EP2881584B1 - Détection de pannes sans capteur pour des pompes de dosage dotées d'un moteur pas à pas - Google Patents

Détection de pannes sans capteur pour des pompes de dosage dotées d'un moteur pas à pas Download PDF

Info

Publication number
EP2881584B1
EP2881584B1 EP14194629.3A EP14194629A EP2881584B1 EP 2881584 B1 EP2881584 B1 EP 2881584B1 EP 14194629 A EP14194629 A EP 14194629A EP 2881584 B1 EP2881584 B1 EP 2881584B1
Authority
EP
European Patent Office
Prior art keywords
drive force
motor
positive displacement
set forth
criterion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14194629.3A
Other languages
German (de)
English (en)
Other versions
EP2881584A1 (fr
Inventor
Gregor Stiehl
Jens Kaibel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Prominent GmbH
Original Assignee
Prominent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=52016413&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2881584(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Prominent GmbH filed Critical Prominent GmbH
Publication of EP2881584A1 publication Critical patent/EP2881584A1/fr
Application granted granted Critical
Publication of EP2881584B1 publication Critical patent/EP2881584B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B51/00Testing machines, pumps, or pumping installations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/02Stopping, starting, unloading or idling control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/10Other safety measures

Definitions

  • the present invention relates to a method for sensorless detection of malfunctions of a positive displacement pump, wherein the positive displacement pump has a movable displacement element with an interface which limits a dosing, wherein the dosing chamber is connected via valves with a suction and discharge line, so that by an oscillating movement of Displacement element alternately conveying fluid can be sucked via the suction line into the dosing and pressed through the pressure line from the dosing, wherein a stepping motor is provided as a drive for oscillating movement of the displacer.
  • a surface of a movable displacer element limits a metering space as an interface.
  • the displacer and with it the interface of the metering chamber can be moved back and forth between two extreme positions. As a result, the volume of the dosing is increased or decreased.
  • the respective position of the interface thus determines the current volume of the dosing. In the first extreme position of the interface, the volume of the metering chamber is minimal while in the second extreme position it is maximum. Thus, if the interface moves from its first extreme position to the second position, the volume of the dosing space is thereby increased or the pressure in the dosing space drops.
  • the resulting negative pressure leads to a closing of the valve between the metering chamber and the pressure line and to an opening of the valve between the metering chamber and the suction line, so that the conveying fluid is sucked into the metering chamber via the suction line.
  • the volume of the dosing chamber is reduced again or the pressure in the dosing chamber increases.
  • This overpressure closes the valve between the dosing chamber and the suction line while the valve between the dosing chamber and the pressure line is opened.
  • the overpressure in the metering chamber conveys the conveying fluid from the metering chamber into the pressure line.
  • a stepper motor as a drive for the oscillating movement serve a displacement element.
  • a stepping motor generally has a rotor, ie a rotatable motor part with shaft.
  • the rotor can be rotated by a controlled stepwise rotating electromagnetic field of a plurality of stator coils, ie, a plurality of coils arranged on a non-rotatable motor part, by a minimum angle or a step or a multiple thereof.
  • This rotational movement is translated by means of a connecting rod or the like in a translational movement for alternately reciprocating the displacer element.
  • stepper motors in the form of linear motors are known in which by means of electromagnetic force generation directly a stepwise translation movement of a movable motor part between two extreme positions is generated, which can be transmitted directly to a displacer.
  • the two extreme positions of the displacer element generally correspond to the two extreme positions of the movable motor part.
  • Stepper motors are characterized in particular by a high degree of robustness and a long service life. Since stepper motors move in individual steps or multiples thereof, it is possible in principle for the motor or control electronics to count the steps and to determine an actual rotor position based thereon. However, a mechanical load of the motor leads to the formation of a so-called load angle, i. to a deviation between the rotation of the electromagnetic field of the stator and the mechanical rotation of the rotor.
  • static load angle is the angle that the rotor of a stepper motor is opposite to the electromagnetic detent position, i. the main direction of the electromagnetic field generated by the stator coil, is rotated under a statically acting torque.
  • the dynamic load angle is the angle by which the rotating rotor is at a certain point in time away from the electromagnetic detent position given by the last pulse of the step clock.
  • the movement of the rotor in the electromagnetic field of the stator coils causes in these coils a counter-induced voltage, the so-called back EMF.
  • the back EMF is superimposed with the voltage applied to the coils, thereby producing a phase shift between the rotor and stator rotating field that corresponds to the magnitude of the back EMF.
  • the rotor lags behind the electromagnetic rotating field of the stator, wherein the phase shift is proportional to the applied load. If the applied load torque exceeds a critical value, then the stepping motor falls out of step, ie it disengages. In the extreme case, it comes to a standstill of the engine.
  • Position detection therefore typically takes place in stepper motor drives by means of a reference signal, for example by means of a Hall sensor.
  • a reference signal for example by means of a Hall sensor.
  • a small permanent magnet is attached to the output shaft of the drive.
  • a fixed Hall sensor generates a signal when passing the magnet in a certain angular position of the shaft.
  • an absolute position per revolution is detected, which can be compared with a position assumed in the control.
  • this can lead to problems with the dosing accuracy in partial strokes or cycles when using the stepper motor as a drive for a positive displacement pump. At a standstill of the stepping motor due to excessive loads, this leads to the fact that the conveying function fails despite activation of the drive unit.
  • the Hubperiodendauer which is identical to the cycle time of the rotor can be determined. From this Hubperiodendauer can be concluded that a trouble-free flow of dosing. In the event of delays or even a blockage of the dosing stroke due to overpressure situations, the signal from the Hall sensor will remain off or be delayed. This failure or delay can be used as a basis for generating a fault message and for making further responses. However, this information is always only after the expiration of a monitoring interval, i. in general a circulation time of the rotor or a Pumpzylus ago.
  • an additional position sensor is used in the prior art, which determines the speed or position of the displacer in relation to the control of the motor at each time of Dosierhubs and can detect a blockage virtually instantaneously.
  • an additional position sensor complicates the construction of the pump system, making it more prone to failure and more expensive.
  • a stepper motor is used to drive a positive displacement pump
  • the load applied to the drive is essentially given by the back pressure of the delivery fluid in the metering space, which counteracts the displacement element.
  • this backpressure is measured according to the prior art by means of additional sensors, for example by means of a pressure sensor arranged in the dosing head.
  • additional sensors for example by means of a pressure sensor arranged in the dosing head.
  • such an additional sensor in turn complicates the structure of the pump system and due to its necessary arrangement in the dosing head leads in particular to additional sealing problems and additional costs.
  • the DE 100 33 992 describes a conveying device with a current-controlled motor, in which the current supplied to the motor is limited according to the expected engine load depending on the stroke position of the working machine.
  • the WO 2012/066090 describes a method and a control device for variable-speed control of a positive displacement pump unit.
  • the DE 10 2010 003 218 describes a method for controlling and / or regulating a metering pump.
  • this object is achieved in that an engine torque provided by the stepping motor is determined and, if the determined motor torque M M fulfills a first predetermined criterion, a warning signal is output.
  • the engine torque satisfies a first predetermined criterion associated with a quantity characterizing the transition from the normal state of the engine to an overload condition, i. a corresponding engine-specific value, it can be detected on the basis of the issued warning signal such an overload condition. Based on this further follow-up action can be initiated.
  • the first predetermined criterion may be directly related to the engine torque provided, i. be a certain value for the engine torque, as well as an indirect criterion, i. From a determined value for the engine torque further quantities are derived, to which the criterion is to be referred.
  • a sensorless detection in the sense of the present invention means that neither within the dosing head of the positive displacement pump nor within the stepping motor, ie in the region of its moving components, a corresponding sensor is provided.
  • the stepper motor can be designed both with and without a gear.
  • the gross drive force applied to the displacer element can be determined for a known positive displacement pump on the basis of a suitable model of the drive kinematics in normal operation.
  • the rotational movement of the stepping motor is translated by means of a push rod in a translational movement. Due to losses, this translational force or rod force applied to the displacer element is, in principle, smaller than the engine torque provided by the engine.
  • This bar force represents the gross drive force for the displacer in the translation direction.
  • the net drive force F n actually transmitted to the conveyance fluid by the translational movements of the displacer between a first and a second extreme position generally differs, in turn, from the gross drive force F b provided .
  • the transmitted net drive force F n is smaller. This is due to the additional power requirement for other components of the positive displacement pump, which are also involved in the mechanics. However, the influence of these components can usually be assumed to be known, so that the net drive power remaining for the conveying process can be determined taking these losses into account.
  • the net drive force F n transmitted to the conveying fluid comprises both a pressure force applied to the conveying fluid when generating an overpressure and a pulling force when generating a negative pressure.
  • the boundary surface A G represents the active surface of the displacement element acting on the conveying medium.
  • the size of the boundary surface A G is known by design. It is understood that in the case of an elastically deformable displacement element, if appropriate, temporary changes in the interface A G , ie an effective interface instead of the structurally given static boundary surface, must be taken into account. However, the need for such additional corrections depends significantly on the accuracy of the measurements to be met. If a supplied maximum or minimum value for the current delivery pressure is sufficient, it is advisable to use only the maximum or minimum value of the effective interface for A G possible within a funding period, without taking into account the actual current value.
  • the above-mentioned quantities can be taken into account, for example, by the predetermined criterion in that the criterion is based on the gross drive force F b , the net drive force F n or the delivery pressure p F and is calculated back from the respective value to a corresponding threshold for the engine torque.
  • This calculated threshold for the engine torque can be used as a predetermined criterion. The criterion then applies is met if the calculated threshold value is reached or exceeded as the upper threshold value or is reached or undershot as the lower threshold value.
  • a gross drive force F b a net drive force F n or a delivery pressure p F calculated for this engine torque and the first predetermined criterion as a threshold value for the calculated size are used. If the calculated quantity fulfills this criterion, ie if it exceeds or falls below or exceeds this threshold value, then a warning signal is output.
  • This second alternative is particularly advantageous if one or more of these additional variables are to be used for a further analysis of the behavior of the positive displacement pump.
  • the operating or functional state of the positive displacement pump can be more accurately characterized and monitored.
  • the stepping motor and disorders of other components of the pump system can be detected.
  • Conceivable for example, malfunction sensitive components due to excessive pressure, which is not so high that it comes to malfunction of the stepping motor. If the delivery pressure is determined, it can be determined whether such problems threaten or even exist. Furthermore, it can be concluded from a drop in the delivery pressure, for example, a leak.
  • a warning signal is issued when the gross drive force F b , the net drive force F n, or the delivery pressure p F meets the first predetermined criterion.
  • the respective criterion is chosen such that a warning signal is output when the corresponding quantity of the group consisting of the engine torque M M , the gross drive force F b , the net drive force F n and the delivery pressure p F reaches a first predetermined threshold or exceeds or the corresponding size reaches or falls below a second predetermined threshold.
  • an interval for the variables to be monitored can be defined, which represents the desired working range of the positive displacement pump in normal operation. If this predetermined interval is left out, then it is possible to conclude that the system is malfunctioning, be it the stepper motor or the positive displacement pump. Exceeding the first threshold generally allows the conclusion to an overload situation, whereas falling below the second threshold, for example, suggests a pressure drop due to a leak or a malfunction in the stepper motor itself. In the latter case, sufficient torque is no longer provided by the engine, indicating a malfunction independent of the load situation.
  • the first criterion is selected such that a warning signal is output if a weighted sum of the relative deviations of the engine torque M M and at least one further variable from the group consisting of the gross drive force F b , the net drive force F n and the delivery pressure p F reaches or exceeds a predetermined value from a respective threshold.
  • the respective relative deviation from a threshold value is detected for at least two variables. These at least two deviations are summed up weighted. If the weighted sum reaches or exceeds a predetermined value, then the criterion is satisfied and a warning signal is output.
  • the motor torque M M of the stepping motor is detected by determining the phase shift of the motor voltage U M relative to the motor current I M , which is caused by a voltage U ind counter-induced due to the load angle ⁇ L of the stepping motor.
  • the rotation of the rotor in the electromagnetic field generated by the stator results in a counter-induced voltage, ie back EMF, in the stator coils.
  • the back EMF causes a phase shift of the effective motor voltage relative to the motor or coil current.
  • the corresponding currents rush the voltages by a certain phase angle.
  • the load angle more specifically the dynamic load angle
  • the back EMF changes and, as a result, the back EMF. That is, the phase angle between motor current and motor voltage also changes, with the phase shift between current and voltage generally decreasing with increasing load.
  • the phase shift between motor voltage and motor current is thus correlated with the load angle and allows it to be determined.
  • Such a picking up of motor current and motor voltage by means of the engine electronics, which thus additionally serves as a corresponding detection device, represents a sensorless detection in the sense of the present invention.
  • the gross drive force F b applied by the stepper motor to the displacer element is determined based on a model of the drive kinematics of the stepper motor and the displacer element.
  • the known structure of the pump system consisting of a stepping motor and displacer element makes it possible to use a corresponding model of the drive kinematics.
  • a model describes, in particular, the conversion of the rotational movement of the stepping motor into the translatory movement transmitted to the displacer element.
  • this model naturally simplifies to a simple direct relationship, which essentially depends on possible friction losses.
  • the positive displacement pump is a metering pump, preferably a diaphragm pump with a displacement element in the form of a metering diaphragm.
  • a metering pump is a positive displacement pump that delivers defined volumes per stroke or per time independent of the pressure ratios at the inlet and outlet of the metering pump.
  • a dosing pump designed as a diaphragm pump is characterized in particular by its insensitivity to continuous stress and impurities in the conveying fluid.
  • the drive is shielded from contamination in the conveying fluid and thus one of the major disadvantages of conventional piston pumps, namely the problem of sealing the piston solved.
  • the method described here for sensorless detection of malfunction offers, in particular in the case of a diaphragm pump.
  • additional sensors generally cause sealing problems. Accordingly, when using appropriate Sensors in a diaphragm pump the risk that the desired leak-tightness advantage of the diaphragm pump is negated by the use of the sensors again.
  • the net driving force F n applied to the conveying fluid is determined from the gross driving force F b by subtracting force components not directly applied to the conveying fluid, in particular by subtracting the deformation force F v necessary to deform the dosing diaphragm and / or a force necessary to tension a spring element Force F F , by means of which the Dosiermembran can be biased in the direction of printing position or in the opposite direction.
  • the net driving force F n applied to the conveying fluid account must be taken of the power requirement for those components of the pump involved in the mechanism for transmitting power to the conveying fluid.
  • the spring element can generally be designed both as a return spring and as a lifting support.
  • the spring element is clamped when a pressure force is applied to the conveying fluid from the stepping motor.
  • a portion of the gross drive force F b provided by the stepper motor is used for biasing the return spring and thus the dosing diaphragm in the direction of printing position. If the direction of movement of the displacer element or of the metering membrane is subsequently reversed, so that the volume of the metering space is increased again, the prestressed restoring spring relaxes. In this case, the tensile force applied to the conveying fluid is increased by delivery of the stored clamping energy.
  • a pumping cycle means the time required for the displacer element to return to it from an extreme position.
  • a first extreme position of the displacement element is a position in which the volume of the dosing space is minimal, while a second extreme position is one in which the volume is maximum.
  • a plurality of criteria are predetermined and, if a criterion is met, a warning signal characteristic of the respective criterion is output.
  • a first criterion can only serve as an indicator for a specific operating state of the positive displacement pump without this already implying a malfunction. If another criterion is met, this can be a shift in the operating state, for example from normal operation to overload range. A third criterion may indicate an operation outside the normal state and thus possible malfunctions. Finally, a fourth criterion can characterize a serious malfunction requiring immediate action.
  • each criterion is associated with an error event and, if a criterion is met, an associated error event is diagnosed, in particular an overload and / or a stall of the engine.
  • the criteria for different severity levels may be and identify, with overload or even stoppage of the stepper motor generally presenting the most severe disturbances.
  • an undershooting of one or more threshold values may also indicate a malfunction of the stepping motor itself or, for example, a pressure drop due to a leak.
  • an output warning signal is sent to an automatic shutdown, which turns off the pump in response to receiving the warning signal.
  • Such an automatic shutdown is particularly advantageous if the warning signal is output on the basis of a criterion which represents a serious malfunction of the pump, for example an overload or a stoppage of the stepping motor.
  • the criterion may be a predetermined delivery pressure, wherein the pump is switched off when this threshold is exceeded by the determined delivery pressure.
  • overload protection in the form of monitoring of threshold crossings serves to protect the positive displacement pump as well as other components of the systems in which such positive displacement pumps are usually used.
  • the threshold value may be the constructively permissible maximum pressure for the positive displacement pump or a value just above the maximum pressure, ie, for example, 10% to 20% above.
  • the maximum pressure is the maximum pressure at which the stepper motor can be operated without the risk of step losses.
  • the threshold value can also be within the permissible working range of the displacement pump in order to protect, for example, other pressure-sensitive system parts which are already at lower pressures than the maximum pressure permissible for the stepper motor.
  • a shutdown can also be carried out due to a significant pressure drop due to a leak.
  • an output warning signal is sent to an output device which, in response to receipt of the warning signal, outputs an audible and / or visual warning indicative of the warning signal.
  • Such a warning can generally serve to display the current operating state to the outside.
  • an acute warning he can direct the attention of a person responsible for the operation of the system, and in particular the pump, to an acute malfunction and bring about the initiation of further measures.
  • Such indications can be, for example, signal lights arranged in the region of the pump, which indicate the operating state or the malfunction of the pump during an on-site inspection. The lights can, if different lights are provided for different operating conditions, advantageously be kept in different colors.
  • a normal operating state, a state deviating from the normal operating state and a malfunctioning or critical operating state may be indicated by means of different colors, for example green, orange and red.
  • the display can be done in more complex systems but also via a central display unit, such as a monitor.
  • a central display unit such as a monitor.
  • an acoustic warning is advantageous. This is not dependent on the gaze of the target person whose attention is to be drawn.
  • a positive displacement pump 1 in the form of a designed as a diaphragm pump metering pump with a dosing 2.
  • a dosing 3 is arranged in the dosing 2 in the dosing 2 .
  • This metering chamber 3 is bounded by inner side walls 4 of the metering head 2 and an interface A G of the displacement element 5 designed as a metering diaphragm.
  • the metering chamber 3 is connected via valves 8, 9 with a suction and a pressure line 6 and 7 respectively.
  • the metering diaphragm 3 is movably connected via a connecting element 10 to a push rod (not shown).
  • the push rod is seated on the rotor (not shown) of a stepper motor 13, with or without gears.
  • This push rod converts the rotational movement of the rotor in a translational movement of the connecting element 10 and the membrane 5 between two extreme positions E 1 , E 2 .
  • Between dosing 2 and push rod is around the connecting element 10 around a spring element 12, more precisely a return spring or lifting support arranged.
  • the dosing membrane 5 is moved from a first, extreme right position E 1 (indicated by dashed lines) into a second, left E 2 (shown by solid lines), the dosing space 3 increases, as a result of which a negative pressure is created.
  • the valve 9 closes the pressure line 7 and the valve 8 of the suction line 6 opens.
  • the conveying fluid F is sucked out of the suction line 6 into the dosing chamber 3 and at the same time, as a result of the movement of the connecting element 10, the spring element 12 is prestressed as a lifting assistance in the case of an embodiment.
  • the spring element 12 may be formed as a return spring, wherein the return spring 12 is biased in a movement of the connecting element 10 of the second E2 in the first extreme position E1.
  • the return spring 12 supports with the spring force F F stored in it in the form of tension energy a return movement from the first E 1 to the second extreme position E 2 .
  • a movement of the diaphragm 5 in the first extreme position E 1 leads to a reduction of the volume of the metering chamber 3, whereby an overpressure is generated.
  • the valve 8 closes the suction line 6 and the valve 9 of the pressure line 7 opens.
  • the delivery fluid F present in the metering chamber 3 is pressed into the pressure line 7.
  • the stepping motor 13 with a rotor and a stator functions properly and is not overloaded in particular, the rotor, following the electromagnetic stator rotating field, progressively passes through a plurality of discrete detent positions at a constant speed. Accordingly, the dosing diaphragm 5 is alternately alternately reciprocated between the two extreme positions E 1 , E 2 , which leads to a constant delivery of the delivery fluid F with predetermined dosing accuracy.
  • both the gross driving force F b applied to the displacing element 5 and the net driving force F n applied to the conveying fluid F and the delivery pressure p F can be determined.
  • the determination of these delivery quantities takes place by means of a determination device 14 as a component of the engine electronics.
  • the engine electronics 14 controls the stepper motor 13 so that the actually generated engine torque M M corresponds to the specified.
  • the generated engine torque M M can be determined by means of the determination device 14 and compared with the desired value S.
  • This comparison between the desired value S and the determined engine torque M M can serve as the basis for the detection and reporting of a malfunction in accordance with a predetermined criterion.
  • it is generally conceivable that such an adjustment is used to control the engine torque M M by means of the engine electronics 14 so that it corresponds to the desired value S or within a predetermined interval to the setpoint S.
  • a visual warning message can be output on the basis of this warning signal which reproduces the operating state of the metering pump 1, which is characterized by this criterion, outwardly.
  • the operating state to be displayed may, for example, be the normal operation of the pump 1 if the criterion is the torque provided for the pump 1 as the desired value S in normal operation. However, it may also be an operation in the increased load range if the criterion is, for example, a threshold value in the form of a torque which is at the upper end of the range permissible for the pump.
  • the criterion is a torque value above the maximum value allowed for the stepper motor 13.
  • the criterion as well as the operating state associated with it can also be dependent on other components of the pump 1 or the system in which the pump 1 is arranged. Is directed to such other components, so is particularly recommended a criterion which takes into account the signals generated by the provided motor torque M M conveying pressure p F.
  • a stricter criterion than the maximum value can be provided for the engine torque M M.
  • an independent criterion to be applied to the engine torque M M as well as to the delivery pressure p F independently of one another.
  • a weighted sum of the deviation between the two values ie the engine torque M M and the delivery pressure p F , can also be formed from a respective threshold value.
  • an automatic switch-off switches off the pump 1 upon receipt of a corresponding warning, in order to avoid damage to the system as well as consequential problems due to erroneous dosages.
  • the determination of the provided motor torque M M is carried out by a detection means 14 of the motor electronics UI is evaluated between the motor voltage U M and Motor current I M based on a counter electromotive force measuring on the stepping motor 13, in which the phase shift ⁇ .
  • a Such evaluation based on electrical measurements of the engine electronics 14 of the stepper motor 13 has the advantage that no additional sensors are necessary.
  • the measurement advantageously takes place in interval steps corresponding to the step size of the stepping motor 13, whereby a precise monitoring of the dosing accuracy even in partial strokes or cycles is possible.

Claims (14)

  1. Procédé de détection de dysfonctionnements d'une pompe volumétrique (1), dans lequel la pompe volumétrique (1) comporte un élément de déplacement mobile (5) pourvu d'une interface (AG) qui délimite une chambre de dosage (3), la chambre de dosage (3) étant reliée, par l'intermédiaire de soupapes (8, 9), à un conduit d'aspiration et de refoulement (6, 7) de telle sorte que, par un mouvement oscillant de l'élément de déplacement (5), le fluide pompé (F) peut, alternativement, être aspiré dans la chambre de dosage (3) via le conduit d'aspiration (6) et refoulé de la chambre de dosage (3) via le conduit de refoulement (7), et dans lequel un moteur pas-à-pas (13) est prévu en tant que commande d'entraînement pour le mouvement oscillant de l'élément de déplacement (5), caractérisé en ce qu'un couple moteur (MM) fourni par le moteur pas-à-pas (13) est déterminé et, lorsque le couple moteur (MM) déterminé remplit un premier critère prédéterminé, un signal d'avertissement est émis.
  2. Procédé selon la revendication 1, caractérisé en ce que le premier critère prédéterminé tient compte d'au moins l'une des grandeurs suivantes :
    la composante du couple moteur (MM) appliquée à l'élément de déplacement (5) par le moteur pas-à-pas (13) en tant que force d'entraînement brute (Fb),
    la composante de la force d'entraînement brute (Fb) appliquée au fluide pompé (F) par l'élément de déplacement (5) en tant que force d'entraînement nette (Fn), et
    la pression de refoulement (pF) agissant sur le fluide pompé (F) suivant la relation pF = Fn/AG.
  3. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce que l'on détermine, en outre, au moins la force d'entraînement brute (Fb), la force d'entraînement nette (Fn) ou, suivant la relation PF = Fn/AG, la pression de refoulement (pF).
  4. Procédé selon la revendication 3, caractérisé en ce qu'un signal d'avertissement est émis lorsque la force d'entraînement brute (Fb), la force d'entraînement nette (Fn) ou la pression de refoulement (pF) remplit le premier critère prédéterminé.
  5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que le critère respectif est choisi de telle sorte qu'un signal d'avertissement soit émis lorsque la grandeur correspondante du groupe comprenant le couple moteur (MM), la force d'entraînement brute (Fb), la force d'entraînement nette (Fn) et la pression de refoulement (pF) atteint ou dépasse une première valeur seuil prédéterminée ou lorsque la grandeur correspondante atteint ou est inférieure à une seconde valeur seuil prédéterminée.
  6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que le premier critère est choisi de telle sorte qu'un signal d'avertissement soit émis lorsqu'une somme pondérée des écarts relatifs du couple moteur (MM) et d'au moins une autre grandeur du groupe comprenant la force d'entraînement brute (Fb), la force d'entraînement nette (Fn) et la pression de refoulement (pF) par rapport à une valeur seuil respective atteint ou dépasse une valeur prédéterminée.
  7. Procédé selon l'une des revendications 1 à 6, caractérisé en ce que le couple moteur (MM) du moteur pas-à-pas (13) est détecté par détermination du décalage de phase (δUI) de la tension moteur (UM) par rapport au courant moteur (IM), qui est provoqué par une tension (Uind) mutuellement induite sur la base de l'angle de déphasage (δL) du moteur pas-à-pas (13).
  8. Procédé selon l'une des revendications 2 à 7, caractérisé en ce que la force d'entraînement brute (Fb) appliquée à l'élément de déplacement (5) par le moteur pas-à-pas (13) est déterminée sur la base d'un modèle de la cinématique d'entraînement du moteur pas-à-pas (13) et de l'élément de déplacement (5).
  9. Procédé selon l'une des revendications 1 à 8, caractérisé en ce que la pompe volumétrique (1) est une pompe de dosage, de préférence une pompe à diaphragme pourvue d'un élément de déplacement (5) sous la forme d'un diaphragme de dosage.
  10. Procédé selon la revendication 9, caractérisé en ce que la force d'entraînement nette (Fn) appliquée au fluide pompé (F) est déterminée à partir de la force d'entraînement brute (Fb) par soustraction de composantes de force qui ne sont pas appliquées directement au fluide pompé (F), en particulier par soustraction de la force de déformation (Fv) nécessaire à la déformation du diaphragme de dosage (5) et/ou de la force (FF) nécessaire à la tension d'un élément ressort (12), au moyen duquel le diaphragme de dosage (5) est contraint en direction de la position de refoulement ou dans la direction inverse.
  11. Procédé selon l'une des revendications 1 à 10, caractérisé en ce que plusieurs critères sont prédéterminés et, lorsqu'un critère est rempli, un signal d'avertissement caractéristique est émis pour le critère concerné.
  12. Procédé selon la revendication 11, caractérisé en ce qu'un événement de défaut est associé à chaque critère et, lorsqu'un critère est rempli, un événement de défaut associé est diagnostiqué, en particulier une surcharge et/ou un arrêt du moteur pas-à-pas (13).
  13. Procédé selon l'une des revendications 1 à 12, caractérisé en ce qu'un signal d'avertissement émis est transmis à un dispositif automatique de mise hors circuit qui arrête la pompe (1) en réponse à la réception du signal d'avertissement.
  14. Procédé selon l'une des revendications 1 à 13, caractérisé en ce qu'un signal d'avertissement émis est transmis à un dispositif de sortie qui émet une alerte acoustique et/ou visuelle caractéristique du signal d'avertissement en réponse à la réception du signal d'avertissement.
EP14194629.3A 2013-12-05 2014-11-25 Détection de pannes sans capteur pour des pompes de dosage dotées d'un moteur pas à pas Active EP2881584B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102013113576.5A DE102013113576A1 (de) 2013-12-05 2013-12-05 Sensorlose Störungserkennung bei Dosierpumpen mit Schrittmotor

Publications (2)

Publication Number Publication Date
EP2881584A1 EP2881584A1 (fr) 2015-06-10
EP2881584B1 true EP2881584B1 (fr) 2018-01-10

Family

ID=52016413

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14194629.3A Active EP2881584B1 (fr) 2013-12-05 2014-11-25 Détection de pannes sans capteur pour des pompes de dosage dotées d'un moteur pas à pas

Country Status (4)

Country Link
US (1) US20150159646A1 (fr)
EP (1) EP2881584B1 (fr)
CN (1) CN104763622A (fr)
DE (1) DE102013113576A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022126376A1 (de) 2022-10-11 2024-04-11 Prominent Gmbh Verfahren zur sensorlosen Detektion der Hubausführung bei einer Magnetpumpe

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017033015A1 (fr) * 2015-08-25 2017-03-02 Artemis Intelligent Power Limited Mesure et utilisation de propriétés de rigidité hydraulique d'appareil hydraulique
DE102016008783A1 (de) 2016-07-22 2018-01-25 Knf Flodos Ag Oszillierende Verdrängerpumpe mit elektrodynamischem Antrieb und Verfahren zu deren Betrieb
EP3591226B1 (fr) 2018-07-06 2022-02-16 Grundfos Holding A/S Pompe de dosage et procédé de commande d'une pompe de dosage

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992014930A1 (fr) 1991-02-19 1992-09-03 Milton Roy Company Systeme de detection d'une defaillance, base sur un courant statorique, dans une pompe volumetrique a debit variable
DE19623537A1 (de) 1996-06-13 1997-12-18 Bwt Wassertechnik Gmbh Dosierpumpe und Dosierverfahren für Flüssigkeiten
DE10033992A1 (de) 2000-07-12 2002-01-31 Grundfos As Fördervorrichtung mit einem stromgesteuerten Motor
WO2010146579A1 (fr) 2009-06-14 2010-12-23 Medingo Ltd. Dispositifs et procédés de reconnaissance de dysfonctionnements dans un dispositif d'administration thérapeutique
DE102010042491A1 (de) 2010-10-15 2012-05-03 BSH Bosch und Siemens Hausgeräte GmbH Pumpeneinrichtung für ein Hausgerät, Hausgerät und Verfahren zum Betreiben eines Antriebsmotors
DE102011000569A1 (de) 2010-11-09 2012-05-10 Trinamic Motion Control Gmbh & Co. Kg Verfahren und Schaltungsanordnung zur sensorlosen Motorlasterfassung und zur lastwertabhängigen Motorstromregelung bei einem Schrittmotor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH663701A5 (de) * 1984-04-10 1987-12-31 Sodeco Compteurs De Geneve Verfahren und einrichtung zur steuerung eines von einer gleichspannung gespeisten schrittmotors.
GB9104097D0 (en) * 1991-02-27 1991-04-17 Univ Hospital London Dev Corp Computer controlled positive displacement pump for physiological flow stimulation
DE9407983U1 (de) * 1994-05-13 1994-10-20 Siemens Ag Vorrichtung zum Antrieb eines Einphasen-Synchronmotors, insbesondere zum Antrieb eines Pumpenantriebes in einem Haushaltsgerät
DE19842029B4 (de) * 1998-09-14 2005-02-17 Sauer-Sundstrand Gmbh & Co. Verstellung von hydrostatischen Axialkolbenmaschinen mittels Schrittmotor
DE102010003218A1 (de) * 2010-03-24 2011-09-29 Prominent Dosiertechnik Gmbh Verfahren zum Steuern und/oder Regeln einer Dosierpumpe
EP2434635A1 (fr) * 2010-09-28 2012-03-28 Fresenius Kabi Deutschland GmbH Dispositif d'entraînement pour une pompe médicale dotée d'un moteur pas à pas
WO2012066090A1 (fr) * 2010-11-17 2012-05-24 Ksb Aktiengesellschaft Procédé et dispositif de réglage pour la régulation à vitesse variable d'un groupe pompe volumétrique et ensemble de pompe volumétrique

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992014930A1 (fr) 1991-02-19 1992-09-03 Milton Roy Company Systeme de detection d'une defaillance, base sur un courant statorique, dans une pompe volumetrique a debit variable
DE19623537A1 (de) 1996-06-13 1997-12-18 Bwt Wassertechnik Gmbh Dosierpumpe und Dosierverfahren für Flüssigkeiten
DE10033992A1 (de) 2000-07-12 2002-01-31 Grundfos As Fördervorrichtung mit einem stromgesteuerten Motor
WO2010146579A1 (fr) 2009-06-14 2010-12-23 Medingo Ltd. Dispositifs et procédés de reconnaissance de dysfonctionnements dans un dispositif d'administration thérapeutique
DE102010042491A1 (de) 2010-10-15 2012-05-03 BSH Bosch und Siemens Hausgeräte GmbH Pumpeneinrichtung für ein Hausgerät, Hausgerät und Verfahren zum Betreiben eines Antriebsmotors
DE102011000569A1 (de) 2010-11-09 2012-05-10 Trinamic Motion Control Gmbh & Co. Kg Verfahren und Schaltungsanordnung zur sensorlosen Motorlasterfassung und zur lastwertabhängigen Motorstromregelung bei einem Schrittmotor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"DDI 222 Dosierpumpe Montage- und Betriebsanleitung", GRUNDFOS ANLEITUNG,, 1 October 2010 (2010-10-01), pages 1 - 52, XP055610952

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022126376A1 (de) 2022-10-11 2024-04-11 Prominent Gmbh Verfahren zur sensorlosen Detektion der Hubausführung bei einer Magnetpumpe

Also Published As

Publication number Publication date
US20150159646A1 (en) 2015-06-11
CN104763622A (zh) 2015-07-08
EP2881584A1 (fr) 2015-06-10
DE102013113576A1 (de) 2015-06-11

Similar Documents

Publication Publication Date Title
EP1759117B1 (fr) Procede et dispositif de surveillance d'un courant fluidique refoule par une pompe
DE102009022891B3 (de) Verfahren zur elektronischen Verschleißzustandsermittlung bei einer Ventilanordnung
DE102010050619B4 (de) Verfahren zum Bestimmen einer einsetzenden vollen Einrückung einer Reibungskupplung und Verfahren zum Bestimmen eines Gefüllt-Zustandes eines Hydraulikzylinders zum Betätigen dieser
DE602004012500T2 (de) Verfahren zur Diagnose eines zyklischen Systems
EP2881584B1 (fr) Détection de pannes sans capteur pour des pompes de dosage dotées d'un moteur pas à pas
EP3039289B1 (fr) Procédé pour déterminer des paramètres hydrauliques dans une pompe à déplacement positif
EP2145112B2 (fr) Dispositif et procédé de surveillance de dysfonctionnements
DE102008062292A1 (de) Verfahren zur drucksensorischen Verschleißzustandsermittlung einer Ventilmechanik sowie pneumatisches Ventil
AT521016B1 (de) Verfahren und Vorrichtung zur Zustandsüberwachung einer Hydraulikpumpe
DE102008062289A1 (de) Verfahren zur weg- und drucksensorischen Verschleißzustandsermittlung einer Ventilmechanik sowie eine solche nutzende Ventilanordnung
DE102007003902A1 (de) Kupplungssystem und Verfahren zur Steuerung eines Kupplungssystems
DE19853333A1 (de) Kupplung
WO2015028385A1 (fr) Procédé de détermination d'une grandeur physique dans une pompe volumétrique
EP1770313B1 (fr) Procédé et dispositf destinés à l'utilisation d'un dispositif d'entraînement
DE10303889B3 (de) Diagnoseverfahren und -vorrichtung für einen pneumatischen Stellantrieb
DE102011115650B4 (de) Verfahren zur Diagnose des Zustandes einer hydrostatischen Verdrängermaschine und hydraulische Anordnung mit hydrostatischer Verdrängermaschine
EP3039288B2 (fr) Procédé pour optimiser les profils de dosage de pompes à déplacement positif
DE102010060550A1 (de) Sensor mit Verschleißerkennung
EP2118501B1 (fr) Procédé de détermination automatique de l'état d'un groupe hydraulique
EP3458201B1 (fr) Pompe à agent de revêtement
DE3244738A1 (de) Vorrichtung zur ueberwachung von ventilen einer intermittierend arbeitenden maschine
EP2203649B1 (fr) Procédé et dispositif pour l'indication de position d'accessoires de robinetterie à commande hydraulique
DE102018106174A1 (de) Verfahren zur Steuerung eines Kupplungsaktors
DE102016011403A1 (de) Unterdruckversorgungssystem und Betriebsverfahren dafür
DE102006043075A1 (de) Verfahren und Vorrichtung zum Betreiben einer Antriebseinrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141125

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20151107

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F04B 49/06 20060101AFI20170711BHEP

INTG Intention to grant announced

Effective date: 20170728

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER AND PEDRAZZINI AG, CH

Ref country code: AT

Ref legal event code: REF

Ref document number: 962716

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014006884

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180410

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180410

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180510

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502014006884

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

26 Opposition filed

Opponent name: GRUNDFOS HOLDING A/S

Effective date: 20181005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20181121

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20181123

Year of fee payment: 5

Ref country code: MC

Payment date: 20181114

Year of fee payment: 5

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20181120

Year of fee payment: 5

Ref country code: GB

Payment date: 20181120

Year of fee payment: 5

Ref country code: FR

Payment date: 20181123

Year of fee payment: 5

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180110

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20141125

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191202

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191125

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191125

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191125

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 962716

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191202

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 502014006884

Country of ref document: DE

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20211020

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231127

Year of fee payment: 10