EP2880385A1 - Kältegerät mit verdunstungsschale - Google Patents

Kältegerät mit verdunstungsschale

Info

Publication number
EP2880385A1
EP2880385A1 EP13737271.0A EP13737271A EP2880385A1 EP 2880385 A1 EP2880385 A1 EP 2880385A1 EP 13737271 A EP13737271 A EP 13737271A EP 2880385 A1 EP2880385 A1 EP 2880385A1
Authority
EP
European Patent Office
Prior art keywords
control unit
compressor motor
rotation
evaporation tray
storage chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP13737271.0A
Other languages
English (en)
French (fr)
Other versions
EP2880385B1 (de
Inventor
Achim Paulduro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BSH Hausgeraete GmbH
Original Assignee
BSH Hausgeraete GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BSH Hausgeraete GmbH filed Critical BSH Hausgeraete GmbH
Publication of EP2880385A1 publication Critical patent/EP2880385A1/de
Application granted granted Critical
Publication of EP2880385B1 publication Critical patent/EP2880385B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/14Collecting or removing condensed and defrost water; Drip trays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/025Motor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2321/00Details or arrangements for defrosting; Preventing frosting; Removing condensed or defrost water, not provided for in other groups of this subclass
    • F25D2321/14Collecting condense or defrost water; Removing condense or defrost water
    • F25D2321/141Removal by evaporation
    • F25D2321/1411Removal by evaporation using compressor heat

Definitions

  • the present invention relates to a refrigeration appliance, in particular a household refrigeration appliance such as a refrigerator or freezer, with an evaporation tray for evaporating condensate derived from a storage chamber of the device and a compressor through the waste heat, the evaporation tray is heated.
  • a refrigeration appliance in particular a household refrigeration appliance such as a refrigerator or freezer, with an evaporation tray for evaporating condensate derived from a storage chamber of the device and a compressor through the waste heat, the evaporation tray is heated.
  • Water level in the evaporation tray is critically high, are switched to the less efficient mode, in order to generate more waste heat and to evaporate the water in the evaporation tray faster.
  • a prerequisite for operation of the compressor even in the less efficient mode is that the storage chamber of the refrigeration appliance actually has cooling requirements. If you were to run the compressor without cooling the storage chamber, only to have enough heat to evaporate the condensation available, this would be highly energy-efficient, since only a portion of the electrical power absorbed by the compressor is actually converted into waste heat to evaporate the dew
  • cooling the storage chamber below a desired storage temperature brings no benefit or even cause frost damage to the refrigerated goods in the worst case.
  • Object of the present invention is to provide a refrigeration device with evaporation tray, in which, if necessary, at any time to provide heat to promote evaporation in the evaporation tray, without having its own
  • Heating device is required.
  • Compressor motor provides suitable current, and a Walker Häsmodus is switchable, in which it provides an unsuitable for driving the rotation current, i. a current that flows though the compressor motor and there releases Joule heat, but does not drive rotation.
  • such an unsuitable current for driving a rotation may be a direct current to which a single winding of the compressor motor is applied.
  • thermal load is distributed to different windings of the compressor motor.
  • the control unit comprises an inverter.
  • the compressor motor may comprise, in a conventional manner, at least three terminals which supply different windings of the compressor motor and are to be energized in a first order in order to drive a rotation of the compressor motor in a working direction.
  • the control circuit can then be set up in the
  • Heating mode to energize the terminals in a different order from the first order.
  • the windings of the compressor motor are so with the
  • Terminals are connected to generate a magnetic field with a first rotational direction rotating when energizing the terminals in the first order, and the armature of the motor starts to rotate by trying to align itself in the rotating field.
  • the second order may then be suitably chosen such that a magnetic field rotating with an alternating sense of rotation or an oscillating magnetic field is generated.
  • the armature tries to align itself in such a magnetic field, here the constant change of the field direction prevents the armature from being accelerated and a rotation starting up.
  • the control unit should be set up appropriately, the heat demand of
  • control unit To estimate the heat demand, the control unit with a at the
  • Humidity sensor With the aid of the measured values of such a sensor, the amount of moisture contained in the air of the storage chamber can be estimated, which in the near future will reach the evaporation tray as condensate.
  • the control unit can also be connected to a door opening sensor to estimate when and to what extent fresh and moist ambient air enters the storage chamber.
  • Fig. 1 is a schematic section through a household refrigerator, to which the present invention is applicable;
  • FIG. 2 is a schematic circuit diagram of an inverter used in the refrigerator of FIG. 1; FIG. and
  • Fig. 3 shows the timing of the inverter in the
  • Compressor motor of the refrigerator applied switching states Compressor motor of the refrigerator applied switching states.
  • the household refrigerating appliance shown in Fig. 1, here a refrigerator has in a usual way a heat-insulating housing with a body 1 and a lying outside the cutting plane of the figure door, which limits a storage chamber 3 together with the body 1.
  • the storage chamber 3 is here by a on its rear wall 2 between a
  • Nofrost freezer as this, at least in a defrosting phase of its evaporator, also releases condensation.
  • the base extends through the
  • Condensation water which precipitates at the area of the inner container cooled by the evaporator 4 and flows downwards, traps.
  • a pipeline 8 leads from the lowest point of the gutter 7 through the insulating foam layer through to an evaporation tray 9, which in a machine room 5 on a housing of a
  • Compressor 6 is mounted to be heated by waste heat of the compressor, in particular its drive motor.
  • a corresponding pipeline could emanate from the bottom of a chamber receiving the evaporator.
  • the compressor 6 is common in the art and therefore not specifically in a figure
  • a pressure connection of the compressor 6 in a row one e.g. Condenser mounted outside on the rear wall 2, a throttle and the evaporator 4 are connected.
  • An outlet of the evaporator 4 is in turn connected to a suction port of the compressor 6.
  • An electronic control unit 10 comprises a microprocessor or microcontroller which is connected to a temperature sensor 11 arranged on the storage chamber 3 in order to control the operation of the compressor 6 on the basis of the temperature of the storage chamber 3.
  • the control unit 10 is also adapted to estimate the amount of heat needed by the evaporation tray 9 to evaporate the condensation water flowing in it fast enough so that the evaporation tray 9 does not overflow.
  • a water level sensor 12 e.g. a float switch in the
  • Evaporation tray 9 may be arranged, and the control unit 10 detects a
  • Numerous other approaches for assessing the heat demand are conceivable, even those that do not require immediate measurement of the water level in the evaporation tray 9.
  • a temperature sensor may be provided which detects a heating resulting from the operation of the compressor 6. From the rate of warming can affect the amount of water in the
  • Evaporation tray 9 are closed.
  • Storage chamber 3 may be provided.
  • a temperature sensor arranged on the evaporator 4, the
  • Speed can be measured, with which cools when turning on the compressor 6, the evaporator 4, and from this, the control unit 10 can infer the rate at which precipitates moisture on the evaporator 4, which later in the
  • FIG. 2 shows a block diagram of the control unit 10 and the motor 13 of the compressor 6 which it controls.
  • a microprocessor 14 controls six switches SU 1, SV 1, SW 1, SU 2, SV 2, SW 2 of an inverter 15, of which the switches SU 1, SV 1 , SW1 are arranged between a positive supply potential (+) and a terminal or phase U, V or W of the motor 13, and the switches SU2, SV2, SW2 each between one of these three terminals or phases and a negative supply potential (-) arranged are.
  • the switches may, in a manner known per se, be IGBTs with a freewheeling diode or MOSFETs connected in parallel.
  • the microprocessor 14 can with the above-mentioned, with the sensors 1 1, 12th be connected microprocessor identical, or it may be a second, responsible only for the sequence control of the motor 13 microprocessor. In the latter case, the two microprocessors will usually be mounted separately from each other, one in the vicinity of a user interface whose inputs it processes, the other 14 adjacent to the motor 13 controlled by it.
  • Three stator windings 16 of the motor 13 are arranged here in a star connection between the phases U, V, W. It will be obvious to a person skilled in the art that a triangular circuit is also suitable, or that the number of phases and windings can also be greater than three.
  • the microprocessor 14 periodically generates various switching states over time t, here six, designated by a, b, f in FIG.
  • FIG. 3 shows, for each of the switching states a to f, the state of the switches of the converter 15 and the resulting voltages at the connection terminals U, V, W of the motor 13.
  • the switches SU1, SW1 are closed.
  • the switches SU2, SW2, SV1 are open and the switch SV2 is pulsed open and closed.
  • Terminals U, V and V, W of the motor 13, and the resulting magnetic fields of the stator windings 16 are superimposed to a space vector u a .
  • the switches SV2, SW2 are open, SU2, SV1, SW1 are closed and SU1 is pulse-width-modulated; accordingly, current flows through the terminals U; V and U, W, resulting in a space vector u, which is opposite to u a by 60 ° in
  • the frequency with which the states a to f follow each other must be adapted to the rotational frequency of the armature. It may for example be controlled by means of a Hall sensor 17, which is arranged on the motor 13 and is exposed to the field of its rotating armature, or a sensorless
  • control unit 10 can energize the connection terminals U, V, W of the motor 13 in the heating operating mode.
  • One possibility is, for example, one of the switching states a to f over the entire duration of the heating operating mode
  • a second possibility is to energize the connection terminals U, V, W so that an oscillating space vector is obtained instead of a rotating space vector. This is possible, for example, by periodically switching between the states a and d. If the switching frequency between the two states is high, then the duration of, for example, the state a is not sufficient to bring the rotor into a stable equilibrium position corresponding to the space vector u a , and any rotation of the rotor that has already begun is immediately decelerated again in state d, so that the rotor trembles at most slightly, but no rotation gets going. If the switching frequency is so low that a stable equilibrium position is reached in state a, then this corresponds to
  • the distribution of the heating power to the stator windings 16 in this embodiment is the same as in the first considered case in which the switching state a is maintained throughout the heating operation. However, since the armature is not rotated, it is possible here and there to occasionally switch from pair of states a, d to another pair such as b, e or c, f so as to distribute the heating power more uniformly to the windings. According to a third embodiment, three also change in the heating mode

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Removal Of Water From Condensation And Defrosting (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Compressor (AREA)

Abstract

Ein Kältegerät, insbesondere ein Haushaltskältegerät, umfasst wenigstens eine Lagerkammer (3), eine Verdunstungsschale (9) zum Verdunsten von aus der Lagerkammer (3) abgeleitetem Tauwasser, einen in thermischem Kontakt mit der Verdunstungsschale (9) angeordneten Verdichtermotor (13) und eine Steuereinheit (10), die zwischen einem Antriebsbetriebsmodus, in dem sie einem zum Antreiben einer Drehung des Verdichtermotors (13) geeigneten Strom liefert, und einem Heizbetriebsmodus umschaltbar ist, in dem sie einen zum Antreiben der Drehung ungeeigneten Strom liefert.

Description

Kältegerät mit Verdunstungsschale
Die vorliegende Erfindung betrifft ein Kältegerät, insbesondere ein Haushaltskältegerät wie etwa einen Kühl- oder Gefrierschrank, mit einer Verdunstungsschale zum Verdunsten von aus einer Lagerkammer des Geräts abgeleitetem Tauwasser und einem Verdichter, durch dessen Abwärme die Verdunstungsschale beheizbar ist.
Verbesserungen der Isolation und der Kälteerzeugung führen an modernen Kältegeräten dazu, dass das Verhältnis von anfallendem Tauwasser zur am Verdichter verfügbaren Abwärme immer ungünstiger wird. Wenn der Verdichter nicht genügend Abwärme liefert, um das Tauwasser zu verdunsten, besteht die Gefahr, dass die Verdunstungsschale überläuft und auslaufendes Wasser zu Schäden im Kältegerät oder dessen Umgebung führt. Um eine ausreichende Verdunstung gewährleisten zu können, wurde z.B. in DE 102 08 558 A1 vorgeschlagen, an der Verdunstungsschale eine elektrische Heizeinrichtung und einen Wasserstandssensor anzubringen, der bei Überschreitung eines
Grenzwasserstandes die Heizeinrichtung einschaltet. Eine solche Heizeinrichtung muss einerseits zwar in engem thermischen Kontakt mit dem Wasser in der
Verdunstungsschale stehen, andererseits aber muss sie vor unmittelbarem Kontakt mit dem Wasser dauerhaft sicher geschützt angebracht und kontaktiert sein, was die
Fertigungskosten eines damit ausgestatteten Kältegeräts erhöht.
In der nicht vorveröffentlichten deutschen Patentanmeldung 10201 1085153.4, eingereicht am 25.10.201 1 , ist ein Kältegerät mit Verdunstungsschale und einem drehzahlgeregelten Verdichter beschrieben. Der Verdichter ist zwischen zwei Betriebsmodi umschaltbar, die sich in ihrer Drehzahl und infolgedessen auch in der Effizienz der Kälteerzeugung unterscheiden. Während bei niedrigem Wasserstand in der Verdunstungsschale der Verdichter im hoch effizienten Betriebsmodus arbeiten sollte, kann er, wenn der
Wasserstand in der Verdunstungsschale kritisch hoch ist, in den minder effizienten Modus umgeschaltet werden, um auf diese Weise mehr Abwärme zu erzeugen und das Wasser in der Verdunstungsschale schneller zu verdunsten. Voraussetzung für einen Betrieb des Verdichters auch im minder effizienten Modus ist jedoch, dass die Lagerkammer des Kältegeräts tatsächlich Kühlbedarf hat. Würde man den Verdichter auch ohne Kühlbedarf der Lagerkammer betreiben, nur um genügend Wärme zum Verdunsten des Tauwassers zur Verfügung zu haben, so wäre dies energetisch hoch ineffizient, da nur ein Teil der vom Verdichter aufgenommenen elektrischen Leistung tatsächlich in Abwärme zum Verdunsten des Tauwassers umgewandelt wird, eine Kühlung der Lagerkammer unter eine Soll-Lagertemperatur jedoch keinen Nutzen bringt oder im schlimmsten Fall sogar Frostschäden am Kühlgut hervorrufen kann.
Aufgabe der vorliegenden Erfindung ist, ein Kältegerät mit Verdunstungsschale zu schaffen, bei dem bei Bedarf zu jeder Zeit Wärme zum Fördern der Verdunstung in der Verdunstungsschale bereitgestellt werden kann, ohne dass hierfür eine eigene
Heizvorrichtung erforderlich ist.
Die Aufgabe wird gelöst, indem bei einem Kältegerät, insbesondere einem
Haushaltskältegerät, mit wenigstens einer Lagerkammer, einer Verdunstungsschale zum Verdunsten von aus der Lagerkammer abgeleitetem Tauwasser, einem in thermischem Kontakt mit der Verdunstungsschale angeordneten Verdichtermotor und einer
Steuereinheit zum Versorgen des Verdichtermotors mit Strom die Steuereinheit zwischen einem Antriebsmodus, in dem sie einen zum Antreiben einer Drehung des
Verdichtermotors geeigneten Strom liefert, und einem Heizbetriebsmodus umschaltbar ist, in dem sie einen zum Antreiben der Drehung ungeeigneten Strom liefert, d.h. einen Strom, der zwar durch den Verdichtermotor fließt und dort joulesche Wärme freisetzt, dabei aber keine Drehung antreibt.
Im einfachsten Fall kann ein solcher zum Antreiben einer Drehung ungeeigneter Strom ein Gleichstrom sein, mit dem eine einzelne Wicklung des Verdichtermotors beaufschlagt wird.
Bevorzugt sind allerdings Ausgestaltungen, bei denen sich die thermische Belastung auf verschiedene Wicklungen des Verdichtermotors verteilt. Eine solche Verteilung ist insbesondere dann auf einfache Weise realisierbar, wenn die Steuereinheit einen Umrichter umfasst.
Der Verdichtermotor kann in an sich üblicher Weise wenigstens drei Anschlussklemmen aufweisen, die verschiedene Wicklungen des Verdichtermotors versorgen und in einer ersten Reihenfolge zu bestromen sind, um eine Drehung des Verdichtermotors in einer Arbeitsrichtung anzutreiben. Die Steuerschaltung kann dann eingerichtet sein, im
Heizbetriebsmodus die Anschlussklemmen in einer von der ersten Reihenfolge abweichenden zweiten Reihenfolge zu bestromen. Herkömmlicherweise sind die Wicklungen des Verdichtermotors so mit den
Anschlussklemmen verbunden, dass sie beim Bestromen der Anschlussklemmen in der ersten Reihenfolge ein mit einem ersten Drehsinn rotierendes Magnetfeld erzeugen, und der Anker des Motors kommt ins Rotieren, indem er sich in dem rotierenden Feld auszurichten versucht. Die zweite Reihenfolge kann dann zweckmäßigerweise so gewählt sein, dass ein mit wechselndem Drehsinn rotierendes Magnetfeld oder ein oszillierendes Magnetfeld erzeugt wird. Zwar versucht der Anker auch in einem solchen Magnetfeld, sich auszurichten, doch verhindert hier der ständige Wechsel der Feldrichtung, dass der Anker beschleunigt wird und eine Drehung in Gang kommt. Die Steuereinheit sollte zweckmäßigerweise eingerichtet sein, den Wärmebedarf der
Verdunstungsschale abzuschätzen und anhand des geschätzten Wärmebedarfs zwischen Antriebsbetriebsmodus und Heizbetriebsmodus zu wählen.
Um den Wärmebedarf abzuschätzen kann die Steuereinheit mit einem an der
Verdunstungsschale angeordneten Wasserstandssensor verbunden sein.
Es kommen aber auch indirekte Methoden zur Bestimmung des Wärmebedarfs in
Betracht, wie etwa mit Hilfe eines in der Lagerkammer angeordneten
Feuchtigkeitssensors. Mit Hilfe der Messwerte eines solchen Sensors kann die in der Luft der Lagerkammer enthaltene Feuchtigkeitsmenge abgeschätzt werden, die in näherer Zukunft als Kondenswasser in die Verdunstungsschale gelangen wird. Zweckmäßigerweise kann die Steuereinheit auch noch mit einem Türöffnungssensor verbunden sein, um abzuschätzen, wann und in welchem Umfang frische und feuchte Umgebungsluft in die Lagerkammer gelangt.
Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen unter Bezugnahme auf die beigefügten Figuren. Aus dieser Beschreibung und den Figuren gehen auch Merkmale der
Ausführungsbeispiele hervor, die nicht in den Ansprüchen erwähnt sind. Solche Merkmale können auch in anderen als den hier spezifisch offenbarten Kombinationen auftreten. Die Tatsache, dass mehrere solche Merkmale in einem gleichen Satz oder in einer anderen Art von Textzusammenhang miteinander erwähnt sind, rechtfertigt daher nicht den Schluss, dass sie nur in der spezifisch offenbarten Kombination auftreten können;
stattdessen ist grundsätzlich davon auszugehen, dass von mehreren solchen Merkmalen auch einzelne weggelassen oder abgewandelt werden können, sofern dies die
Funktionsfähigkeit der Erfindung nicht in Frage stellt. Es zeigen:
Fig. 1 einen schematischen Schnitt durch ein Haushaltskältegerät, an dem die vorliegende Erfindung anwendbar ist;
Fig. 2 ein schematisches Schaltbild eines in dem Kältegerät der Fig. 1 verwendeten Umrichters; und
Fig. 3 den zeitlichen Ablauf der von dem Umrichter im
Antriebsbetriebsmodus zyklisch wiederkehrend an den
Verdichtermotor des Kältegeräts angelegten Schaltzustände.
Das in Fig. 1 gezeigte Haushaltskältegerät, hier ein Kühlschrank hat in fachüblicher Weise ein wärmeisolierendes Gehäuse mit einem Korpus 1 und eine außerhalb der Schnittebene der Figur liegende Tür, die zusammen mit dem Korpus 1 eine Lagerkammer 3 begrenzt. Die Lagerkammer 3 ist hier durch einen an ihrer Rückwand 2 zwischen einem
Innenbehälter des Korpus 1 und einer diesen umgebenden isolierenden
Schaumstoffschicht angeordneten Coldwall-Verdampfer 4 gekühlt, doch dürfte für den Fachmann unmittelbar einsichtig sein, dass die im Folgenden erläuterten Besonderheiten der Erfindung auch in Verbindung mit beliebigen anderen Typen von Verdampfern, insbesondere einem Nofrost-Verdampfer, anwendbar sind. Denkbar ist auch die
Anwendung auf ein Nofrost-Gefriergerät, da dieses, zumindest in einer Abtauphase seines Verdampfers, ebenfalls Tauwasser abgibt.
Beim hier betrachteten Coldwall-Kältegerät erstreckt sich am Fuße der durch den
Verdampfer 4 gekühlten Rückwand der Lagerkammer 3 eine Auffangrinne 7, die
Tauwasser, das sich an dem vom Verdampfer 4 gekühlten Bereich des Innenbehälters niederschlägt und daran abwärts fließt, auffängt. Eine Rohrleitung 8 führt vom tiefsten Punkt der Auffangrinne 7 durch die isolierende Schaumstoffschicht hindurch zu einer Verdunstungsschale 9, die in einem Maschinenraum 5 auf einem Gehäuse eines
Verdichters 6 montiert ist, um durch Abwärme des Verdichters, insbesondere seines Antriebsmotors, beheizt zu werden.
Bei einem Nofrost-Kältegerät könnte eine entsprechende Rohrleitung vom Boden einer den Verdampfer aufnehmenden Kammer ausgehen.
Der Verdichter 6 ist in fachüblicher und deshalb hier nicht eigens in einer Figur
dargestellter Weise Teil eines Kältemittelkreises, in dem an einen Druckanschluss des Verdichters 6 hintereinander ein z.B. außen an der Rückwand 2 montierter Verflüssiger, eine Drossel und der Verdampfer 4 angeschlossen sind. Ein Ausgang des Verdampfers 4 ist wiederum mit einem Sauganschluss des Verdichters 6 verbunden.
Eine elektronische Steuereinheit 10 umfasst einen Mikroprozessor oder Mikrocontroller, der mit einem an der Lagerkammer 3 angeordneten Temperatursensor 1 1 verbunden ist, um den Betrieb des Verdichters 6 anhand der Temperatur der Lagerkammer 3 zu steuern. Die Steuereinheit 10 ist außerdem eingerichtet, um die Wärmemenge abzuschätzen, die die Verdunstungsschale 9 benötigt, um das ihr zufließende Tauwasser schnell genug zu verdampfen, damit die Verdunstungsschale 9 nicht überläuft. Im einfachsten Fall kann hierfür ein Wasserstandssensor 12, z.B. ein Schwimmerschalter, in der
Verdunstungsschale 9 angeordnet sein, und die Steuereinheit 10 erkennt einen
Wärmebedarf der Verdunstungsschale 9, wenn der Wasserstandssensor 12 das Wasser in der Schale 9 berührt, bzw. keinen Wärmebedarf, wenn der Wasserspiegel unterhalb des Wasserstandssensors 12 liegt. Zahlreiche andere Ansätze zur Beurteilung des Wärmebedarfs sind denkbar, auch solche, die keine unmittelbare Messung des Wasserstandes in der Verdunstungsschale 9 fordern. So kann z.B. am Boden der Verdunstungsschale 9 ein Temperatursensor vorgesehen sein, der eine aus dem Betrieb des Verdichters 6 resultierende Erwärmung erfasst. Aus der Geschwindigkeit der Erwärmung kann auf die Menge des Wassers in der
Verdunstungsschale 9 geschlossen werden.
Andere alternative Ansätze zur Beurteilung des Wärmebedarfs können z.B. auf der Abschätzung des Feuchtigkeitseintrags in die Lagerkammer 3 basieren, etwa indem, etwa mittels eines von der Tür betätigten Schalters, die Zahl und eventuell die Dauer von Türöffnungen erfasst und daraus die in die Lagerkammer 3 eingedrungene Menge an Luftfeuchtigkeit abgeschätzt wird, die im Laufe der Zeit die Verdunstungsschale 9 erreichen wird. Ergänzend kann hierfür noch ein Luftfeuchtigkeitssensor an der
Lagerkammer 3 vorgesehen sein. Mittels eines am Verdampfer 4 angeordneten Temperatursensors kann die
Geschwindigkeit gemessen werden, mit der sich beim Einschalten des Verdichters 6 der Verdampfer 4 abkühlt, und daraus kann die Steuereinheit 10 auf die Rate rückschließen, mit der sich Feuchtigkeit am Verdampfer 4 niederschlägt, die später in der
Verdunstungsschale 9 landen wird.
Im Falle eines Gefriergeräts erlaubt auch die Erfassung der beim Abtauen eingesetzten Menge an Wärmeenergie eine Abschätzung der dadurch aufgetauten und in die
Verdunstungsschale 9 fließenden Wassermenge. Eine solche Erfassung kann
insbesondere auf einer Messung der Dauer des Abtauvorgangs basieren.
Fig. 2 zeigt ein Blockschaltbild der Steuereinheit 10 und des von ihr angesteuerten Motors 13 des Verdichters 6. Ein Mikroprozessor 14 steuert sechs Schalter SU 1 , SV1 , SW1 , SU2, SV2, SW2 eines Umrichters 15, von denen jeweils die Schalter SU1 , SV1 , SW1 zwischen einem positiven Versorgungspotential (+) und einer Anschlussklemme oder Phase U, V bzw. W des Motors 13 angeordnet sind, und die Schalter SU2, SV2, SW2 jeweils zwischen einer dieser drei Anschlussklemmen oder Phasen und einem negativen Versorgungspotential (-) angeordnet sind. Bei den Schaltern kann es sich in an sich bekannter Weise um IGBTs mit einer parallel geschalteten Freilaufdiode oder MOSFETs handeln. Der Mikroprozessor 14 kann mit dem oben erwähnten, mit den Sensoren 1 1 , 12 verbundenen Mikroprozessor identisch sein, oder es kann sich um einen zweiten, nur für die Sequenzsteuerung des Motors 13 zuständigen Mikroprozessor handeln. In letzterem Falle werden die beiden Mikroprozessoren meist örtlich voneinander getrennt montiert sein, einer in der Nähe einer Benutzerschnittstelle, deren Eingaben er verarbeitet, der andere 14 benachbart zum von ihm gesteuerten Motor 13.
Drei Ständerwicklungen 16 des Motors 13 sind hier in einer Sternschaltung zwischen den Phasen U, V, W angeordnet. Für den Fachmann dürfte auf der Hand liegen, dass eine Dreiecksschaltung ebenfalls in Betracht kommt, bzw. dass die Zahl der Phasen und Wicklungen auch größer als drei sein kann.
Im Antriebsbetriebsmodus erzeugt der Mikroprozessor 14 im Laufe der Zeit t zyklisch wiederkehrend verschiedene Schaltzustände, hier sechs Stück, die in Fig. 3 mit a, b, f bezeichnet sind. Fig. 3 zeigt für jeden der Schaltzustände a bis f den Zustand der Schalter des Umrichters 15 sowie die daraus resultierenden Spannungen an den Anschlussklemmen U, V, W des Motors 13. Im Zustand a sind die Schalter SU1 , SW1 geschlossen. Die Schalter SU2, SW2, SV1 sind offen und der Schalter SV2 wird gepulst geöffnet und geschlossen.
Entsprechend dem Tastverhältnis des Schalters SV2 fließt Strom durch die
Anschlussklemmen U, V bzw. V, W des Motors 13, und die resultierenden Magnetfelder der Ständerwicklungen 16 überlagern sich zu einem Raumzeiger ua. Im nachfolgenden Schaltzustand b sind die Schalter SV2, SW2 offen, SU2, SV1 , SW1 sind geschlossen und SU1 ist pulsbreitenmoduliert; entsprechend fließt Strom durch die Anschlussklemmen U; V und U, W, und es resultiert ein Raumzeiger u , der gegenüber ua um 60° im
Gegenuhrzeigersinn gedreht ist. Die Zustände geschlossen, offen, pulsbreitenmoduliert der Schalter für die Zustände c, d, e, f, sowie die daraus resultierenden Stromverteilungen in den Ständerwicklungen 16 und Raumzeiger können aus Fig. 3 abgelesen werden und brauchen hier nicht im Detail erläutert zu werden. Wesentlich ist, dass die
Aufeinanderfolge der Zustände a, b, f, a eine kontinuierliche Raumzeigerdrehung von 360° ergibt.
Um den Anker des Motors 13 wirksam anzutreiben, muss die Frequenz, mit der die Zustände a bis f aufeinander folgen, an die Drehfrequenz des Ankers angepasst sein. Sie kann z.B. gesteuert sein mit Hilfe eines Hallsensors 17, der am Motor 13 angeordnet und dem Feld von dessen rotierendem Anker ausgesetzt ist, oder einer sensorlosen
Lageerkennung.
Es gibt verschiedene Möglichkeiten, wie die Steuereinheit 10 die Anschlussklemmen U, V, W des Motors 13 im Heizbetriebsmodus bestromen kann. Eine Möglichkeit ist z.B., einen der Schaltzustände a bis f über die gesamte Dauer des Heizbetriebsmodus
beizubehalten. Wie man leicht sieht, ist z.B. im Zustand a die Stromstärke auf der
Klemme V doppelt so hoch wie an den Klemmen U, W, und dementsprechend ist auch die Wärmeentwicklung ungleichmäßig auf die Ständerwicklungen 16 verteilt. Daher muss in diesem Falle das Tastverhältnis so begrenzt sein, dass eine Überhitzung auch der am stärksten beanspruchten Ständerwicklung 16 ausgeschlossen ist.
Eine zweite Möglichkeit ist, die Anschlussklemmen U, V, W so zu bestromen, dass anstelle eines rotierenden Raumzeigers ein oszillierender Raumzeiger erhalten wird. Dies ist z.B. möglich durch periodisches Umschalten zwischen den Zuständen a und d. Wenn die Umschaltfrequenz zwischen den zwei Zuständen hoch ist, dann genügt die Dauer z.B. des Zustands a nicht, um den Rotor in eine den Raumzeiger ua entsprechende stabile Gleichgewichtsstellung zu bringen, und eine eventuell begonnene Drehung des Rotors wird in Zustand d sofort wieder abgebremst, so dass der Rotor allenfalls geringfügig zittert, aber keine Drehung in Gang kommt. Ist die Umschaltfrequenz so niedrig, dass im Zustand a eine stabile Gleichgewichtsstellung erreicht wird, dann entspricht diese im
Zustand d einem labilen Gleichgewicht, so dass wiederum keine Drehung in Gang kommt.
Die Verteilung der Heizleistung auf die Ständerwicklungen 16 ist bei dieser Ausgestaltung dieselbe wie in dem zuerst betrachteten Fall, in dem der Schaltzustand a während des gesamten Heizbetriebs beibehalten wird. Da der Anker nicht in Drehung versetzt wird, besteht hier jedoch die Möglichkeit, gelegentlich vom Zustandspaar a, d auf ein anderes Paar wie etwa b, e oder c, f umzuschalten, um so die Heizleistung gleichmäßiger auf die Wicklungen zu verteilen. Einer dritten Ausgestaltung zufolge wechseln sich im Heizbetriebsmodus drei auch im
Arbeitsbetriebsmodus aufeinanderfolgende Schaltzustände zyklisch ab, z.B. die Zustände a, b, c. Wie man anhand von Fig. 3 leicht nachvollziehen kann, führt in jedem dieser drei Zustände eine andere der drei Anschlussklemmen U, V, W die doppelte Stromstärke, so dass die Heizleistung sich gleichmäßig auf alle Ständerwicklungen 16 verteilt. Der Raumzeiger führt, wenn die Zustände a, b, c aufeinanderfolgen zwar eine Drehung um 120° aus, doch wenn auf den Zustand c wieder a folgt, resultiert daraus wiederum ein abbremsendes Drehmoment auf den Anker, so dass keine Drehung in Gang kommt. Der Motor 13 erzeugt somit ausschließlich Wärme, ohne mechanische Arbeit zu leisten. Daher kann das Wasser in der Verdunstungsschale 9 zügig verdampft werden, auch und vor allem dann, wenn die Lagerkammer 3 keinen Kältebedarf hat.
Es liegt auf der Hand, dass es je nach Bauart des Elektromotors 13 unterschiedliche Wege geben kann, um seine Wicklungen so zu bestromen, dass zwar Wärme erzeugt wird, im zeitlichen Mittel aber kein Drehmoment auf den Anker wirkt. So ist es bei einem Motor mit einer geraden Zahl von Wicklungen die Wicklungen im Allgemeinen paarweise parallel ausgerichtet. Wenn die zwei Wicklungen eines solchen Paars gegensinnig bestromt werden, heben sich ihre Magnetfelder gegenseitig auf und treiben keine
Drehung an. Um eine hohe Heizleistung zu erzielen, können mehrere Paare gleichzeitig bestromt werden.
BEZUGSZEICHEN
Korpus
Rückwand
Lagerkammer
Verdampfer
Maschinenraum
Verdichter
Auffangrinne
Rohrleitung
Verdunstungsschale
Steuereinheit
Temperatursensor
Wasserstandssensor
Motor
Mikroprozessor
Umrichter
Statorwicklung
Hallsensor

Claims

PATENTANSPRÜCHE
1. Kältegerät, insbesondere Haushaltskältegerät, mit wenigstens einer Lagerkammer (3), einer Verdunstungsschale (9) zum Verdunsten von aus der Lagerkammer (3) abgeleitetem Tauwasser, einem in thermischem Kontakt mit der
Verdunstungsschale (9) angeordneten Verdichtermotor (13) und einer
Steuereinheit (10) zum Versorgen des Verdichtermotors (13) mit Strom, dadurch gekennzeichnet, dass die Steuereinheit (10) zwischen einem
Antriebsbetriebsmodus, in dem sie einem zum Antreiben einer Drehung des Verdichtermotors (13) geeigneten Strom liefert, und einem Heizbetriebsmodus umschaltbar ist, in dem sie einen zum Antreiben der Drehung ungeeigneten Strom liefert.
2. Kältegerät nach Anspruch 1 , dadurch gekennzeichnet, dass die Steuereinheit (10) einen Umrichter (15) umfasst.
3. Kältegerät nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der
Verdichtermotor (13) wenigstens drei Anschlussklemmen (U, V, W) aufweist, die in einer ersten Reihenfolge zu bestromen sind, um eine Drehung des
Verdichtermotors (13) in einer Arbeitsrichtung anzutreiben, und dass die
Steuereinheit (10) eingerichtet ist, im Heizbetriebsmodus die Anschlussklemmen (U, V, W) in einer von der ersten Reihenfolge abweichenden zweiten Reihenfolge zu bestromen.
4. Kältegerät nach Anspruch 3, dadurch gekennzeichnet, dass Wicklungen (16) des Verdichtermotors (13) so mit den Anschlussklemmen (U, V, W) verbunden sind, dass sie beim Bestromen der Anschlussklemmen (U, V, W) in der ersten
Reihenfolge ein mit einem ersten Drehsinn rotierendes Magnetfeld erzeugen, und dass die zweite Reihenfolge so gewählt ist, dass ein mit wechselndem Drehsinn rotierendes Magnetfeld oder ein oszillierendes Magnetfeld erzeugt wird.
5. Kältegerät nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Steuereinheit (10) eingerichtet ist, den Wärmebedarf der Verdunstungsschale (9) abzuschätzen und anhand des geschätzten
Wärmebedarfs zwischen Antriebsbetriebsmodus und Heizbetriebsmodus zu wählen.
6. Kältegerät nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Steuereinheit (10) mit einem an der Verdunstungsschale (9)
angeordneten Wasserstandssensor (12) verbunden ist.
EP13737271.0A 2012-07-31 2013-07-17 Kältegerät mit verdunstungsschale Active EP2880385B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012213468.9A DE102012213468A1 (de) 2012-07-31 2012-07-31 Kältegerät mit Verdunstungsschale
PCT/EP2013/065062 WO2014019850A1 (de) 2012-07-31 2013-07-17 Kältegerät mit verdunstungsschale

Publications (2)

Publication Number Publication Date
EP2880385A1 true EP2880385A1 (de) 2015-06-10
EP2880385B1 EP2880385B1 (de) 2018-08-15

Family

ID=48793271

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13737271.0A Active EP2880385B1 (de) 2012-07-31 2013-07-17 Kältegerät mit verdunstungsschale

Country Status (4)

Country Link
EP (1) EP2880385B1 (de)
CN (1) CN104508409B (de)
DE (1) DE102012213468A1 (de)
WO (1) WO2014019850A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3745054B1 (de) 2019-05-29 2022-11-23 Liebherr-Hausgeräte Ochsenhausen GmbH Kühl- und/oder gefriergerät
DE102019118784A1 (de) * 2019-05-29 2020-12-03 Liebherr-Hausgeräte Ochsenhausen GmbH Kühl- und/oder Gefriergerät
CN111884553A (zh) * 2020-08-04 2020-11-03 儒竞艾默生环境优化技术(上海)有限公司 压缩机预加热的电流矢量控制方法、介质、设备及系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3083959B2 (ja) * 1994-07-25 2000-09-04 シャープ株式会社 冷蔵庫
US6629429B1 (en) * 1999-03-12 2003-10-07 Matsushita Refrigeration Company Refrigerator
DE19956995A1 (de) * 1999-11-26 2001-05-31 Bsh Bosch Siemens Hausgeraete Kältegerät
DE10208558A1 (de) 2002-02-27 2003-09-04 Vasilios Zigaris Verdunstungswanne
DE10352742A1 (de) * 2003-11-12 2005-06-09 BSH Bosch und Siemens Hausgeräte GmbH Kältegerät mit verbesserter Kondenswasserbeseitigung
DE102004012498A1 (de) * 2004-03-15 2005-10-06 BSH Bosch und Siemens Hausgeräte GmbH Kältegerät
JP4931970B2 (ja) * 2009-08-10 2012-05-16 三菱電機株式会社 空気調和機
JP2011102674A (ja) * 2009-11-11 2011-05-26 Mitsubishi Electric Corp 空気調和機
DE102011085153A1 (de) 2011-10-25 2013-04-25 BSH Bosch und Siemens Hausgeräte GmbH Kältegerät mit Verdunstungsschale

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2014019850A1 *

Also Published As

Publication number Publication date
CN104508409A (zh) 2015-04-08
DE102012213468A1 (de) 2014-02-06
CN104508409B (zh) 2016-09-07
EP2880385B1 (de) 2018-08-15
WO2014019850A1 (de) 2014-02-06

Similar Documents

Publication Publication Date Title
EP1728031A1 (de) Kältegerät
WO2010078997A2 (de) Kältegerät sowie verfahren zur temperaturregelung in einem kältegerät
EP2880385B1 (de) Kältegerät mit verdunstungsschale
DE102011085153A1 (de) Kältegerät mit Verdunstungsschale
WO2010089191A2 (de) Kältegerät, insbesondere haushaltskältegerät, sowie verfahren zur regelung eines kältegeräts
WO2013060611A2 (de) Kältegerät mit verdunstungsschale und hilfseinrichtung zur verdunstungsförderung
EP0583560A2 (de) Für Einphasenwechselstrom-Anschluss ausgestattetes Kühl- und/oder Gefriergerät
WO2015189010A1 (de) Kältegerät mit heissgasabtauung und abtauverfahren
WO2014023689A1 (de) Kältegerät und betriebsverfahren dafür
EP2370760A1 (de) Kältegerät mit mehreren lagerfächern
EP2225503A2 (de) Verfahren und steuergerät zum steuern eines verdichters
EP2810003B1 (de) Kältegerät mit zwei lagerkammern
DE102019118784A1 (de) Kühl- und/oder Gefriergerät
DE2530117B1 (de) Kuehlmoebel, insbesondere zweitemperaturen-kuehlschrank
DE102010055904A1 (de) Kühl- und/oder Gefriergerät
DE2736370C2 (de) Kühlmöbel-Kombination, insbesondere Kühl-Gefrier-Kombination
DE2821580A1 (de) Abtauvorrichtung fuer gefriertruhen
DE102018206397A1 (de) Haushaltsgerät mit mehreren elektrischen Verbrauchern und Verfahren zum Betreiben des Haushaltsgerätes
WO2013000765A1 (de) Kältegerät mit verdunstungsschale und hilfseinrichtung zur verdunstungsförderung
DE2850198A1 (de) Steueranlage zum abtauen von kuehlstellen
WO2013000773A2 (de) Kältegerät mit verdunstungsschale und hilfseinrichtung zur verdunstungsförderung
EP3745054A1 (de) Kühl- und/oder gefriergerät
DD293880A5 (de) Verfahren zum energiesparenden betreiben von kuehl-gefrier-kombinationen und gefriergeraeten
WO2011092116A1 (de) Kältegerät und kältemaschine dafür
EP2154452A2 (de) Kältegerät mit Zwangskühlung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150302

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160425

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180306

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: AT

Ref legal event code: REF

Ref document number: 1030259

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013010873

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180815

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181115

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181115

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181215

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013010873

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190717

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190717

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190717

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1030259

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230714

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230731

Year of fee payment: 11