EP2879836A1 - Abrasive elements with precisely shaped features, abrasive articles fabricated therefrom and methods of making thereof - Google Patents
Abrasive elements with precisely shaped features, abrasive articles fabricated therefrom and methods of making thereofInfo
- Publication number
- EP2879836A1 EP2879836A1 EP13826255.5A EP13826255A EP2879836A1 EP 2879836 A1 EP2879836 A1 EP 2879836A1 EP 13826255 A EP13826255 A EP 13826255A EP 2879836 A1 EP2879836 A1 EP 2879836A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- abrasive
- diamond
- precisely shaped
- features
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 49
- 239000000919 ceramic Substances 0.000 claims abstract description 66
- 239000010432 diamond Substances 0.000 claims description 68
- 229910003460 diamond Inorganic materials 0.000 claims description 62
- 238000000576 coating method Methods 0.000 claims description 28
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 22
- 229910052799 carbon Inorganic materials 0.000 claims description 20
- 238000004519 manufacturing process Methods 0.000 claims description 20
- 238000005245 sintering Methods 0.000 claims description 16
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 15
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 15
- 239000011248 coating agent Substances 0.000 claims description 14
- 238000013461 design Methods 0.000 claims description 14
- -1 glass Chemical compound 0.000 claims description 10
- 239000002245 particle Substances 0.000 claims description 9
- 238000004140 cleaning Methods 0.000 claims description 6
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 claims description 5
- 229910052580 B4C Inorganic materials 0.000 claims description 4
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 claims description 4
- 230000002950 deficient Effects 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 4
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 3
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims description 3
- 229910026551 ZrC Inorganic materials 0.000 claims description 3
- OTCHGXYCWNXDOA-UHFFFAOYSA-N [C].[Zr] Chemical compound [C].[Zr] OTCHGXYCWNXDOA-UHFFFAOYSA-N 0.000 claims description 3
- 239000006260 foam Substances 0.000 claims description 3
- 239000011521 glass Substances 0.000 claims description 3
- 229920000642 polymer Polymers 0.000 claims description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 3
- 229910052582 BN Inorganic materials 0.000 claims description 2
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 2
- 230000002209 hydrophobic effect Effects 0.000 claims description 2
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 claims description 2
- 235000012431 wafers Nutrition 0.000 description 51
- 238000005498 polishing Methods 0.000 description 47
- 230000008569 process Effects 0.000 description 30
- 238000012360 testing method Methods 0.000 description 28
- 239000002002 slurry Substances 0.000 description 26
- 238000010998 test method Methods 0.000 description 25
- 239000011230 binding agent Substances 0.000 description 24
- 239000000463 material Substances 0.000 description 19
- 239000010949 copper Substances 0.000 description 17
- 229910052751 metal Inorganic materials 0.000 description 17
- 239000002184 metal Substances 0.000 description 17
- 239000000203 mixture Substances 0.000 description 17
- 239000000843 powder Substances 0.000 description 14
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 12
- 229910052802 copper Inorganic materials 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 10
- 230000007547 defect Effects 0.000 description 10
- 239000011159 matrix material Substances 0.000 description 9
- 238000003825 pressing Methods 0.000 description 9
- 239000002131 composite material Substances 0.000 description 8
- 238000007723 die pressing method Methods 0.000 description 8
- 230000001143 conditioned effect Effects 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 239000004743 Polypropylene Substances 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 238000000465 moulding Methods 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 229920001155 polypropylene Polymers 0.000 description 6
- 229920001169 thermoplastic Polymers 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 230000003750 conditioning effect Effects 0.000 description 5
- 239000010954 inorganic particle Substances 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 238000001314 profilometry Methods 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 239000004416 thermosoftening plastic Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 238000005323 electroforming Methods 0.000 description 4
- 238000001746 injection moulding Methods 0.000 description 4
- 238000012417 linear regression Methods 0.000 description 4
- 238000000399 optical microscopy Methods 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- 230000010076 replication Effects 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 239000007921 spray Substances 0.000 description 4
- 230000003746 surface roughness Effects 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 3
- 239000003082 abrasive agent Substances 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 238000010226 confocal imaging Methods 0.000 description 3
- 238000007516 diamond turning Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000010438 granite Substances 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 238000003754 machining Methods 0.000 description 3
- 238000005459 micromachining Methods 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical class [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 239000011195 cermet Substances 0.000 description 2
- 238000000748 compression moulding Methods 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 239000004205 dimethyl polysiloxane Substances 0.000 description 2
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 2
- 229920006332 epoxy adhesive Polymers 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 230000007717 exclusion Effects 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 description 2
- 239000005011 phenolic resin Substances 0.000 description 2
- 229920001568 phenolic resin Polymers 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 238000004987 plasma desorption mass spectroscopy Methods 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000004626 scanning electron microscopy Methods 0.000 description 2
- 238000004621 scanning probe microscopy Methods 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 239000011800 void material Substances 0.000 description 2
- 101710134395 Carboxy-terminal domain RNA polymerase II polypeptide A small phosphatase 1 Proteins 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 239000004831 Hot glue Substances 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910018487 Ni—Cr Inorganic materials 0.000 description 1
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 1
- 102100025483 Retinoid-inducible serine carboxypeptidase Human genes 0.000 description 1
- 235000011449 Rosa Nutrition 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000035508 accumulation Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 101150058790 bcp gene Proteins 0.000 description 1
- 101150038746 bcp1 gene Proteins 0.000 description 1
- 101150023633 bcpB gene Proteins 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 150000001722 carbon compounds Chemical class 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000001913 cellulose Chemical class 0.000 description 1
- 229920002678 cellulose Chemical class 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 235000012489 doughnuts Nutrition 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000004049 embossing Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 229910000449 hafnium oxide Inorganic materials 0.000 description 1
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 238000004050 hot filament vapor deposition Methods 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- UGKDIUIOSMUOAW-UHFFFAOYSA-N iron nickel Chemical compound [Fe].[Ni] UGKDIUIOSMUOAW-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- PUPNJSIFIXXJCH-UHFFFAOYSA-N n-(4-hydroxyphenyl)-2-(1,1,3-trioxo-1,2-benzothiazol-2-yl)acetamide Chemical compound C1=CC(O)=CC=C1NC(=O)CN1S(=O)(=O)C2=CC=CC=C2C1=O PUPNJSIFIXXJCH-UHFFFAOYSA-N 0.000 description 1
- 239000002113 nanodiamond Substances 0.000 description 1
- RUFLMLWJRZAWLJ-UHFFFAOYSA-N nickel silicide Chemical compound [Ni]=[Si]=[Ni] RUFLMLWJRZAWLJ-UHFFFAOYSA-N 0.000 description 1
- 229910021334 nickel silicide Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000006748 scratching Methods 0.000 description 1
- 230000002393 scratching effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229960001866 silicon dioxide Drugs 0.000 description 1
- 238000007569 slipcasting Methods 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 238000010408 sweeping Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 1
- 239000012815 thermoplastic material Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- 238000001721 transfer moulding Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000004506 ultrasonic cleaning Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B53/00—Devices or means for dressing or conditioning abrasive surfaces
- B24B53/017—Devices or means for dressing, cleaning or otherwise conditioning lapping tools
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D18/00—Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D18/00—Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for
- B24D18/0009—Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for using moulds or presses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D3/00—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
- B24D3/02—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
- B24D3/04—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic
- B24D3/14—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic ceramic, i.e. vitrified bondings
- B24D3/18—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic ceramic, i.e. vitrified bondings for porous or cellular structure
Definitions
- the present invention is related generally to abrasive articles.
- the present invention includes an abrasive element comprising at least 99% carbide ceramic by weight and having a porosity of less than about 5%.
- CMP chemical-mechanical planarization
- current matrix and bonding methods can also limit the size of diamonds that can be embedded. For example, small diamonds of less than around 45 microns can be difficult to bond without burying them within the matrix.
- Acidic slurries for metal CMP can also pose challenges to traditional pad conditioners.
- the acidic slurries can chemically react with the metal bonding matrix, weakening the bond between the matrix and abrasive particles. This can result in detachment of the diamond particles from the conditioner surface, resulting in high wafer defect rates and potentially scratches on the wafer. Erosion of the metal matrix can also result in metal ion contamination of the wafer.
- the present invention is an abrasive element including a first major surface and a second major surface. At least the first major surface includes a plurality of precisely shaped features.
- the abrasive element includes at least about 99% of carbide ceramic by weight and has a porosity of less than about 5%.
- the present invention is an abrasive article including a first abrasive element comprising first and second major surfaces. At least the first major surface includes a plurality of precisely shaped features.
- the first abrasive element includes at least about 99% of carbide ceramic by weight and has a porosity of less than about 5%.
- the present invention is a method of making an abrasive article.
- the method includes providing a first abrasive element and a second abrasive element; placing the first major surfaces of the abrasive elements in contact with an alignment plate; providing a resilient element having first and second major surfaces; affixing the first major surface of the resilient element to the second major surfaces of the abrasive elements; providing a fastening element; and affixing the second major surface of the resilient element to a carrier through the fastening element.
- Each abrasive element includes first and second major surfaces, wherein at least the first major surfaces comprise a plurality of precisely shaped features and wherein the abrasive elements comprise at least about 99% of carbide ceramic by weight and have a porosity of less than about 5%.
- the present invention is an abrasive article including a first abrasive element comprising first and second major surfaces. At least the first major surface includes a plurality of precisely shaped features having a diamond coating.
- the first abrasive element includes at least about 99% of carbide ceramic by weight and has a porosity of less than about 5%.
- FIG. la is a top view of a positive master having pyramid precisely shaped features arranged in a grid pattern used in some of the Examples.
- FIG. lb is a cross-sectional view of the positive master of FIG. la having pyramid precisely shaped features arranged in a grid pattern.
- FIG. 2 is a top view of an abrasive article including abrasive elements of the present invention arranged in a star pattern.
- FIGS. 3a and 3b show the global coplanarity of Example 12 and Comparative Example 13.
- FIG. 4a is a top view of a positive master having pyramid precisely shaped features arranged in a grid pattern used in Example 15.
- FIG. 4b is a cross-sectional view of the positive master of FIG. 4a having pyramid precisely shaped features arranged in a grid pattern.
- FIG. 5a is a top view of a positive master having pyramid precisely shaped features arranged in a grid pattern used in Example 16.
- FIG. 5b is a cross-sectional view of the positive master of FIG. 5a having pyramid precisely shaped features arranged in a grid pattern.
- FIG. 6 is a top view of an abrasive article including abrasive elements of the present invention arranged in a double star pattern.
- the precisely shaped abrasive elements of the present invention are formed of about 99% carbide ceramic, have a porosity of less than about 5% and include a plurality of precisely shaped features.
- the plurality of precisely shaped features is monolithic rather than an abrasive composite. Unlike a composite which erodes to release embedded abrasive particles, the monolith functions without the loss of embedded abrasive particles, therefore reducing the chances of scratching.
- Abrasive articles incorporating the abrasive elements of the present invention have consistent and reproducible performance, precise alignment of the abrasive working tips against the workpiece surface, long lives, good feature integrity (including good replication, low erosion and fracture resistance), low metal ion contamination, reliability, consistent and cost effective manufacturing through design for manufacturing, and the ability to be tailored to various polishing pad configurations.
- the abrasive article is a pad conditioner.
- the precisely structured abrasive elements of the present invention include a first major surface, a second major surface and a plurality of precisely shaped features on at least one of the major surfaces.
- the abrasive elements are formed of carbide and are about 99% carbide ceramic by weight.
- the carbide ceramic is silicon carbide, boron carbide, zirconium carbide, titanium carbide, tungsten carbide or combinations thereof.
- the 99% carbide ceramic by weight is substantially silicon carbide.
- the carbide ceramic is at least about 90% silicon carbide by weight.
- the abrasive elements are fabricated without the use of carbide formers and are substantially free of oxide sintering aides.
- the abrasive elements include less than about 1% oxide sintering aides.
- the abrasive elements are also substantially free of silicon and in particular include less than about 1% elemental silicon.
- a substantially carbide ceramic can be molded with excellent feature integrity.
- these compositions are sintered, they yield robust and durable abrasive elements with less than about 5% porosity.
- the abrasive elements have a porosity of less than about 3% and more particularly less than about 1%.
- the abrasive elements also have a mean grain size of less than about 20 microns, particularly less than about 10 microns, more particularly less than about 5 microns and even more particularly less than about 3 microns. This low porosity and grain size are significant in achieving robust and durable replicated features, which in turn results in good life and low wear rates of the abrasive element.
- the abrasive elements include precisely shaped abrasive features, or projections in the abrasive elements that protrude toward a workpiece.
- the abrasive features can have any shape or shapes (polygonal or non-polygonal) and can have the same or varying heights.
- the abrasive features can have the same base size or varying base sizes.
- the abrasive features may be spaced in a regular or irregular array and may be made into patterns comprised of unit cells.
- the abrasive elements include abrasive features having a length of between about 1 and about 2000 microns, particularly between about 5 and about 700 microns and more particularly between about 10 and about 300 microns.
- the abrasive element has a feature density of from about 1 to about 1000 features/mm 2 and particularly between about 10 and about 300 features/mm 2 .
- the abrasive elements include a peripheral zone, or an area on the periphery of the abrasive element in which there are no abrasive features.
- the abrasive elements may be coated to achieve additional wear resistance and durability, reduce the coefficient of friction, protect from corrosion, and change surface properties.
- Useful coatings include, for example, chemical vapor deposited (CVD) or physical vapor deposited (PVD) diamond, doped diamond, silicon carbide, cubic boron nitride (CBN), fluorochemical coatings, hydrophobic or hydrophilic coatings, surface modifying coatings, anticorrosion coatings, diamond like carbon (DLC), diamond like glass (DLG), tungsten carbide, silicon nitride, titanium nitride, particle coatings, polycrystalline diamond, microcrystalline diamond, nanocrystalline diamond and the like.
- CVD chemical vapor deposited
- PVD physical vapor deposited
- the coating may also be a composite material, such as, for example, a composite of fine diamond particles and a vapor deposited diamond matrix.
- these coatings are conformal, enabling the precise surface features to be seen under the coating surface.
- the coating can be deposited by any suitable method known in the art, including chemical or physical vapor deposition, spraying, dipping and roll coating.
- the abrasive elements may be coated with a non-oxide coating.
- a CVD diamond coating is used, the use of the silicon carbide ceramic has the additional benefit in that there is a good match in the coefficient of thermal expansion between the silicon carbide and the CVD diamond film. Therefore, these diamond coated abrasives additionally have excellent diamond film adhesion and durability.
- the abrasive element is fabricated from a molded green body. In such cases, the abrasive element is considered a molded abrasive element.
- the precisely structured abrasive is ceramic pressed into a mold and sintered. The mold itself can be used in the fabrication of the precisely structured abrasive elements.
- Precisely structured abrasive elements have maximal feature height uniformity.
- the feature height uniformity refers to the uniformity of the height of selected features relative to the base of the feature.
- the non-uniformity is the average of the absolute values of the difference of heights of selected features from the average height of the selected features.
- the selected features are the set of features having maximum common design height D 0 .
- a precisely shaped abrasive element of the invention has a non-uniformity of less than about 20% of the feature height. In one embodiment, the abrasive element has a non-uniformity of less than about 10% of the feature height, particularly less than about 5% of the feature height and more particularly less than about 2% of the feature height.
- the abrasive element is molded, it is a subset of the precisely structured abrasive element where the structure is conferred by a molding process.
- the shape may be the inverse of the mold cavity such that the shape is retained after the abrasive element green body has been removed from the mold.
- Various ceramic shaping processes may be used, including but not limited to: injection molding, slip casting, die pressing, hot pressing, embossing, transfer molding, gel casting and the like.
- the die pressing process is used at room temperature, followed by sintering.
- ceramic die pressing near room temperature is referred to as ceramic dry pressing.
- Ceramic dry pressing typically differs from ceramic injection molding in that it is done at lower temperature, a much smaller amount of binder is used, die pressing is used, and the materials suitable for use as binder are not necessarily limited to thermoplastics.
- the precisely engineered abrasive articles of the present invention generally include at least one abrasive element, a fastening element and a resilient element.
- the precisely engineered abrasive articles include a plurality of abrasive elements.
- the fastening element is a material used to adhere one or more materials together. Examples of suitable fastening element can include, but are not limited to: a two part epoxy, pressure sensitive adhesives, structural adhesives, hot melt adhesives, B-stageable adhesives, mechanical fasteners and mechanical locking devices.
- the resilient element functions to provide independent suspension of individual abrasive elements or global suspension of multiple structured abrasive elements.
- the resilient element is a material that is less rigid and more compressible than the precisely structured abrasive element and/or carrier.
- the resilient element elastically deforms under compression and can be locked into a compressed position through a fastening element, or allowed to elastically deform in use.
- the resilient element can be segmented, continuous, discontinuous or gimbaled. Examples of suitable resilient elements include, but are not limited to: mechanical spring-like devices, flexible washers, foams, polymers, or gels.
- the resilient element can also have a fastening character, such as foam with an adhesive backing. In one embodiment, the resilient element can also function as the fastening element.
- abrasive features of the abrasive elements can be aligned to a reference plane.
- the reference plane is the theoretical plane through the maxima of selected features of an abrasive element or an abrasive article. Feature maxima are also referred to as feature tips or tips.
- the selected features are the set of working features having a maximum common design height, D 0 .
- the features that define the reference plane are the three features with the tallest height.
- the alignment process is important to reproducibly create a defined bearing area or presentation to the workpiece or polishing pad.
- the precisely structured abrasive elements are best aligned to using a planar surface (i.e., "alignment plate") in contact with the maxima of the features.
- the planar surface of the alignment plate preferably has a tolerance of at least about +/- 2.5 microns per 4 inch in length (10.2 cm) or even lower, i.e. even more planar.
- a resilient element and a fastening element are used in this assembly process in order to precisely align the elements relative to each other on the carrier substrate.
- the abrasive article may also include one or more cleaning elements, which may be continuous or discontinuous.
- the cleaning element has the function of providing for cleaning of a workpiece surface.
- the cleaning element may be comprised of a brush or other material designed to sweep away debris, or may be a channel or raised area providing for removal of slurry or swarf from a surface.
- the abrasive elements may be aligned and mounted on a precisely planar carrier.
- suitable carrier materials include, but are not limited to: metals (e.g., stainless steel), ceramic, polymers (e.g., polycarbonate), cermet, silicon and composites.
- the abrasive element(s) and carrier may also have a circular or non-circular perimeter, be contoured, or possess the shape of a cup or donut, etc.
- the abrasive elements are aligned such that there is maximal feature tip coplanarity.
- the non- coplanarity is the average of the absolute values of the distance of a selected set of tips from the ideal reference plane through the set of tips.
- the non-coplanarity is expressed as a percentage relative to the height of the selected features, D 0 .
- the abrasive elements and articles of the present invention have a precisely engineered surface, resulting in reproducible and predictable surface topology, as measured by the low defect rate and number of features that engage the workpiece.
- the primary working features are the tallest features of essentially equal height.
- the secondary and tertiary working features are those of first and second offset in height from the primary working features such that the offset is smaller for the secondary feature than the tertiary feature. This definition extends to other feature heights.
- the resulting abrasive elements and articles have precise feature replication, low defects and good uniformity and planarity of the primary features.
- a defect occurs when, for example, an unintentional depression, air-void, or bubble exists in the surface of the precisely-shaped abrasive feature, and typically varies in location and/or size from one precisely-shaped abrasive feature to the next.
- the defects are readily discernable under a microscope when comparing the individual precisely shaped features in the array.
- the precisely shaped abrasive element defect results in a missing apex of a precisely shaped abrasive feature.
- the abrasive element or article has a percentage of defective features of less than about 30%, particularly less than about 15% and particularly less than about 2%.
- the abrasive articles also have low or controlled warping or bowing of each abrasive element from processing or thermal mismatch with coated materials, resulting in good element planarity.
- element planarity refers to the planarity of selected feature tips within a precisely structured abrasive element relative to a reference plane. The element planarity is determined in part by the mold design, fidelity of the molding tool, and uniformity of the molding and sintering processes (e.g., differential shrinkage and warpage), etc. For a single element, the planarity refers to the variability of the distance of a set of feature tips relative to a reference plane. The set of tips used to calculate planarity includes tips from all features having a common maximum design height, D 0 .
- a reference plane is defined as the plane having the best linear regression fit of all of the selected feature tips of height D 0 .
- the non- planarity is the average of the absolute value of the distance of the selected tips from the reference plane.
- the planarity can be measured by carbon paper imprint test or standard topology tools, including laser profilometry, confocal imaging, and confocal scanning microscopy, combined with image analysis software, e.g., MOU TAINSMAP V5.0 image analysis software (Digital Surf, Besancon, France). Element topology can also be characterized by skew, kurtosis, etc.
- a precisely shaped abrasive element of the invention has a non-planarity of less than about 20% of the feature height. In one embodiment, the abrasive element has a non-planarity of less than about 10% of the feature height, particularly less than about 5% of the feature height and more particularly less than about 2% of the feature height.
- the abrasive articles also have accurate alignment of the precisely shaped abrasive elements such that there is substantial coplanarity.
- the coplanarity refers to the variability of the distance of a set of feature tips from a plurality of elements relative to a reference plane.
- This reference plane is defined as the plane having the best linear regression fit of all of the selected feature tips of maximum height D 0 .
- the non-coplanarity is the average of the absolute values of the distance of selected tips from the reference plane. Non-coplanarity results when the separate abrasive elements are not aligned. Non-coplanarity can be seen through uneven pressure distribution, for example through a carbon imprint test.
- the degree of coplanarity can be further quantified through standard topology tools, including laser profilometry, confocal imaging, and confocal scanning microscopy.
- Image software e.g., MOU TAINSMAP
- a collective group of features on all of the abrasive elements, having a common maximum design feature height of D 0 has a non-coplanarity of less than about 20% of the feature height.
- the abrasive elements have a non-coplanarity of less than about 10% of the feature height, particularly less than about 5% of the feature height and more particularly less than about 2% of the feature height.
- the abrasive elements of the present invention can be formed through machining, micromachining, microrephcation, molding, extruding, injection molding, ceramic pressing, etc. such that precisely shaped structures are fabricated and are reproducible from part to part and within a part, reflecting the ability to replicate a design.
- a ceramic die pressing process is used.
- the ceramic die pressing process is ceramic dry pressing.
- an abrasive article including one or more abrasive elements is fabricated from a plurality of precisely shaped, engineered monoliths that are designed to have good feature integrity, are relatively non-erodible, and are fracture resistant.
- a monolith has a continuous structure and precisely shaped topology in which the abrasive features and the regions between the abrasive features of the abrasive element are continuous and consist of the primary abrasive material without an intervening matrix, such as exists in structured abrasive composites.
- the topology is predetermined and replicated from a material which can be formed from methods such as machining or micromachining, water jet cutting, injection molding, extrusion, microreplication or ceramic die pressing.
- a molded ceramic green body can be sintered to achieve high density, rigidity, fracture toughness and good feature fidelity.
- the green body is the unsintered, compacted ceramic element, as would be normally referred to by those skilled in the art.
- the green body includes a first major surface, a second major surface and a plurality of precisely shaped features.
- the green body includes a plurality of inorganic particles and a binder, where the plurality of inorganic particles is at least about 99% carbide ceramic by weight.
- the inorganic particles are ceramic particles and can be silicon carbide, boron carbide, zirconium carbide, tungsten carbide or combinations thereof.
- the binder of the green body can be a thermoplastic binder.
- suitable binders include, but are not limited to, thermoplastic polymers.
- the binder is a thermoplastic binder with a T g of less than about 25°C and particularly less than about 0°C.
- the binder is a polyacrylate binder.
- the green body also includes a carbon source. Suitable examples of the carbon source include, but are not limited to: phenolic resin, cellulose compounds, sugars, graphite, carbon black and combinations thereof. In one embodiment, the green body contains between about 0 to about 10% by weight of a carbon source and particularly between about 2 and about 7% by weight of a carbon source. The carbon compounds in the green body composition result in lower porosities after sintering.
- the green body can also include additional functional materials, such as a release agent or a lubricant. In one embodiment the green body contains between about 0 to 10% by weight of a lubricant.
- a molded green body is produced by a ceramic shaping process, as discussed earlier.
- the green body may be sintered to form an abrasive element manufactured with substantial integrity. It is understood that the pre-sintered green body contains fugitive elements, such as carbon, that are not substantially present in the final sintered article. (Therefore, the carbide phases are 99% in the final sintered article, but of a lower composition in the green body.)
- the green body is an abrasive element precursor and is made by first mixing a plurality of inorganic particles, a binder and a carbon source to form a mixture.
- the agglomerates of the mixture are formed by a spray drying process.
- the green body is formed by a die pressing operation, such as ceramic dry pressing.
- the spray dried agglomerates of the mixture are filled into a die cavity.
- the agglomerates may optionally be sieved to provide agglomerates of a particular size.
- the agglomerates may be sieved to provide agglomerates having a size of less than about 45 microns.
- a mold having a plurality of precisely shaped cavities is placed in the die cavity such that a majority of the precisely shaped cavities of the mold are filled with the mixture.
- the mold may be formed of metal, ceramic, cermet, composite or a polymeric material.
- the mold is a polymeric material such as polypropylene.
- the mold is nickel.
- Pressure is then applied to the mixture to compact the mixture into the precisely shaped cavities to form a green body ceramic element having first and second major surfaces. The pressure may be applied at ambient temperature or at an elevated temperature. More than one pressing step may also be used.
- the mold or production tool, has a predetermined array of at least one specified shape on the surface thereof, which is the inverse of the predetermined array and specified shape(s) of the precisely shaped features of the abrasive elements.
- the mold can be prepared from metal, e.g., nickel, although plastic tools can also be used.
- a mold made of metal can be fabricated by engraving, micromachining or other mechanical means, such as diamond turning or by electroforming. The preferred method is electroforming.
- a mold can be formed by preparing a positive master, which has a predetermined array and specified shapes of the precisely shaped features of the abrasive elements. The mold is then made having a surface topography being the inverse of the positive master.
- a positive master may be made by direct machining techniques such as diamond turning, disclosed in U.S. Patent Nos. 5, 152,917 (Pieper, et al.) and 6,076,248 (Hoopman, et al.), the disclosures of which are herein incorporated by reference. These techniques are further described in U.S. Patent No. 6,021,559 (Smith), the disclosure of which is herein incorporated by reference.
- a mold including, for example, a ihermoplastie can be made by replication off the metal master tool.
- a thermoplastic sheet material can be heated, optionally along with the metal master, such that the thermoplastic material is embossed with the surface pattern presented by the metal master by pressing the two surfaces together.
- the thermoplastic can also be extruded or cast onto to the metal master and then pressed.
- Other suitable methods of production tooling and metal masters are discussed in U.S. Patent No. 5,435,816 (Spurgeon et al), which is herein incorporated by reference.
- the green body ceramic element is removed from the mold and heated to cause sintering of the inorganic particles.
- the green body ceramic element is heated during a binder and carbon source pyrolization step in an oxygen poor atmosphere in a temperature range of between about 300 and about 900°C.
- the green body ceramic element is sintered in an oxygen-poor atmosphere at between about 1900 and about 2300°C to form the abrasive element.
- the abrasive element is optionally coated.
- the precisely engineered abrasive article is assembled by first placing the first major surfaces of a first and a second abrasive element in contact with an alignment plate. A first major surface of a resilient element is then contacted with the second major surfaces of the abrasive elements. The second major surface of the resilient element is then affixed to a carrier through the fastening element. The assembly is then bonded together under pressure. When assembled, the plane defined by the working tips is substantially planar with respect to the backplane of the carrier.
- the abrasive article is a single sided pad conditioner in which the precisely shaped features are located on one surface. However, the pad conditioner can also be assembled such that it is double sided, with both sides presenting precisely structured features.
- Pad conditioners having the precisely structured abrasive elements of the invention may be used in conventional Chemical Mechanical Planarization (CMP) processes.
- CMP Chemical Mechanical Planarization
- Various materials may be polished or planarized in such conventional CMP processes, including, but not limited to: copper, copper alloys, aluminum, tantalum, tantalum nitride, tungsten, titanium, titanium nitride, nickel, nickel-iron alloys, nickel-silicide, germanium, silicon, silicon nitride, silicon carbide, silicon-dioxide, oxides of silicon, hafnium oxide, materials having a low dielectric constant, and combinations thereof.
- the pad conditioners may be configured to mount onto conventional CMP tools in such CMP processes and run under conventional operating conditions.
- the CMP process is run at a range of rotational speeds between about 20 RPM and about 150RPM, at a range of applied load of between about 1 lb and about 90 lbs, and sweeping back and forth across the pad at a rate of between about 1 and about 25 sweeps per minute, utilizing conventional sweep profiles, such as sinusoidal sweeps or linear sweeps.
- a group of features, all having the same maximum design feature height of D 0 was selected, and their height measured relative to a base plane.
- a reference plane is defined as the plane having the best linear regression fit of all of the selected feature tips of height D 0 .
- the non-planarity is the average of the absolute value of the distances of the selected tips from the reference plane. The non-planarity is expressed as a percentage relative to the height of the selected features, D 0 .
- the coplanarity of an abrasive article having multiple abrasive elements was measured by a Carbon Paper Imprint test (CPI test).
- the article was placed a planar granite surface such that the precisely shaped features were facing upwards, away from the granite surface. Carbon paper was then placed against the features with carbon side facing upwards.
- a white sheet of photo quality paper was placed on top of the carbon paper such that the carbon was in direct contact with the photo paper so as to create an image on the photo paper.
- a planar plate was placed on top of the photopaper/carbon paper/abrasive article stack.
- a load 120 lb (54.4 kg) was applied to the stack for 30 seconds. The load was removed and the photo paper was scanned with an image scanner to record the imprinted image.
- a coplanar abrasive article results in images where the separate elements are of equal size and color intensity, as quantified visually and through image analysis.
- images of the individual elements may be missing, asymmetric or show significant lighter intensity areas.
- the coplanarity can be measured by standard topology tools, including laser profilometry, confocal imaging, and confocal scanning microscope, combined with image analysis software (e.g., MOUNT AINSMAP).
- Element topology can also be characterized by skew, kurtosis, etc.
- the coplanarity refers to the variability of the position of a set of feature tips from a plurality of elements relative to a reference plane.
- a reference plane is defined as the plane having the best linear regression fit of all of the selected features of height D 0 .
- the set of feature tips used to calculate coplanarity includes tips from all features having common, maximum design height D 0 .
- the non-coplanarity is calculated using the average of the absolute values of the distance of selected tips from the reference plane. The non-coplanarity is expressed as a percentage relative to the height of the selected features, D 0 .
- the bulk density and apparent porosity of the abrasive elements with precisely shaped features were measured according to ASTM test method C373.
- the total porosity was also calculated based the bulk density and an assumption of a theoretical density for an abrasive element of 3.20 g/cm 3 .
- the calculated porosity is the following: [(theoretical density - bulk density)/ theoretical density] * 100.
- the mean surface grain size of carbide grains of the abrasive elements with precisely shaped features was determined by examining the surface of the elements by optical microscopy or scanning electron microscopy.
- optical microscopy a Nikon model ME600 (Nikon Corporation, Tokyo, Japan) was used at 100X magnification.
- scanning electron microscopy a Hitachi High-Tech model TM3000 (Hitachi Corporation, Tokyo, Japan) was used at 5,000X magnification, 15keV acceleration voltage and 4-5 mm working distance.
- the line intercept method was used. First, 5 straight lines were drawn horizontally across the image (approximately equally spaced). Next, the number of grains intercepted by the lines was counted, excluding the first and last grains which were at the edge of the image.
- Removal rate was calculated by determining the change in thickness of the copper layer being polished. This change in thickness was divided by the wafer polishing time to obtain the removal rate for the copper layer being polished. Thickness measurements for 300 mm diameter wafers were taken with a ResMap 168, 4 point probe Rs Mapping Tool available from Credence Design Engineering, Inc., Cupertino, California. Eighty-one point diameter scans with 5 mm edge exclusion were employed. Wafer non-uniformity (%NU) was calculated by the standard deviation of 49 wafer thickness measurements across the wafer divided by the mean wafer thickness value.
- Removal rate was calculated by determining the change in thickness of the oxide layer being polished. This change in thickness was divided by the wafer polishing time to obtain the removal rate for the oxide layer being polished. Thickness measurements for 300 mm oxide blanket rate wafers were made using a NovaScan 3060 ellipsometer which is integrated with the REFLEXION polisher and was supplied by Applied Materials, Inc. Santa Clara, California. Oxide wafers were measured with a 25 point diameter scan with 3 mm edge exclusion. Wafer non-uniformity (%NU) was calculated by the standard deviation of 49 wafer thickness measurements across the wafer divided by the mean wafer thickness value.
- Measurements were conducted using the laser profilometry and software analysis tools described previously in the Element Planarity Test Method.
- a radial strip of dimension 1 inch (2.5 cm) by 16 inch (40.6 cm) pad strip was cut out of the 30.5 inch polishing pad, after processing on the 300 mm REFLEXION tool.
- Two dimensional X-Y laser profile scans were conducted over a 1 cm 2 region at locations 3 inch (7.6 cm), 8 inch (20.3 cm) and 13 inch (33.0 cm) distance from the pad center.
- MOUNTAINSMAP software was used to obtain the pad wear rate and surface roughness (Sa) by analyzing the change in the pad groove depth, as a function of polishing time, at these different pad positions and also by analyzing the pad surface texture, using 2D and 3D digital images.
- Pad wear rate was calculated as the average pad wear at 3, 8, and 13 inches from the pad center divided by the total finishing time.
- Polishing was conducted using a CMP polisher available under the trade designation REFLEXION polisher from Applied Materials, Inc., of Santa Clara, California. An ICIOIO pad and
- CSL9044C slurry were used for polishing.
- An abrasive article having a carrier suitable for mounting onto the pad conditioner arm of the tool, was mounted thereon.
- the pad was conditioned continuously throughout the test with slurry being run on the pad continuously throughout the test.
- four 300 mm copper "dummy" wafers would be run, followed by two, 300 mm electroplated copper wafers, 20kA Cu thickness, to monitor copper removal rate, one run at the low wafer downforce head conditions and the other at the high wafer downforce head conditions.
- Head pressure was either high downforce (designated as 3.0 psi) or low downforce (designated as 1.4 psi). The specific set pressures of each zone in the head are described below.
- the process conditions were as follows:
- Zone3 3.1 psi
- Zone4 2.9 psi
- Zone 5 3.0 psi
- Polishing time for the dummy wafers 30 sec
- Polishing time for rate wafers 60 sec
- Pad conditioner speed 87 rpm
- Pad conditioner sweep rate 10 sweeps/min
- Pad conditioner sweep type Sinusoidal
- Polishing Test Method 2 Polishing was conducted using a CMP polisher available under the trade designation
- REFLEXION polisher from Applied Materials, Inc.
- a WSP pad and 7106 slurry were used for polishing.
- a sample of 30% (wt basis) H 2 0 2 was added to the slurry to obtain a H 2 0 2 concentration in the slurry of 3% (wt basis), prior to starting the test.
- Zone3 3.1 psi
- Zone4 2.9 psi
- Zone 5 3.0 psi
- Polishing time for the dummy wafers 30 sec
- Polishing time for rate wafers 60 sec
- Pad conditioner speed 119 rpm
- Pad conditioner sweep rate 10 sweeps/min
- Pad conditioner sweep type Sinusoidal
- Polishing was conducted using a CMP polisher available under the trade designation REFLEXION polisher from Applied Materials, Inc.
- a VP5000 pad and D6720 slurry were used for polishing.
- the D6720 was diluted with DI water at a ratio of 3 parts water to 1 part slurry.
- the pad was conditioned continuously throughout the test with slurry being run on the pad continuously throughout the test. At appropriate time intervals, four 300 mm thermal silicon oxide "dummy" wafers would be run, followed by a 300 mm, thermal silicon oxide wafer, 17 kA silicon oxide thickness, to monitor oxide removal rate.
- the process conditions were as follows:
- Polishing time for the dummy wafers 60 sec
- Polishing time for rate wafer 60 sec
- Pad conditioner speed 87 rpm
- Pad conditioner sweep rate 10 sweeps/min
- Pad conditioner sweep type Sinusoidal MATERIALS
- a positive master was prepared by diamond turning of a first metal, followed by two iterations of electroforming a second metal, producing the positive master.
- the dimensions of the precisely shaped features of the positive master were as follows.
- the precisely shaped features consisted of four sided, sharp tipped pyramids, 73.5% of the pyramids having a square base with a base length 390 microns and a height of 195 microns (primary feature), 2% of the pyramids having a square base with a base length 366 microns and a height of 183 microns and 25.5% of the pyramids having a rectangular base with a length of 390 microns, a width of 366 microns and a height 183 (secondary features).
- the pyramids were arranged in a grid pattern, per Figures la and b; all spacing between pyramids was 5 microns at the base.
- Polypropylene production tools were produced by compression molding from the positive master using a sheet of 20 mil (0.51 mm) thick polypropylene available from Commercial Plastics and Supply Corp., West Palm Beach, Florida. Compression molding was conducted using a model V75H-24- CLX WABASH HYDRAULIC PRESS, from Wabash MPI, Wabash, Indiana, with platens pre-heated to 165°C at a load of 5,000 lb (2,268 kg) for 3 minutes. The load was then increased to 40,000 lb (18, 140 kg) for 10 minutes. The heaters were then switched off and cooling water flowed through the platens until they reached about 70°C (about 15 minutes). The load was then released and the molded polypropylene tool was removed.
- a ceramic slurry was prepared by placing the following components into 1 L high density polyethylene jar: 458.7 g distilled water, 300.0 g SCP1, 1.5 g BCP1, and 21.9 g PhRes. Spherical, silicon carbide milling media, 0.25 inch diameter (6.35 mm) was added, and the slurry was milled on a ball mill for 15 hours at 100 rpm. After milling, 60.9 g of Dura B was added to the jar and mixed in by stirring.
- the slurry was spray dried using a spray dryer available under the trade designation "Mini Spray Dryer B-191" from Buchi, New Castle, Delaware, producing a ceramic-binder powder composed of 85.37 wt% silicon carbide, 0.43 wt% boron carbide, 9.53 wt% polyacrylate binder, and 4.67 wt% phenolic resin with an average particle size of 32-45 microns, as measured by conventional test sieving.
- the ceramic-binder powder may be used in the preparation of a green body ceramic element having precisely shaped features.
- the polypropylene production tool having precisely designed cavities representing the feature type (shape), size and pattern of the desired precisely shaped features of the green body ceramic element, was placed in the die cavity on the lower press rod, with the cavities facing the upper press rod.
- the die was charged with 1 g of the ceramic -binder powder.
- a 10,000 lb (4,536 kg) load was applied to the upper push rod for 30 sec, pressing the ceramic-binder powder into the tool cavities. The load was removed and an additional 1 g of ceramic-binder powder was added to the die cavity.
- a 20,000 lb (9,072 kg) load was applied to the upper push rod for 30 seconds. The load was removed and the tool with pressed ceramic -binder powder was removed from the die cavity.
- the green body ceramic element with precisely shaped features was then removed from the tool.
- the features were the inverse of the tool cavities.
- the overall diameter and thickness of the green body reflected the diameter of the die cavity and the amount of ceramic-binder powder, respectively.
- the ceramic element had a diameter of about 16.7 mm and a thickness of about 4.2 mm.
- Five, green body ceramic elements were made by this technique.
- the green body ceramic element with precisely shaped features may be used as an abrasive element precursor in the preparation of an abrasive element having precisely shaped features.
- the previously prepared abrasive element precursors i.e. green body ceramic elements with precisely shaped features
- a Lindbergh Model 51442-S retort oven available from SPX Thermal Product Solutions, a division of SPX Corporation, Rochester, New York, at room temperature.
- the green body ceramic elements were annealed under a nitrogen atmosphere, as follows: the oven temperature was increased at a linear rate to 600°C over a 4 hour time period, followed by a 30 min isothermal hold at 600°C. The oven was then cooled to room temperature.
- the sharp edges, i.e. flashing were removed from the annealed green body ceramic elements by abrading their outer circumference with 220-grit silicon carbide sandpaper.
- the annealed, green body ceramic elements were loaded into a graphite crucible for sintering.
- the elements were placed in a bed of a powder mixture, i.e. a sintering powder bed, consisting of 97 wt% Graphl and 3 wt% BCP2.
- the green bodies were then sintered, under a helium atmosphere, by heating from room temperature to 2,150°C over 5 hours, followed by a 30 min isothermal hold at 2,150 °C, using an Astro furnace HTG-7010 available from Thermal Technology LLC, Santa Rosa, California.
- the sintered, green body ceramic elements may be used as abrasive elements with precisely shaped features. Following the sintering process, the abrasive elements were cleaned.
- Examples 2-8 and CE1 1 were prepared similarly to that of Example 1, except the ceramic slurry compositions and the sintering powder bed used were varied according to Table 1.
- a graphite crucible was used for all sintering procedures, except for that of Example 10, which employed a silicon carbide crucible.
- Examples 9 and 10 were prepared similarly to Example 1, except that the molding of the precisely shaped features was conducted in a one step process, using a metal production tool, instead of the polypropylene production tool.
- the metal production tool was fabricated from the positive master by an electroforming process. Two grams of ceramic-binder powder were added to the steel die cavity, and the production tool, with precisely shaped features facing downward, was added to the die cavity. A 15,000 lb (6,804 kg) load was applied to the upper push rod for 15 sec, pressing the ceramic-binder powder into the tool cavities. The load was removed and the tool with pressed ceramic -binder powder was removed from the die cavity.
- the sintering powder bed for Example 9 was a 97/3 (wt/wt) mixture of Graphl/BCPl .
- the abrasive elements with precisely shaped features were first degreased by ultrasonic cleaning in methyl ethyl ketone, dried and then diamond seeded by immersing in an ultrasonic bath containing a nano-diamond solution, available under the trade designation 87501-01, from sp3 Diamond Technologies, Santa Clara, California. Once removed from the diamond solutions, the elements were dried using a low pressure, pure nitrogen gas flow. The elements were then loaded into a hot filament CVD reactor model HF-CVD655 available from sp3 Diamond Technologies. A mixture of 2.7% methane in hydrogen gas was used as precursors for the CVD diamond coating process.
- the reactor pressure was kept between 6 Torr (800 Pa) and 50 Torr (6,670 Pa) and the filament temperature was between 1,900 and 2300°C, as measured by an optical pyrometer.
- CVD diamond growth rate was 0.6 ⁇ /hr.
- Coating adhesion was evaluated by immersing the coated elements in liquid nitrogen followed by a DI water rinse. This procedure was repeated 5 times. All examples passed this test.
- An abrasive article comprising five abrasive elements from Example 1 with precisely shaped features was assembled. The assembly process was developed such that the tallest, precisely shaped features on each element, all having the same design feature height, would become planar.
- a planar granite surface was used as an alignment plate.
- the segments were placed onto the alignment plate such that the major surfaces having precisely shaped features were in direct contact with the alignment plate (facing down) with their second flat, major surfaces facing upwards.
- the abrasive elements were arranged in a circular pattern, such that their center points were positioned along the circumference of a circle with a radius of about 1.75 inch (44.5 mm) and spaced apart equally at about 72° around the circumference, Figure 2.
- a fastening element was then applied to the washers and exposed surface of the abrasive elements in the center-hole region of the washers.
- the fastening element was an epoxy adhesive available under the trade designation 3M SCOTCH- WELD EPOXY ADHESIVE DP420 from 3M Company, St. Paul, Minnesota.
- a circular, stainless steel carrier, having a diameter of 4.25 inch (108 mm) and a thickness of 0.22 inch (5.64 mm) was then placed face down on top of the fastening element (the back side of the carrier is machined, such that, it may be attached to the carrier arm of a REFLEXION polisher).
- a 10 lb (4.54 kg) load was applied uniformly across the carrier's exposed surface and the adhesive was allowed to cure for about 4 hours at room temperature. Comparative Example 13 (CE13)
- CE13 was prepared similarly to Example 12, except that resilient elements were not used in the fabrication process.
- Example 14-16 The abrasive elements used in Examples 14-16 were prepared as described in Example 1. Each abrasive element had precisely shaped features having at least two different heights, a primary feature height, which was the higher of the two features, and a secondary feature height, as summarized in Table 3. The offset height is the height difference between the primary and secondary feature.
- the precisely shaped features of Example 14 were the same as that described for Example 1.
- the precisely shaped features of Example 15 consisted of four sided, truncated pyramids, 73.5% of the pyramids having a square base with a base length 146 microns and a height of 61 microns, with a square top 24 microns on a side (primary feature) and 26.5% of the pyramids having a square base with a base length 146 microns and a height of 49 microns, with a square top 48 microns on a side (secondary feature).
- the pyramids were arranged in a grid pattern, per Figures 4a and b; all spacing between pyramids was 58.5 microns at the base.
- the precisely shaped features of Example 16 consisted of four sided sharp tipped pyramids, 73.5% of the pyramids having a square base with a base length 146 microns and a height of 73 microns (primary feature), 2% of the pyramids having a square base with a base length 122 microns and a height of 61 microns and 25.5% of the pyramids having a rectangular base with a length of 146 microns, a width of 122 microns and a height 73 (secondary features).
- the pyramids were arranged in a grid pattern, per Figures 5a and b; all spacing between pyramids was 5 microns at the base.
- abrasive elements were prepared for each of Examples 14 and 15, and ten abrasive elements were prepared for Example 16.
- the abrasive elements were coated with CVD diamond, by the process previously described.
- the CVD diamond coated abrasive elements were then used to form abrasive articles, using the fabrication procedure described in Example 12.
- the abrasive articles fabricated from the abrasive elements of Examples 14 and 15 were arranged in a circular pattern, such that their center points were positioned along the circumference of a circle with a radius of about 1.75 inch (44.5 mm) and spaced apart equally at about 72° around the circumference, Figure 2. These abrasive articles are designated as Examples 14A and Example 15 A, respectively.
- Example 16A The ten abrasive elements of Example 16 were used to fabricate an abrasive article, designated Example 16A, having the abrasive elements arranged in a double star pattern, as shown in Figure 6.
- the larger star pattern was identical to that of Examples 14 and 15.
- the elements of the smaller star pattern were arranged in a circular pattern, such that their center points were positioned along the circumference of a circle with a radius of about 1.5 inch (38.1 mm) and spaced apart equally at about 72° around the circumference, as shown in Figure 2. These elements were offset by 36° relative to the outside elements.
- CE17 was a diamond grit pad conditioner, having a diamond size of 180 microns, available under the trade designation "3M DIAMOND PAD CONDTIONER A2812" from 3M Company, St. Paul, Minnesota.
- CE18 was a diamond grit pad conditioner, having a diamond size of 250 microns, available under the trade designation "3M DIAMOND PAD CONDTIONER A165" from 3M Company. Comparative Example 19 (CE19)
- CE19 was a diamond grit pad conditioner, having a diamond size of 74 microns, available under the trade designation "3M DIAMOND PAD CONDTIONER H2AG18" from 3M Company.
- CE20 was a diamond grit pad conditioner, having a diamond size of 74 microns, available under the trade designation "3M DIAMOND PAD CONDTIONER H9AG27" from 3M Company.
- Example 14A Using Polishing Test Method 1, the two abrasive articles of Example 14A were tested as pad conditioners in a copper CMP process using a relatively hard CMP pad, IC1010. One abrasive article was tested at a wafer head pressure of 3 psi, while the other was tested at a wafer head pressure of 1.4 psi. Using the Copper Wafer Removal Rate and Non-Uniformity Test Method described above, the copper removal rate and wafer non-uniformity were measured as a function of conditioning time. Results are shown in Table 4. For both the low head pressure and high head pressure processes, good, stable removal rates and good, stable wafer non-uniformities were obtained. The precisely shaped feature tips were examined by optical microscopy after the polishing. The wear of the feature tips was very minor after the 20.8 hour test CMP polishing test, indicating that conditioner would have a long life.
- Comparative Examples CE17 and CE18 were run in a similar test to that of Example 14A (3 psi wafer head pressure), except the polishing time was only 0.6 hours. Copper removal rate results and wafer non-uniformity are shown in Table 5.
- Example 15A Using Polishing Test Method 2, the two abrasive articles of Example 15A were tested as pad conditioners in a copper CMP process using a relatively soft CMP pad, WSP. One abrasive article was tested at a wafer head pressure of 3 psi, while the other was tested at a wafer head pressure of 1.4 psi. Using the Copper Wafer Removal Rate and Non-Uniformity Test Method described above, the copper removal rate and wafer non-uniformity were measured as a function of conditioning time. Results are shown in Table 6. For both the low head pressure and high head pressure processes, good, stable removal rates and good, stable wafer non-uniformities were obtained.
- a diamond grit pad conditioner, CE19 was also tested using Polishing Test Method 2.
- the copper removal rate and wafer non-uniformity were measured as a function of conditioning time. Results are shown in Table 7. By the time the 6 hour polishing time was reached, the pads were severely worn and pad groves were no longer present, indicating that the polishing pad was completely worn by the diamond grit pad conditioner.
- Example 16A was compared to diamond grit pad conditioner, Comparative Example CE20, in an oxide process.
- the oxide removal rate and wafer non- uniformity were measured as a function of conditioning time. Results are shown in Table 9. Higher removal rates and lower wafer non-uniformity were obtained when the polishing process employed a pad conditioner Example 16A with precisely shaped features compared to conventional diamond grit pad conditioner CE20.
- the pad surface finish was measured at 3 (7.6 cm) inches, 7 inches (17.8 cm) and 13 inches (33.0 cm) from the pad center after 4.9 hours of conditioning.
- Example 16A The pad surface finish for Example 16A was slightly higher than Comparative Example CE20 (8.47 microns versus 7.24 microns, respectively). The starting pad surface roughness was 12 microns.
- the polishing test with Example 16A as the pad conditioner was continued out to 30 hours.
- the feature heights of the abrasive elements were measured by conventional optical microscopy before and after polishing to determine the tip wear. The wear rate was determined to be about 0.1 micron/hr. There were no stains or slurry build-up on the features.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Inorganic Chemistry (AREA)
- Polishing Bodies And Polishing Tools (AREA)
- Carbon And Carbon Compounds (AREA)
- Grinding-Machine Dressing And Accessory Apparatuses (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261678665P | 2012-08-02 | 2012-08-02 | |
PCT/US2013/052828 WO2014022462A1 (en) | 2012-08-02 | 2013-07-31 | Abrasive elements with precisely shaped features, abrasive articles fabricated therefrom and methods of making thereof |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2879836A1 true EP2879836A1 (en) | 2015-06-10 |
EP2879836A4 EP2879836A4 (en) | 2016-05-25 |
EP2879836B1 EP2879836B1 (en) | 2019-11-13 |
Family
ID=50028490
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13826255.5A Active EP2879836B1 (en) | 2012-08-02 | 2013-07-31 | Abrasive element with precisely shaped features, abrasive article fabricated therefrom and method of making thereof |
Country Status (8)
Country | Link |
---|---|
US (1) | US20150224625A1 (en) |
EP (1) | EP2879836B1 (en) |
JP (2) | JP2015530265A (en) |
KR (1) | KR20150039795A (en) |
CN (2) | CN115625629A (en) |
SG (1) | SG11201500713PA (en) |
TW (1) | TWI660816B (en) |
WO (1) | WO2014022462A1 (en) |
Families Citing this family (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2013135445A (en) | 2010-12-31 | 2015-02-10 | Сэнт-Гобэн Керамикс Энд Пластикс, Инк. | ABRASIVE PRODUCT (OPTIONS) AND METHOD FOR ITS FORMING |
EP2726248B1 (en) | 2011-06-30 | 2019-06-19 | Saint-Gobain Ceramics & Plastics, Inc. | Liquid phase sintered silicon carbide abrasive particles |
CN108262695A (en) | 2011-06-30 | 2018-07-10 | 圣戈本陶瓷及塑料股份有限公司 | Include the abrasive product of silicon nitride abrasive grain |
US9517546B2 (en) | 2011-09-26 | 2016-12-13 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive articles including abrasive particulate materials, coated abrasives using the abrasive particulate materials and methods of forming |
EP2797715A4 (en) | 2011-12-30 | 2016-04-20 | Saint Gobain Ceramics | Shaped abrasive particle and method of forming same |
WO2013102170A1 (en) | 2011-12-30 | 2013-07-04 | Saint-Gobain Ceramics & Plastics, Inc. | Composite shaped abrasive particles and method of forming same |
WO2013106597A1 (en) | 2012-01-10 | 2013-07-18 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive particles having complex shapes and methods of forming same |
WO2013106602A1 (en) | 2012-01-10 | 2013-07-18 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive particles having particular shapes and methods of forming such particles |
US9242346B2 (en) | 2012-03-30 | 2016-01-26 | Saint-Gobain Abrasives, Inc. | Abrasive products having fibrillated fibers |
WO2013177446A1 (en) | 2012-05-23 | 2013-11-28 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particles and methods of forming same |
EP2866977B8 (en) | 2012-06-29 | 2023-01-18 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive particles having particular shapes and methods of forming such particles |
CN104736299A (en) | 2012-08-02 | 2015-06-24 | 3M创新有限公司 | Abrasive articles with precisely shaped features and method of making thereof |
US9956664B2 (en) | 2012-08-02 | 2018-05-01 | 3M Innovative Properties Company | Abrasive element precursor with precisely shaped features and methods of making thereof |
EP2906392A4 (en) | 2012-10-15 | 2016-07-13 | Saint Gobain Abrasives Inc | Abrasive particles having particular shapes and methods of forming such particles |
WO2014106173A1 (en) | 2012-12-31 | 2014-07-03 | Saint-Gobain Ceramics & Plastics, Inc. | Particulate materials and methods of forming same |
WO2014140689A1 (en) * | 2013-03-12 | 2014-09-18 | 3M Innovative Properties Company | Bonded abrasive article |
PL2978566T3 (en) | 2013-03-29 | 2024-07-15 | Saint-Gobain Abrasives, Inc. | Abrasive particles having particular shapes and methods of forming such particles |
TW201502263A (en) | 2013-06-28 | 2015-01-16 | Saint Gobain Ceramics | Abrasive article including shaped abrasive particles |
RU2643004C2 (en) | 2013-09-30 | 2018-01-29 | Сен-Гобен Серэмикс Энд Пластикс, Инк. | Formed abrasive particles and methods of their production |
US9566689B2 (en) | 2013-12-31 | 2017-02-14 | Saint-Gobain Abrasives, Inc. | Abrasive article including shaped abrasive particles |
US9771507B2 (en) | 2014-01-31 | 2017-09-26 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particle including dopant material and method of forming same |
EP3131705A4 (en) | 2014-04-14 | 2017-12-06 | Saint-Gobain Ceramics and Plastics, Inc. | Abrasive article including shaped abrasive particles |
WO2015160854A1 (en) | 2014-04-14 | 2015-10-22 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive article including shaped abrasive particles |
US9902045B2 (en) | 2014-05-30 | 2018-02-27 | Saint-Gobain Abrasives, Inc. | Method of using an abrasive article including shaped abrasive particles |
US20160144477A1 (en) * | 2014-11-21 | 2016-05-26 | Diane Scott | Coated compressive subpad for chemical mechanical polishing |
US9914864B2 (en) | 2014-12-23 | 2018-03-13 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particles and method of forming same |
US9707529B2 (en) | 2014-12-23 | 2017-07-18 | Saint-Gobain Ceramics & Plastics, Inc. | Composite shaped abrasive particles and method of forming same |
US9676981B2 (en) | 2014-12-24 | 2017-06-13 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particle fractions and method of forming same |
TWI634200B (en) | 2015-03-31 | 2018-09-01 | 聖高拜磨料有限公司 | Fixed abrasive articles and methods of forming same |
US10196551B2 (en) | 2015-03-31 | 2019-02-05 | Saint-Gobain Abrasives, Inc. | Fixed abrasive articles and methods of forming same |
CA2988012C (en) | 2015-06-11 | 2021-06-29 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive article including shaped abrasive particles |
EP3455320A4 (en) | 2016-05-10 | 2019-11-20 | Saint-Gobain Ceramics&Plastics, Inc. | Abrasive particles and methods of forming same |
EP4071224A3 (en) | 2016-05-10 | 2023-01-04 | Saint-Gobain Ceramics and Plastics, Inc. | Methods of forming abrasive articles |
TWI621502B (en) * | 2016-08-18 | 2018-04-21 | 中國砂輪企業股份有限公司 | Double chemical mechanical polishing trimming system and method thereof |
US11230653B2 (en) | 2016-09-29 | 2022-01-25 | Saint-Gobain Abrasives, Inc. | Fixed abrasive articles and methods of forming same |
US10759024B2 (en) | 2017-01-31 | 2020-09-01 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive article including shaped abrasive particles |
US10563105B2 (en) | 2017-01-31 | 2020-02-18 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive article including shaped abrasive particles |
US10865148B2 (en) | 2017-06-21 | 2020-12-15 | Saint-Gobain Ceramics & Plastics, Inc. | Particulate materials and methods of forming same |
JP7300441B2 (en) * | 2017-07-11 | 2023-06-29 | スリーエム イノベイティブ プロパティズ カンパニー | Abrasive articles containing conformable coatings and polishing systems therefrom |
US12043785B2 (en) * | 2017-07-11 | 2024-07-23 | 3M Innovative Properties Company | Abrasive articles including conformable coatings and polishing system therefrom |
SG11202108831UA (en) * | 2019-02-13 | 2021-09-29 | 3M Innovative Properties Co | Abrasive elements with precisely shaped features, abrasive articles fabricated therefrom and methods of making thereof |
EP4081369A4 (en) | 2019-12-27 | 2024-04-10 | Saint-Gobain Ceramics & Plastics Inc. | Abrasive articles and methods of forming same |
TWI738304B (en) * | 2020-04-23 | 2021-09-01 | 台灣積體電路製造股份有限公司 | Method of manufacturing semiconductor wafer and cleaning scrubber |
CN111546247B (en) * | 2020-04-30 | 2022-03-25 | 郑州力弘超硬材料有限公司 | Diamond grinding tool low-temperature ceramic bonding agent for optical fiber contact pin and preparation method thereof |
CN115956064A (en) * | 2020-09-07 | 2023-04-11 | 日本碍子株式会社 | Refractory material |
US11919115B2 (en) * | 2021-10-13 | 2024-03-05 | Dalian University Of Technology | Flexible dot matrix bonding apparatus and adaptive clamping method for disk-type planar component |
Family Cites Families (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2488276A (en) * | 1943-12-28 | 1949-11-15 | Norton Co | Grinding wheel |
BE758965A (en) * | 1969-11-14 | 1971-05-13 | Norton Co | ABRASIVE GRINDING ELEMENTS |
US3966855A (en) * | 1974-02-22 | 1976-06-29 | The United States Of America As Represented By The Secretary Of The Air Force | Method of fabricating silicon carbide articles |
JPS61230871A (en) * | 1985-04-05 | 1986-10-15 | Noritake Co Ltd | Grinder element using flexible resin |
KR910002578B1 (en) * | 1988-01-19 | 1991-04-27 | 닙폰 가이시 카부시키카이샤 | Method for producing a high density sintered body of silicon carbide |
DE4243864C2 (en) * | 1991-12-24 | 1996-04-18 | Schunk Ingenieurkeramik Gmbh | Process for the production of moldings from silicon carbide |
US5366523A (en) * | 1992-07-23 | 1994-11-22 | Minnesota Mining And Manufacturing Company | Abrasive article containing shaped abrasive particles |
US5453312A (en) * | 1993-10-29 | 1995-09-26 | Minnesota Mining And Manufacturing Company | Abrasive article, a process for its manufacture, and a method of using it to reduce a workpiece surface |
US5551959A (en) * | 1994-08-24 | 1996-09-03 | Minnesota Mining And Manufacturing Company | Abrasive article having a diamond-like coating layer and method for making same |
US5692950A (en) * | 1996-08-08 | 1997-12-02 | Minnesota Mining And Manufacturing Company | Abrasive construction for semiconductor wafer modification |
JPH10138120A (en) * | 1996-10-31 | 1998-05-26 | Kyocera Corp | Jig for dressing |
US5840221A (en) * | 1996-12-02 | 1998-11-24 | Saint-Gobain/Norton Industrial Ceramics Corporation | Process for making silicon carbide reinforced silicon carbide composite |
CN1060424C (en) * | 1997-08-26 | 2001-01-10 | 汪宁 | Polishing disc for chemcal-mechanical polishing and making method |
US6214078B1 (en) * | 1997-11-25 | 2001-04-10 | Ferro Corporation | High temperature ceramic filter |
US20050260930A1 (en) * | 1999-06-15 | 2005-11-24 | Yuji Okuda | Table of wafer of polishing apparatus, method for polishing semiconductor wafer, and method for manufacturing semiconductor wafer |
US6364749B1 (en) * | 1999-09-02 | 2002-04-02 | Micron Technology, Inc. | CMP polishing pad with hydrophilic surfaces for enhanced wetting |
TW467802B (en) * | 1999-10-12 | 2001-12-11 | Hunatech Co Ltd | Conditioner for polishing pad and method for manufacturing the same |
JP2001121418A (en) * | 1999-10-29 | 2001-05-08 | Noritake Diamond Ind Co Ltd | Electrodeposition dresser for polishing |
US6451077B1 (en) * | 2000-02-02 | 2002-09-17 | 3M Innovative Properties Company | Fused abrasive particles, abrasive articles, and methods of making and using the same |
US7384438B1 (en) * | 2000-07-19 | 2008-06-10 | 3M Innovative Properties Company | Fused Al2O3-Y2O3-ZrO2 eutectic abrasive particles, abrasive articles, and methods of making and using the same |
ATE462774T1 (en) * | 2000-10-16 | 2010-04-15 | 3M Innovative Properties Co | METHOD FOR PRODUCING CERAMIC AGGLOMERA PARTICLES |
JP2004291165A (en) * | 2003-03-27 | 2004-10-21 | Mitsubishi Materials Corp | Soft material machining tool |
CN100356516C (en) * | 2004-05-05 | 2007-12-19 | 智胜科技股份有限公司 | Single-layer polishing pad and method of producing the same |
JP4661098B2 (en) * | 2004-06-18 | 2011-03-30 | 三菱マテリアル株式会社 | Cutting tool for soft material processing |
US7309672B2 (en) * | 2005-07-05 | 2007-12-18 | Ceradyne, Inc. | Lightweight boron carbide materials with improved mechanical properties and process for their manufacture |
JP4624293B2 (en) * | 2006-03-31 | 2011-02-02 | 株式会社ノリタケスーパーアブレーシブ | CMP pad conditioner |
US7410413B2 (en) * | 2006-04-27 | 2008-08-12 | 3M Innovative Properties Company | Structured abrasive article and method of making and using the same |
US8323072B1 (en) * | 2007-03-21 | 2012-12-04 | 3M Innovative Properties Company | Method of polishing transparent armor |
US20080287047A1 (en) * | 2007-05-18 | 2008-11-20 | Sang Fang Chemical Industry Co., Ltd. | Polishing pad, use thereof and method for making the same |
US8080073B2 (en) * | 2007-12-20 | 2011-12-20 | 3M Innovative Properties Company | Abrasive article having a plurality of precisely-shaped abrasive composites |
JP2010125567A (en) * | 2008-11-28 | 2010-06-10 | Mitsubishi Materials Corp | Cmp pad conditioner |
JP2010125586A (en) * | 2008-12-01 | 2010-06-10 | Mitsubishi Materials Corp | Conditioner for semiconductor polishing cloth and method of manufacturing the same |
WO2010063647A1 (en) * | 2008-12-03 | 2010-06-10 | Struers A/S | Abrasive disc |
SG174351A1 (en) * | 2009-03-24 | 2011-10-28 | Saint Gobain Abrasives Inc | Abrasive tool for use as a chemical mechanical planarization pad conditioner |
WO2010141464A2 (en) * | 2009-06-02 | 2010-12-09 | Saint-Gobain Abrasives, Inc. | Corrosion-resistant cmp conditioning tools and methods for making and using same |
KR101091030B1 (en) * | 2010-04-08 | 2011-12-09 | 이화다이아몬드공업 주식회사 | Method for producing pad conditioner having reduced friction |
US20120171935A1 (en) * | 2010-12-20 | 2012-07-05 | Diamond Innovations, Inc. | CMP PAD Conditioning Tool |
US20130065490A1 (en) * | 2011-09-12 | 2013-03-14 | 3M Innovative Properties Company | Method of refurbishing vinyl composition tile |
-
2013
- 2013-07-31 SG SG11201500713PA patent/SG11201500713PA/en unknown
- 2013-07-31 EP EP13826255.5A patent/EP2879836B1/en active Active
- 2013-07-31 JP JP2015525532A patent/JP2015530265A/en active Pending
- 2013-07-31 US US14/418,453 patent/US20150224625A1/en not_active Abandoned
- 2013-07-31 KR KR20157004858A patent/KR20150039795A/en not_active Application Discontinuation
- 2013-07-31 CN CN202211322368.0A patent/CN115625629A/en active Pending
- 2013-07-31 CN CN201380040394.7A patent/CN104684686A/en active Pending
- 2013-07-31 WO PCT/US2013/052828 patent/WO2014022462A1/en active Application Filing
- 2013-08-01 TW TW102127669A patent/TWI660816B/en active
-
2018
- 2018-11-09 JP JP2018211596A patent/JP2019063989A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
CN115625629A (en) | 2023-01-20 |
US20150224625A1 (en) | 2015-08-13 |
TWI660816B (en) | 2019-06-01 |
SG11201500713PA (en) | 2015-02-27 |
TW201410391A (en) | 2014-03-16 |
EP2879836A4 (en) | 2016-05-25 |
CN104684686A (en) | 2015-06-03 |
JP2019063989A (en) | 2019-04-25 |
JP2015530265A (en) | 2015-10-15 |
WO2014022462A1 (en) | 2014-02-06 |
EP2879836B1 (en) | 2019-11-13 |
KR20150039795A (en) | 2015-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11697185B2 (en) | Abrasive articles with precisely shaped features and method of making thereof | |
US9956664B2 (en) | Abrasive element precursor with precisely shaped features and methods of making thereof | |
EP2879836B1 (en) | Abrasive element with precisely shaped features, abrasive article fabricated therefrom and method of making thereof | |
US20080153398A1 (en) | Cmp pad conditioners and associated methods | |
TWI791028B (en) | Abrasive articles including conformable coatings and polishing system therefrom | |
US20220134512A1 (en) | Abrasive elements with precisely shaped features, abrasive articles fabricated therefrom and methods of making thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20150211 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
RA4 | Supplementary search report drawn up and despatched (corrected) |
Effective date: 20160426 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C09K 3/14 20060101ALI20160420BHEP Ipc: C09C 1/68 20060101ALI20160420BHEP Ipc: B24D 3/14 20060101AFI20160420BHEP Ipc: B24D 3/10 20060101ALI20160420BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20170926 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20190628 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1201172 Country of ref document: AT Kind code of ref document: T Effective date: 20191115 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602013062932 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20191113 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200213 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200213 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200214 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200313 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200313 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602013062932 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1201172 Country of ref document: AT Kind code of ref document: T Effective date: 20191113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20200814 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20200731 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200731 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200731 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200731 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230530 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IE Payment date: 20240620 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240619 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240619 Year of fee payment: 12 |