EP2873603B1 - Système électronique de bicyclette - Google Patents

Système électronique de bicyclette Download PDF

Info

Publication number
EP2873603B1
EP2873603B1 EP14191092.7A EP14191092A EP2873603B1 EP 2873603 B1 EP2873603 B1 EP 2873603B1 EP 14191092 A EP14191092 A EP 14191092A EP 2873603 B1 EP2873603 B1 EP 2873603B1
Authority
EP
European Patent Office
Prior art keywords
switching
power supply
electronic system
bicycle electronic
cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14191092.7A
Other languages
German (de)
English (en)
Other versions
EP2873603A1 (fr
Inventor
Flavio Fusari
Flavio Cracco
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Campagnolo SRL
Original Assignee
Campagnolo SRL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Campagnolo SRL filed Critical Campagnolo SRL
Publication of EP2873603A1 publication Critical patent/EP2873603A1/fr
Application granted granted Critical
Publication of EP2873603B1 publication Critical patent/EP2873603B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M25/00Actuators for gearing speed-change mechanisms specially adapted for cycles
    • B62M25/08Actuators for gearing speed-change mechanisms specially adapted for cycles with electrical or fluid transmitting systems

Definitions

  • the present invention relates to a bicycle electronic system, in particular a bicycle electronic gearshift.
  • the invention relates to a bicycle electronic system having a remote switching-off/(re)switching-on device.
  • the invention also refers to a battery unit configured for insertion into the bicycle electronic system.
  • the invention also refers to a method for remotely switching-off/(re)switching-on a bicycle electronic system.
  • a motion transmission system in a bicycle comprises a chain extending between toothed wheels associated with the axle of the pedal cranks and with the hub of the rear wheel.
  • a gearshift When there is more than one toothed wheel at at least one of the axle of the pedal cranks and the hub of the rear wheel, and the motion transmission system is therefore provided with a gearshift, a front derailleur and/or a rear derailleur are provided for.
  • each derailleur comprises a chain guide element, also known as cage, movable to move the chain among the toothed wheels in order to change the gear ratio, and an electromechanical actuator to move the chain guide element.
  • the actuator in turn typically comprises a motor, typically an electric motor, coupled with the chain guide element through a linkage such as an articulated parallelogram, a rack system or a worm screw system, as well as a sensor of the position, speed and/or acceleration of the rotor or of any moving part downstream of the rotor, down to the chain guide element itself.
  • a linkage such as an articulated parallelogram, a rack system or a worm screw system, as well as a sensor of the position, speed and/or acceleration of the rotor or of any moving part downstream of the rotor, down to the chain guide element itself.
  • Control electronics changes the gear ratio automatically, for example based on one or more detected variables, such as the travel speed, the cadence of rotation of the pedal cranks, the torque applied to the pedal cranks, the slope of the travel terrain, the heart rate of the cyclist and similar, and/or the gear ratio is changed based on commands manually input by the cyclist through suitable control members, for example levers and/or buttons.
  • suitable control members for example levers and/or buttons.
  • a device for controlling the front derailleur and a device for controlling the rear derailleur - or just one of the two in the case of simpler gearshifts - are mounted so as to be easy for the cyclist to manoeuvre, normally on the handlebars, close to the handgrips thereof where the brake lever is also located for driving the front and rear wheel brake, respectively.
  • Control devices that allow to drive both a derailleur in the two directions and a brake are commonly called integrated controls.
  • the device for controlling the front derailleur and the brake lever of the front wheel are located close to the left handgrip of the handlebar, and vice-versa the device for controlling the rear derailleur and the brake lever of the rear wheel are located close to the right handgrip.
  • the aforementioned components are located on-board the bicycle and must communicate with one another. Moreover, the aforementioned components must be powered.
  • Italian patent application no. MI2013A000895 still secret at the filing date of the present application discloses a bicycle electronic system, typically comprising a battery unit, a manual command management unit, a derailleur management unit, and a power supply and communication bus, each of said units being connected to said bus.
  • the bicycle electronic system can include other management unit or units of a different type selected from the group consisting of a computer cycle, a sensor unit, a logging unit, a peripheral unit, all connected to the supply and communication bus.
  • each unit other than the battery unit comprises a processor and is suitable for transmitting and receiving messages over the power supply and communication bus according to a communication protocol.
  • a communication protocol provides, for example, that there is a single unit transmitting at one time and that all of the units are constantly able to receive.
  • Such a distributed architecture makes it possible to avoid a central processing unit, as well as to easily expand the system. Moreover, the power supply is advantageously shared by all of the units.
  • EP 1 630 095 A2 discloses a bicycle component provided with a manual input device, and an input circuit having a signal line, a power line and a comparison section.
  • the input circuit is especially useful in electronic shifting.
  • the manual input device has a first ON position, a second ON position and an OFF position.
  • the signal line produces a pair of input signals corresponding to the first and second ON positions.
  • the comparison section produces pair of output signals based on a comparison of the input signals with a reference signal from the power line.
  • the input circuit includes a disconnect switch disposed between the power source and the comparison section and configured to disconnect the comparison section from the power source such that the bicycle component input circuit is in a power saving mode.
  • the problem at the basis of the invention is therefore that of avoiding the aforementioned drawback, in particular by providing a bicycle electronic system having a device for switching-off/(re)switching-on, and a method for switching-off/(re)switching-on, which are easy for the user to use and that at the same time ensure high reliability of operation.
  • the present invention concerns a bicycle electronic system and a method for switching-off/(re)switching-on the same according to independent claims 1 and 13, as well as a battery unit according to independent claim 12; preferred characteristics of the bicycle electronic system and of the method for remote switching-off/(re)switching-on are given in the dependent claims.
  • the invention relates to a bicycle electronic system, the system comprising a battery unit, at least one operating unit and a power supply and communication bus, each of said units being connected to said bus.
  • the system comprises first user activated/deactivated means for switching-off/(re)switching-on and second means for switching-off/(re)switching-on suitable for disconnecting/connecting said battery unit, and in particular a power source thereof, from/to said power supply and communication bus in response to the activation/deactivation of said first means for switching-off/(re)switching-on.
  • a system with such a device for remote switching-off/(re)switching-on advantageously allows a user to switch off/(re)switch-on, in a simple and effective manner, the bicycle electronic system during long periods of immobility of the bicycle, preventing the bicycle electronic system from staying in a standby state during such long periods of immobility and thus preventing the battery unit from running down, all without physically accessing the battery unit. Since the battery unit, and more specifically a power source thereof, is disconnected from the power supply and communication bus, the power supply is actually removed for all of the operating units of the system that, therefore, is effectively switched off.
  • said power supply and communication bus comprises a ground cable, a power supply cable and a communication cable, preferably a single communication cable, more preferably a single serial communication cable.
  • the first means for switching-off/(re)switching-on are removable from the rest of the bicycle electronic system. This advantageously prevents their accidental activation.
  • the removable first means for switching-off/(re)switching-on comprise a two terminal electrical connector configured to be connected/disconnected to/from the bicycle electronic system at any point of the supply and communication bus. This increases the versatility of the system.
  • the two terminal electrical connector can consist simply of a conductor wire, but in preferred embodiments it is a rigid connector, a sort of jumper.
  • the two terminal electrical connector is configured to be connected/disconnected to/from the bicycle electronic system in place of any of said operating units, which is previously disconnected from the power supply and communication bus.
  • Such an embodiment advantageously minimizes the access points to the power supply and communication bus.
  • At least one port configured for the removable connection of said two terminal electrical connector.
  • the port is provided at at least one of said operating units.
  • Such an embodiment advantageously avoids the user to disconnect the operating unit from the power supply and communication bus for connecting the connector while the system is switched-off, and to reconnect the operating unit to the power supply and communication bus when the connector is disconnected while the system is being (re)switched-on.
  • the first means for switching-off/(re)switching-on are integrated in the bicycle electronic system and preferably comprise a bistable switch, more preferably provided at one of said operating units.
  • the first means for switching-off/(re)switching-on, in the activation condition connect to each other a ground cable and a communication cable of the supply and communication bus.
  • the second means for switching-off/(re)switching-on are provided at the battery unit.
  • the second means for switching-off/(re)switching-on comprise a controlled switch and a first driver and a second driver to control a closed condition and an open condition of the controlled switch, respectively.
  • the second means for switching-off/(re)switching-on are connected between the battery unit and the power supply cable of the supply and communication bus.
  • the controlled switch is configured to disconnect/connect a positive pole of a power source of the battery unit from/with a power supply cable of the supply and communication bus.
  • the controlled switch is embodied by MOSFET technology, more preferably the controlled switch comprises an n-channel MOSFET and a p-channel MOSFET.
  • the first driver and the second driver comprise resistors.
  • the controlled switch comprises an n-channel MOSFET and a p-channel MOSFET, the drain of the n-channel MOSFET being connected to the gate of the p-channel MOSFET, the first driver setting the gate-source voltage of the p-channel MOSFET and the second driver setting the gate-source voltage of the n-channel MOSFET.
  • the system comprises an insulation device between the second driver and a communication cable of the power supply and communication bus.
  • said at least one operating unit comprises a manual command management unit and a derailleur management unit, each comprising more preferably a processor and a voltage regulator arranged between the processor and said power supply and communication bus.
  • system further comprises a second manual command management unit and a second derailleur management unit, each comprising a processor and a voltage regulator arranged between the processor and said power supply and communication bus.
  • the system further comprises at least one other unit selected from the group consisting of a computer cycle, a sensor unit, a logging unit, a peripheral unit, each preferably comprising a processor and a voltage regulator arranged between the processor and said power supply and communication bus.
  • the invention concerns a battery unit for a bicycle electronic system comprising means for switching-off/(re)switching-on suitable for disconnecting/connecting said battery unit from/to a power supply and communication bus in response to the activation/deactivation of first means for switching-off/(re)switching-on the bicycle electronic system.
  • Such a battery unit can be commercialised separately from the bicycle electronic system.
  • Such a battery unit can comprise one or more of the characteristics described above with reference to the bicycle electronic system.
  • the invention concerns a method for switching-off/(re)switching-on a bicycle electronic system, comprising:
  • activating said first means for switching-off/(re)switching-on comprises connecting together a ground cable and a communication cable of the power supply and communication bus of said bicycle electronic system.
  • a bicycle electronic system 1 comprises a battery unit 20 and one or more operating units 21-28 connected to a power supply and communication bus 29 or bus.
  • the operating units comprise a manual command management unit 21, for example the one actuated with the right hand, and a derailleur management unit 23, for example the one associated with the rear wheel.
  • the bicycle electronic system 1 further comprises other units connected to the bus 29.
  • a second manual command management unit 22 and a second derailleur management unit 24 are thus shown, in the above example the one actuated with the left hand and the one associated with the axle of the pedal cranks, respectively.
  • a computer cycle 25 for example a unit for detecting/processing the pedalling effort, remotely-positioned command units, namely one or more duplicated command units in different positions on the handlebars or elsewhere, etc.
  • the bus 29 preferably comprises three cables, as can be seen in Figures 2 to 5 : a ground cable 30, a power supply cable 32 and a single serial communication cable 34.
  • the ground cable 30 is the reference for all the differences in electrical potential of the system 1
  • the power supply cable 32 feeds all of the operating units 21-28 connected in the bicycle electronic system 1
  • the serial communication cable 34 is used by all of the operating units 21-28 connected in the bicycle electronic system 1 to communicate service or error messages or commands.
  • each of the operating units 21-28 preferably comprises a processor 40 and a voltage regulator 42 arranged between the processor 40 and the bus 29, more specifically between its ground and power supply cables 30, 32.
  • the processor 40 controls and/or is controlled by devices specific for the operating unit 21-28 itself, depicted by a generic functional block 44.
  • the functional block 44 typically comprises at least one or two switches to transmit, when their state is changed, an upward gearshifting request signal and/or a downward gearshifting request signal, respectively, as well as possibly actuation levers or buttons of the switches;
  • the functional block 44 for example comprises a driving circuit of an electric motor and/or an electric motor for moving the chain guide element of the derailleur;
  • the functional block 44 for example comprises a display, control switches, a data and program memory;
  • the functional block 44 comprises one or more sensors of variables such as the travel speed, the cadence of rotation of the pedal cranks, the torque applied to the pedal cranks, the slope of the travel terrain, the heart rate of the cyclist and the like; in the case of the logging unit 27, the functional block 44 for example
  • a voltage regulator 42 makes it possible to design each operating unit 21-28 with the processor 40 most suitable for the specific function of the unit itself, which as can be seen from the above can be highly variable.
  • the voltage regulator 42 indeed, takes the power supplied by the battery 20 from the bus 29 and provides the most suitable voltage values for the processor 40.
  • one or more of the electronic and electromechanical devices schematised by the functional block 44 can be directly connected to the ground 30 and power supply cables 32 to be supplied by the battery unit 20 through the bus 29.
  • a capacitive device 46 such as a small-capacity condenser, is preferably arranged between the voltage regulator 42 and the bus 29, more specifically between its ground and power supply cables 30, 32.
  • Such a device has the function of allowing the power supply of the processor 40 for a brief period of time, for example a few milliseconds, sufficient to allow a delayed turning off of the processor 40 in the case of a lack of power supply on the bus 29, so that the processor 40 can take care of saving all the data and the current value of all of the variables in a nonvolatile memory in the case of the lack of power supply.
  • Each operating unit 21-28 also preferably and advantageously comprises a modulator of the voltage on the communication cable or transmitter 48 and a demodulator of the voltage on the communication cable or receiver 50.
  • the receiver 50 is shown as a self-standing block, but it can be incorporated in the processor 40.
  • each unit connected in the bicycle electronic system 1 allows a direct communication between the various units.
  • the manual command management units 21, 22 and/or the sensor unit 26 can communicate directly with the derailleur management units 23, 24 to directly impart upward and downward gearshifting commands and receive state messages of the derailleurs.
  • the transmitter 48 and/or the receiver 50 could be absent, of course giving up the ability to communicate (or the full ability) for such units.
  • Each operating unit 21-28 also optionally comprises a polarizer 52, for example a resistor, connected between the power supply cable 32 and the communication cable 34 to generate a known voltage on the communication cable 34.
  • a polarizer 52 for example a resistor
  • the battery unit 20 comprises a power source 36, such as a cell or battery or accumulator, which can also be formed of many cells, preferably rechargeable, typically connected in series.
  • the battery 36 is connected between the ground and power supply cables 30, 32 (with the interposition of a controlled switch 13, better described in the following) to supply a voltage difference between the two cables available for the rest of the bicycle electronic system 1 through the bus 29.
  • the battery unit 20 also preferably comprises a polarizer 38, 39 connected between the power source 36 and the communication cable 34 to generate a known voltage on the communication cable 34.
  • the bicycle electronic system 1 comprises a device 10 for remote switching-off/(re)switching-on.
  • the device 10 for remote switching-off/(re)switching-on comprises first means 11 for switching-off/(re)switching-on and second means 12 for switching-off/(re)switching-on responding to the first means 11 for switching-off/(re)switching-on.
  • the first means 11 for switching-off/(re)switching-on are able to be activated/deactivated by a user.
  • the first means 11 for switching-off/(re)switching-on can be located anywhere in the power supply and communication bus 29.
  • the position shown in Figure 1 , between the units 24 and 25, is merely indicative.
  • the first means 11 for switching-off/(re)switching-on are configured to be connected/disconnected to/from the bicycle electronic system 1 in place of any of the operating units 21 - 28, which is previously disconnected from the power supply and communication bus 29.
  • the first means 11 for switching-off/(re)switching-on comprise a connector 11 with two terminals 11 a, 11 b suitable for being connected by the user at a suitable port 60 provided in the power supply and communication bus 29.
  • the connector 11 with two terminals 11 a, 11 b is preferably rigid, a sort of "jumper".
  • the port 60 is provided in a suitable position of the bicycle and preferably it is provided in at least one of the operating units 21-28.
  • the port 60 can be omitted; in this case, the connector 11 is connected directly to the cables of the power supply and communication bus 29.
  • the first means 11 for switching-off/(re)switching-on can comprise simply a conducting wire the ends of which are connected to the cables of the power supply and communication bus 29.
  • the port 60 can be a port provided for the removable connection of an operating unit 21-28 in the bicycle electronic system 1.
  • the first means 11 for switching-off/(re)switching-on are configured to be connected by the user between the ground 30 and communication 34 cables of the bus 29.
  • the port 60 is preferably connected between the ground 30 and communication 34 cables of the bus 29. It should be understood that, if the port 60 is a port provided for the removable connection of an operating unit 21-28 in the bicycle electronic system 1, it will have three connections with all three cables of the bus 29 and three respective inputs, only two of which will be used for the means 11 for switching-off/(re)switching-on.
  • the communication cable 34 is electrically connected to the ground cable 30 by the first means 11 for switching-off/(re)switching-on; while in the non connected position of the first means 11 for switching-off/(re)switching-on, which as will be understood later on is the (re)switched-on condition of the bicycle electronic system 1, shown in Figure 4 , the communication cable 34 is disconnected from the ground cable 30.
  • the first means 11 for switching-off/(re)switching-on are removable from the rest of the bicycle electronic system 1. This advantageously avoids an accidental activation of the means 11 for switching-off/(re)switching-on and therefore undesired switching off of the system.
  • the first means 11 for switching-off/(re)switching-on can be integrated in the system 1, for example in the form of a bistable switch, advantageously connected between the communication cable 34 and the ground cable 30 of the power supply and communication bus 29.
  • Such a bistable switch is preferably provided in at least one of the operating units 21-28 of the system 1.
  • the second means 12 for switching-off/(re)switching-on are located at the battery unit 20, preferably inside it, and are configured to disconnect/connect the battery 36, in particular its power source 36, from/to the power supply and communication bus 29, in particular from/to the power supply cable 32, in response to the connection/disconnection of the first means 11 for switching-off/(re)switching-on to/from the system 1 by the user, in other words in response to the activation/deactivation of the first means 11 for switching-off/(re)switching-on by the user.
  • the second means 12 for switching-off/(re)switching-on comprise a controlled switch 13 and a first and a second driver, 14 and 15 respectively.
  • the first driver 14 and the second driver 15 are used to control a closed condition and an open condition of the controlled switch 13, respectively.
  • the controlled switch 13 is configured to connect/disconnect the power source 36 of the battery unit 20, preferably a positive pole thereof, with/from the power supply cable 32 of the power supply and communication bus 29.
  • the first driver 14 is connected between the battery 36 and the controlled switch 13 and, when the connector 11 is not connected to the system 1 and therefore the bicycle electronic system 1 is switched on ( Figure 4 ), keeps the controlled switch 13 closed, connecting the power source 36 to the power supply cable 32 of the bus 29.
  • the second driver 15 is connected between the controlled switch 13 and the communication cable 34 - indirectly, as will be explained shortly - and, when the connector 11 is connected ( Figure 3 ), it opens the controlled switch 13 disconnecting the power source 36 from the power supply cable 32.
  • the bicycle electronic system 1 therefore switches off.
  • the second means 12 for switching-off/(re)switching-on are overall arranged between the communication cable 34 and the ground cable 30, so that they respond to the difference in voltage existing between the two cables 30, 34 as set through the first means 11 for switching-off/(re)switching-on.
  • the second driver 15 is overall arranged between the communication cable 34 - indirectly, as will be explained shortly - and the ground cable 30, so that it responds to the difference in voltage existing between the two cables 30, 34 as set through the first means 11 for switching-off/(re)switching-on.
  • An insulation device 16 is preferably arranged between the second driver 15 and the bus 29, specifically its communication cable 34. Such an insulation device 16 has the function of insulating the second driver 15 from the communications in transit on the communication cable 34, in the switched on state of the system 1, to avoid undesired switching of the second means 12 for switching-off/(re)switching-on.
  • Figure 5 is a circuit diagram of an embodiment of the battery unit 20 and of the device 10 for switching-off/(re)switching-on.
  • the power source 36 (battery or accumulator, possibly formed from many cells connected in series), is connected between a cable 31 leading to the ground cable 30 of the bus 29 and a cable 33 leading to the power supply cable 32 of the bus 29, with the interposition of a p-channel MOSFET 18 part of the controlled switch 13 (see later).
  • the connection node between the positive pole of the power source 36 and the source S of the p-channel MOSFET 18 is indicated as node E.
  • the polarizer 38, 39 of the battery unit 20 is preferably embodied by a pair of resistors R1 38 and R2 39, connected in series between the poles of the power source 36, as well as between cables 31, 35 leading to the ground cable 30 and to the communication cable 34 of the bus 29.
  • the connection node between the resistors R1 38 and R2 39 is indicated as node C.
  • the resistors R1 38 and R2 39 of the polarizer embody a voltage divider and establish a predetermined voltage - hereinafter also called quiescence voltage - at the node C in a switched on condition of the system 1 (through the device 10 for switching-off/(re)switching-on), as described more clearly hereinafter.
  • the second driver 15 is preferably embodied by a pair of resistors R3 37a, R4 37b connected in series between the poles of the power source 36.
  • the connection node between the resistors R3 37a, R4 37b is indicated as node A.
  • the resistors R3 37a, R4 37b of the second driver 15 embody a voltage divider and establish a predetermined voltage at the node A in a switched on condition of the system 1 (through the device 10 for switching-off/(re)switching-on), as described more clearly hereinafter.
  • the controlled switch 13 is preferably embodied by an n-channel MOSFET 17 and the aforementioned p-channel MOSFET 18, connected between the power source 36, the node A and cables 31, 33 leading to the ground cable 30 and to the power supply cable 32 of the bus 29.
  • the n-channel MOSFET 17 has the source S connected to the negative pole of the power source 36 and to the cable 31 leading to the ground cable 30; the drain D connected to the gate G of the p-channel MOSFET 18 at a node indicated with B; and the gate G connected to the node A of the second driver 15.
  • the n-channel MOSFET 17 is therefore driven by the second driver 15, as described more clearly hereinafter.
  • the p-channel MOSFET 18 has the source S connected to the positive pole of the battery 36 at a node indicated with E; the gate G connected to the drain D of the n-channel MOSFET 17 at the node B as stated above; and the drain D connected to the cable 33 leading to the power supply cable 32 of the bus 29.
  • the first driver 14 is preferably embodied by a resistor R5 14 connected between the gate G and the source S of the p-channel MOSFET 18, namely between the aforementioned nodes B and E.
  • the p-channel MOSFET 18 is therefore driven by the first driver 14, as described more clearly hereinafter.
  • the insulation device 16 is embodied by a Schottky diode 16 arranged between the aforementioned nodes A and C, namely between the cable 35 leading to the communication cable 34 of the bus 29 and the second driver 15.
  • the user simply connects the connector 11 to the port 60 of the bicycle electronic system 1 - if necessary disconnecting/removing an operating unit 21-28 possibly connected to such a port 60 or a possible protective cover of the inputs of the port 60.
  • the ground 30 and communication 34 cables of the bus 29 are connected to each other (arrow F1).
  • the user can take care of connecting to each other the ground 30 and communication 34 cables of the bus 29 through application of a conductive wire between them, without a dedicated port 60 being provided for a dedicated connector 11, or of changing state of the bistable switch integrated in the bicycle electronic system 1.
  • V A V A
  • V G V A
  • V t1 V t1
  • the user simply disconnects the connector 11 from the port 60 of the bicycle electronic system -(re)connecting if necessary an operating unit 21-28 to such a port 60-, thus disconnecting (arrow F2) the ground 30 and communication 34 cables of the bus 29 from one another.
  • the disconnection can alternatively take place, by the user, through the removal of the conductive wire described above or through the switching of the bistable switch integrated in the bicycle electronic system 1.
  • the quiescence voltage Vq is set by the resistors R1 38, R2 39 of the polarizer of the battery unit 20.
  • the term quiescence voltage Vq also indicates the voltage measured on the communication cable 34 when in no operating unit 21-28 of the system 1 is the modulator or transmitter 48 activated.
  • the quiescence voltage Vq is set so as to be greater than the voltage V A at the node A, set by the resistors R3 37a and R4 37b of the second driver 15.
  • the quiescence voltage Vq taken up by the node C in this condition is set so as to be greater than the voltage V A at the node A means that the Schottky diode of the insulation device 16 is open or cut-off, so that the node A of the second driver 15 is effectively insulated from the communication cable 34 of the bus 29. Therefore, unwanted interference on the communication cable 34 is prevented from causing unwanted switching of the n-channel MOSFET 17.
  • R4 37b of the second driver 15 is also set at a value such that the voltage between gate G and source S of the n-channel MOSFET 17 is V GS >V t2 , V t2 being a threshold conduction voltage of the n-channel MOSFET 17.
  • the n-channel MOSFET 17 is therefore closed or in an on-state.
  • the voltage V E at the node E is equal to the voltage of the power source 36, the voltage between gate G and source S of the p-channel MOSFET 18 is negative, the p-channel MOSFET 18 is closed or in an on-state and the voltage on the cable 33 leading to the power supply cable 32 of the power supply and communication bus 29 coincides with the voltage of the node E, namely with the voltage supplied by the battery unit 20.
  • the power source 36 of the battery unit 20 is thus actually connected to the power supply cable 32 of the bus 29.
  • the other operating units 21-28 are therefore supplied with power and the system 1 indeed switches on.
  • the system 1 described above represents an advantageous implementation of a method for remotely switching-off/(re)switching-on a bicycle electronic system 1 according to the invention.
  • Such a method comprises:
  • activating the first means 11 for switching-off/(re)switching-on comprises connecting together a ground cable 30 and a communication cable 34 of the power supply and communication bus 29 of the bicycle electronic system 1.
  • the power supply and communication bus could comprise many communication cables.
  • one or more of the operating units could be free of the regulator and/or processor, as well as - as already stated - of one and/or the other of the transmitter and the receiver.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Power Sources (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Motorcycle And Bicycle Frame (AREA)

Claims (14)

  1. Système électronique de bicyclette (1), le système (1) comprenant une unité de batterie (20), au moins une unité opérationnelle (21-28) et un bus d'alimentation et de communication (29), chacune desdites unités (20, 21-28) étant connectée audit bus (29),
    caractérisé en ce qu'il comprend des premiers moyens (11) activés/désactivés par l'utilisateur pour éteindre/(ré)allumer des deuxièmes moyens (12) pour éteindre/(ré)allumer appropriés pour déconnecter/connecter ladite unité de batterie (20) par rapport audit/audit bus d'alimentation et de communication (29) en réponse à l'activation/désactivation desdits premiers moyens (11) pour éteindre/(ré)allumer.
  2. Système (1) selon la revendication 1, dans lequel lesdits premiers moyens (11) pour éteindre/(ré)allumer sont amovibles par rapport au reste du système électronique de bicyclette (1).
  3. Système (1) selon la revendication 2, dans lequel lesdits premiers moyens amovibles (11) pour éteindre/(ré)allumer comprennent un connecteur électrique (11) avec deux bornes (11a, 11b) configurées pour être connectées/déconnectées par rapport au/au système électronique de bicyclette au niveau d'un point quelconque du bus d'alimentation et de communication (29).
  4. Système (1) selon la revendication 3, dans lequel ledit connecteur électrique (11) avec deux bornes (11a, 11b) est configuré pour être connecté/déconnecté par rapport au/au système électronique de bicyclette (1) à la place de l'une quelconques desdites unités opérationnelles (21-28).
  5. Système (1) selon la revendication 3, comprenant au moins un port (60) configuré pour la connexion amovible dudit connecteur électrique (11) avec deux bornes (11a, 11b), ledit port (60) étant de préférence prévu au niveau d'au moins une desdites unités opérationnelles (21-28).
  6. Système (1) selon la revendication 1, dans lequel lesdits premiers moyens (11) pour éteindre/(ré)allumer sont intégrés dans le système électronique de bicyclette (1) et ils comprennent de préférence un interrupteur bistable, davantage de préférence au niveau de l'une desdites unités opérationnelles (21-28).
  7. Système (1) selon l'une quelconque des revendications précédentes, dans lequel lesdits premiers moyens (11) pour éteindre/(ré)allumer, dans l'état d'activation, se connectent chacun à un câble de masse (30) et à un câble de communication (34) du bus d'alimentation et de communication (29).
  8. Système (1) selon l'une quelconque des revendications précédentes, dans lequel lesdits deuxièmes moyens (12) pour éteindre/(ré)allumer sont prévus au niveau de l'unité de batterie (20).
  9. Système (1) selon l'une quelconque des revendications précédentes, dans lequel lesdits deuxièmes moyens (12) pour éteindre/(ré)allumer comprennent un commutateur commandé (13) et un premier circuit d'attaque (14) et un deuxième circuit d'attaque (15) pour commander un état fermé et un état ouvert du commutateur commandé (13), respectivement.
  10. Système (1) selon la revendication 9, dans lequel le commutateur commandé (13) est configuré pour déconnecter/connecter un pôle positif d'une source d'alimentation (36) de l'unité de batterie (20) par rapport au/au câble d'alimentation (32) du bus d'alimentation et de communication (29).
  11. Système (1) selon la revendication 9 ou 10, dans lequel le commutateur commandé (13) comprend un transistor MOFSET à canal n (17) et un transistor MOFSET à canal p (18), le drain du transistor MOFSET à canal n (17) étant connecté à la grille du transistor MOFSET à canal p (18), le premier circuit d'attaque (14) réglant la tension grille-source du transistor MOFSET à canal p (18) et le deuxième circuit d'attaque (15) réglant la tension grille-source du transistor MOFSET à canal n (17).
  12. Unité de batterie (20) pour un système électronique de bicyclette (1) comprenant des moyens (12) pour éteindre/(ré)allumer appropriés pour déconnecter/connecter ladite unité de batterie (20) par rapport au/au bus d'alimentation et de communication (29) en réponse à l'activation/désactivation des premiers moyens (11) pour éteindre/(ré)allumer le système électronique de bicyclette (1).
  13. Procédé pour éteindre/(ré)allumer un système électronique de bicyclette (1) comprenant les étapes consistant à :
    lors de l'extinction du système (1) :
    - activer, par le biais d'un utilisateur, des premiers moyens (11) pour éteindre/(ré)allumer ; et
    - déconnecter à travers des deuxièmes moyens (12) pour éteindre/(ré)allumer, une unité de batterie (20) par rapport à un bus d'alimentation et de communication (29) en réponse à ladite activation ;
    lors de l'allumage (du réallumage) :
    - désactiver, par le biais d'un utilisateur, les premiers moyens (11) pour éteindre/(ré)allumer ; et
    - connecter à travers les deuxièmes moyens (12) pour éteindre/(ré)allumer, l'unité de batterie (20) au bus d'alimentation et de communication (29) en réponse à ladite désactivation.
  14. Procédé selon la revendication 13, dans lequel l'activation desdits premiers moyens (11) pour éteindre/(ré)allumer comprend le fait de connecter ensemble un câble de masse (30) et un câble de communication (34) du bus d'alimentation et de communication (29) dudit système électronique de bicyclette (1).
EP14191092.7A 2013-11-15 2014-10-30 Système électronique de bicyclette Active EP2873603B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
IT001902A ITMI20131902A1 (it) 2013-11-15 2013-11-15 Sistema elettronico di bicicletta

Publications (2)

Publication Number Publication Date
EP2873603A1 EP2873603A1 (fr) 2015-05-20
EP2873603B1 true EP2873603B1 (fr) 2016-12-07

Family

ID=49920445

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14191092.7A Active EP2873603B1 (fr) 2013-11-15 2014-10-30 Système électronique de bicyclette

Country Status (6)

Country Link
US (1) US10202168B2 (fr)
EP (1) EP2873603B1 (fr)
JP (1) JP2015096419A (fr)
CN (1) CN104648608B (fr)
IT (1) ITMI20131902A1 (fr)
TW (1) TWI652201B (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201700048414A1 (it) * 2017-05-04 2018-11-04 Campagnolo Srl Dispositivo manuale di comando per bicicletta, sistema elettronico di bicicletta che lo comprende e metodi di configurazione dello stesso, nonché deragliatore di bicicletta
US10363986B2 (en) * 2017-07-10 2019-07-30 Shimano Inc. Electrical bicycle operating system
US10807671B2 (en) * 2018-04-16 2020-10-20 Shimano Inc. Electrical bicycle operating system
DE102018207493A1 (de) * 2018-05-15 2019-11-21 Sram Deutschland Gmbh Stelleinrichtung für ein Fahrrad und Verfahren zur Steuerung oder Einstellung solcher Stelleinrichtungen
JP7120871B2 (ja) * 2018-10-02 2022-08-17 株式会社シマノ 制御装置および変速システム

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3919891A (en) 1973-10-15 1975-11-18 Brian J Stuhlmuller Electrical gear changer for chain driven vehicle
US5115143A (en) * 1991-08-08 1992-05-19 International Business Machines Efficient P-channel FET drive circuit
US5213548A (en) * 1992-03-02 1993-05-25 Colbert Ralph G Gear shifting system for derailleur equipped bicycle
IT1320286B1 (it) * 2000-03-29 2003-11-26 Campagnolo Srl Sistema di controllo multiprocessore per cicli, ad esempio perbiciclette da competizione.
NL1018948C2 (nl) * 2001-09-13 2003-03-20 Sparta B V Rijwiel met hulpaandrijving.
US6741045B2 (en) * 2002-04-23 2004-05-25 Shimano, Inc. Bicycle control apparatus that communicates power and data over a single transmission path
DE60315590T2 (de) * 2003-03-21 2008-05-08 Campagnolo S.R.L. Einheiten zur Steuerung der Betriebsfunktionen eines Fahrrads
WO2005032882A2 (fr) * 2003-10-03 2005-04-14 Mouzas Alexander A Systeme de commande de feux lateraux d'un vehicule
US7123522B2 (en) * 2004-03-10 2006-10-17 Micron Technology, Inc. Method and apparatus for achieving low power consumption during power down
US7406367B2 (en) 2004-08-26 2008-07-29 Shimano Inc. Input circuit for bicycle component
CA2531295C (fr) * 2004-12-22 2013-10-22 Odyne Corporation Systeme de charge de batterie faisant appel a une porteuse sur cable d'alimentation et a un systeme de gestion d'accumulateurs
JP4141453B2 (ja) * 2005-03-16 2008-08-27 株式会社シマノ 自転車用電源装置
ITMI20061296A1 (it) * 2006-07-04 2008-01-05 Campagnolo Srl Metodo di controllo e sistema di carica di una unita' di alimentazione a batteria
ITMI20061438A1 (it) * 2006-07-24 2008-01-25 Campagnolo Srl Metodo e sistema di ricarica di una unita' di alimentazione a batteria
ITMI20072407A1 (it) * 2007-12-20 2009-06-21 Campagnolo Srl Apparecchiatura elettronica per bicicletta
BRPI0917008A2 (pt) * 2008-08-08 2016-02-16 Powermax Global Llc comunicações de dados seguras de longa distância através de linhas de energia para leitura de medidor e outros serviços de comunicações
US20100164334A1 (en) * 2008-12-28 2010-07-01 Jay Schiller Bicycle with power generation and supply circuit
JP2012151914A (ja) * 2009-07-31 2012-08-09 Panasonic Corp 車載電力線通信装置およびこれを用いた車両
JP5211102B2 (ja) * 2010-04-28 2013-06-12 株式会社シマノ 自転車用電装システム
JP5571496B2 (ja) * 2010-08-05 2014-08-13 株式会社小糸製作所 光源点灯回路及び車両用灯具システム
JP2012179975A (ja) 2011-02-28 2012-09-20 Shimano Inc 自転車用サスペンション制御装置の設定装置および自転車用サスペンションの制御装置
US8655548B2 (en) * 2011-03-31 2014-02-18 Shimano Inc. Bicycle component control apparatus
JP5303615B2 (ja) * 2011-07-29 2013-10-02 株式会社シマノ 自転車用電装システムの診断装置
JP5159928B2 (ja) * 2011-07-29 2013-03-13 株式会社シマノ 自転車用通信アダプタ
JP5492849B2 (ja) 2011-09-20 2014-05-14 日立オートモティブシステムズ株式会社 車載用制御装置
ITMI20121280A1 (it) * 2012-07-23 2014-01-24 Campagnolo Srl Invertitore di comandi per un dispositivo di comando di un cambio di bicicletta
ITMI20130895A1 (it) 2013-05-31 2014-12-01 Campagnolo Srl Sistema elettronico di bicicletta

Also Published As

Publication number Publication date
US10202168B2 (en) 2019-02-12
ITMI20131902A1 (it) 2015-05-16
EP2873603A1 (fr) 2015-05-20
TWI652201B (zh) 2019-03-01
TW201529414A (zh) 2015-08-01
US20150137591A1 (en) 2015-05-21
CN104648608A (zh) 2015-05-27
JP2015096419A (ja) 2015-05-21
CN104648608B (zh) 2018-06-29

Similar Documents

Publication Publication Date Title
EP2873603B1 (fr) Système électronique de bicyclette
EP2808238B1 (fr) Système électronique de bicyclette
EP2505469B1 (fr) Appareil de contrôle de composant pour bicyclette
US9090304B2 (en) Bicycle control device
US6741045B2 (en) Bicycle control apparatus that communicates power and data over a single transmission path
JP4214138B2 (ja) 自転車用部品の入力回路
EP2876029B1 (fr) Bicyclette électrique sans chaîne
EP3851365B1 (fr) Dispositif de surveillance de bicyclette monté dans un cadre
US7116008B2 (en) Electrical communication system for a bicycle
CN1937397A (zh) 一种车辆电动助力转向系统控制器
US20050067808A1 (en) Bicycle electrical control device with a non-contact reset function
EP1604844B1 (fr) Contrôle électronique des dispositifs d'actionnement d'un véhicule
CN218506051U (zh) 全地形车
CN219833998U (zh) 一种双上装电机控制电路和环卫车
CN204144082U (zh) 一种终端电器手动与自动一体式分、合闸装置
WO2007003673A3 (fr) Systeme chauffant de parebrise d'automobiles

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141030

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20151104

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160525

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 851424

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014005330

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20161207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170307

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 851424

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170407

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170407

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170307

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014005330

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

26N No opposition filed

Effective date: 20170908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171030

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171030

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171030

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20181030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20141030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181030

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230516

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231023

Year of fee payment: 10

Ref country code: FR

Payment date: 20231025

Year of fee payment: 10

Ref country code: DE

Payment date: 20231027

Year of fee payment: 10