EP2872673B1 - Undivided electrolytic cell and use of the same - Google Patents

Undivided electrolytic cell and use of the same Download PDF

Info

Publication number
EP2872673B1
EP2872673B1 EP13735335.5A EP13735335A EP2872673B1 EP 2872673 B1 EP2872673 B1 EP 2872673B1 EP 13735335 A EP13735335 A EP 13735335A EP 2872673 B1 EP2872673 B1 EP 2872673B1
Authority
EP
European Patent Office
Prior art keywords
anode
electrolyte
electrolytic cell
cathode
electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13735335.5A
Other languages
German (de)
French (fr)
Other versions
EP2872673A1 (en
Inventor
Michael Müller
Patrick Keller
Markus Schiermeier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
United Initiators GmbH and Co KG
Original Assignee
United Initiators GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/EP2012/063783 external-priority patent/WO2013007816A2/en
Application filed by United Initiators GmbH and Co KG filed Critical United Initiators GmbH and Co KG
Priority to PL13735335T priority Critical patent/PL2872673T3/en
Priority to US14/407,205 priority patent/US9540740B2/en
Publication of EP2872673A1 publication Critical patent/EP2872673A1/en
Application granted granted Critical
Publication of EP2872673B1 publication Critical patent/EP2872673B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/28Per-compounds
    • C25B1/29Persulfates
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/28Per-compounds
    • C25B1/30Peroxides

Definitions

  • the present invention relates to an electrolysis cell and its use for producing an ammonium or alkali metal peroxodisulfate.
  • sodium peroxodisulfate is produced with a current efficiency of 70 to 80% in an electrolysis cell with a cathode protected by a diaphragm and a platinum anode by adding a neutral aqueous anolyte solution with an initial content of 5 to 9% by weight of sodium ions, 12 to 30% by weight Sulfate ions, 1 to 4% by weight ammonium ions, 6 to 30% by weight peroxodisulfate ions and a potential-increasing promoter, such as, in particular, thiocyanate Using a sulfuric acid solution as a catholyte at a current density is electrolyzed by at least 0.5 to 2 A / cm 2 . After the peroxodisulfate has crystallized out and separated off from the anolyte, the mother liquor is mixed with the cathode product, neutralized and fed back to the anode.
  • a neutral aqueous anolyte solution with an initial content of 5
  • EP-B 0 428 171 discloses a filter press type electrolytic cell for the production of peroxo compounds including ammonium peroxodisulfate, sodium peroxodisulfate and potassium peroxodisulfate. Platinum foils applied hot isostatically to a valve metal are used as anodes. A solution of the corresponding sulfate containing a promoter and sulfuric acid is used as the anolyte. This method also has the aforementioned problems.
  • Peroxodisulfates are produced by anodic oxidation of an aqueous solution containing neutral ammonium sulfate.
  • the solution obtained from the anodic oxidation which contains ammonium peroxodisulfate, is reacted with sodium hydroxide solution or potassium hydroxide solution.
  • the mother liquor is recycled in a mixture with the catholyte produced in the electrolysis. In this process, too, the electrolysis takes place in the presence of a promoter on a platinum electrode as the anode.
  • the international patent application WO 2011/066632 describes, in connection with the purification of water, a cylindrical electrolysis cell which each comprises a tubular cathode and anode, the anode comprising a conductive support coated with a conductive diamond layer. There are also inlet pipes, outlet pipes and, if necessary, a diaphragm to separate the electrolyte space.
  • the electrolysis cell is specially designed for the processing of wastewater and accordingly not designed for high solid concentrations in the electrolyte solution. Distribution facilities are not available.
  • the object of the present invention is to provide an electrolysis cell which can be used in a technical process for the production of ammonium and alkali metal peroxodisulfates, the disadvantages of the known processes being able to be avoided or at least only occurring to a lesser extent.
  • Also described herein is a process for the preparation of an ammonium or alkali metal peroxodisulfate comprising anodic oxidation of a salt from the series ammonium sulfate, alkali metal sulfate and / or the corresponding aqueous electrolyte containing hydrogen sulfate in an electrolytic cell, comprising at least one anode and one cathode, wherein a diamond layer arranged on a conductive support and doped with a trivalent or pentavalent element is used as the anode, wherein the electrolysis cell comprises an undivided electrolysis space between the anode and the cathode and the aqueous electrolyte does not contain a promoter for increasing the decomposition voltage from water to oxygen.
  • the salt used for the anodic oxidation from the series ammonium sulfate, alkali metal sulfate and / or the corresponding hydrogen sulfates can be any desired alkali metal sulfate or corresponding hydrogen sulfate.
  • the use of sodium and / or potassium sulfate and / or the corresponding hydrogen sulfate is possible.
  • Promoter or also “polarizer” in the context of the present application is any agent which is known to the person skilled in the art as an additive when carrying out an electrolysis to increase the decomposition voltage of water to oxygen or to improve the current yield.
  • An example of such a promoter used in the prior art is thiocyanate, such as, for example, sodium or ammonium thiocyanate. Such a promoter is not used in the process described. In other words, in the method described herein, the electrolyte has a promoter concentration of 0 g / l.
  • an anode which comprises a diamond layer arranged on a conductive support and doped with a 3- or 5-valent element.
  • One advantage of this feature is the very high wear resistance of the diamond coating. Long-term tests have shown that such electrodes have a minimum life of more than 12 years.
  • the anode used can be of any shape.
  • the carrier material can be selected be out of the group consisting of silicon, germanium, titanium, zirconium, niobium, tantalum, molybdenum, tungsten, carbides of these elements and / or aluminum or combinations of the elements.
  • the cathode used in the method described herein is preferably made of lead, carbon, tin, platinum, nickel, alloys of these elements, zirconium and / or acid-resistant stainless steels, as they are known to the person skilled in the art.
  • the cathode can have any spatial configuration.
  • the electrolyte space between the anode and cathode is undivided, i.e. there is no separator between anode and cathode.
  • the use of an undivided cell enables electrolyte solutions with very high solids concentrations, which in turn significantly reduces the energy expenditure in salt production, essentially crystallization and water evaporation, in direct proportion to the increase in the solids content, but at least to 25% of that of a divided cell.
  • the method described is carried out in a three-dimensional cell.
  • the cell is designed as a tubular cell.
  • a tube geometry i.e. a tube cell, Consisting of an inner tube as the anode, preferably made of diamond-coated niobium, and an outer tube as the cathode, preferably made of acid-resistant stainless steel, is an advantageous construction with low material costs.
  • the use of an annular gap as a common electrolyte space leads to a uniform and thus low flow loss Flow through and thus a high utilization of the available electrolysis surfaces, which in turn means a high current yield.
  • the production costs of such a cell are low compared to a so-called flat cell.
  • electrolysis cells can be combined, preferably in the form of a double tube package.
  • the electrolyte used preferably has an acidic, preferably sulfuric acid, or neutral pH.
  • the electrolyte can be circulated through the electrolytic cell during the process. This prevents an undesirable high electrolyte temperature in the cell, which accelerates the decomposition of the persulfates.
  • the method can include discharging electrolyte solution from the electrolyte circuit. This can be done in particular to obtain peroxodisulfate produced.
  • a further aspect therefore relates to the recovery of generated peroxodisulfates by crystallization and separation of the crystals from the electrolyte solution with the formation of an electrolyte solution, the electrolyte solution preferably being removed from the electrolyte circuit beforehand was discharged.
  • a recirculation of the electrolyte mother liquor is possible, especially if before generated peroxodisulfates were separated, with increasing the content of acid, sulfate and / or hydrogen sulfate in the electrolysis cell.
  • the anodic oxidation can be carried out at an anodic current density of 50-1500 mA / cm 2, in particular about 50-1200 mA / cm 2 .
  • a current density used particularly preferably is in the range from 60-975 mA / cm 2 .
  • the electrolyte used preferably has a total solids content of about 0.5 to 650 g / l.
  • the (working) electrolyte preferably contains about 100 to about 500 g / l persulfate, more preferably about 150 to about 450 g / l persulfate and most preferably 250-400 g / l persulfate.
  • the method thus enables high solids concentrations in the electrolyte solution in particular, without the addition of a potential-increasing agent or promoter and the resulting requirements for exhaust gas and wastewater treatment with high current yields in the peroxodisulfate production at the same time.
  • the electrolyte solution preferably contains from about 0.1 to about 3.5 mol of sulfuric acid per liter (l) of electrolyte solution, more preferably 1-3 mol of sulfuric acid per liter of electrolyte solution, and most preferably 2.2-2.8 mol of sulfuric acid per liter of electrolyte solution.
  • an electrolyte with the following composition is particularly preferably used in the process described herein: 150 to 500 g of persulfate and 0.1 to 3.5 mol of sulfuric acid per mol of electrolyte solution per liter of electrolyte.
  • the total solids content is preferably 0.5 g / l to 650 g / l, more preferably 100-500 g / l and most preferably 250-400 g / l, the sulphate content being variable.
  • the promoter portion is 0 g / l.
  • the invention relates to a built up from individual components, Undivided electrolysis cell, an electrolysis device composed of several such electrolysis cells, and its use for the oxidation of an electrolyte, as defined in the claims.
  • Electrolysis is understood to mean a chemical change caused by the passage of current through an electrolyte, which is expressed in a direct conversion of electrical energy into chemical energy through the mechanism of electrode reactions and ion migration.
  • the technically most important electrochemical conversion is the electrolysis of saline solution, which produces caustic soda and chlorine gas.
  • the production of inorganic peroxides is nowadays carried out on an industrial scale in electrolysis cells.
  • the reactions can be carried out at high concentrations of starting materials and corresponding products.
  • High product concentrations ensure that the end product is easy to work up, since the solvent must be removed if the reaction products are in solution.
  • the energy consumption of the downstream processing of the electrolysis products can thus also be reduced.
  • anode and cathode materials must also meet the mechanical requirements at high solids concentrations and therefore be extremely wear-resistant.
  • the electrolysis cells In order to make the electrolysis as economical as possible, the electrolysis cells must be designed so that the electrolysis can be carried out at the highest possible current densities. This is only possible if the anode and cathode have good electrical conductivity and are chemically inert to the electrolyte. Usually graphite or platinum is used as anode material. However, these materials have the disadvantage that they do not have sufficient abrasion resistance at high solids concentrations.
  • Electrodes are coated with an electrically conductive diamond layer, the diamond layer being applied using a chemical vapor deposition (CVD) process.
  • CVD chemical vapor deposition
  • the object of the present invention is to provide an electrolysis cell which enables a continuous and optimized electrolysis process at high solids concentrations (up to about 650 g / l) and at high current density ranges (up to about 1500 mA / cm 2 ).
  • the electrolysis cell should be adapted to the electrochemical reactions to be carried out and individual components should be able to be exchanged easily without the actual cell body being destroyed.
  • the anode and cathode are arranged concentrically to one another, so that - the electrolyte space is formed as an annular gap between the inner anode and the outer cathode.
  • - - The diameter of the cathode is therefore larger than that of the anode.
  • the electrolyte space does not contain a membrane or a diaphragm.
  • it is an electrolysis cell with a common electrolyte space, i. the electrolysis cell is undivided.
  • the distance between the anode outer surface and the cathode inner surface is preferably between 1-20 mm, more preferably between 1-15 mm, even more preferably between 2-10 mm and most preferably between 2-6 mm.
  • the inner diameter of the cathode is preferably between 10-400 mm, more preferably between 20-300 mm, even more preferably between 25-250 mm.
  • the anode and cathode are each independently between 20-120 cm, more preferably between 25-75 cm long.
  • the length of the electrolyte space is preferably at least 20 cm, more preferably at least 25 cm, and at most preferably 120 cm, more preferably 75 cm.
  • the cathode used according to the invention is preferably made of lead, carbon, tin, platinum, nickel, alloys of these elements, zirconium and / or iron alloys, in particular made of stainless steel, in particular acid-resistant stainless steel.
  • the cathode is made of acid-resistant stainless steel.
  • the base material of the rod-shaped or tubular, preferably tubular, anode is preferably silicon, germanium, titanium, zirconium, niobium, tantalum, molybdenum, tungsten, carbides of these elements, and / or aluminum, or combinations of the elements.
  • the anode support material can be identical to the anode base material or different.
  • the anode base material functions as a conductive carrier.
  • Any desired conductive material known to the person skilled in the art can be used as the conductive carrier.
  • Particularly preferred carrier materials are silicon, germanium, titanium, zirconium, niobium, tantalum, molybdenum, tungsten, carbides of these elements, and / or aluminum, or combinations of the elements. Silicon, titanium, niobium, tantalum, tungsten or carbides of these elements, more preferably niobium or titanium, even more preferably niobium, are particularly preferably used as the conductive support.
  • a conductive diamond layer is applied to this carrier material.
  • the diamond layer can be doped with at least one 3-valent or at least one 5-valent main or sub-group element.
  • the doped diamond layer is thus an n-conductor or a p-conductor. It is preferred here that a boron-doped and / or phosphorus-doped diamond layer is used.
  • the amount of doping is set in such a way that the desired, usually just sufficient, conductivity is achieved.
  • the crystal structure can contain up to 10,000 ppm, preferably from 10 ppm to 2000 ppm, boron and / or phosphorus.
  • the diamond layer can be applied over the entire surface or in sections, preferably on the entire outer surface of the rod-shaped or tubular anode.
  • the conductive diamond layer is preferably free of pores.
  • the diamond electrodes can be produced in two special CVD (Chemical Vapor Deposition) processes. These are the microwave plasma CVD and hot wire CVD processes. In both cases, the gas phase, which is activated to the plasma by microwave irradiation or thermally by hot wires, is made up of methane, hydrogen and possibly other additives, in particular a gaseous compound of the dopant.
  • CVD Chemical Vapor Deposition
  • a p-type semiconductor By using the boron compound such as trimethyl boron, a p-type semiconductor can be provided. Using a gaseous phosphorus compound as a dopant, an n-type semiconductor is obtained. By depositing the doped diamond layer on crystalline silicon, a particularly dense and pore-free layer is obtained.
  • the diamond layer is preferably applied in a film thickness of about 0.5-5 ⁇ m, preferably about 0.8-2.0 ⁇ m and particularly preferably about 1.0 ⁇ m to the conductive carrier used according to the invention. In another embodiment, the diamond layer is preferably applied in a film thickness of 0.5-35 ⁇ m, preferably 5-25 ⁇ m, most preferably 10-20 ⁇ m, to the conductive support used according to the invention.
  • the deposition can also take place on a self-passivating metal such as titanium, tantalum, tungsten, or niobium.
  • a self-passivating metal such as titanium, tantalum, tungsten, or niobium.
  • PA Michaud Electrochemical and Solid State Letters, 3 (2) 77-79 (2000 ) referenced.
  • anode comprising a niobium or titanium support with a boron-doped diamond layer, in particular with a diamond layer doped with up to 10,000 ppm boron, is particularly preferred.
  • the diamond-coated electrodes are characterized by a very high mechanical strength and abrasion resistance.
  • the anode and / or the cathode is preferably connected to the power source via the distributor device.
  • the distributor device In the event that the anode and cathode are connected to the power source via the distributor device, it must be ensured that the distributor device is electrically insulated accordingly. In any case, good electrical contact between the anode and / or cathode and the distributor device must be ensured.
  • the distributor device also ensures a homogeneous feed of the electrolyte from the feed pipe into the electrolyte space. After the electrolyte has passed the electrolyte compartment, the converted electrolyte (electrolysis product) is effectively collected with the help of at least one upstream distributor and discharged via a drain pipe.
  • the distributor devices according to the invention preferably consist, independently of one another, of silicon, germanium, titanium, zirconium, niobium, tantalum, molybdenum, tungsten, carbides of these elements and / or aluminum or combinations of the elements, particularly preferably of titanium.
  • the distributor devices have at least one connection point for at least one outlet or inlet pipe and one connection point for the anode. Forms the connection point for the anode a possibly closed hollow cylinder that is flush with the anode tube or -staff completes.
  • the hollow cylinder in the distributor device can seal the anode tube tightly so that no electrolyte can get into the interior of the anode.
  • the connection point of the distributor device to the anode can have a relief bore in the anode tube. This prevents electrolyte from flowing off into the anode tube if the pressure on the distributor element is too high.
  • the optionally closed hollow cylinder of the distributor device can be attached to the carrier material of the anode or directly to the diamond-coated carrier. In the latter case, the carrier and the distributor device are separated from one another by the conductive diamond layer.
  • the distributor device is irreversibly connected to the anode, particularly preferably welded. This is particularly advantageous when working with high currents.
  • the anode and the distributor device can be welded by diffusion welding, electron beam welding or laser welding.
  • Radial bores are distributed over the circumference of the hollow cylinder of the distributor device.
  • the distributor device preferably has 3, more preferably 4 and even more preferably 5 radial bores. Through the radial bores in the distributor device, the electrolyte can be distributed homogeneously and in a streamlined manner into the electrolyte space and, after passing through the electrolyte space, the electrolysis product can be effectively removed.
  • the electrolyte is fed to the electrolysis cell and the distributor device via the feed pipe.
  • the electrolysis product is discharged from the electrolysis cell via the drain pipe after the electrolysis product has been collected in the distributor device.
  • the distributor device is designed in such a way that it also tightly seals the tubular cathode so that no electrolyte or electrolysis product can escape from the cathode.
  • anode, cathode, distributor device, inlet and outlet pipe can be assembled to form an electrolysis cell using appropriate assembly devices known to those skilled in the art.
  • the individual components can be made of different materials and can be exchanged or replaced individually if damaged. It has thus succeeded in a simple way to connect the diamond anode according to the invention and the other components, which are made from cheaper materials, to one another to form an electrolysis cell which is very compact in design.
  • the tubular electrolytic cell is also characterized by high Strength while using little material. Parts that wear out over time due to the abrasive electrolytes, for example, can be replaced individually, so that economical use of materials is guaranteed in this respect as well.
  • the flow is favorable to the electrolyte space, which prevents flow losses and the surface is optimally used for the electrochemical exchange of substances.
  • a continuous and homogeneous electrolysis process with high solids concentrations and current density ranges is possible due to the electrode materials and electrode arrangement.
  • Another aspect of the present invention is an electrolysis device which comprises at least two electrolysis cells according to the invention, wherein the electrolyte passes through the electrolysis cells one after the other and the electrolysis cells are operated in an electrochemically connected parallel.
  • the system services can be implemented flexibly and without limits.
  • the electrolysis cell according to the invention or the electrolysis device according to the invention is particularly suitable for oxidizing an electrolyte.
  • the undivided electrolysis cell is particularly suitable for the oxidation of an electrolyte when neither the electrolyte nor the electrolysis product, which are produced or converted at the anode or cathode, are disruptively altered by the other electrode process or react with one another.
  • the electrolysis cells according to the invention can be operated with a current density between 50-1500 mA / CM 2 , preferably 50-1200 mA / cm 2 , more preferably 60-975 mA / cm 2 and thus enable large-scale and economical processes.
  • the electrolysis cells / electrolysis devices according to the invention can also be used at very high solids contents between 0.5-650 g / l, preferably 100-500 g / l, more preferably 150-450 g / l and even more preferably 250-400 g / l can be used.
  • the electrolysis cells / devices according to the invention are particularly suitable for the anodic oxidation of sulfate to peroxodisulfate.
  • electrolysis cells / electrolysis devices according to the invention have proven themselves in particular for the production of peroxodisulfates, for example in a method described herein.
  • the electrolyte space between the anode and cathode is undivided, i.e. there is no separator between anode and cathode.
  • the use of an undivided cell enables electrolyte solutions with very high solids concentrations, which in turn significantly reduces the energy expenditure in salt production, essentially crystallization and water evaporation, in direct proportion to the increase in the solids content, but at least to 25% of that of a divided cell.
  • the use of a promoter is also not necessary.
  • the electrolyte used preferably has an acidic, preferably sulfuric acid, or neutral pH.
  • the electrolyte can be circulated through the electrolytic cell during the process. This prevents an undesirable high electrolyte temperature in the cell, which accelerates the decomposition of the persulphates.
  • the electrolyte solution is discharged from the electrolyte circuit to recover the peroxodisulfate produced.
  • the peroxodisulfate produced can be obtained by crystallization and separation of the crystals from the electrolyte solution to form an electrolyte liquor.
  • the electrolyte used preferably has a total solids content of about 0.5 to 650 g / l at the start of the electrolysis.
  • the electrolyte preferably contains from about 100 to about 500 g / l sulfate, more preferably from about 150 to about 450 g / l sulfate, and most preferably from 250-400 g / l sulfate at the start of the reaction.
  • the use of the electrolysis cell / device according to the invention thus enables high solids concentrations in the electrolyte solution, without the addition of a potential-increasing agent or promoter and the resulting requirements for exhaust gas and wastewater treatment with high current yields at the same time Peroxodisulfate production.
  • the electrolyte solution preferably contains from about 0.1 to about 3.5 mol of sulfuric acid per liter (l) of electrolyte solution, more preferably 1-3 mol of sulfuric acid per liter of electrolyte solution, and most preferably 2.2-2.8 mol of sulfuric acid per liter of electrolyte solution.
  • an electrolyte with the following composition is particularly preferably used: 150 to 500 g of sulfate and 0.1 to 3.5 mol of sulfuric acid per liter of starting electrolyte per liter of electrolyte solution.
  • the total solids content is preferably 0.5 g / l to 650 g / l, more preferably 100-500 g / l and most preferably 250-400 g / l.
  • the promoter portion is 0 g / l.
  • Figure 3 shows a possible embodiment of an electrolytic cell according to the present invention.
  • FIG. 4 A cross section of this model is in Figure 4 shown schematically.
  • the electrolyte reaches the distributor device (2a) through the feed pipe (1) and is fed from there to the electrolyte chamber (3) in a streamlined manner.
  • the electrolyte space (3) is formed by the annular gap between the outer surface of the anode (4) and the inner surface of the cathode (5).
  • the electrolysis product is collected by the distributor device (2b) and transferred into the drain pipe (6). Seals (7) close off the electrolyte space between the inlet or outlet pipe and the inner surface of the cathode.
  • the distributor device (2) can be designed so that the distributor device simultaneously seals the electrolyte space.
  • Figure 5 shows the individual components of the electrolytic cell according to the invention. The numbering is analogous Figure 4 . Further components for sealing the electrolytic cell and for assembly are in Figure 5 shown but not numbered. These components are known to the person skilled in the art and can be exchanged as required.
  • FIG 6 is an enlarged view of the distribution device (2).
  • the distributor device has a connection point (21) for an outlet or inlet pipe and a connection point (22) for the anode (4).
  • the connection point for the anode is formed by a hollow cylinder that is flush with the anode tube or rod (4).
  • Radial bores (23) are distributed over the circumference of the hollow cylinder of the distributor device.
  • the electrolyte can be fed homogeneously into the electrolyte space through the radial bores (23) in the distributor device and can be effectively removed after passing through the electrolyte space.
  • the distributor device preferably has 3, more preferably 4 and even more preferably 5 radial bores.
  • a two-dimensional and on the other hand a three-dimensional cell consisting of a boron-doped diamond-coated niobium anode (diamond anode according to the invention) was used.
  • the electrolyte was appropriately concentrated by circulating (see Figures 1 and 2 ).
  • the current yield of a diamond-coated niobium anode is around 10% higher than with a cell with a conventional platinum-titanium anode and the addition of a potential-increasing agent and around 40% higher than with a cell with a conventional one, even without the addition of a potential-increasing agent Platinum-titanium anode without the addition of a potential-increasing agent.
  • the voltage drop across a diamond-coated anode is about 0.9 volts higher than that of a comparable cell with a platinum-titanium anode. Furthermore, it was found that the current yield with a diamond electrode to be used according to the invention without the addition of a promoter only increases with an increasing total content of sodium peroxodisulfate in the electrolyte slowly decreases - under the experimental conditions, for example, electrolyte solutions with a sodium peroxodisulfate content of around 400 - 650 g / l can be obtained with a current yield of 65% or more.
  • the working current density can be significantly reduced compared to platinum anodes with the same high production quantity, which means that fewer ohmic losses occur in the system and thus the cooling effort is reduced and the degree of freedom in the design of the electrolysis cells and the cathodes is increased.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Description

In einem Aspekt betrifft die vorliegende Erfindung eine Elektrolysezelle und deren Verwendung zur Herstellung eines Ammonium- oder Alkalimetallperoxodisulfats.In one aspect, the present invention relates to an electrolysis cell and its use for producing an ammonium or alkali metal peroxodisulfate.

Es ist im Stand der Technik bekannt, Alkalimetall- und Ammoniumperoxodisulfat durch anodische Oxidation einer das entsprechende Sulfat oder Hydrogensulfat enthaltenden wässrigen Lösung herzustellen und das dabei entstandene Salz durch Kristallisation aus dem Anolyt zu gewinnen. Da bei diesem Verfahren die Zersetzungsspannung über der Zersetzungsspannung der anodischen Sauerstoffbildung aus Wasser liegt, wird zur Erhöhung der Zersetzungsspannung des Wassers zu Sauerstoff (Sauerstoffüberspannung) an einer üblicherweise verwendeten Platinanode ein sogenannter Promoter, üblicherweise Thiocyanat als Natrium- bzw. Ammoniumthiocyanat eingesetzt.It is known in the prior art to produce alkali metal and ammonium peroxodisulphate by anodic oxidation of an aqueous solution containing the corresponding sulphate or hydrogen sulphate and to obtain the resulting salt from the anolyte by crystallization. Since in this process the decomposition voltage is above the decomposition voltage of the anodic oxygen formation from water, a so-called promoter, usually thiocyanate as sodium or ammonium thiocyanate, is used to increase the decomposition voltage of water to oxygen (oxygen overvoltage) on a platinum anode that is commonly used.

Rossberger ( US 3915816 (A )) beschreibt ein Verfahren zur direkten Herstellung von Natriumpersulfat. Als Elektrolysezellen werden dabei ungeteilte Zellen mit platinbeschichteten Anoden auf Titanbasis beschrieben. Die dargestellten Stromausbeuten beruhen auf Zugabe eines potentialerhöhenden Promoters.Rossberger ( US 3915816 (A )) describes a process for the direct production of sodium persulfate. Undivided cells with platinum-coated anodes based on titanium are described as electrolysis cells. The current yields shown are based on the addition of a potential-increasing promoter.

Gemäß DE 27 57 861 wird Natriumperoxodisulfat mit einer Stromausbeute um 70 bis 80 % in einer Elektrolysezelle mit einer durch ein Diaphragma geschützten Kathode und einer Platinanode hergestellt, indem eine neutrale wässrige Anolytlösung mit einem Anfangsgehalt von 5 bis 9 Gew.-% Natriumionen, 12 bis 30 Gew.-% Sulfationen, 1 bis 4 Gew.-% Ammoniumionen, 6 bis 30 Gew.-% Peroxodisulfationen und einem potentialerhöhenden Promoter, wie insbesondere Thiocyanat, unter Verwendung einer Schwefelsäure-Lösung als Katholyt bei einer Stromdichte von mindestens 0,5 bis 2 A/cm2 elektrolysiert wird. Nach dem Auskristallisieren und Abtrennen von Peroxodisulfat aus dem Anolyten wird die Mutterlauge mit dem Kathodenprodukt vermischt, neutralisiert und wieder der Anode zugeführt.According to DE 27 57 861 sodium peroxodisulfate is produced with a current efficiency of 70 to 80% in an electrolysis cell with a cathode protected by a diaphragm and a platinum anode by adding a neutral aqueous anolyte solution with an initial content of 5 to 9% by weight of sodium ions, 12 to 30% by weight Sulfate ions, 1 to 4% by weight ammonium ions, 6 to 30% by weight peroxodisulfate ions and a potential-increasing promoter, such as, in particular, thiocyanate Using a sulfuric acid solution as a catholyte at a current density is electrolyzed by at least 0.5 to 2 A / cm 2 . After the peroxodisulfate has crystallized out and separated off from the anolyte, the mother liquor is mixed with the cathode product, neutralized and fed back to the anode.

Nachteile dieses Verfahrens sind:

  1. 1. Um die Sauerstoffentwicklung zu vermindern ist der Einsatz eines Promoters notwendig.
  2. 2. Um die beschriebenen hohen Stromausbeuten zu erreichen, ist es erforderlich, dass Anode und Kathode durch den Einsatz einer geeigneten Membran räumlich getrennt sind. Die hierzu erforderlichen Membranen sind sehr stark abbrassionsempfindlich.
  3. 3. Das Erfordernis einer hohen Stromdichte und damit eines hohen Anodenpotentials, um eine wirtschaftlich akzeptable Stromausbeute zu erhalten.
  4. 4. Die mit der Herstellung der Platinanode verbundenen Probleme insbesondere mit Hinblick auf den Erhalt einer für technische Zwecke akzeptablen Stromausbeute und hohen Lebensdauer der Anode. Beispielhaft zu nennen ist hier der kontinuierliche Platinabtrag, der bis zu 1 g/to Produkt im Persulfat vorhanden sein kann. Dieser Platinabtrag wirkt einerseits produktverunreinigend und führt andererseits zum Verbrauch eines wertvollen Rohstoffs wodurch nicht zuletzt auch die Verfahrenskosten erhöht werden.
  5. 5. Die Herstellung von Persulfaten mit niedrigem Löslichkeitsprodukt, i.w. Kalium- und Natriumpersulfat, ist so nur in extrem hoher Verdünnung möglich. Dies macht einen hohen Energieeintrag bei der Kristallbildung erforderlich.
  6. 6. Bei Verwendung des sogenannten Konvertierverfahren müssen hergestellte Persulfate aus einer Ammoniumpersulfatlösung umkristallisiert werden. Hieraus resultiert in der Regel eine verringerte oder sogar mangelnde Reinheit des Produktes.
Disadvantages of this procedure are:
  1. 1. The use of a promoter is necessary to reduce the development of oxygen.
  2. 2. In order to achieve the high current yields described, it is necessary that the anode and cathode are spatially separated by using a suitable membrane. The membranes required for this are very sensitive to abrasion.
  3. 3. The requirement of a high current density and thus a high anode potential in order to obtain an economically acceptable current yield.
  4. 4. The problems associated with the production of the platinum anode, in particular with regard to obtaining a current yield that is acceptable for technical purposes and a long service life of the anode. One example is the continuous removal of platinum, which can contain up to 1 g / to product in the persulfate. This removal of platinum on the one hand has the effect of contaminating the product and on the other hand leads to the consumption of a valuable raw material, which not least increases the process costs.
  5. 5. The production of persulfates with a low solubility product, mainly potassium and sodium persulfate, is only possible in extremely high dilution. This makes a high energy input necessary for the crystal formation.
  6. 6. When using the so-called conversion process, produced persulfates must be recrystallized from an ammonium persulfate solution. As a rule, this results in a reduced or even insufficient purity of the product.

EP-B 0 428 171 offenbart eine Elektrolysezelle vom Filterpressentyp zur Herstellung von Peroxoverbindungen, darunter Ammoniumperoxosdisulfat, Natriumperoxodisulfat und Kaliumperoxodisulfat. Als Anoden werden hier heißisostatisch auf einem Ventilmetall aufgebrachte Platinfolien verwendet. Als Anolyt wird eine einen Promoter und Schwefelsäure enthaltenden Lösung des entsprechenden Sulfats eingesetzt. Auch dieses Verfahren weist die zuvor genannten Probleme auf. EP-B 0 428 171 discloses a filter press type electrolytic cell for the production of peroxo compounds including ammonium peroxodisulfate, sodium peroxodisulfate and potassium peroxodisulfate. Platinum foils applied hot isostatically to a valve metal are used as anodes. A solution of the corresponding sulfate containing a promoter and sulfuric acid is used as the anolyte. This method also has the aforementioned problems.

Im Verfahren nach DE 199 13 820 werden Peroxodisulfate durch anodische Oxidation einer neutrales Ammoniumsulfat enthaltenden wässrigen Lösung hergestellt. Zum Zwecke der Herstellung von Natrium- oder Kaliumperoxodisulfat wird die aus der anodischen Oxidation erhaltene Lösung, welche Ammoniumperoxodisulfat enthält, mit Natronlauge oder Kaliumlauge umgesetzt. Nach der Kristallisation und Abtrennung des entsprechenden Alkalimetallperoxodisulfats wird die Mutterlauge im Gemisch mit dem bei der Elektrolyse erzeugten Katholyt recycliert. Auch bei diesem Verfahren erfolgt die Elektrolyse in Gegenwart eines Promoters an einer Platinelektrode als Anode.In the process of DE 199 13 820 Peroxodisulfates are produced by anodic oxidation of an aqueous solution containing neutral ammonium sulfate. For the purpose of producing sodium or potassium peroxodisulfate, the solution obtained from the anodic oxidation, which contains ammonium peroxodisulfate, is reacted with sodium hydroxide solution or potassium hydroxide solution. After crystallization and separation of the corresponding alkali metal peroxodisulfate, the mother liquor is recycled in a mixture with the catholyte produced in the electrolysis. In this process, too, the electrolysis takes place in the presence of a promoter on a platinum electrode as the anode.

Obgleich Peroxodisulfate bereits seit Jahrzehnten in technischem Maßstab durch anodische Oxidation an einer Platinanode gewonnen werden, haften diesen Verfahren weiterhin gravierende Nachteile an (siehe auch vorausstehende Aufzählung). Es ist immer ein Zusatz von Promoteren, auch als Polarisatoren bezeichnet, erforderlich, um die Sauerstoffüberspannung zu erhöhen und die Stromausbeute zu verbessern. Als Oxidationsprodukte dieser Promoteren, welche bei der anodischen Oxidation zwangsläufig als Nebenprodukte entstehen, gelangen toxische Substanzen in das Anodenabgas und müssen in einer Gaswäsche entfernt werden. Hohe Stromausbeuten erfordern ferner eine Trennung von Anolyt und Katholyt. Die üblicherweise ganzflächig mit Platin bedeckten Anoden erfordern stets eine hohe Stromdichte. Dadurch kommt es zu einer Strombelastung des Anolytvolumens, des Separators und der Kathode, wodurch zusätzliche Maßnahmen zur Herabsetzung der kathodischen Stromdichte durch eine dreidimensionale Strukturierung der Elektrolysezelle und eine Aktivierung erforderlich werden. Hinzu kommt eine hohe thermische Belastung der labilen Peroxodisulfatlösung. Um diese Belastung zu minimieren, müssen konstruktive Maßnahmen ergriffen werden, und der Kühlaufwand steigt zusätzlich. Wegen der limitierten Wärmeabfuhr muss die Elektrodenfläche begrenzt werden, und hiermit steigt der Installationsaufwand pro Zelleneinheit. Um die hohe Strombelastung zu bewältigen, müssen in der Regel zusätzlich Elektroden-Stützmaterialien mit hohen Wärmeübertragungseigenschaften verwendet werden, die ihrerseits korrosionsanfällig und teuer sind.Although peroxodisulfates have been obtained on an industrial scale for decades by anodic oxidation on a platinum anode, these processes still have serious disadvantages (see also the list above). It is always necessary to add promoters, also known as polarizers, in order to increase the oxygen overvoltage and improve the current yield. As oxidation products of these promoters, which inevitably arise as by-products during the anodic oxidation, toxic substances get into the anode exhaust gas and must be removed in a gas scrubber. High current yields also require a separation of anolyte and catholyte. The anodes, which are usually completely covered with platinum, always require a high current density. This results in a current load on the anolyte volume, the separator and the cathode, whereby additional measures to reduce the cathodic current density by a three-dimensional structuring of the electrolysis cell and activation are required. In addition, there is a high thermal load on the unstable peroxodisulfate solution. In order to minimize this load, constructive measures have to be taken, and the cooling effort also increases. Because of the limited heat dissipation, the electrode area must be limited, and this increases the installation effort per cell unit. In order to cope with the high current load, additional electrode support materials with high heat transfer properties usually have to be used, which in turn are susceptible to corrosion and expensive.

P.A. Michaud et al. lehren in Electro Chemical and Solid-State Letters, 3(2) 77-79 (2000 ) die Herstellung von Peroxodischwefelsäure durch anodische Oxidation von Schwefelsäure unter Verwendung einer mit Bor dotierten Diamant-Dünnschichtelektrode. Dieses Dokument lehrt, dass derartige Elektroden eine höhere Überspannung für Sauerstoff aufweisen, als Platinelektroden. Die Druckschrift gibt aber keinen Hinweis auf die technische Herstellung von Ammonium- und Alkalimetallperoxodisulfaten unter Verwendung von mit Bor dotierten Diamant-Dünnschichtelektroden. Dabei ist nämlich bekannt, dass sich Schwefelsäure einerseits und Hydrogensulfate insbesondere neutrale Sulfate andererseits bei der anodischen Oxidation sehr unterschiedlich verhalten. Trotz der erhöhten Überspannung des Sauerstoffs an der mit Bor dotierten Diamant-Elektrode ist die Hauptnebenreaktion neben der anodischen Oxidation von Schwefelsäure die Entwicklung von Sauerstoff und zusätzlich von Ozon. Michaud, PA, et al. teach in Electro Chemical and Solid-State Letters, 3 (2) 77-79 (2000 ) the production of peroxodisulfuric acid by anodic oxidation of sulfuric acid using a thin-film diamond electrode doped with boron. This document teaches that such electrodes have a higher overvoltage for oxygen than platinum electrodes. However, the publication gives no indication of the industrial production of ammonium and alkali metal peroxodisulfates using boron-doped diamond thin-film electrodes. It is known that sulfuric acid on the one hand and hydrogen sulfates, in particular neutral sulfates, on the other hand, behave very differently in the anodic oxidation. Despite the increased overvoltage of the oxygen at the boron-doped diamond electrode, the main side reaction, in addition to the anodic oxidation of sulfuric acid, is the development of oxygen and also of ozone.

Im Zuge ihrer im Patent EP 1148155 B1 beschriebenen Erfindung erkannten Stenner und Lehmann bereits 2001, dass bei der Verwendung einer diamantbeschichteten, geteilten Elektrolysezelle zur Herstellung von Persulfaten kein zusätzlicher Promoter erforderlich ist um dennoch solch hohe Stromausbeuten zu erzielen. Nachteil dieses Verfahrens ist vor allem aufgrund der empfindlichen Separatoren, wie bereits oben beschrieben, dass die Herstellung von Persulfaten mit niedrigem Löslichkeitsprodukt, i.w. Kalium- und Natriumpersulfat, nur mit extrem hoher Verdünnung möglich ist, also unter der Löslichkeitsgrenze, was einen hohen Energieeintrag bei der Kristallbildung und dem Salzaustrag im Zuge der Verdampfung und Trocknung erfordert.As part of their patent EP 1148155 B1 Stenner and Lehmann recognized as early as 2001 that when using a diamond-coated, split electrolysis cell for the production of persulfates, no additional promoter is required in order to achieve such high current yields. The disadvantage of this process is, primarily because of the sensitive separators, as already described above, that the production of persulfates with a low solubility product, iw Potassium and sodium persulfate, is only possible with extremely high dilution, i.e. below the solubility limit, which requires a high input of energy during crystal formation and the discharge of salt in the course of evaporation and drying.

Die internationale Patentanmeldung WO 2011/066632 beschreibt im Zusammenhang mit der Aufreinigung von Wasser eine zylindrische Elektrolysezelle, die jeweils eine röhrenförmige Kathode und Anode umfasst, wobei die Anode einen mit einer leitfähigen Diamantschicht beschichteten leitfähigen Träger umfasst. Außerdem sind Zulaufrohre, Ablaufrohre und ggf. ein Diaphragma zur Trennung des Elektrolytraums vorhanden. Die Elektrolysezelle ist speziell für die Verarbeitung von Abwasser konzipiert und dementsprechend nicht für hohe Feststoffkonzentrationen in der Elektrolytlösung ausgelegt. Verteilereinrichtungen sind nicht vorhanden.The international patent application WO 2011/066632 describes, in connection with the purification of water, a cylindrical electrolysis cell which each comprises a tubular cathode and anode, the anode comprising a conductive support coated with a conductive diamond layer. There are also inlet pipes, outlet pipes and, if necessary, a diaphragm to separate the electrolyte space. The electrolysis cell is specially designed for the processing of wastewater and accordingly not designed for high solid concentrations in the electrolyte solution. Distribution facilities are not available.

Aufgabe der vorliegenden Erfindung ist es, eine Elektrolysezelle bereitzustellen, die in einem technischen Verfahren zur Herstellung von Ammonium- und Alkalimetall-peroxodisulfaten verwendet werden kann, wobei die Nachteile der bekannten Verfahren vermieden werden können oder zumindest nur noch in geringerem Umfang auftreten. Der Einsatz einer diamantbeschichteten, ungeteilten Zelle zur Herstellung von Persulfaten, insbesondere solcher mit niedrigem Löslichkeitspotential in sulfat- und schwefelsäurehaltigen Elektrolytlösungen oder Elektrolytsuspensionen soll ermöglicht werden, um neben den, im Zuge dieser Erfindung aufgezeigten elektrochemischen Vorteilen, insbesondere auch die bereits aus anderen Anwendungen eines diamantbeschichten Trägers bekannten, mechanischen und abrasiven Eigenschaften auch für die elektrochemische Oxidation von Sulfaten in Suspensionen, wie oben aufgeführt, nutzbar zu machen.The object of the present invention is to provide an electrolysis cell which can be used in a technical process for the production of ammonium and alkali metal peroxodisulfates, the disadvantages of the known processes being able to be avoided or at least only occurring to a lesser extent. The use of a diamond-coated, undivided cell for the production of persulfates, in particular those with a low solubility potential in sulfate and sulfuric acid-containing electrolyte solutions or electrolyte suspensions, is to be made possible in order to not only have the electrochemical advantages shown in the course of this invention, but also in particular those already from other applications of a diamond coating The carrier's known, mechanical and abrasive properties can also be used for the electrochemical oxidation of sulfates in suspensions, as listed above.

Zur Lösung dieser Aufgabe stellt die vorliegende Anmeldung entsprechend eine Elektrolysezelle bereit, umfassend die Bauteile:

  1. (a) mindestens eine röhrenförmige Kathode,
  2. (b) mindestens eine stab- oder röhrenförmige Anode, die einen mit einer leitfähigen Diamantschicht beschichteten leitfähigen Träger umfasst,
  3. (c) mindestens ein Zulaufrohr,
  4. (d) mindestens ein Ablaufrohr, und
  5. (e) mindestens zwei Verteilereinrichtungen, wobei die Verteilereinrichtungen mindestens eine Anschlussstelle für mindestens ein Zu- oder Ablaufrohr und eine Anschlussstelle für die Anode aufweisen und wobei die erste Verteilereinrichtung dazu ausgebildet ist, Elektrolyt aus dem Zulaufrohr in einen Elektrolytraum zu verteilen und die zweite Verteilereinrichtung dazu ausgebildet ist, umgesetzten Elektrolyt zu sammeln und über das Ablaufrohr abzuführen,
und wobei der Elektrolytraum als Ringspalt zwischen innenliegender Anode und außenliegender Kathode gebildet ist.To solve this problem, the present application accordingly provides an electrolysis cell comprising the components:
  1. (a) at least one tubular cathode,
  2. (b) at least one rod-shaped or tubular anode which comprises a conductive support coated with a conductive diamond layer,
  3. (c) at least one inlet pipe,
  4. (d) at least one drain pipe, and
  5. (e) at least two distributor devices, wherein the distributor devices have at least one connection point for at least one inlet or outlet pipe and one connection point for the anode, and wherein the first distributor device is designed to distribute electrolyte from the inlet pipe into an electrolyte space and the second distributor device for this purpose is designed to collect converted electrolyte and discharge it via the drain pipe,
and wherein the electrolyte space is formed as an annular gap between the inner anode and the outer cathode.

Außerdem wird hierin ein Verfahren zur Herstellung eines Ammonium- oder Alkalimetallperoxodisulfats beschrieben, umfassend
eine anodische Oxidation eines Salzes aus der Reihe Ammoniumsulfat, Alkalimetallsulfat und/oder des entsprechenden Hydrogensulfats enthaltenden wässrigen Elektrolyts in einer Elektrolysezelle,
umfassend mindestens eine Anode und eine Kathode,
wobei als Anode eine auf einem leitfähigen Träger angeordnete und mit einem drei- oder fünfwertigen Element dotierte Diamantschicht verwendet wird,
wobei die Elektrolysezelle einen ungeteilten Elektrolyseraum zwischen der Anode und der Kathode umfasst und der wässrige Elektrolyt keinen Promoter zur Erhöhung der Zersetzungsspannung von Wasser zu Sauerstoff enthält.
Also described herein is a process for the preparation of an ammonium or alkali metal peroxodisulfate comprising
anodic oxidation of a salt from the series ammonium sulfate, alkali metal sulfate and / or the corresponding aqueous electrolyte containing hydrogen sulfate in an electrolytic cell,
comprising at least one anode and one cathode,
wherein a diamond layer arranged on a conductive support and doped with a trivalent or pentavalent element is used as the anode,
wherein the electrolysis cell comprises an undivided electrolysis space between the anode and the cathode and the aqueous electrolyte does not contain a promoter for increasing the decomposition voltage from water to oxygen.

Das für die anodische Oxidation eingesetzte Salz aus der Reihe Ammoniumsulfat, Alkalimetallsulfat und/oder der entsprechenden Hydrogensulfate kann ein beliebiges Alkalimetallsulfat oder entsprechendes Hydrogensulfat sein. Beispielsweise ist die Verwendung von Natrium- und/oder Kaliumsulfat und/oder dem entsprechenden Hydrogensulfat möglich.The salt used for the anodic oxidation from the series ammonium sulfate, alkali metal sulfate and / or the corresponding hydrogen sulfates can be any desired alkali metal sulfate or corresponding hydrogen sulfate. For example, the use of sodium and / or potassium sulfate and / or the corresponding hydrogen sulfate is possible.

"Promoter" oder auch "Polarisator" im Sinne der vorliegenden Anmeldung st jedes beliebige Mittel, welches dem Fachmann als Zusatz bei der Durchführung einer Elektrolyse zur Erhöhung der Zersetzungsspannung von Wasser zu Sauerstoff oder zur Verbesserung der Stromausbeute bekannt ist. Ein Beispiel für einen derartigen im Stand der Technik verwendeten Promoter ist Thiocyanat wie beispielsweise Natrium- bzw. Ammoniumthiocyanat. Im beschriebenen Verfahren findet ein derartiger Promoter keine Anwendung. Mit anderen Worten weist der Elektrolyt beim hierin beschriebenen Verfahren eine Promoterkonzentration von 0 g/l auf. Durch den Verzicht auf einen Promoter während des Verfahrens entfallen beispielsweise Reinigungsanforderungen betreffend entstehende typische Elektrolysegase.“Promoter” or also “polarizer” in the context of the present application is any agent which is known to the person skilled in the art as an additive when carrying out an electrolysis to increase the decomposition voltage of water to oxygen or to improve the current yield. An example of such a promoter used in the prior art is thiocyanate, such as, for example, sodium or ammonium thiocyanate. Such a promoter is not used in the process described. In other words, in the method described herein, the electrolyte has a promoter concentration of 0 g / l. By dispensing with a promoter during the process, there are, for example, no cleaning requirements relating to typical electrolysis gases.

Im hierin beschriebenen Verfahren wird eine Anode eingesetzt, welche eine auf einem leitfähigen Träger angeordnete und mit einem 3- oder 5-wertigen Element dotierte Diamantschicht umfasst. Ein Vorteil dieses Merkmals liegt in der sehr hohen Verschleissfestigkeit der Diamantbeschichtung. Langzeitversuche ergaben, dass derartige Elektroden ein Mindestlebensalter von mehr als 12 Jahre erreichen.In the method described herein, an anode is used which comprises a diamond layer arranged on a conductive support and doped with a 3- or 5-valent element. One advantage of this feature is the very high wear resistance of the diamond coating. Long-term tests have shown that such electrodes have a minimum life of more than 12 years.

Die eingesetzte Anode kann von beliebiger Gestalt sein.The anode used can be of any shape.

Dabei kann ein beliebiges, dem Fachmann bekanntes Anodenträgermaterial Verwendung finden. Beispielsweise kann das Trägermaterial ausgewählt sein aus der Gruppe bestehend aus Silicium, Germanium, Titan, Zirconium, Niob, Tantal, Molybdän, Wolfram, Carbiden dieser Elemente und/oder Aluminium bzw. Kombinationen der Elemente.Any anode carrier material known to the person skilled in the art can be used. For example, the carrier material can be selected be out of the group consisting of silicon, germanium, titanium, zirconium, niobium, tantalum, molybdenum, tungsten, carbides of these elements and / or aluminum or combinations of the elements.

Die im hierin beschriebenen Verfahren eingesetzte Kathode ist bevorzugt aus Blei, Kohlenstoff, Zinn, Platin, Nickel, Legierungen dieser Elemente, Zirkon und/oder säurebeständigen Edelstählen, wie sie dem Fachmann bekannt sind, ausgebildet. Räumlich kann die Kathode beliebig ausgestaltet sein.The cathode used in the method described herein is preferably made of lead, carbon, tin, platinum, nickel, alloys of these elements, zirconium and / or acid-resistant stainless steels, as they are known to the person skilled in the art. The cathode can have any spatial configuration.

In der im beschriebenen Verfahren eingesetzten Elektrolysezelle ist der Elektrolytraum zwischen Anode und Kathode ungeteilt, d.h. zwischen Anode und Kathode befindet sich kein Separator. Die Verwendung einer ungeteilten Zelle ermöglicht Elektrolytlösungen mit sehr hohen Feststoffkonzentrationen, wodurch wiederum der Energieaufwand bei der Salzgewinnung, im Wesentlichen der Kristallisation und der Wasserverdampfung, direkt proportional zur Zunahme des Feststoffanteils deutlich, mindestens aber auf 25 % der einer geteilten Zelle gemindert wird.In the electrolysis cell used in the process described, the electrolyte space between the anode and cathode is undivided, i.e. there is no separator between anode and cathode. The use of an undivided cell enables electrolyte solutions with very high solids concentrations, which in turn significantly reduces the energy expenditure in salt production, essentially crystallization and water evaporation, in direct proportion to the increase in the solids content, but at least to 25% of that of a divided cell.

Das beschriebene Verfahren wird in einer dreidimensionalen Zelle durchgeführt. Die Zelle ist dabei als Röhrenzelle ausgebildet. Die Verwendung einer Rohrgeometrie, also einer Röhrenzelle, bestehend aus einem Innenrohr als Anode, bevorzugt aus diamantbeschichtetem Niob, und einem Aussenrohr als Kathode, bevorzugt aus säurebeständigem Edelstahl, stellt, bei gleichzeitig niedrigen Werkstoffkosten, eine vorteilhafte Konstruktion dar. Die Verwendung eines Ringspaltes als gemeinsamen Elektrolytraum - führt zu einer gleichmäßigen und damit strömungsverlustarmen Durchströmung und damit zu einer hohen Ausnutzung der zur Verfügung stehenden Elektrolyseflächen, was wiederum eine hohe Stromausbeute bedeutet. Die Fertigungskosten einer solche Zelle sind gering im Verhältnis zu einer sogenannten Flachzelle.The method described is carried out in a three-dimensional cell. The cell is designed as a tubular cell. The use of a tube geometry, i.e. a tube cell, Consisting of an inner tube as the anode, preferably made of diamond-coated niobium, and an outer tube as the cathode, preferably made of acid-resistant stainless steel, is an advantageous construction with low material costs. The use of an annular gap as a common electrolyte space leads to a uniform and thus low flow loss Flow through and thus a high utilization of the available electrolysis surfaces, which in turn means a high current yield. The production costs of such a cell are low compared to a so-called flat cell.

Mehrere Elektrolysezellen können, vorzugsweise in Form eines Doppelrohrpakets, zusammengefasst werden.Several electrolysis cells can be combined, preferably in the form of a double tube package.

Der eingesetzte Elektrolyt weist vorzugsweise einen sauren, bevorzugt schwefelsaueren, oder neutralen pH-Wert auf.The electrolyte used preferably has an acidic, preferably sulfuric acid, or neutral pH.

Der Elektrolyt kann während des Verfahrens im Kreislauf durch die Elektrolysezelle bewegt werden. Dadurch wird eine, der Zersetzung der Persulfate beschleunigende und somit unerwünschte hohe Elektrolyttemperatur in der Zelle verhindert.The electrolyte can be circulated through the electrolytic cell during the process. This prevents an undesirable high electrolyte temperature in the cell, which accelerates the decomposition of the persulfates.

Das Verfahren kann ein Ausschleusen von Elektrolytlösung aus dem Elektrolytkreislauf umfassen. Dies kann insbesondere zur Gewinnung von erzeugtem Peroxodisulfat erfolgen. Ein weiterer Aspekt betrifft deshalb die Gewinnung von erzeugten Peroxodisulfaten durch Kristallisation und Abtrennung der Kristalle aus der Elektrolytlösung unter Bildung einer Elektrolytlauge, wobei die Elektrolytlösung zuvor vorzugsweise aus dem Elektrolytkreislauf ausgeschleust wurde. Ein Rezirkulieren der Elektrolyt-Mutterlauge ist möglich, insbesondere dann, wenn zuvor erzeugte Peroxodisulfate abgetrennt wurden, unter Erhöhung des Gehalts an Säure, Sulfat und/oder Hydrogensulfat in die Elektrolysezelle.The method can include discharging electrolyte solution from the electrolyte circuit. This can be done in particular to obtain peroxodisulfate produced. A further aspect therefore relates to the recovery of generated peroxodisulfates by crystallization and separation of the crystals from the electrolyte solution with the formation of an electrolyte solution, the electrolyte solution preferably being removed from the electrolyte circuit beforehand was discharged. A recirculation of the electrolyte mother liquor is possible, especially if before generated peroxodisulfates were separated, with increasing the content of acid, sulfate and / or hydrogen sulfate in the electrolysis cell.

Die anodische Oxidation kann bei einer anodischen Stromdichte von 50-1500 mA/cm2 insbesondere etwa 50-1200 mA/cm2, durchgeführt werden. Eine besonders bevorzugt verwendete Stromdichte liegt im Bereich von 60-975 mA/cm2.The anodic oxidation can be carried out at an anodic current density of 50-1500 mA / cm 2, in particular about 50-1200 mA / cm 2 . A current density used particularly preferably is in the range from 60-975 mA / cm 2 .

Der eingesetzte Elektrolyt weist vorzugsweise einen Gesamtfeststoffgehalt von etwa 0,5 bis 650 g/l auf. Der (Arbeits-)Elektrolyt enthält bevorzugt etwa 100 bis etwa 500 g/l Persulfat, stärker bevorzugt etwa 150 bis etwa 450 g/l Persulfat und am stärksten bevorzugt 250-400 g/l Persulfat. Das Verfahren ermöglicht somit insbesondere hohe Feststoffkonzentrationen in der Elektrolytlösung, ohne Zugabe eines potentialerhöhenden Mittels bzw. Promoters und den daraus resultierenden Anforderungen an Abgas und Abwasserbehandlung bei gleichzeitig hohen Stromausbeuten bei der Peroxodisulfatherstellung.The electrolyte used preferably has a total solids content of about 0.5 to 650 g / l. The (working) electrolyte preferably contains about 100 to about 500 g / l persulfate, more preferably about 150 to about 450 g / l persulfate and most preferably 250-400 g / l persulfate. The method thus enables high solids concentrations in the electrolyte solution in particular, without the addition of a potential-increasing agent or promoter and the resulting requirements for exhaust gas and wastewater treatment with high current yields in the peroxodisulfate production at the same time.

Ferner enthält die Elektrolytlösung bevorzugt etwa 0,1 bis etwa 3,5 Mol Schwefelsäure pro Liter (I) Elektrolytlösung, stärker bevorzugt 1-3 Mol Schwefelsäure pro I Elektrolytlösung und am stärksten bevorzugt 2,2-2,8 Mol Schwefelsäure pro I Elektrolytlösung.Furthermore, the electrolyte solution preferably contains from about 0.1 to about 3.5 mol of sulfuric acid per liter (l) of electrolyte solution, more preferably 1-3 mol of sulfuric acid per liter of electrolyte solution, and most preferably 2.2-2.8 mol of sulfuric acid per liter of electrolyte solution.

Zusammenfassend wird im hierin beschriebenen Verfahren insbesondere bevorzugt ein Elektrolyt mit folgender Zusammensetzung verwendet: pro Liter Elektrolyt 150 bis 500 g Persulfat und 0,1 bis 3,5 Mol Schwefelsäure pro Mol Elektrolytlösung. Der gesamte Feststoffgehalt beträgt bevorzugt 0,5g/l bis 650 g/l, stärker bevorzugt 100-500 g/l und am stärksten bevorzugt 250-400 g/l, wobei der Sulfatanteil dabei schwankend ist. Der Promoteranteil ist 0 g/l.In summary, an electrolyte with the following composition is particularly preferably used in the process described herein: 150 to 500 g of persulfate and 0.1 to 3.5 mol of sulfuric acid per mol of electrolyte solution per liter of electrolyte. The total solids content is preferably 0.5 g / l to 650 g / l, more preferably 100-500 g / l and most preferably 250-400 g / l, the sulphate content being variable. The promoter portion is 0 g / l.

Die Erfindung betrifft eine aus einzelnen Bauteilen aufgebaute, ungeteilte Elektrolysezelle, eine aus mehreren solcher Elektrolysezellen aufgebaute Elektrolysevorrichtung, und deren Verwendung zur Oxidation eines Elektrolyts, wie in den Ansprüchen definiert.The invention relates to a built up from individual components, Undivided electrolysis cell, an electrolysis device composed of several such electrolysis cells, and its use for the oxidation of an electrolyte, as defined in the claims.

Unter "Elektrolyse" versteht man eine beim Stromdurchgang durch einen Elektrolyten hervorgerufene chemische Veränderung, die sich in einer direkten Umwandlung von elektrischer Energie in chemische Energie durch den Mechanismus der Elektroden-Reaktionen und der lonenwanderung ausdrückt. Die technisch wohl bedeutendste elektrochemische Umsetzung ist die Elektrolyse von Kochsalzlösung, bei der Natronlauge und Chlorgas entsteht. Auch die Herstellung von anorganischen Peroxiden wird heutzutage großtechnisch in Elektrolysezellen durchgeführt.“Electrolysis” is understood to mean a chemical change caused by the passage of current through an electrolyte, which is expressed in a direct conversion of electrical energy into chemical energy through the mechanism of electrode reactions and ion migration. The technically most important electrochemical conversion is the electrolysis of saline solution, which produces caustic soda and chlorine gas. The production of inorganic peroxides is nowadays carried out on an industrial scale in electrolysis cells.

Bei großtechnischen Prozessen ist es insbesondere wünschenswert, dass die Reaktionen bei hohen Konzentrationen an Edukten und entsprechend Produkten gefahren werden können. Hohe Produkt-Konzentrationen gewährleisten eine leichte Aufarbeitung des Endprodukts, da bei in Lösung befindlichen Reaktionsprodukten das Lösungsmittel entfernt werden muss. Bei der Elektrolyse von hochkonzentrierten Elektrolyten kann somit auch der Energieaufwand der nachgeschalteten Aufarbeitung der Elektrolyseprodukte gesenkt werden.In large-scale industrial processes, it is particularly desirable that the reactions can be carried out at high concentrations of starting materials and corresponding products. High product concentrations ensure that the end product is easy to work up, since the solvent must be removed if the reaction products are in solution. In the electrolysis of highly concentrated electrolytes, the energy consumption of the downstream processing of the electrolysis products can thus also be reduced.

Anwendungen mit sehr hohen Feststoffanteilen stellen allerdings hohe Anforderungen an die Bauteile der Elektrolysezelle aufgrund der abrasiven Wirkung des Elektrolyts. Insbesondere das Diaphragma, das in geteilten Elektrolysezellen eine Mischung der Reaktionsprodukte des Anoden- und Kathodenraums verhindert, hält Elektrolyseprozessen bei hohen Konzentrationen nicht dauerhaft stand. Bei hohen Feststoffanteilen kann daher eine Elektrolyse nur in ungeteilten Zellen durchgeführt werden, bei denen der Anodenraum und der Kathodenraum nicht durch den Einsatz einer geeigneten Membran räumlich getrennt sein müssen. Solche ungeteilten Zellen kommen insbesondere dann zum Einsatz, wenn weder Edukte noch Produkte, die an Anode oder Kathode hergestellt werden, in störender Weise durch den jeweils anderen Elektrodenprozess verändert werden oder miteinander reagieren.However, applications with very high solids content place high demands on the components of the electrolysis cell due to the abrasive effect of the electrolyte. In particular, the diaphragm, which in divided electrolysis cells prevents the reaction products of the anode and cathode compartments from mixing, does not permanently withstand electrolysis processes at high concentrations. In the case of high solids contents, electrolysis can therefore only be carried out in undivided cells, in which the anode compartment and the cathode compartment do not have to be spatially separated by the use of a suitable membrane. Such undivided cells are used in particular when neither reactants nor Products made on anode or cathode in are changed in a disturbing way by the other electrode process or react with one another.

Des Weiteren müssen auch die Anoden- und Kathodenwerkstoffe die mechanischen Anforderungen bei hohen Feststoffkonzentrationen erfüllen und deshalb äußerst verschleißfest sein.Furthermore, the anode and cathode materials must also meet the mechanical requirements at high solids concentrations and therefore be extremely wear-resistant.

Um die Elektrolyse möglichst wirtschaftlich zu gestalten, müssen die Elektrolysezellen so ausgelegt sein, dass die Elektrolyse bei möglichst hohen Stromdichten durchgeführt werden kann. Dies ist nur möglich, wenn Anode und Kathode eine gute elektrische Leitfähigkeit besitzen und chemisch gegenüber dem Elektrolyt inert sind. Üblicherweise wird als Anodenmaterial Graphit oder Platin verwendet. Diese Materialien haben allerdings den Nachteil, dass sie bei hohen Feststoffkonzentrationen keine ausreichende Abrasionsbeständigkeit aufweisen.In order to make the electrolysis as economical as possible, the electrolysis cells must be designed so that the electrolysis can be carried out at the highest possible current densities. This is only possible if the anode and cathode have good electrical conductivity and are chemically inert to the electrolyte. Usually graphite or platinum is used as anode material. However, these materials have the disadvantage that they do not have sufficient abrasion resistance at high solids concentrations.

Die Herstellung mechanisch überaus stabiler und inerter Elektroden wird in DE 199 11 746 offenbart. Dabei werden Elektroden mit einer elektrisch leitfähigen Diamantschicht beschichtet, wobei die Diamantschicht durch ein chemisches Gasabscheidungs-Verfahren (CVD) aufgebracht wird.The manufacture of mechanically extremely stable and inert electrodes is discussed in DE 199 11 746 disclosed. Electrodes are coated with an electrically conductive diamond layer, the diamond layer being applied using a chemical vapor deposition (CVD) process.

Aufgabe der vorliegenden Erfindung ist, eine Elektrolysezelle bereitzustellen, die einen kontinuierlichen und optimierten Elektrolyseprozess bei hohen Feststoffkonzentrationen (bis etwa 650 g/l) und bei hohen Stromdichtebereichen (bis etwa 1500 mA/cm2) ermöglicht. Die Elektrolysezelle soll auf die durchzuführenden elektrochemischen Reaktionen angepasst werden und einzelne Bauteile einfach ausgewechselt werden können, ohne dass der eigentliche Zellkörper zerstört wird.The object of the present invention is to provide an electrolysis cell which enables a continuous and optimized electrolysis process at high solids concentrations (up to about 650 g / l) and at high current density ranges (up to about 1500 mA / cm 2 ). The electrolysis cell should be adapted to the electrochemical reactions to be carried out and individual components should be able to be exchanged easily without the actual cell body being destroyed.

Überraschenderweise konnte die Aufgabe durch eine Elektrolysezelle umfassend die Bauteile:

  1. (a) mindestens eine röhrenförmige Kathode
  2. (b) mindestens eine stab- oder röhrenförmige Anode, die einen mit einer leitfähigen Diamantschicht beschichteten leitfähigen Träger umfasst,
  3. (c) mindestens ein Zulaufrohr,
  4. (d) mindestens ein Ablaufrohr, und
mindestens zwei Verteilereinrichtungen, wobei die Verteilereinrichtungen mindestens eine Anschlussstelle für mindestens ein Zu- oder Ablaufrohr und eine Anschlussstelle für die Anode aufweisen und wobei die erste Verteilereinrichtung dazu ausgebildet ist, Elektrolyt aus dem Zulaufrohr in einen Elektrolytraum zu verteilen und die zweite Verteilereinrichtung dazu ausgebildet ist, umgesetzten Elektrolyt zu sammeln und über das Ablaufrohr abzuführen, und wobei der Elektrolytraum als Ringspalt zwischen innenliegender Anode und außenliegender Kathode gebildet ist.
gelöst werden.Surprisingly, an electrolysis cell made it possible to complete the task:
  1. (a) at least one tubular cathode
  2. (b) at least one rod-shaped or tubular anode which comprises a conductive support coated with a conductive diamond layer,
  3. (c) at least one inlet pipe,
  4. (d) at least one drain pipe, and
at least two distributor devices, wherein the distributor devices have at least one connection point for at least one inlet or outlet pipe and one connection point for the anode, and wherein the first distributor device is designed to distribute electrolyte from the inlet tube into an electrolyte compartment and the second distributor device is designed to to collect converted electrolyte and to discharge it via the drain pipe, and wherein the electrolyte space is formed as an annular gap between the inner anode and the outer cathode.
be solved.

- -In der Elekrolysezelle sind Anode und Kathode konzentrisch zueinander angeordnet, so dass sich - der Elektrolytraum als Ringspalt zwischen innen liegender Anode und außen liegender Kathode bildet. - -Der Durchmesser der Kathode ist also größer als der der Anode.- In the electrolytic cell, the anode and cathode are arranged concentrically to one another, so that - the electrolyte space is formed as an annular gap between the inner anode and the outer cathode. - -The diameter of the cathode is therefore larger than that of the anode.

In einer bevorzugten Ausführungsform enthält der Elektrolytraum keine Membran oder kein Diaphragma. In diesem Fall handelt es sich um eine Elektrolysezelle mit einem gemeinsamen Elektrolytraum, d.h. die Elektrolysezelle ist ungeteilt.In a preferred embodiment, the electrolyte space does not contain a membrane or a diaphragm. In this case it is an electrolysis cell with a common electrolyte space, i. the electrolysis cell is undivided.

Bevorzugt liegt der Abstand zwischen Anodenaußenfläche und Kathodeninnenfläche zwischen 1-20 mm, stärker bevorzugt zwischen 1-15 mm, noch stärker bevorzugt zwischen 2-10 mm und am stärksten bevorzugt zwischen 2-6 mm.The distance between the anode outer surface and the cathode inner surface is preferably between 1-20 mm, more preferably between 1-15 mm, even more preferably between 2-10 mm and most preferably between 2-6 mm.

Der Innendurchmesser der Kathode beträgt bevorzugt zwischen 10-400 mm, stärker bevorzugt zwischen 20-300 mm, noch stärker bevorzugt zwischen 25-250 mm.The inner diameter of the cathode is preferably between 10-400 mm, more preferably between 20-300 mm, even more preferably between 25-250 mm.

In einer bevorzugten Ausführungsform sind Anode und Kathode jeweils unabhängig voneinander zwischen 20-120 cm, stärker bevorzugt zwischen 25-75 cm lang.In a preferred embodiment, the anode and cathode are each independently between 20-120 cm, more preferably between 25-75 cm long.

Die Länge des Elektrolytraums beträgt bevorzugt mindestens 20 cm, stärker bevorzugt mindestens 25 cm, und maximal bevorzugt 120 cm, stärker bevorzugt 75 cm.The length of the electrolyte space is preferably at least 20 cm, more preferably at least 25 cm, and at most preferably 120 cm, more preferably 75 cm.

Die erfindungsgemäß eingesetzte Kathode ist bevorzugt aus Blei, Kohlenstoff, Zinn, Platin, Nickel, Legierungen dieser Elemente, Zirkon und/oder Eisenlegierungen, insbesondere aus Edelstahl, insbesondere säurebeständigem Edelstahl. In einer bevorzugten Ausführungsform ist die Kathode aus säurebeständigem Edelstahl.The cathode used according to the invention is preferably made of lead, carbon, tin, platinum, nickel, alloys of these elements, zirconium and / or iron alloys, in particular made of stainless steel, in particular acid-resistant stainless steel. In a preferred embodiment, the cathode is made of acid-resistant stainless steel.

Das Basismaterial der stab- oder röhrenförmigen, bevorzugt röhrenförmigen, Anode ist bevorzugt Silicium, Germanium, Titan, Zirkon, Niob, Tantal, Molybdän, Wolfram, Carbiden dieser Elemente, und/oder Aluminium, bzw. Kombinationen der Elemente.The base material of the rod-shaped or tubular, preferably tubular, anode is preferably silicon, germanium, titanium, zirconium, niobium, tantalum, molybdenum, tungsten, carbides of these elements, and / or aluminum, or combinations of the elements.

Das Anodenträgermaterial kann identisch mit dem Anodenbasismaterial oder verschieden sein. In einer bevorzugten Ausführungsform fungiert das Anodenbasismaterial als leitfähiger Träger. Als leitfähiger Träger kann ein beliebiges, dem Fachmann bekanntes leitfähiges Material verwendet werden. Besonders bevorzugte Trägermaterialien sind Silicium, Germanium, Titan, Zirkon, Niob, Tantal, Molybdän, Wolfram, Carbiden dieser Elemente, und/oder Aluminium, bzw. Kombinationen der Elemente. Besonders bevorzugt wird als leitfähiger Träger Silicium, Titan, Niob, Tantal, Wolfram oder Carbide dieser Elemente, stärker bevorzugt Niob oder Titan, noch stärker bevorzugt Niob, verwendet.The anode support material can be identical to the anode base material or different. In a preferred embodiment, the anode base material functions as a conductive carrier. Any desired conductive material known to the person skilled in the art can be used as the conductive carrier. Particularly preferred carrier materials are silicon, germanium, titanium, zirconium, niobium, tantalum, molybdenum, tungsten, carbides of these elements, and / or aluminum, or combinations of the elements. Silicon, titanium, niobium, tantalum, tungsten or carbides of these elements, more preferably niobium or titanium, even more preferably niobium, are particularly preferably used as the conductive support.

Auf dieses Trägermaterial ist eine leitfähige Diamantschicht aufgebracht. Die Diamantschicht kann mit mindestens einem 3- oder mindestens einem 5-wertigen Haupt- oder Nebengruppenelement dotiert sein. Die dotierte Diamantschicht ist somit ein n-Leiter oder ein p-Leiter. Es ist dabei bevorzugt, dass eine Bor-dotierte und/oder Phosphor-dotierte Diamantschicht eingesetzt wird. Die Menge der Dotierung wird so eingestellt, dass die gewünschte, in der Regel gerade die ausreichende, Leitfähigkeit erreicht wird. Beispielsweise kann bei einer Dotierung mit Bor das Kristallgefüge bis zu 10000 ppm, bevorzugt von 10 ppm bis 2000 ppm, Bor und/oder Phosphor enthalten.A conductive diamond layer is applied to this carrier material. The diamond layer can be doped with at least one 3-valent or at least one 5-valent main or sub-group element. The doped diamond layer is thus an n-conductor or a p-conductor. It is preferred here that a boron-doped and / or phosphorus-doped diamond layer is used. The amount of doping is set in such a way that the desired, usually just sufficient, conductivity is achieved. For example, when doped with boron, the crystal structure can contain up to 10,000 ppm, preferably from 10 ppm to 2000 ppm, boron and / or phosphorus.

Die Diamantschicht kann vollflächig oder abschnittsweise, bevorzugt auf der gesamten Außenfläche der stab- oder röhrenförmigen Anode aufgebracht sein. Bevorzugt ist die leitfähige Diamantschicht porenfrei.The diamond layer can be applied over the entire surface or in sections, preferably on the entire outer surface of the rod-shaped or tubular anode. The conductive diamond layer is preferably free of pores.

Verfahren zur Aufbringung der Diamantschicht sind dem Fachmann bekannt. Die Herstellung der Diamantelektroden kann insbesondere in zwei speziellen CVD-Verfahren (Chemical Vapor Deposition) erfolgen. Es handelt sich um das Mikrowellenplasma-CVD- und das Heißdraht-CVD-Verfahren. In beiden Fällen entsteht die Gasphase, die durch eine Mikrowellenbestrahlung oder thermisch durch heiße Drähte zum Plasma aktiviert wird, aus Methan, Wasserstoff und ggf. weiteren Zusätzen, insbesondere einer gasförmigen Verbindung des Dotierungsmittels.Processes for applying the diamond layer are known to the person skilled in the art. The diamond electrodes can be produced in two special CVD (Chemical Vapor Deposition) processes. These are the microwave plasma CVD and hot wire CVD processes. In both cases, the gas phase, which is activated to the plasma by microwave irradiation or thermally by hot wires, is made up of methane, hydrogen and possibly other additives, in particular a gaseous compound of the dopant.

Durch die Verwendung der Bor-Verbindung, wie Trimethylbor, kann ein p-Halbleiter bereitgestellt werden. Unter Einsatz einer gasförmigen Phosphorverbindung als Dotierungsmittel wird ein n-Halbleiter erhalten. Durch Abscheidung der dotierten Diamantschicht auf kristallinem Silicium wird eine besonders dichte und porenfreie Schicht erhalten. Die Diamantschicht wird dabei bevorzugt in einer Filmdicke von etwa 0,5-5 µm, bevorzugt etwa 0,8-2,0 µm und insbesondere bevorzugt von etwa 1,0 µm auf den erfindungsgemäß verwendeten leitfähigen Träger aufgebracht. In einer anderen Ausführungsform ist die Diamantschicht bevorzugt in einer Filmdicke von 0,5-35 µm, bevorzugt 5-25 µm, am meisten bevorzugt 10-20 µm, auf den erfindungsgemäß verwendeten leitfähigen Träger aufgebracht.By using the boron compound such as trimethyl boron, a p-type semiconductor can be provided. Using a gaseous phosphorus compound as a dopant, an n-type semiconductor is obtained. By depositing the doped diamond layer on crystalline silicon, a particularly dense and pore-free layer is obtained. The diamond layer is preferably applied in a film thickness of about 0.5-5 μm, preferably about 0.8-2.0 μm and particularly preferably about 1.0 μm to the conductive carrier used according to the invention. In another embodiment, the diamond layer is preferably applied in a film thickness of 0.5-35 μm, preferably 5-25 μm, most preferably 10-20 μm, to the conductive support used according to the invention.

Alternativ zur Abscheidung der Diamantschicht auf ein kristallines Material kann die Abscheidung auch auf einem selbst passivierenden Metall, wie beispielsweise Titan, Tantal, Wolfram, oder Niob, erfolgen. Zur Herstellung einer besonders geeigneten Bor-dotierten Diamantschicht auf einem Silicium-Einkristall wird auf P.A. Michaud (Electrochemical and Solid State Letters, 3(2) 77-79 (2000 )) verwiesen.As an alternative to the deposition of the diamond layer on a crystalline material, the deposition can also take place on a self-passivating metal such as titanium, tantalum, tungsten, or niobium. To produce a particularly suitable boron-doped diamond layer on a silicon single crystal, PA Michaud (Electrochemical and Solid State Letters, 3 (2) 77-79 (2000 )) referenced.

Im Rahmen der vorliegenden Erfindung ist die Verwendung einer Anode umfassend einen Niob- oder Titanträger mit einer Bor-dotierten Diamantschicht, insbesondere mit einer bis zu 10000 ppm Bor dotierten Diamantschicht, besonders bevorzugt.In the context of the present invention, the use of an anode comprising a niobium or titanium support with a boron-doped diamond layer, in particular with a diamond layer doped with up to 10,000 ppm boron, is particularly preferred.

Die Diamant-beschichteten Elektroden zeichnen sich durch eine sehr hohe mechanische Festigkeit und Abrasionsbeständigkeit aus.The diamond-coated electrodes are characterized by a very high mechanical strength and abrasion resistance.

Bevorzugt ist die Anode oder/und die Kathode, stärker bevorzugt die Anode und die Kathode, noch stärker bevorzugt die Anode über die Verteilereinrichtung mit der Stromquelle verbunden. Für den Fall, dass Anode und Kathode über die Verteilereinrichtung mit der Stromquelle verbunden sind, muss gewährleistet sein, dass die Verteilereinrichtung entsprechend elektrisch isoliert ist. In jedem Fall ist auf einen guten elektrischen Kontakt zwischen Anode oder/und Kathode und Verteilereinrichtung zu achten.The anode and / or the cathode, more preferably the anode and the cathode, even more preferably the anode, is preferably connected to the power source via the distributor device. In the event that the anode and cathode are connected to the power source via the distributor device, it must be ensured that the distributor device is electrically insulated accordingly. In any case, good electrical contact between the anode and / or cathode and the distributor device must be ensured.

Die Verteilereinrichtung sorgt ferner für eine homogene Einspeisung des Elektrolyts aus dem Zulaufrohr in den Elektrolytraum. Nachdem der Elektrolyt den Elektrolytraum passiert hat, wird der umgesetzte Elektrolyt (Elektrolyseprodukt) effektiv mit Hilfe mindestens einer stromaufwärts befindlichen Verteilereinrichtung gesammelt und über ein Ablaufrohr abgeführt.The distributor device also ensures a homogeneous feed of the electrolyte from the feed pipe into the electrolyte space. After the electrolyte has passed the electrolyte compartment, the converted electrolyte (electrolysis product) is effectively collected with the help of at least one upstream distributor and discharged via a drain pipe.

Die erfindungsgemäßen Verteilereinrichtungen bestehen unabhängig voneinander vorzugsweise aus Silicium, Germanium, Titan, Zirkon, Niob, Tantal, Molybdän, Wolfram, Karbiden dieser Elemente und/oder Aluminium bzw. Kombinationen der Elemente, insbesondere bevorzugt aus Titan.The distributor devices according to the invention preferably consist, independently of one another, of silicon, germanium, titanium, zirconium, niobium, tantalum, molybdenum, tungsten, carbides of these elements and / or aluminum or combinations of the elements, particularly preferably of titanium.

Die Verteilereinrichtungen weisen mindestens eine Anschlussstelle für mindestens ein Ab- oder Zulaufrohr und eine Anschlussstelle für die Anode auf. Die Anschlussstelle für die Anode bildet ein ggf. geschlossener Hohlzylinder, der bündig mit dem Anodenrohr bzw. -stab abschließt. Im Falle von röhrenförmigen Anoden kann der Hohlzylinder in der Verteilereinrichtungen das Anodenrohr dicht abschließen, so dass kein Elektrolyt ins Innere der Anode gelangen kann. Alternativ kann die Anschlussstelle der Verteilereinrichtung an die Anode eine Entlastungsbohrung in das Anodenrohr aufweisen. Dadurch wird verhindert, dass bei zu hohen Drücken am Verteilerelement Elektrolyt in das Anodenrohr abfließen kann.The distributor devices have at least one connection point for at least one outlet or inlet pipe and one connection point for the anode. Forms the connection point for the anode a possibly closed hollow cylinder that is flush with the anode tube or -staff completes. In the case of tubular anodes, the hollow cylinder in the distributor device can seal the anode tube tightly so that no electrolyte can get into the interior of the anode. Alternatively, the connection point of the distributor device to the anode can have a relief bore in the anode tube. This prevents electrolyte from flowing off into the anode tube if the pressure on the distributor element is too high.

Der ggf. geschlossene Hohlzylinder der Verteilereinrichtung kann auf das Trägermaterial der Anode oder auch direkt auf den diamantbeschichteten Träger angebracht werden. Im letzteren Fall wird also der Träger und die Verteilereinrichtung durch die leitfähige Diamantschicht voneinander getrennt. In einer besonders bevorzugten Ausführungsform ist die Verteilereinrichtung mit der Anode irreversibel verbunden, besonders bevorzugt verschweißt. Dies ist insbesondere vorteilhaft, wenn bei hohen Stromstärken gearbeitet wird. Beispielsweise können die Anode und die Verteilereinrichtung durch Diffusionsschweißen, Elektronenstrahlschweißen oder Laserschweißen verschweißt werden.The optionally closed hollow cylinder of the distributor device can be attached to the carrier material of the anode or directly to the diamond-coated carrier. In the latter case, the carrier and the distributor device are separated from one another by the conductive diamond layer. In a particularly preferred embodiment, the distributor device is irreversibly connected to the anode, particularly preferably welded. This is particularly advantageous when working with high currents. For example, the anode and the distributor device can be welded by diffusion welding, electron beam welding or laser welding.

Über den Umfang des Hohlzylinders der Verteilereinrichtung sind radiale Bohrungen verteilt. Bevorzugt weist die Verteilereinrichtung 3, stärker bevorzugt 4 und noch stärker bevorzugt 5 radiale Bohrungen auf. Durch die radialen Bohrungen in der Verteilereinrichtung kann der Elektrolyt homogen und strömungsgünstig in den Elektrolytraum verteilt werden und nach Passage des Elektrolytraums das Elektrolyseprodukt effektiv abgeführt werden.Radial bores are distributed over the circumference of the hollow cylinder of the distributor device. The distributor device preferably has 3, more preferably 4 and even more preferably 5 radial bores. Through the radial bores in the distributor device, the electrolyte can be distributed homogeneously and in a streamlined manner into the electrolyte space and, after passing through the electrolyte space, the electrolysis product can be effectively removed.

Der Elektrolyt wird über das Zulaufrohr der Elektrolysezelle und der Verteilereinrichtung zugeführt. Das Elektrolyseprodukt wird über das Ablaufrohr aus der Elektrolysezelle abgeführt, nachdem das Elektrolyseprodukt in der Verteilereinrichtung gesammelt wurde. In einer bevorzugten Ausführungsform ist die Verteilereinrichtung so ausgebildet, dass sie auch die röhrenförmige Kathode dicht abschließt, so dass kein Elektrolyt oder Elektrolyseprodukt aus der Kathode austreten kann.The electrolyte is fed to the electrolysis cell and the distributor device via the feed pipe. The electrolysis product is discharged from the electrolysis cell via the drain pipe after the electrolysis product has been collected in the distributor device. In a preferred embodiment, the distributor device is designed in such a way that it also tightly seals the tubular cathode so that no electrolyte or electrolysis product can escape from the cathode.

Die Verteilereinrichtung erfüllt unabhängig voneinander mehrere Aufgaben:

  • Abdichtung der röhrenförmigen Anode, so dass kein Elektrolyt in den Anodeninnenraum eintreten kann oder Druckregulierung durch Entlastungsbohrung in den Anodenraum oder/und
  • elektrische Kontaktierung der Anode oder/und Kathode mit der Stromquelle oder/und
  • strömungsgünstige und homogene Verteilung des Elektrolyten in den Elektrolytraum (optimale hydraulische Verteilung über die gesamte Austauschfläche) oder/und
  • effektive Abführung des Elektrolyseprodukts aus dem Elektrolytraum oder/und
  • Abdichtung der röhrenförmigen Kathode oder/und
  • Verringerung der Strömungsverluste.
The distribution device fulfills several tasks independently of one another:
  • Sealing of the tubular anode so that no electrolyte can enter the anode interior or pressure regulation by means of a relief bore in the anode area and / or
  • electrical contacting of the anode and / or cathode with the power source and / or
  • Streamlined and homogeneous distribution of the electrolyte in the electrolyte space (optimal hydraulic distribution over the entire exchange surface) and / or
  • effective removal of the electrolysis product from the electrolyte space and / or
  • Sealing of the tubular cathode and / or
  • Reduction of flow losses.

Die Bauteile Anode, Kathode, Verteilereinrichtung, Zu- und Ablaufrohr können durch entsprechende, dem Fachmann bekannte, Montagevorrichtungen zu einer Elektrolysezelle zusammengebaut werden.The components anode, cathode, distributor device, inlet and outlet pipe can be assembled to form an electrolysis cell using appropriate assembly devices known to those skilled in the art.

Durch die modulare Bauweise aus Anode, Kathode, Verteilereinrichtung, Zu- und Ablaufrohr können die einzelnen Bauteile in verschiedenen Werkstoffen ausgebildet sein und bei Beschädigung einzeln ausgetauscht bzw. ersetzt werden. Es ist somit gelungen, auf einfache Weise die erfindungsgemäße Diamantanode und die anderen Bauteile, die aus preiswerteren Werkstoffen hergestellt werden, miteinander zu einer in der Bauweise sehr kompakten Elektrolysezelle zu verbinden.Due to the modular construction of anode, cathode, distributor device, inlet and outlet pipe, the individual components can be made of different materials and can be exchanged or replaced individually if damaged. It has thus succeeded in a simple way to connect the diamond anode according to the invention and the other components, which are made from cheaper materials, to one another to form an electrolysis cell which is very compact in design.

Die röhrenförmige Elektrolysezelle zeichnet sich darüber hinaus durch hohe Festigkeit bei gleichzeitig geringem Materialeinsatz aus. Teile, die beispielsweise aufgrund der abrasiv wirkenden Elektrolyte mit der Zeit verschleißen, können einzeln ausgetauscht werden, so dass auch in dieser Beziehung ein wirtschaftlicher Materialeinsatz gewährleistet ist. In der röhrenförmigen Elektrolysezelle wird der Elekrolytraum strömungsgünstig angeströmt, wodurch Strömungsverluste vermieden und die Oberfläche für den elektrochemischen Stoffaustausch optimal ausgenutzt werden. Ein kontinuierlicher und homogener Elektrolyseprozess bei hohen Feststoffkonzentrationen und Stromdichtebereichen ist aufgrund der Elektrodenmaterialien und Elektrodenanordnung möglich.The tubular electrolytic cell is also characterized by high Strength while using little material. Parts that wear out over time due to the abrasive electrolytes, for example, can be replaced individually, so that economical use of materials is guaranteed in this respect as well. In the tubular electrolysis cell, the flow is favorable to the electrolyte space, which prevents flow losses and the surface is optimally used for the electrochemical exchange of substances. A continuous and homogeneous electrolysis process with high solids concentrations and current density ranges is possible due to the electrode materials and electrode arrangement.

Ein weiterer Aspekt der vorliegenden Erfindung ist eine Elektrolysevorrichtung, die mindestens zwei erfindungsgemäße Elektrolysezellen umfasst, wobei der Elektrolyt die Elektrolysezellen nacheinander durchläuft und die Elektrolysezellen elektrochemisch parallel geschaltet betrieben werden. Somit sind die Anlagenleistungen flexibel und ohne Grenzen ausführbar.Another aspect of the present invention is an electrolysis device which comprises at least two electrolysis cells according to the invention, wherein the electrolyte passes through the electrolysis cells one after the other and the electrolysis cells are operated in an electrochemically connected parallel. Thus, the system services can be implemented flexibly and without limits.

Die erfindungsgemäße Elektrolysezelle oder die erfindungsgemäße Elektrolysevorrichtung ist insbesondere zur Oxidation eines Elektrolyts geeignet. Wie oben ausgeführt eignet sich die ungeteilte Elektrolysezelle insbesondere dann zur Oxidation eines Elektrolyten, wenn weder Elektrolytnoch Elektrolyseprodukt, die an Anode oder Kathode hergestellt oder umgesetzt werden, in störender Weise durch den jeweils anderen Elektrodenprozess verändert werden oder miteinander reagieren.The electrolysis cell according to the invention or the electrolysis device according to the invention is particularly suitable for oxidizing an electrolyte. As stated above, the undivided electrolysis cell is particularly suitable for the oxidation of an electrolyte when neither the electrolyte nor the electrolysis product, which are produced or converted at the anode or cathode, are disruptively altered by the other electrode process or react with one another.

Die erfindungsgemäßen Elektrolysezellen können mit einer Stromdichte zwischen 50-1500 mA/CM2, bevorzugt 50-1200 mA/cm2, stärker bevorzugt 60-975 mA/cm2 betrieben werden und ermöglichen somit großtechnische und wirtschaftliche Prozesse.The electrolysis cells according to the invention can be operated with a current density between 50-1500 mA / CM 2 , preferably 50-1200 mA / cm 2 , more preferably 60-975 mA / cm 2 and thus enable large-scale and economical processes.

Die erfindungsgemäßen Elektrolysezellen/Elektrolysevorrichtungen können darüber hinaus bei sehr hohen Feststoffgehalten zwischen 0,5-650 g/l, bevorzugt 100-500 g/l, stärker bevorzugt 150-450g/l und noch stärker bevorzugt 250-400 g/l, eingesetzt werden.The electrolysis cells / electrolysis devices according to the invention can also be used at very high solids contents between 0.5-650 g / l, preferably 100-500 g / l, more preferably 150-450 g / l and even more preferably 250-400 g / l can be used.

Die erfindungsgemäßen Elektrolysezellen/-vorrichtungen sind insbesondere geeignet zur anodischen Oxidation von Sulfat zu Peroxodisulfat.The electrolysis cells / devices according to the invention are particularly suitable for the anodic oxidation of sulfate to peroxodisulfate.

Die erfindungsgemäßen Elektrolysezellen/Elektrolysevorrichtungen haben sich insbesondere zur Herstellung von Peroxodisulfaten bewährt, beispielsweise in einem hierin beschriebenen Verfahren.The electrolysis cells / electrolysis devices according to the invention have proven themselves in particular for the production of peroxodisulfates, for example in a method described herein.

In der erfindungsgemäß eingesetzten Elektrolysezelle ist der Elektrolytraum zwischen Anode und Kathode ungeteilt, d.h. zwischen Anode und Kathode befindet sich kein Separator. Die Verwendung einer ungeteilten Zelle ermöglicht Elektrolytlösungen mit sehr hohen Feststoffkonzentrationen, wodurch wiederum der Energieaufwand bei der Salzgewinnung, im Wesentlichen der Kristallisation und der Wasserverdampfung, direkt proportional zur Zunahme des Feststoffanteils deutlich, mindestens aber auf 25 % der einer geteilten Zelle gemindert wird. Erfindungsgemäß ist auch nicht die Verwendung eines Promoters notwendig.In the electrolytic cell used according to the invention, the electrolyte space between the anode and cathode is undivided, i.e. there is no separator between anode and cathode. The use of an undivided cell enables electrolyte solutions with very high solids concentrations, which in turn significantly reduces the energy expenditure in salt production, essentially crystallization and water evaporation, in direct proportion to the increase in the solids content, but at least to 25% of that of a divided cell. According to the invention, the use of a promoter is also not necessary.

Der eingesetzte Elektrolyt weist vorzugsweise einen sauren, bevorzugt schwefelsaueren, oder neutralen pH-Wert auf. Der Elektrolyt kann während des Verfahrens im Kreislauf durch die Elektrolysezelle bewegt werden. Dadurch wird eine, die Zersetzung der Persulfate beschleunigende und somit unerwünschte hohe Elektrolyttemperatur in der Zelle verhindert.The electrolyte used preferably has an acidic, preferably sulfuric acid, or neutral pH. The electrolyte can be circulated through the electrolytic cell during the process. This prevents an undesirable high electrolyte temperature in the cell, which accelerates the decomposition of the persulphates.

Ein Ausschleusen von Elektrolytlösung aus dem Elektrolytkreislauf erfolgt zur Gewinnung von erzeugtem Peroxodisulfat. Das erzeugte Peroxodisulfat kann durch Kristallisation und Abtrennung der Kristalle aus der Elektrolytlösung unter Bildung einer Elektrolytlauge gewonnen werden.The electrolyte solution is discharged from the electrolyte circuit to recover the peroxodisulfate produced. The peroxodisulfate produced can be obtained by crystallization and separation of the crystals from the electrolyte solution to form an electrolyte liquor.

Der eingesetzte Elektrolyt weist vorzugsweise zu Beginn der Elektrolyse einen Gesamtfeststoffgehalt von etwa 0,5 bis 650 g/l auf. Der Elektrolyt enthält am Anfang der Umsetzung bevorzugt etwa 100 bis etwa 500 g/l Sulfat, stärker bevorzugt etwa 150 bis etwa 450 g/l Sulfat und am stärksten bevorzugt 250-400 g/l Sulfat. Die Verwendung der erfindungsgemäßen Elektrolysezelle/-vorrichtung ermöglicht somit hohe Feststoffkonzentrationen in der Elektrolytlösung, ohne Zugabe eines potentialerhöhenden Mittels bzw. Promoters und den daraus resultierenden Anforderungen an Abgas und Abwasserbehandlung bei gleichzeitig hohen Stromausbeuten bei der Peroxodisulfatherstellung.The electrolyte used preferably has a total solids content of about 0.5 to 650 g / l at the start of the electrolysis. The electrolyte preferably contains from about 100 to about 500 g / l sulfate, more preferably from about 150 to about 450 g / l sulfate, and most preferably from 250-400 g / l sulfate at the start of the reaction. The use of the electrolysis cell / device according to the invention thus enables high solids concentrations in the electrolyte solution, without the addition of a potential-increasing agent or promoter and the resulting requirements for exhaust gas and wastewater treatment with high current yields at the same time Peroxodisulfate production.

Ferner enthält die Elektrolytlösung bevorzugt etwa 0,1 bis etwa 3,5 Mol Schwefelsäure pro Liter (I) Elektrolytlösung, stärker bevorzugt 1-3 Mol Schwefelsäure pro I Elektrolytlösung und am stärksten bevorzugt 2,2-2,8 Mol Schwefelsäure pro I Elektrolytlösung.Furthermore, the electrolyte solution preferably contains from about 0.1 to about 3.5 mol of sulfuric acid per liter (l) of electrolyte solution, more preferably 1-3 mol of sulfuric acid per liter of electrolyte solution, and most preferably 2.2-2.8 mol of sulfuric acid per liter of electrolyte solution.

Zusammenfassend wird insbesondere bevorzugt ein Elektrolyt mit folgender Zusammensetzung verwendet: pro Liter Start-Elektrolyt 150 bis 500 g Sulfat und 0,1 bis 3,5 Mol Schwefelsäure pro I Elektrolytlösung. Der gesamte Feststoffgehalt beträgt bevorzugt 0,5 g/l bis 650 g/l, stärker bevorzugt 100-500 g/l und am stärksten bevorzugt 250-400 g/l. Der Promoteranteil ist 0 g/l.In summary, an electrolyte with the following composition is particularly preferably used: 150 to 500 g of sulfate and 0.1 to 3.5 mol of sulfuric acid per liter of starting electrolyte per liter of electrolyte solution. The total solids content is preferably 0.5 g / l to 650 g / l, more preferably 100-500 g / l and most preferably 250-400 g / l. The promoter portion is 0 g / l.

Figurencharacters

Figur 1:Figure 1:
Stromausbeuten im Vergleich unterschiedlicher Zelltypen mit und ohne Rhodanid (Promoter).Current yields in comparison of different cell types with and without rhodanide (promoter).
Figur 2a:Figure 2a:
Strom / Spannung in Pt/HIP- und Diamant-Elektroden.Current / voltage in Pt / HIP and diamond electrodes.
Figur 2b:Figure 2b:
Strom / Ausbeute in Pt/HIP- und Diamant-Elektroden.Current / yield in Pt / HIP and diamond electrodes.
Figur 3:Figure 3:
Elektrolysezelle gemäß der Erfindung - DraufsichtElectrolytic cell according to the invention - top view
Figur 4:Figure 4:
Querschnitt einer erfindungsgemäßen ElektrolysezelleCross section of an electrolytic cell according to the invention
Figur 5:Figure 5:
Einzelbauteile der erfindungsgemäßen ElektrolysezelleIndividual components of the electrolytic cell according to the invention
Figur 6:Figure 6:
VerteilereinrichtungDistribution device

Figur 3 zeigt eine mögliche Ausführungsform einer Elektrolysezelle gemäß der vorliegenden Erfindung. Figure 3 shows a possible embodiment of an electrolytic cell according to the present invention.

Ein Querschnitt dieses Modells ist in Figur 4 schematisch dargestellt. Durch das Zulaufrohr (1) gelangt der Elektrolyt in die Verteilereinrichtung (2a) und wird von dort strömungsgünstig dem Elektrolytraum (3) zugeführt. Der Elektrolytraum (3) wird durch den Ringspalt zwischen der Außenfläche der Anode (4) und der Innenfläche der Kathode (5) gebildet. Das Elektrolyseprodukt wird von Verteilereinrichtung (2b) gesammelt und in das Ablaufrohr (6) überführt. Dichtungen (7) schließen den Elektrolytraum zwischen Zulauf- bzw. Ablaufrohr und Innenfläche der Kathode ab.A cross section of this model is in Figure 4 shown schematically. The electrolyte reaches the distributor device (2a) through the feed pipe (1) and is fed from there to the electrolyte chamber (3) in a streamlined manner. The electrolyte space (3) is formed by the annular gap between the outer surface of the anode (4) and the inner surface of the cathode (5). The electrolysis product is collected by the distributor device (2b) and transferred into the drain pipe (6). Seals (7) close off the electrolyte space between the inlet or outlet pipe and the inner surface of the cathode.

In einer bevorzugten Ausführungsform kann die Verteilereinrichtung (2) so ausgeführt sein, dass die Verteilereinrichtung gleichzeitig die Abdichtung des Elektrolytraums übernimmt.In a preferred embodiment, the distributor device (2) can be designed so that the distributor device simultaneously seals the electrolyte space.

Figur 5 zeigt die Einzelbauteile der erfindungsgemäßen Elektrolysezelle. Die Nummerierung ist analog Figur 4. Weitere Bauteile zur Abdichtung der Elektrolysezelle und zur Montage sind in Figur 5 gezeigt, aber nicht nummeriert. Diese Bauteile sind dem Fachmann bekannt und können beliebig ausgetauscht werden. Figure 5 shows the individual components of the electrolytic cell according to the invention. The numbering is analogous Figure 4 . Further components for sealing the electrolytic cell and for assembly are in Figure 5 shown but not numbered. These components are known to the person skilled in the art and can be exchanged as required.

Figur 6 ist eine vergrößerte Darstellung der Verteilereinrichtung (2). Die Verteilereinrichtungen weist eine Anschlussstelle (21) für ein Ab- oder Zulaufrohr und eine Anschlussstelle (22) für die Anode (4) auf. Die Anschlussstelle für die Anode bildet ein Hohlzylinder, der bündig mit dem Anodenrohr bzw. -stab (4) abschließt. Figure 6 is an enlarged view of the distribution device (2). The distributor device has a connection point (21) for an outlet or inlet pipe and a connection point (22) for the anode (4). The connection point for the anode is formed by a hollow cylinder that is flush with the anode tube or rod (4).

Über den Umfang des Hohlzylinders der Verteilereinrichtung sind radiale Bohrungen (23) verteilt. Durch die radialen Bohrungen (23) in der Verteilereinrichtung kann der Elektrolyt homogen in den Elektrolytraum eingespeist werden und nach Passage des Elektrolytraums effektiv abgeführt werden. Bevorzugt weist die Verteilereinrichtung 3, stärker bevorzugt 4 und noch stärker bevorzugt 5 radiale Bohrungen auf.Radial bores (23) are distributed over the circumference of the hollow cylinder of the distributor device. The electrolyte can be fed homogeneously into the electrolyte space through the radial bores (23) in the distributor device and can be effectively removed after passing through the electrolyte space. The distributor device preferably has 3, more preferably 4 and even more preferably 5 radial bores.

Beispielexample

Die Herstellung der verschiedenen Peroxodisulfate geschieht nach folgenden Mechanismen:The various peroxodisulphates are produced according to the following mechanisms:

Natriumperoxodisulfat:Sodium peroxodisulfate:

  • Anodenreaktion:

            2SO4 2- → S2O8 2- + 2e-

    Anode reaction:

    2SO 4 2- → S 2 O 8 2- + 2e -

  • Kathodenreaktion

            2H+ + 2e- → H2

    Cathodic reaction

    2H + + 2e - → H 2

  • Kristallisation:

            2Na+ + S2O8 2- Na2S2O8

    Crystallization:

    2Na + + S 2 O 8 2- Na 2 S 2 O 8

  • Gesamt

            Na2SO4 + H2SO4 → Na2S2O8 + H2

    total

    Na 2 SO 4 + H 2 SO 4 → Na 2 S 2 O 8 + H 2

Ammoniumperoxodisulfat:Ammonium peroxodisulfate:

  • Anodenreaktion:

            2SO4 2- → S2O8 2-+ 2e-

    Anode reaction:

    2SO 4 2- → S 2 O 8 2- + 2e -

  • Kathodenreaktion

            2H+ + 2e- → H2

    Cathodic reaction

    2H + + 2e - → H 2

  • Kristallisation:

            2NH4+ + S2O8 2- (NH4)2S2O8

    Crystallization:

    2NH 4 + + S 2 O 8 2- (NH 4 ) 2 S 2 O 8

  • Gesamt

            (NH4)2SO4 + H2SO4 → Na2S2O8 + H2

    total

    (NH 4 ) 2 SO 4 + H 2 SO 4 → Na 2 S 2 O 8 + H 2

Kaliumperoxodisulfat:Potassium peroxodisulfate:

  • Anodenreaktion:

            2SO4 2- → S2O82-+ 2e-

    Anode reaction:

    2SO 4 2- → S 2 O 8 2 - + 2e -

  • Kathodenreaktion

            2H+ + 2e- → H2

    Cathodic reaction

    2H + + 2e - → H 2

  • Kristallisation:

            2K+ + S2O8 2- K2S2O8

    Crystallization:

    2K + + S 2 O 8 2- K 2 S 2 O 8

  • Gesamt

            K2SO4 + H2SO4 → K2S2O8 + H2

    total

    K 2 SO 4 + H 2 SO 4 → K 2 S 2 O 8 + H 2

Im Folgenden wird beispielhaft die erfindungsgemäße Herstellung von Natriumperoxodisulfat beschrieben.The production of sodium peroxodisulfate according to the invention is described below by way of example.

Hierfür wurde zum einen eine 2-dimensionale und zum anderen eine dreidimensionale Zelle, bestehend aus einer bordotierten mit Diamant beschichteten Niob-Anode (erfindungsgemäße Diamantanode) verwendet.For this purpose, on the one hand a two-dimensional and on the other hand a three-dimensional cell, consisting of a boron-doped diamond-coated niobium anode (diamond anode according to the invention) was used.

Elektrolytanfangszusammensetzung:Initial electrolyte composition:

Temperatur: 25°C
Schwefelsäuregehalt: 300 g/l
Natriumsulfatgehalt: 240 g/l
Natriumpersulfatgehalt: 0 g/l
Temperature: 25 ° C
Sulfuric acid content: 300 g / l
Sodium sulfate content: 240 g / l
Sodium persulfate content: 0 g / l

Aktive Anodenfläche bei den verwendeten Zelltypen:

  • Röhrenzelle mit Platin-Titan-Anode: 1280 cm2
  • Röhrenzelle mit Diamant-Niob-Anode: 1280 cm2
  • Flachzelle mit Diamant-Niob-Anode: 1250 cm2
Kathodenwerkstoff: säurebeständiger Edelstahl: 1.4539
Löslichkeitsgrenze (Natriumpersulfat) des Systems ca. 65 - 80 g/l.Active anode area for the cell types used:
  • Tubular cell with platinum-titanium anode: 1280 cm 2
  • Tubular cell with diamond-niobium anode: 1280 cm 2
  • Flat cell with diamond-niobium anode: 1250 cm 2
Cathode material: acid-resistant stainless steel: 1.4539
Solubility limit (sodium persulphate) of the system approx. 65 - 80 g / l.

Stromdichten:Current densities:

Der Elektrolyt wurde durch Kreisführung entsprechend aufkonzentriert (siehe Figuren 1 und 2).The electrolyte was appropriately concentrated by circulating (see Figures 1 and 2 ).

Ergebnisse:Results:

Aus dem Verlauf der Stromausbeute in Abhängigkeit zu verändertemFrom the course of the current yield as a function of the changed

Natriumpersulfatgehalt (Figur 1), ist deutlich erkennbar, dass die verwendete Diamantanode über den gesamten, für diese Zelle sinnvollen Arbeitsbereich von ca. 100 g/l bis etwa 350 g/l, auch ohne Zugabe eines Promoters deutlich höhere Stromausbeuten erreicht, als sie von herkömmlichen Platinbeschichteten Titananoden mit zugegebenem Promoter bekannt sind.Sodium persulfate content ( Figure 1 ), it can be clearly seen that the diamond anode used achieves significantly higher current yields than with conventional platinum-coated titanium anodes over the entire working range of approx. 100 g / l to approx. 350 g / l, which is useful for this cell, even without the addition of a promoter added promoter are known.

Aus dem Verlauf der Stromausbeute in Abhängigkeit der Stromdichte bei der Herstellung von Natriumperoxodisulfat unter Verwendung einer Platinanode (Vergleichsbeispiele) mit der Zugabe von entsprechendem Promoter und in einer erfindungsgemäß zu verwendenden mit Bor dotierten Diamantanode, jeweils eingebaut in einer ungeteilten Elektrolysezelle (Figur 2a + 2b), folgt, dass bei einer Stromdichte von 100 - 1500 mA/cm2 eine Stromausbeute von über 75 % erhältlich ist.From the course of the current yield as a function of the current density in the production of sodium peroxodisulfate using a platinum anode (comparative examples) with the addition of the appropriate promoter and in a boron-doped diamond anode to be used according to the invention, each installed in an undivided electrolysis cell ( Figure 2a + 2b), it follows that at a current density of 100 - 1500 mA / cm2 a current yield of over 75% is available.

Demgegenüber zeigten die Versuche aber auch, dass herkömmliche Pt-Folienbeschichtete Titan-Anoden trotz der Zugabe einer Natriumrhodanid-Lösung als Promoter innerhalb diesen Arbeitsbereiches nur Stromausbeuten von bestenfalls 60 - 65 % erreichten. Ohne die Zugabe eines Promoters werden dagegen nur Stromausbeuten von etwa 35 % erreicht, was die vorliegende Erfindung bestätigt.In contrast, the tests also showed that conventional Pt foil-coated titanium anodes only achieved current yields of at best 60-65% within this working range, despite the addition of a sodium rhodanide solution as a promoter. Without the addition of a promoter, on the other hand, current yields of only about 35% are achieved, which confirms the present invention.

Zusammengefasst läßt sich bestätigen, dass die Stromausbeute einer diamantbeschichteten Niobanode auch ohne Zugabe eines potentialerhöhenden Mittels etwa 10 % höher ist, als bei einer Zelle mit herkömmlicher Platin-Titan-Anode und Zugabe eines potentialerhöhenden Mittel und rund 40 % höher als bei einer Zelle mit herkömmlicher Platin-Titan-Anode ohne Zugabe eines potentialerhöhenden Mittel.In summary, it can be confirmed that the current yield of a diamond-coated niobium anode is around 10% higher than with a cell with a conventional platinum-titanium anode and the addition of a potential-increasing agent and around 40% higher than with a cell with a conventional one, even without the addition of a potential-increasing agent Platinum-titanium anode without the addition of a potential-increasing agent.

Der Spannungsabfall an einer Diamant-beschichteten Anode liegt etwa 0,9 Volt höher als bei einer vergleichbaren Zelle mit einer Platin-Titan-Anode. Weiterhin zeigte sich, dass die Stromausbeute bei einer erfindungsgemäß zu verwendenden Diamantelektrode ohne die Zugabe eines Promoters mit zunehmendem Gesamtgehalt an Natriumperoxodisulfat im Elektrolyten nur langsam abnimmt - unter den Versuchsbedingungen lassen sich beispielsweise bei einer Stromausbeute von gleich oder über 65% Elektrolytlösungen mit einem Natriumperoxodisulfatgehalt von etwa 400 - 650 g/l gewinnen.The voltage drop across a diamond-coated anode is about 0.9 volts higher than that of a comparable cell with a platinum-titanium anode. Furthermore, it was found that the current yield with a diamond electrode to be used according to the invention without the addition of a promoter only increases with an increasing total content of sodium peroxodisulfate in the electrolyte slowly decreases - under the experimental conditions, for example, electrolyte solutions with a sodium peroxodisulfate content of around 400 - 650 g / l can be obtained with a current yield of 65% or more.

Unter Verwendung einer herkömmlichen Platinanode und Mitverwendung eines Promoters im Elektrolyten lassen sich demgegenüber nur gleich hohe Peroxodisulfatkonzentrationen von etwa 300 g/l, und zwar bei einer Stormausbeute von etwa 50 % erhalten.By contrast, when using a conventional platinum anode and also using a promoter in the electrolyte, only equally high peroxodisulfate concentrations of about 300 g / l can be obtained with a current yield of about 50%.

Stichpunktartige Untersuchungen an einem ähnlichen Systems mit Kaliumionen aus Kaliumsulfat, brachten ähnlich gute Ergebnisse.Bullet-point investigations on a similar system with potassium ions from potassium sulfate produced similarly good results.

Es ist für den Fachmann überraschend, dass das erfindungsgemäße Verfahren bei hohen Umsätzen mit technisch gut handhabbaren Stromdichten ohne der räumlichen Trennung von Anolyt und Katholyt und ohne den Einsatz eines Promoters bei gleichzeitig hoher Stromausbeute bei gleichzeitig hohen Persulfat- und Feststoffkonzentrationen in ungeteilten Elektrolysezellen ohne die Zugabe eines Promoters durchgeführt werden kann.It is surprising for the person skilled in the art that the method according to the invention at high conversions with technically easily manageable current densities without the spatial separation of anolyte and catholyte and without the use of a promoter with simultaneously high current yield with simultaneously high persulfate and solid concentrations in undivided electrolysis cells without the addition a promoter can be carried out.

Im Zuge der Untersuchungen zu dieser Erfindung, wurde festgestellt, dass die Herstellung von Ammonium- und i.w. aber Alkalimetallperoxodisulfaten mit hoher Stromausbeute auch in einer ungeteilten Zelle demnach möglich ist, indem als Anode eine mit einem drei- oder fünfwertigen Element dotierte Diamant- Dünnschichtelektrode verwendet wird. Überraschenderweise kann die Zelle auch bei sehr hohem Feststoffgehalt, i.w. Peroxodisulfatgehalt wirtschaftlich sinnvoll eingesetzt werden und gleichzeitig auf den Einsatz eines Promoters vollständig verzichtet und die Elektrolyse kann bei hoher Stromdichte durchgeführt werden, woraus weitere Vorteile, insbesondere im Hinblick auf Installations- und Anschaffungskosten, resultieren.In the course of the investigations into this invention, it was found that the production of ammonium and largely alkali metal peroxodisulfates with a high current yield is also possible in an undivided cell by using a diamond thin-film electrode doped with a trivalent or pentavalent element as the anode . Surprisingly, the cell can be used economically even with a very high solids content, i.e. peroxodisulfate content, and at the same time the use of a promoter can be completely dispensed with and the electrolysis can be carried out at a high current density, which results in further advantages, especially with regard to installation and acquisition costs.

Zusammenfassung:Summary:

Die Verwendung einer ungeteilten Zelle ermöglicht Elektrolytlösungen mit sehr hohen Feststoffkonzentrationen, wodurch wiederum der Energieaufwand bei der Salzgewinnung, im wesentlichen der Kristallisation und der Wasserverdampfung, direkt proportional zur Zunahme des Feststoffanteils deutlich, mindestens aber auf 25 % der einer geteilten Zelle gemindert wird.The use of an undivided cell enables electrolyte solutions with very high solids concentrations, which in turn significantly reduces the energy expenditure in salt production, essentially crystallization and water evaporation, in direct proportion to the increase in the solids content, but at least to 25% of that of a divided cell.

Trotz Wegfall des Einsatzes eines Promoters und damit Wegfall von erforderlichen Reinigungsmaßnahmen des Elektrolysegases sind höhere Umsätze und höhere Persulfat-Konzentrationen im ausgeschleusten Elektrolyt erhältlich.Despite the omission of the use of a promoter and thus the omission of the necessary cleaning measures for the electrolysis gas, higher conversions and higher persulfate concentrations are available in the discharged electrolyte.

Die Arbeitsstromdichte kann gegenüber Platinanoden bei gleich hoher Produktionsmenge deutlich herabgesetzt werden, wodurch weniger Ohm'sche Verluste im System auftreten und damit der Kühlaufwand vermindert und der Freiheitsgrad in der Gestaltung der Elektrolysezellen und der Kathoden erhöht wird.The working current density can be significantly reduced compared to platinum anodes with the same high production quantity, which means that fewer ohmic losses occur in the system and thus the cooling effort is reduced and the degree of freedom in the design of the electrolysis cells and the cathodes is increased.

Gleichzeitig kann bei zunehmender Stromdichte die Stromausbeute und damit die Produktionsmenge erhöht werden.At the same time, as the current density increases, the current yield and thus the production volume can be increased.

Aufgrund der hervorragenden Abrassionsbeständigkeit der diamantbeschichteten Anode können im Vergleich zu einer konstruktiv ähnlich aufgebauten Pt-Anode sehr viel höhere Fließgeschwindigkeiten verwendet werden.Due to the excellent abrasion resistance of the diamond-coated anode, much higher flow velocities can be used compared to a Pt anode with a similar construction.

Claims (13)

  1. Electrolytic cell, comprising the components:
    (a) at least one tubular cathode;
    (b) at least one rod-shaped or tubular anode which comprises a conductive carrier coated with a conductive diamond layer;
    (c) at least one inlet tube;
    (d) at least one outlet tube; and
    (e) at least two distributor apparatuses, wherein the distributor apparatuses have at least one connection point for at least one inlet or outlet tube and a connection point for the anode, and wherein the first distributor apparatus is designed to distribute electrolyte from the inlet tube into an electrolyte space and the second distributor apparatus is designed to collect converted electrolyte and to discharge said electrolyte via the outlet tube, and wherein the electrolyte space is formed as an annular gap between the inner anode and the outer cathode.
  2. Electrolytic cell according to claim 1, wherein the electrolytic cell has a common electrolyte space without a diaphragm.
  3. Electrolytic cell according to either claim 1 or claim 2, wherein the distance between the outer surface of the anode and the inner surface of the cathode is between 1 and 20 mm.
  4. Electrolytic cell according to any of claims 1-3, wherein the inner diameter of the cathode is between 10 and 400 mm.
  5. Electrolytic cell according to any of claims 1-4, wherein the anode and the cathode are, in each case independently of one another, between 20 and 120 cm long.
  6. Electrolytic cell according to any of claims 1-5, wherein the carrier is selected from the group consisting of silicon, germanium, titanium, zirconium, niobium, tantalum, molybdenum, tungsten, carbides of these elements, and/or aluminium, or combinations of these elements.
  7. Electrolytic cell according to any of claims 1-6, wherein the diamond layer is doped with at least one trivalent or at least one pentavalent main-group element or transition element, in particular boron and/or phosphorus.
  8. Electrolytic cell according to any of claims 1-7, wherein the cathode is made of lead, carbon, tin, platinum, nickel, alloys of these elements, zirconium and/or iron alloys, in particular of acid-resistant stainless steel.
  9. Electrolytic cell according to any of claims 1-8, wherein the components of the electrolytic cell are individually replaceable.
  10. Electrolysis device, comprising at least two electrolytic cells according to any of claims 1-9, wherein the electrolyte passes through the electrolytic cells one after the other and the electrolytic cells are electrochemically connected in parallel.
  11. Use of the electrolytic cell according to any of claims 1-9 or of the electrolysis device according to claim 10 for oxidising an electrolyte.
  12. Use according to claim 11, wherein the current density is between 50 and 1500 mA/cm2.
  13. Use according to either claim 11 or claim 12 for producing peroxydisulfate.
EP13735335.5A 2012-07-13 2013-07-12 Undivided electrolytic cell and use of the same Active EP2872673B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PL13735335T PL2872673T3 (en) 2012-07-13 2013-07-12 Undivided electrolytic cell and use of the same
US14/407,205 US9540740B2 (en) 2012-07-13 2013-07-12 Undivided electrolytic cell and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/EP2012/063783 WO2013007816A2 (en) 2011-07-14 2012-07-13 Undivided electrolytic cell and use of the same
PCT/EP2013/064809 WO2014009536A1 (en) 2012-07-13 2013-07-12 Undivided electrolytic cell and use of the same

Publications (2)

Publication Number Publication Date
EP2872673A1 EP2872673A1 (en) 2015-05-20
EP2872673B1 true EP2872673B1 (en) 2020-09-09

Family

ID=48782368

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13735335.5A Active EP2872673B1 (en) 2012-07-13 2013-07-12 Undivided electrolytic cell and use of the same

Country Status (4)

Country Link
EP (1) EP2872673B1 (en)
KR (1) KR20150034171A (en)
TW (1) TW201406998A (en)
WO (1) WO2014009536A1 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2346945C3 (en) 1973-09-18 1982-05-19 Peroxid-Chemie GmbH, 8023 Höllriegelskreuth Process for the direct electrolytic production of sodium peroxodisulphate
US3984303A (en) * 1975-07-02 1976-10-05 Diamond Shamrock Corporation Membrane electrolytic cell with concentric electrodes
CA1090286A (en) 1976-12-23 1980-11-25 Kenneth J. Radimer Electrolytic production of sodium persulfate
DE3938160A1 (en) 1989-11-16 1991-05-23 Peroxid Chemie Gmbh ELECTROLYSIS CELL FOR PRODUCING PEROXO AND PERHALOGENATE COMPOUNDS
TW416997B (en) 1998-03-30 2001-01-01 Mitsubishi Gas Chemical Co Process for producing persulfate
DE19911746A1 (en) 1999-03-16 2000-09-21 Basf Ag Diamond electrodes
DE10019683A1 (en) 2000-04-20 2001-10-25 Degussa Process for the preparation of alkali metal and ammonium peroxodisulfate
DE20318754U1 (en) * 2003-12-04 2004-02-19 Schulze, Dirk Electrochemical ozone generator
DE102004027623A1 (en) * 2004-06-05 2005-12-22 Degussa Initiators Gmbh & Co. Kg Process for the preparation of peroxodisulfates in aqueous solution
BRPI0905277B1 (en) * 2009-12-01 2019-11-26 Univ Estadual Campinas Unicamp cylindrical electrochemical cell with coaxial doped diamond anode

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
TW201406998A (en) 2014-02-16
EP2872673A1 (en) 2015-05-20
WO2014009536A1 (en) 2014-01-16
KR20150034171A (en) 2015-04-02

Similar Documents

Publication Publication Date Title
EP2732073B1 (en) Undivided electrolytic cell and use of the same
EP2765223B1 (en) Electrocatalyst, electrode coating and electrode for the production of chlorine
EP0428171B1 (en) Electrolysis cell for the manufacture of peroxo- and perhalogenate compounds
EP1409767A1 (en) Electrochemical production of peroxopyrosulphuric acid using diamond coated electrodes
EP1417356B1 (en) Electrolysis cell, particularly for electrochemically producing chlorine
EP1600426B1 (en) Method and device for separating off sulfate anions from water and for introducing buffer capacity in water
EP2287363A2 (en) Electrode and electrode coating
EP1753894B1 (en) Method for producing peroxodisulfates in aqueous solution
EP1463847B1 (en) Electrode for conducting electrolysis in acid media
EP1148155B2 (en) Process for producing alkali metal and ammonium peroxide disulphate
US9540740B2 (en) Undivided electrolytic cell and use thereof
EP2872673B1 (en) Undivided electrolytic cell and use of the same
EP4370728A1 (en) Electrolysis cell for polymer electrolyte membrane electrolysis and coating
EP0011886B1 (en) Preparation of oxy-halogenated acids and their salts by electrolysis
EP2439314A2 (en) Method for producing oxygen-consuming electrodes which are stable during transport and storage
WO2013068253A1 (en) Method for neutralisation of negatively charged contaminants in aqueous media
DE10258652A1 (en) Electrolytic manufacture of inorganic peroxygen compound, e.g. perhalogen acids, involves anodically oxidizing inorganic halogen compound in aqueous solution using anode with doped diamond coating
EP1518828A1 (en) Process and apparatus for the anodic oxidation of cyanide in aqueous solutions
EP3597791B1 (en) Method for improving the performance of nickel electrodes
EP4112781A1 (en) Electrolytic cell for polymer electrolyte membrane electrolysis and method for producing same
DE102009001168A1 (en) Preparation of hypophosphite, useful in electroless metal deposition, comprises electrolysis of a mixture of white phosphorus, water, cosolvent and optionally conducting salt by excluding oxygen at specific pH and current density

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141204

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170316

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: UNITED INITIATORS GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200124

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

INTC Intention to grant announced (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: MUELLER, MICHAEL

Inventor name: SCHIERMEIER, MARKUS

Inventor name: KELLER, PATRICK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

INTG Intention to grant announced

Effective date: 20200619

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KELLER, PATRICK

Inventor name: MUELLER, MICHAEL

Inventor name: SCHIERMEIER, MARKUS

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1311665

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200915

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013015117

Country of ref document: DE

REG Reference to a national code

Ref country code: FI

Ref legal event code: FGE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210111

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2822623

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210109

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013015117

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1311665

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130712

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230727

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230711

Year of fee payment: 11

Ref country code: IT

Payment date: 20230727

Year of fee payment: 11

Ref country code: IE

Payment date: 20230727

Year of fee payment: 11

Ref country code: GB

Payment date: 20230728

Year of fee payment: 11

Ref country code: FI

Payment date: 20230726

Year of fee payment: 11

Ref country code: ES

Payment date: 20230926

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230703

Year of fee payment: 11

Ref country code: FR

Payment date: 20230727

Year of fee payment: 11

Ref country code: DE

Payment date: 20230630

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909