de savon et/ou de vernis dans les parties internes des systèmes d'injection des moteurs pour carburants de type (bio) gazole, ayant un taux de soufre inférieur ou égal à 500 ppm massiques, comprenant au moins 50 % en masse d'ester(s) partiels de polyols, lesdits esters de polyols comprenant x motifs esters, y motifs hydroxylés et z motifs éther, x, y et z étant des nombres entiers tels que x varie de 1 à 10, y varie de 1 à 10, et z varie de 0 à 6.
2. Additifs selon la revendication 1 caractérisés en ce que les esters de polyols sont obtenus par estérification d'acide(s) gras et de polyols linéaires et/ou ramifiés comprenant éventuellement des (hétéro)cycles de 5 à 6 atomes, de préférence des hétérocycles de 4 à 5 atomes de carbone et un atome d'oxygène, supportant des fonctions hydroxylés.
3. Additifs selon l'une des revendications 1 et 2 caractérisés en ce que dans les dits esters de polyols, la répartition en motifs esters, en motifs hydroxylés et en motifs éthers est telle que x varie de 1 à 4, y varie de 1 à 7 et z varie de 1 à 3.
4. Additifs selon l'une quelconque des revendications 1 à 3, caractérisés en ce que les polyols R sont choisis parmi les polyols linéaires comprenant plus de trois fonctions hydroxylés et les polyols comprenant au moins un hétérocycle de 5 ou 6 atomes, préférence des hétérocycles de 4 à 5 atomes de carbone et un atome d'oxygène, éventuellement substitué par des groupements hydroxylés, ces polyols pouvant être pris seuls ou en mélange.
5. Additifs selon l'une quelconque des revendications 1 à 4 caractérisés en ce que R est un polyol comprenant au moins quatre motifs présentés dans la formule (I) ci-après ;
H -(OCH2)P-(CHOH)q-(CH2OH) (I) avec p et q des nombres entiers, p étant égal ou supérieur à 0, q est supérieur à 2, ces nombres ne pouvant excéder 10.
6. Additifs selon l'une quelconque des revendications 1 à 4 caractérisés en ce que R est un polyol comprenant au moins quatre motifs présentés dans la formule
(I I) ci-après
H - (OCH2)P-(CR1 R2)q-(CH2OH) (II)
avec p et q des nombres entiers, p étant égal ou supérieur 0, q est supérieur à 1 , ces nombres ne pouvant excéder 5, R1 et R2 sont identiques ou différents et représentent soit l'atome d'hydrogène, soit un groupement -CH3 ou -C2H5, soit un groupement -CH20H.
7. Additifs selon l'une quelconque des revendications 1 à 4 caractérisés en ce que R est un polyol comprenant au moins deux hétérocycles de 4 ou 5 atomes de carbone et d'un atome d'oxygène, reliés par la formation d'une liaison acétal entre une fonction hydroxyle de chaque cycle, lesquels étant éventuellement substitué par des groupements hydroxyles.
8. Additifs selon l'une quelconque des revendications 1 à 4, caractérisés en ce que les esters partiels de polyols sont choisis parmi les esters partiels de sorbitan, de préférence le monooléate de sorbitan, pris seuls ou en mélange.
9. Additifs selon l'une quelconque des revendications 1 à 8, caractérisés en ce que les polyols R sont choisis dans le groupe comprenant l'érythritol, le xylitol, l'arabitol, le ribitol, le sorbitol, le malitol, l'isomalitol, le lactitol, le sorbitan, le volemitol, le mannitol, le pentaérythritol, le 2-hydroxyméthyl-1 ,3-propanediol, le 1 , 1 ,1 - tri(hydroxyméthyl)éthane, le triméthylolpropane et les glucides comme le sucrose, le fructose, le maltose, le glucose et le saccharose, de préférence le sorbitan.
10. Additifs selon l'une quelconque des revendications 1 à 9 caractérisés en ce que les esters partiels de polyols sont obtenus par réaction des polyols avec au moins un acide gras de longueur de chaînes variant de 10 à 24 atomes de carbone et/ou au moins un diacide substitué par au moins un polymère, par exemple de poly(iso)butène comprenant de 8 à 100 atomes de carbone.
11. Additifs selon la revendication 10, caractérisés en ce que les esters partiels de polyols sont choisis dans le groupe constitué par des monoesters ou diesters obtenus à partir de mono acides choisis parmi les acides stéarique, isostéarique, linolénique, oléique, linoléique, béhénique, arachidonique, ricinoléique, palmitique, myristique, laurique, caprique, et leurs mélanges et/ou de diacides choisis parmi les acides alkyl- ou alkenylsuccinique, alkyl-ou alkénylmaléique.
12. Utilisation d'un additif tel que défini dans l'une quelconque des revendications 1 à 1 1 pour limiter le dépôt de savon et/ou de vernis dans les parties internes des systèmes d'injection des moteurs pour carburants (bio) gazole ayant un taux de soufre inférieur ou égal à 500 ppm massiques.
13. Utilisation selon la revendication 12, caractérisée en ce que ledit additif est destiné à être incorporé dans un carburant (bio)gazole pour ledit moteur, de préférence à une concentration d'au moins 20 ppm massique.
14. Utilisation selon l'une des revendications 12 et 13, caractérisée en ce que les moteurs sont des moteurs à injection directe.
15. Compositions de carburant (bio) gazole ayant un taux de soufre inférieur ou égal à 500 ppm massiques, contenant au moins un additif tel que défini dans l'une quelconque des revendications 1 à 1 1 , et éventuellement au moins un ou plusieurs autres additifs fonctionnels, tels que les réducteurs de dépôt et/ou détergents et/ou dispersants, les anti-oxydants, les améliorants de combustion, les inhibiteurs de corrosion, les additifs de tenue à froid, les colorants, les désémulsionnants, les désactivateurs de métaux, les agents anti-mousse, les agents améliorant l'indice de cétane, les additifs de lubrifiance, les agents antiusure et/ou modificateurs de frottement, et les co-solvants et les agents compatibilisants.
16. Compositions de carburant (bio) gazole selon la revendication 15 contenant jusqu'à 10 % massiques d'un ou plusieurs additifs tels que définis dans l'une quelconque des revendications 1 à 1 1 .
17. Compositions de carburant (bio) gazole de qualité supérieure, contenant au moins 50 ppm massiques de réducteur(s) de dépôts /détergents /dispersant(s) et contenant au moins 20 ppm massique d'un additif tel que défini dans l'une quelconque des revendications 1 à 1 1 et éventuellement au moins un ou plusieurs autres additifs fonctionnels, tels que les anti-oxydants, les améliorants de combustion, les inhibiteurs de corrosion, les additifs de tenue à froid, les colorants, les désémulsionnants, les désactivateurs de métaux, les agents anti-mousse, les agents améliorant l'indice de cétane, les additifs de lubrifiance, agents anti-usure et/ou modificateurs de frottement, et les co-solvants et les agents comptabilisant.
18. Compositions de carburant (bio)gazole selon l'une quelconque des revendications 15 à 17 ayant une concentration en mono- et di-ester(s) variant de 20 à 1 .000 ppm massiques, et de préférence entre 30 et 200 ppm massiques m/m.
19. Utilisation d'une composition telle que définie selon l'une quelconque des revendications 15 à 18, pour limiter le dépôt de savon et/ou de vernis dans les parties internes des systèmes d'injection des moteurs utilisant ladite composition.
20. Utilisation selon la revendication 19, caractérisée en ce que les moteurs sont des moteurs à injection directe.
21. Procédé pour limiter le dépôt de savon et/ou de vernis dans des parties internes du système d'injection d'un moteur pour carburant (bio)gazole (moteur Diesel) ayant un taux de soufre inférieur ou égal à 500 ppm massique, ledit procédé comprenant la combustion dans ledit moteur d'une composition telle que définie selon l'une quelconque des revendications 15 à 18.
22. Procédé selon la revendication 21 , caractérisé en ce que le moteur est un moteur à injection directe.
23. Procédé selon l'une des revendications 21 et 22, caractérisé en ce qu'on évite et on empêche la formation de dépôt de savon et/ou de vernis dans les parties internes du système d'injection du moteur, pour une action « keep-clean » de maintien de la propreté dudit moteur.
24. Procédé selon l'une quelconque des revendications 21 à 23, dans lequel on élimine le dépôt de savon et/ou de vernis dans les parties internes du système d'injection du moteur, pour une action curative « clean-up » de nettoyage du moteur.
EP13756345.8A 2012-08-22 2013-08-20 Additifs ameliorant la resistance a l'usure et au lacquering de carburants de type gazole ou biogazole Withdrawn EP2888344A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1257939A FR2994695B1 (fr) 2012-08-22 2012-08-22 Additifs ameliorant la resistance a l'usure et au lacquering de carburants de type gazole ou biogazole
PCT/EP2013/067311 WO2014029770A1 (fr) 2012-08-22 2013-08-20 Additifs ameliorant la resistance a l'usure et au lacquering de carburants de type gazole ou biogazole

Publications (1)

Publication Number Publication Date
EP2888344A1 true EP2888344A1 (fr) 2015-07-01

Family

ID=47351832

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13756345.8A Withdrawn EP2888344A1 (fr) 2012-08-22 2013-08-20 Additifs ameliorant la resistance a l'usure et au lacquering de carburants de type gazole ou biogazole

Country Status (10)

Country Link
US (1) US20150315506A1 (fr)
EP (1) EP2888344A1 (fr)
CN (1) CN104603246B (fr)
AR (1) AR092373A1 (fr)
BR (1) BR112015003674A2 (fr)
EA (1) EA031490B1 (fr)
FR (1) FR2994695B1 (fr)
IN (1) IN2015DN01267A (fr)
TW (1) TWI597358B (fr)
WO (1) WO2014029770A1 (fr)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3041349B1 (fr) 2015-09-18 2020-01-24 Total Marketing Services Copolymere utilisable comme additif detergent pour carburant
FR3054223A1 (fr) 2016-07-21 2018-01-26 Total Marketing Services Copolymere et son utilisation comme additif detergent pour carburant
FR3054225B1 (fr) 2016-07-21 2019-12-27 Total Marketing Services Copolymere utilisable comme additif detergent pour carburant
FR3054224B1 (fr) 2016-07-21 2020-01-31 Total Marketing Services Copolymere et son utilisation comme additif detergent pour carburant
WO2018073544A1 (fr) 2016-10-21 2018-04-26 Total Marketing Services Combinaison d'additifs pour carburant
BR112019020056B1 (pt) 2017-03-30 2024-01-30 Innospec Limited Composição de combustível diesel para melhorar o desempenho de motores a diesel com sistemas de combustível de alta pressão
FR3071850B1 (fr) 2017-10-02 2020-06-12 Total Marketing Services Composition d’additifs pour carburant
FR3072095B1 (fr) 2017-10-06 2020-10-09 Total Marketing Services Composition d'additifs pour carburant
FR3073522B1 (fr) 2017-11-10 2019-12-13 Total Marketing Services Nouveau copolymere et son utilisation comme additif pour carburant
CN107903963A (zh) * 2017-11-24 2018-04-13 广西丰泰能源科技有限公司 提高生物燃料润滑性的添加剂
US11603575B2 (en) * 2018-03-20 2023-03-14 Nippon Steel Corporation Grain-oriented electrical steel sheet and method for producing thereof
FR3083799B1 (fr) 2018-07-16 2021-03-05 Total Marketing Services Additifs pour carburant, de type sucre-amide
WO2020115133A1 (fr) * 2018-12-04 2020-06-11 Total Marketing Services Compositions de piégeage du sulfure d'hydrogène et de mercaptans
FR3092334B1 (fr) 2019-01-31 2022-06-17 Total Marketing Services Utilisation d’une composition de carburant à base d’hydrocarbures paraffiniques pour nettoyer les parties internes des moteurs diesels
FR3103812B1 (fr) 2019-11-29 2023-04-07 Total Marketing Services Utilisation de composés alkyl phénol comme additifs de détergence
FR3103815B1 (fr) 2019-11-29 2021-12-17 Total Marketing Services Utilisation de diols comme additifs de détergence
FR3110913B1 (fr) 2020-05-29 2023-12-22 Total Marketing Services Composition d’additifs pour carburant moteur
CN115645599B (zh) * 2022-10-10 2024-02-23 上海大学 用于肿瘤切除术后创面修复的热敏凝胶敷料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3923668A (en) * 1974-06-24 1975-12-02 Du Pont Guanidine carbonate dispersion composition
GB2002393A (en) * 1977-07-01 1979-02-21 Orobis Ltd Improving the filtration characteristics of pibsa/pe esterification products
WO2011146289A1 (fr) * 2010-05-18 2011-11-24 The Lubrizol Corporation Procédés et compositions qui fournissent une propriété détergente

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2510598A1 (fr) 1981-07-30 1983-02-04 Inst Francais Du Petrole Utilisation d'additifs azotes comme agents d'abaissement du point de trouble des distillats moyens d'hydrocarbures et compositions de distillats moyens d'hydrocarbures renfermant lesdits additifs
FR2528066A1 (fr) 1982-06-04 1983-12-09 Inst Francais Du Petrole Additifs azotes utilisables comme agents d'abaissement du point de trouble des distillats moyens d'hydrocarbures et compositions de distillats moyens d'hydrocarbures renfermant lesdits additifs
FR2528051B1 (fr) 1982-06-08 1986-05-02 Inst Francais Du Petrole Additifs azotes utilisables comme agents d'abaissement du point de trouble des distillats moyens d'hydrocarbures et compositions de distillats moyens d'hydrocarbures renfermant lesdits additifs
FR2528423B1 (fr) 1982-06-10 1987-07-24 Inst Francais Du Petrole Additifs azotes utilisables comme agents d'abaissement du point de trouble des distillats moyens d'hydrocarbures et compositions de distillats moyens d'hydrocarbures renfermant lesdits additifs
FR2535723A1 (fr) 1982-11-09 1984-05-11 Inst Francais Du Petrole Additifs azotes utilisables comme agents d'abaissement du point de trouble des distillats moyens d'hydrocarbures et compositions de distillats moyens d'hydrocarbures renfermant lesdits additifs
FR2567536B1 (fr) 1984-07-10 1986-12-26 Inst Francais Du Petrole Compositions d'additifs destinees notamment a ameliorer les proprietes de filtrabilite a froid des distillats moyens de petrole
US4604102A (en) * 1985-11-25 1986-08-05 Ethyl Corporation Fuel compositions
EP0261959B1 (fr) 1986-09-24 1995-07-12 Exxon Chemical Patents Inc. Additifs pour mazout
FR2607139B1 (fr) 1986-11-21 1989-08-18 Inst Francais Du Petrole Polymeres a fonctions azotees derives de polyesters insatures et leur utilisation comme additifs d'abaissement du point d'ecoulement des distillats moyens d'hydrocarbures
FR2613371B1 (fr) 1987-04-01 1989-07-07 Inst Francais Du Petrole Copolymeres azotes, leur preparation et leur utilisation comme additifs pour ameliorer les proprietes d'ecoulement des distillats moyens d'hydrocarbures
FR2626578B1 (fr) 1988-02-03 1992-02-21 Inst Francais Du Petrole Polymeres amino-substitues et leur utilisation comme additifs de modification des proprietes a froid de distillats moyens d'hydrocarbures
GB9104138D0 (en) 1991-02-27 1991-04-17 Exxon Chemical Patents Inc Polymeric additives
FR2676062B1 (fr) 1991-05-02 1993-08-20 Inst Francais Du Petrole Polymere amino-substitues et leur utilisation comme additifs de modification des proprietes a froid de distillats moyens d'hydrocarbures.
GB9200694D0 (en) 1992-01-14 1992-03-11 Exxon Chemical Patents Inc Additives and fuel compositions
GB9219962D0 (en) 1992-09-22 1992-11-04 Exxon Chemical Patents Inc Additives for organic liquids
ES2103066T3 (es) 1992-10-09 1997-08-16 Inst Francais Du Petrole Fosfatos de aminas que incluyen un ciclo imida terminal, su preparacion y su utilizacion como aditivos para carburantes motores.
FR2699550B1 (fr) 1992-12-17 1995-01-27 Inst Francais Du Petrole Composition de distillat moyen de pétrole contenant des additifs azotés utilisables comme agents limitant la vitesse de sédimentation des paraffines.
GB9301119D0 (en) 1993-01-21 1993-03-10 Exxon Chemical Patents Inc Fuel composition
GB9514480D0 (en) 1995-07-14 1995-09-13 Exxon Chemical Patents Inc Additives and fuel oil compositions
FR2735494B1 (fr) 1995-06-13 1997-10-10 Elf Antar France Additif bifonctionnel de tenue a froid et composition de carburant
DE19542277A1 (de) 1995-11-13 1997-05-15 Hamax As Lenkbarer Schlitten
FR2751982B1 (fr) 1996-07-31 2000-03-03 Elf Antar France Additif d'onctuosite pour carburant moteurs et composition de carburants
WO1998011178A1 (fr) * 1996-09-13 1998-03-19 Exxon Research And Engineering Company Additif pour mazouts legers a base de polyolester
FR2753455B1 (fr) 1996-09-18 1998-12-24 Elf Antar France Additif detergent et anti-corrosion pour carburants et composition de carburants
EP0857776B2 (fr) 1997-01-07 2007-05-02 Clariant Produkte (Deutschland) GmbH Amélioration de la fluidité d'huiles minérales et de distillates d'huiles minérales par l'utilisation de résines alkylphénol-aldéhyde
US5730029A (en) 1997-02-26 1998-03-24 The Lubrizol Corporation Esters derived from vegetable oils used as additives for fuels
FR2772784B1 (fr) 1997-12-24 2004-09-10 Elf Antar France Additif d'onctuosite pour carburant
FR2772783A1 (fr) 1997-12-24 1999-06-25 Elf Antar France Additif d'onctuosite pour carburant
US20050223631A1 (en) 2004-04-07 2005-10-13 Graham Jackson Fuel oil compositions
FR2869621B1 (fr) 2004-04-30 2008-10-17 Total France Sa Utilisation d'additifs pour ameliorer l'odeur de compositions d'hydrocarbures et compositions d'hydrocarbures comprenant de tels additifs
AU2008350250A1 (en) * 2008-02-07 2009-08-13 Davidda Pty Ltd Sock
CA2725807A1 (fr) * 2008-05-26 2009-12-03 Meat & Livestock Australia Limited Additif pour biodiesel
GB0913644D0 (en) * 2009-08-05 2009-09-16 Palox Offshore S A L Compositions for preparing emulsions
GB201208795D0 (en) * 2012-05-18 2012-07-04 Dupont Nutrition Biosci Aps Compound

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3923668A (en) * 1974-06-24 1975-12-02 Du Pont Guanidine carbonate dispersion composition
GB2002393A (en) * 1977-07-01 1979-02-21 Orobis Ltd Improving the filtration characteristics of pibsa/pe esterification products
WO2011146289A1 (fr) * 2010-05-18 2011-11-24 The Lubrizol Corporation Procédés et compositions qui fournissent une propriété détergente

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2014029770A1 *

Also Published As

Publication number Publication date
FR2994695A1 (fr) 2014-02-28
US20150315506A1 (en) 2015-11-05
BR112015003674A2 (pt) 2017-09-26
EA201590422A1 (ru) 2015-06-30
TWI597358B (zh) 2017-09-01
CN104603246A (zh) 2015-05-06
IN2015DN01267A (fr) 2015-07-03
FR2994695B1 (fr) 2015-10-16
WO2014029770A1 (fr) 2014-02-27
AR092373A1 (es) 2015-04-15
CN104603246B (zh) 2017-05-24
TW201425566A (zh) 2014-07-01
EA031490B1 (ru) 2019-01-31

Similar Documents

Publication Publication Date Title
EP2888344A1 (fr) Additifs ameliorant la resistance a l&#39;usure et au lacquering de carburants de type gazole ou biogazole
EP3110928B1 (fr) Composition d&#39;additifs et carburant de performance comprenant une telle composition
EP2814917B1 (fr) Additifs ameliorant la resistance a l&#39;usure et au lacquering de carburants de type gazole ou biogazole
EP2794820B1 (fr) Utilisation de compositions d&#39;additifs ameliorant la resistance au lacquering de carburants de type diesel ou biodiesel et carburants presentant une resistance au lacquering amelioree
EP3110927B1 (fr) Composition d&#39;additifs et carburant de performance comprenant une telle composition
CA2765245C (fr) Terpolymere ethylene/acetate de vinyle/esters insatures comme additif ameliorant la tenue a froid des hydrocarbures liquides comme les distillats moyens et les carburants ou combustibles
FR3057877A1 (fr) Combinaison d’additifs pour carburant
EP3529338B1 (fr) Combinaison d&#39;additifs pour carburant
WO2021240116A1 (fr) Composition d&#39;additifs pour carburant moteur
EP4065672B1 (fr) Utilisation de diols comme additifs de détergence
BE1024093B1 (fr) Additifs de carburant pour le traitement de dépôts internes d&#39;injecteurs de carburant
EP3824050A1 (fr) Nouveaux additifs pour carburant, de type sucre-amide
FR3103812A1 (fr) Utilisation de composés alkyl phénol comme additifs de détergence
FR3054223A1 (fr) Copolymere et son utilisation comme additif detergent pour carburant
EP2935535A1 (fr) Utilisation d&#39;un composé viscosifiant pour améliorer la stabilité au stockage d&#39;un carburant ou combustible hydrocarboné liquide

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150217

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160304

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180724

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20181204