EP0011886B1 - Preparation of oxy-halogenated acids and their salts by electrolysis - Google Patents

Preparation of oxy-halogenated acids and their salts by electrolysis Download PDF

Info

Publication number
EP0011886B1
EP0011886B1 EP79200618A EP79200618A EP0011886B1 EP 0011886 B1 EP0011886 B1 EP 0011886B1 EP 79200618 A EP79200618 A EP 79200618A EP 79200618 A EP79200618 A EP 79200618A EP 0011886 B1 EP0011886 B1 EP 0011886B1
Authority
EP
European Patent Office
Prior art keywords
ions
calcium
electrolysis
sea water
purified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP79200618A
Other languages
German (de)
French (fr)
Other versions
EP0011886A1 (en
Inventor
Karl Dipl.-Ing. Lohrberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GEA Group AG
Original Assignee
Metallgesellschaft AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metallgesellschaft AG filed Critical Metallgesellschaft AG
Publication of EP0011886A1 publication Critical patent/EP0011886A1/en
Application granted granted Critical
Publication of EP0011886B1 publication Critical patent/EP0011886B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/26Chlorine; Compounds thereof

Definitions

  • the invention relates to a process for the production of chlorine oxygen acids or their salts by electrolysis of sea water or salt solutions containing contaminating metal ions.
  • Magnesium hydroxide tends to adhere to the cathode or settle on the walls of the electrolysis chamber, thereby hindering the flow of the electrolyte and reducing the efficiency.
  • the growing deposits mainly clog the space between the anode and cathode in the electrolysis chamber, making continuous cell operation impossible for a long time.
  • smooth, uninterrupted sheets have been used as cathodes, and a certain ratio of the flow rate and the concentration of the electrolyte has been provided for an increased flow rate (DE-A 26 19 497).
  • the invention has for its object to achieve a reduction or control of the formation of deposits on the cathode during the electrolysis of sea water or salt solutions containing contaminating metal ions to obtain solutions of chlorine-oxygen acids or their salts, advantages of known methods being used without their disadvantages to have to put up with.
  • the invention now consists in operating the electrolysis cell with unpurified sea water or unpurified salt solution until a layer is formed on the electrodes
  • Compounds of the contaminating metal ions, in particular calcium and / or magnesium ions are deposited in a sufficient strength and effect a current efficiency of more than 90%, and that then the calcium and / or magnesium ions contained in the unpurified sea water or in the unpurified saline solution by adding sodium hydroxide solution and / or calcium hydroxide as well as sodium carbonate at a pH of more than 9 precipitates in whole or in part, if necessary separates and feeds the cleaned solution to the electrolysis cell.
  • Adequate layer thickness is understood in the sense of the invention to mean a layer thickness which is sufficient to achieve a current efficiency of more than 90%.
  • this is fed to the electrolyzer in carrying out the method according to the invention until a sufficient layer thickness is reached.
  • the current efficiency slowly increases over time until values of over 90% are reached. This increase generally takes place over a period of 5 to 30 hours, the cell voltage generally increasing by 0.2 to 0.3 volt with the same current density. After this deposition phase, the cell voltage continues to increase and this increase is 1 to 1.5 volts within 100 to 2000 hours, depending on the concentration of contaminating ions.
  • the supply of the unpurified salt solution is switched off by the method according to the invention and the purified salt solution is then fed to the electrolyte.
  • the impurities which are predominantly contained in the salt solution in the form of calcium and / or magnesium ions or iron ions, are precipitated by adding sodium hydroxide solution and / or calcium hydroxide and sodium carbonate or soda at a pH of over 9.
  • the magnesium ions are precipitated by the hydroxyl ions of the calcium hydroxide, the calcium ions by the carbonate ions and magnesium hydroxide or calcium carbonate is precipitated.
  • the precipitation of the impurities is usually brought about completely. In some cases it can Depending on the local conditions of the electrolysis cells, it may be sufficient if the majority of the impurities are precipitated.
  • the precipitation products can also remain wholly or partly in the finely divided state in the brine or saline solution.
  • contaminations of, for example, calcium and magnesium salts in amounts of about 5 mg Ca ++ / I or 1 mg Mg ++ / I are deposited on the cathodes in the brine and gradually cause a layer to form.
  • electrolytic cells are used in the method according to the invention, for example electrolytic cells with alternating vertical anodes and cathodes.
  • the electrode spacing is, for example, 2 to 5 mm and the electrolyte with a flow rate of 0.3 to 2 m / s is electrolyzed at a current density of 2 to 25 A / dm 2 .
  • the temperature of the electrolyte can be 10 to 50 ° C and the pH can range from 7 to 10.
  • the cathodes consist of electrically conductive, wear-resistant metal materials, for example titanium, nickel, or iron and nickel alloys.
  • the anode material can be graphite.
  • anodes are titanium, niobium or tantalum electrodes coated with noble metal or noble metal oxide or so-called dimensionally stable anodes, in which the electrocatalytic effect of mixed oxides originates from noble metals and film-forming metals, in particular titanium.
  • the chlorine reacts with the sodium hydroxide solution to form sodium hypochlorite according to:
  • hypochlorous acid Sodium hypochlorite reacts with water to form hypochlorous acid
  • reaction (1) or reaction (2) depends on the pH of the environment. If the pH is> 5, the entire active chlorine is in the form of hypochlorous acid and hypochlorite ions. The higher the pH value, the greater the proportion of hypochlorite ions.
  • the advantages of the method according to the invention can be seen in the fact that a targeted layer formation on the cathodes occurs uniformly in all electrolysis cells of the system.
  • the thin passive layer of a certain thickness deposited according to the invention prevents an excessive reduction of the hypochlorite ions, thus increases the yield of hypochlorite and makes cell cleaning unnecessary or reduces it to a very considerable extent.
  • FIG. 1 shows the efficiency of hypochlorite cells as a function of the running time.
  • a plant with 8 cells connected in series was operated with sea water at 28 ° C. at a rate of 20 m 3 / h.
  • the current strength was slowly increased from 500 A to 5,000 A over a total of 30 hours.
  • the voltage rose from 25 to 35 V.
  • the content of active chlorine in the form of NaOCI rose from 0.2 g / l to 2.8 g / l in the same period.
  • the current yield ran according to the diagram in FIG. 1, ie without the addition of precipitation chemicals, the current yield would asymptotically approach the value of 100%, but at the same time the voltage would increase and the pollution would increase, so that after 2,000 hours at the latest the plant would be shut down subsequent acid washing would be required.

Description

Die Erfindung betrifft ein Verfahren zur Gewinnung von Chlorsauerstoffsäuren bzw. deren Salze durch Elektrolyse von Meerwasser oder verunreinigende Metallionen enthaltenden Salzlösungen.The invention relates to a process for the production of chlorine oxygen acids or their salts by electrolysis of sea water or salt solutions containing contaminating metal ions.

Bei der Elektrolyse von Meerwasser oder von verunreinigende Metallionen, wie Ca- oder Mg-Ionen enthaltenden Salzlösungen, treten bei der Gewinnung von Chlorsauerstoffsäuren bzw. deren Salze, wie Natriumhypochlorit, auch heute noch Schwierigkeiten auf, welche die kommerzielle Nutzung und die Wirtschaftlichkeit belasten. Die in derartigen Salzlösungen enthaltenen Calcium- oder Magnesiumionen reagieren mit den an der Kathode erzeugten Hydroxylionen unter Bildung von Calcium- und Magnesium- hydroxid und gegebenenfalls Carbonaten.In the electrolysis of sea water or of contaminating metal ions, such as salt solutions containing Ca or Mg ions, difficulties still arise today in the production of chlorine-oxygen acids or their salts, such as sodium hypochlorite, which are detrimental to commercial use and economy. The calcium or magnesium ions contained in such salt solutions react with the hydroxyl ions generated at the cathode to form calcium and magnesium hydroxide and possibly carbonates.

Magnesiumhydroxid neigt dazu, an der Kathode zu haften oder sich an den Wänden der Elektrolysekammer abzusetzen und dadurch die Strömung des Elektrolyten zu behindern und den Wirkungsgrad herabzusetzen. Die anwachsenden Ablagerungen verstopfen vor allem den Raum zwischen Anode und Kathode in der Elektrolysekammer, wodurch für längere Zeit ein kontinuierlicher Betrieb der Zelle unmöglich wird. Zur Vermeidung dieser Schwierigkeiten hat man bereits nach bekannten Vorschlägen zur elektrolytischen Herstellung von Hypochlorit glatte, nicht unterbrochene Bleche als Kathoden verwendet und bei erhöhter Strömungsgeschwindigkeit ein bestimmtes Verhältnis von Strömungsgeschwindigkeit und Konzentration des Elektrolyten vorgesehen (DE-A 26 19 497). Auch hat man in bekannten Elektrolysezellen zur Gewinnung von Hypochlorit aus Meerwasser durch bauliche Maßnahmen eine gerichtete Elektrolytströmung bestimmter Geschwindigkeit eingestellt (DE-B 1956156). Bei der Herstellung von Alkalichloraten durch Elektrolyse von Alkalichloridlösungen ist es ferner bekannt, dem Elektrolyten Alkalihydroxid oder Carbonat zur Herabsetzung der Stromverluste zuzufügen. Bei derartigen Verfahren ist es ebenfalls bekannt, schwer lösliche Hydroxide, wie Calcium- oder Magnesiumhydroxid dem Elektrolyten zuzusetzen und diese Hydroxide während des ganzen Verlaufs der Elektrolyse in dem Elektrolyten suspendiert zu halten (DE-B 90 060). Schließlich ist es bekannt, unerwünschte Metallionen aus Salzlösungen, die für die Chloralkali-Elektrolyse bestimmt sind, durch Ausflockung der Eisen-, Magnesium- und Calciumionen als Carbonate bzw. Hydroxide zu entfernen (CH-A 505751).Magnesium hydroxide tends to adhere to the cathode or settle on the walls of the electrolysis chamber, thereby hindering the flow of the electrolyte and reducing the efficiency. The growing deposits mainly clog the space between the anode and cathode in the electrolysis chamber, making continuous cell operation impossible for a long time. To avoid these difficulties, according to known proposals for the electrolytic production of hypochlorite, smooth, uninterrupted sheets have been used as cathodes, and a certain ratio of the flow rate and the concentration of the electrolyte has been provided for an increased flow rate (DE-A 26 19 497). In known electrolysis cells for obtaining hypochlorite from sea water, a directed electrolyte flow of a certain speed has been set by constructional measures (DE-B 1956156). In the production of alkali chlorates by electrolysis of alkali chloride solutions, it is also known to add alkali hydroxide or carbonate to the electrolyte in order to reduce the current losses. In such processes it is also known to add poorly soluble hydroxides, such as calcium or magnesium hydroxide, to the electrolyte and to keep these hydroxides suspended in the electrolyte throughout the course of the electrolysis (DE-B 90 060). Finally, it is known to remove unwanted metal ions from salt solutions which are intended for chlor-alkali electrolysis by flocculating the iron, magnesium and calcium ions as carbonates or hydroxides (CH-A 505751).

Der Erfindung liegt die Aufgabe zugrunde, eine Verringerung bzw. Steuerung der Ansatzbildung auf der Kathode während der Elektrolyse von Meerwasser oder verunreinigende Metallionen enthaltenden Salzlösungen zur Gewinnung von Lösungen von Chlorsauerstoffsäuren bzw. deren Salze zu erzielen, wobei Vorteile bekannter Verfahren genutzt werden, ohne deren Nachteile in Kauf nehmen zu müssen.The invention has for its object to achieve a reduction or control of the formation of deposits on the cathode during the electrolysis of sea water or salt solutions containing contaminating metal ions to obtain solutions of chlorine-oxygen acids or their salts, advantages of known methods being used without their disadvantages to have to put up with.

Bei einem Verfahren der genannten Art zur Gewinnung von Chlorsauerstoffsäuren bzw. deren Salze durch Elektrolyse von Meerwasser oder verunreinigende Metallionen enthaltenden Salzlösungen besteht die Erfindung nun darin, daß man die Elektrolysezelle so lange mit ungereinigtem Meerwasser oder ungereinigter Salzlösung betreibt, bis auf den Elektroden eine Schicht aus Verbindungen der verunreinigenden Metallionen, insbesondere Calcium- und/oder Magnesiumionen, in einer hinreichenden und einen Stromwirkungsgrad von mehr als 90 % bewirkenden Stärke abgeschieden ist, und daß man dann die in dem ungereinigten Meerwasser oder in der ungereinigten Salzlösung enthaltenen Calcium- und/oder Magnesiumionen durch Zusatz von Natronlauge und/oder Calciumhydroxid sowie Natriumcarbonat bei einem pH-Wert von über 9 ganz oder teilweise ausfällt, gegebenenfalls abtrennt und die gereinigte Lösung der Elektrolysezelle zuführt. Unter hinreichender Schichtstärke wird im Sinne der Erfindung eine Schichtdicke verstanden, die ausreicht, einen Stromwirkungsgrad von mehr als 90 % zu erreichen.In a method of the type mentioned for the production of chlorine oxygen acids or their salts by electrolysis of sea water or salt solutions containing contaminating metal ions, the invention now consists in operating the electrolysis cell with unpurified sea water or unpurified salt solution until a layer is formed on the electrodes Compounds of the contaminating metal ions, in particular calcium and / or magnesium ions, are deposited in a sufficient strength and effect a current efficiency of more than 90%, and that then the calcium and / or magnesium ions contained in the unpurified sea water or in the unpurified saline solution by adding sodium hydroxide solution and / or calcium hydroxide as well as sodium carbonate at a pH of more than 9 precipitates in whole or in part, if necessary separates and feeds the cleaned solution to the electrolysis cell. Adequate layer thickness is understood in the sense of the invention to mean a layer thickness which is sufficient to achieve a current efficiency of more than 90%.

Unabhängig von der Konzentration der Verunreinigungen in der Salzlösung wird diese in Durchführung des erfindungsgemäßen Verfahrens solange dem Elektrolyseur zugeführt, bis eine hinreichende Schichtdicke erreicht ist. Während des Aufbaus der Schicht aus insbesondere Calcium- und Magnesium-hydroxid und - carbonaten zu dieser Schichtstärke steigt die Stromausbeute langsam mit der Zeit an bis Werte von über 90 % erreicht werden. Dieser Anstieg erfolgt im allgemeinen in einem Zeitraum von 5 bis 30 Stunden, wobei die Zellenspannung bei gleicher Stromdichte in aller Regel um 0,2 bis 0,3 Volt ansteigt. Nach dieser Abscheidungsphase steigt die Zellenspannung weiter an und dieser Anstieg beträgt in Abhängigkeit von der Konzentration an verunreinigenden Ionen 1 bis 1,5 Volt innerhalb von 100 bis 2000 Stunden. Sobald Stromausbeuten von 90 % erreicht sind, wird nach dem erfindungsgemäßen Verfahren die Zufuhr der ungereinigten Salzlösung abgestellt und nunmehr gereinigte Salzlösung dem Elektrolyten zugeführt. Die Verunreinigungen, die überwiegend in Form von Calcium- und/oder Magnesiumionen oder Eisenionen in der Salzlösung enthalten sind, werden durch Zusatz von Natronlauge und/oder Calciumhydroxid sowie Natriumcarbonat bzw. Soda bei einem pH-Wert von über 9 ausgefällt. Bei Verwendung von Calciumhydroxid und Natriumcarbonat werden die Magnesiumionen durch die Hydroxylionen des Calciumhydroxids, die Calciumionen durch die Carbonationen niedergeschlagen und Magnesiumhydroxid bzw. Calciumcarbonat ausgefällt. Die Fällung der Verunreinigungen wird in aller Regel vollständig herbeigeführt. In manchen Fällen kann es in Abhängigkeit von den örtlichen Gegebenheiten der Elektrolysezellen ausreichend sein, wenn der überwiegende Teil der Verunreinigungen ausgefällt wird.Regardless of the concentration of the impurities in the salt solution, this is fed to the electrolyzer in carrying out the method according to the invention until a sufficient layer thickness is reached. During the build-up of the layer, in particular calcium and magnesium hydroxide and carbonates to this layer thickness, the current efficiency slowly increases over time until values of over 90% are reached. This increase generally takes place over a period of 5 to 30 hours, the cell voltage generally increasing by 0.2 to 0.3 volt with the same current density. After this deposition phase, the cell voltage continues to increase and this increase is 1 to 1.5 volts within 100 to 2000 hours, depending on the concentration of contaminating ions. As soon as current yields of 90% have been reached, the supply of the unpurified salt solution is switched off by the method according to the invention and the purified salt solution is then fed to the electrolyte. The impurities, which are predominantly contained in the salt solution in the form of calcium and / or magnesium ions or iron ions, are precipitated by adding sodium hydroxide solution and / or calcium hydroxide and sodium carbonate or soda at a pH of over 9. When using calcium hydroxide and sodium carbonate, the magnesium ions are precipitated by the hydroxyl ions of the calcium hydroxide, the calcium ions by the carbonate ions and magnesium hydroxide or calcium carbonate is precipitated. The precipitation of the impurities is usually brought about completely. In some cases it can Depending on the local conditions of the electrolysis cells, it may be sufficient if the majority of the impurities are precipitated.

Im allgemeinen ist es zweckmäßig, die ausgefällten Verunreinigungen abzutrennen, beispielsweise durch Filtration unter gegebenenfalls Zusatz von Filtrierhilfsmitteln. In Fällen relativer Unempfindlichkeit von Elektrolysezellen gegen feinverteilte Feststoffe können die Fällungsprodukte jedoch auch ganz oder teilweise in feinverteiltem Zustand in der Speisesole bzw. Salzlösung verbleiben.In general, it is expedient to separate off the precipitated impurities, for example by filtration with the addition of filter aids where appropriate. In cases where electrolysis cells are relatively insensitive to finely divided solids, the precipitation products can also remain wholly or partly in the finely divided state in the brine or saline solution.

Es ist auch bekannt, daß bereits Verunreinigungen von z.B. Calcium- und Magnesiumsalzen in Mengen von etwa 5 mg Ca++/I bzw. 1 mg Mg++/I in der Speisesole auf den Kathoden niedergeschlagen werden und allmählich eine Schichtbildung herbeiführen.It is also known that contaminations of, for example, calcium and magnesium salts in amounts of about 5 mg Ca ++ / I or 1 mg Mg ++ / I are deposited on the cathodes in the brine and gradually cause a layer to form.

In dem erfindungsgemäßen Verfahren werden übliche Elektrolysezellen verwendet, beispielsweise Elektrolysezellen mit abwechselnd angeordneten vertikalen Anoden und Kathoden. Der Elektrodenabstand beträgt beispielsweise 2 bis 5 mm und der Elektrolyt mit einer Strömungsgeschwindigkeit von 0,3 bis 2 m/s wird bei einer Stromdichte von 2 bis 25 A/dm2 elektrolysiert. Die Temperatur des Elektrolyten kann 10 bis 50 °C betragen und der pH-Wert kann im Bereich von 7 bis 10 liegen. Die Kathoden bestehen aus elektrisch leitenden, verschleißfesten Metallwerkstoffen, beispielsweise Titan, Nickel, oder Eisen-und Nickellegierungen. Das Anodenmaterial kann Graphit sein. Besonders geeignete Anoden sind jedoch mit Edelmetall oder Edelmetalloxid beschichtete Titan-, Niob- oder Tantal-Elektroden oder sogenannte dimensionsstabile Anoden, bei denen die elektrokatalytische Wirkung von Mischoxiden von Edelmetallen und filmbildenden Metallen, insbesondere Titan, ausgeht.Conventional electrolytic cells are used in the method according to the invention, for example electrolytic cells with alternating vertical anodes and cathodes. The electrode spacing is, for example, 2 to 5 mm and the electrolyte with a flow rate of 0.3 to 2 m / s is electrolyzed at a current density of 2 to 25 A / dm 2 . The temperature of the electrolyte can be 10 to 50 ° C and the pH can range from 7 to 10. The cathodes consist of electrically conductive, wear-resistant metal materials, for example titanium, nickel, or iron and nickel alloys. The anode material can be graphite. However, particularly suitable anodes are titanium, niobium or tantalum electrodes coated with noble metal or noble metal oxide or so-called dimensionally stable anodes, in which the electrocatalytic effect of mixed oxides originates from noble metals and film-forming metals, in particular titanium.

Bei der elektrolytischen Herstellung von Hypochlorit aus Meerwasser oder Salzlösung laufen folgende chemischen Reaktionen an den Elektroden ab.The following chemical reactions take place at the electrodes in the electrolytic production of hypochlorite from sea water or saline.

An der Anode :

Figure imgb0001
At the anode:
Figure imgb0001

An der Kathode :

Figure imgb0002
Figure imgb0003
On the cathode:
Figure imgb0002
Figure imgb0003

Das Chlor reagiert mit der Natronlauge unter Bildung von Natriumhypochlorit gemäß :

Figure imgb0004
The chlorine reacts with the sodium hydroxide solution to form sodium hypochlorite according to:
Figure imgb0004

Natriumhypochlorit reagiert mit Wasser unter Bildung von Hypochlorsäure

Figure imgb0005
Sodium hypochlorite reacts with water to form hypochlorous acid
Figure imgb0005

Hypochlorsäure dissoziiert gemäß

Figure imgb0006
Hypochlorous acid dissociates according to
Figure imgb0006

Das Überwiegen von Reaktion (1) oder Reaktion (2) hängt von dem pH-Wert des Milieus ab. Bei einem pH-Wert > 5 liegt das gesamte Aktivchlor in Form von Hypochlorsäure und Hypochlorit-lonen vor. Dabei ist der Anteil an Hypochlorit-Ionen umso größer je höher der pH-Wert ist.The predominance of reaction (1) or reaction (2) depends on the pH of the environment. If the pH is> 5, the entire active chlorine is in the form of hypochlorous acid and hypochlorite ions. The higher the pH value, the greater the proportion of hypochlorite ions.

Die Vorteile des erfindungsgemäßen Verfahrens sind darin zu sehen, daß in sämtlichen Elektrolysezellen der Anlage gleichmäßig eine gezielte Schichtbildung auf den Kathoden erfolgt. Die erfindungsgemäß abgeschiedene dünne Passivschicht bestimmter Stärke unterbindet eine zu starke Reduktion der Hypochloritionen, erhöht somit die Ausbeute an Hypochlorit und erübrigt die Zellenreinigung bzw. vermindert sie in einem ganz erheblichen Umfang.The advantages of the method according to the invention can be seen in the fact that a targeted layer formation on the cathodes occurs uniformly in all electrolysis cells of the system. The thin passive layer of a certain thickness deposited according to the invention prevents an excessive reduction of the hypochlorite ions, thus increases the yield of hypochlorite and makes cell cleaning unnecessary or reduces it to a very considerable extent.

Die Erfindung wird nachstehend und beispielhalf gemäß dem Diagramm der Figur 1 erläutert, worin der Wirkungsgrad von Hypochloritzellen in Abhängigkeit von der Laufzeit dargestellt ist.The invention is explained below and by way of example according to the diagram in FIG. 1, which shows the efficiency of hypochlorite cells as a function of the running time.

AusführungsbeispielEmbodiment

Eine Anlage mit 8 hintereinandergeschalteten Zellen wurde mit Meerwasser von 28 °C mit einer Menge von 20 m3/h betrieben. Über insgesamt 30 Stunden wurde die Stromstärke langsam von 500 A auf 5 000 A erhöht. Die Spannung stieg dabei von 25 auf 35 V. Der Gehalt an aktivem Chlor in Form von NaOCI stieg in demselben Zeitraum von 0,2 g/I auf 2,8 g/I. Die Stromausbeute verlief gemäß dem Diagramm der Fig. 1, d.h. ohne Zusatz von Fällchemikalien würde sich die Stromausbeute asymptotisch dem Wert 100 % nähern, gleichzeitig würde aber die Spannung ansteigen und die Verschmutzung zunehmen, so daß nach spätestens 2 000 h eine Stillegung der Anlage mit anschließender Säurewäsche erforderlich werden würde. Während bei Normalbetrieb der Spannungsabfall pro Zelle ca. 4,5 V und die Stromausbeute 96 % beträgt, steigt die Spannung bei verschmutzten Zellen auf bis zu 6 V und die Stromausbeute kann fast 100 % betragen. Der Gleichstrom-Energieverbrauch beträgt im ersten Falle bei Normalbetrieb 3,6 kWh/kg CI2, in zweiten Falle mit verschmutzten Zellen 4,5 kWh/kgCl2. Dieser Anstieg im Energieverbrauch und die Notwendigkeit des regelmäßigen Waschens kann durch Fällung der Verunreinigungen verhindert werden, wenn man erfindungsgemäß mit dieser Fällung beginnt, nachdem sich eine Schutzschicht von hinreichender Stärke auf den Kathoden gebildet hat.A plant with 8 cells connected in series was operated with sea water at 28 ° C. at a rate of 20 m 3 / h. The current strength was slowly increased from 500 A to 5,000 A over a total of 30 hours. The voltage rose from 25 to 35 V. The content of active chlorine in the form of NaOCI rose from 0.2 g / l to 2.8 g / l in the same period. The current yield ran according to the diagram in FIG. 1, ie without the addition of precipitation chemicals, the current yield would asymptotically approach the value of 100%, but at the same time the voltage would increase and the pollution would increase, so that after 2,000 hours at the latest the plant would be shut down subsequent acid washing would be required. While during normal operation the voltage drop per cell is approx.4.5 V and the current yield is 96%, the voltage increases when the cells are dirty up to 6 V and the current yield can be almost 100%. The direct current energy consumption is 3.6 kWh / kg CI 2 in normal operation in the first case, and 4.5 kWh / kgCl 2 in the second case with dirty cells. This increase in energy consumption and the need for regular washing can be prevented by precipitating the impurities if, according to the invention, this precipitation starts after a protective layer of sufficient strength has formed on the cathodes.

Claims (2)

1. A process of recovering oxyacids of chlorine or salts of such acids by the electrolysis of sea water or of salt solutions contaminated by metal ions, characterized in that the electrolytic cell is operated wit non-purified sea water or non-purified salt solution until compounds of the contaminating metal ions, particularly calcium ions and/or magnesium ions, have formed on the electrodes a layer which has an adequate thickness so that a current efficiency in excess of 90 % is obtained, whereafter the calcium ions and/or magnesium ions contained in the non-purified sea water or in the non-purified salt solution are precipitated entirely or in part at a pH value above 9 by an addition of sodium hydroxide solution and/or calcium hydroxide and sodium carbonate, the precipitate is removed, if desired, and the purified solution is fed to the electrolytic cell.
2. A process according to claim 1, characterized in that calcium hydroxide and sodium carbonate are used and the calcium ions are precipitated as calcium carbonate and the magnesium ions as magnesium hydroxide.
EP79200618A 1978-11-22 1979-10-25 Preparation of oxy-halogenated acids and their salts by electrolysis Expired EP0011886B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2850575 1978-11-22
DE19782850575 DE2850575A1 (en) 1978-11-22 1978-11-22 METHOD FOR THE ELECTROLYTIC PRODUCTION OF CHLORINE OXYGEN ACIDS OR. THEIR SALTS

Publications (2)

Publication Number Publication Date
EP0011886A1 EP0011886A1 (en) 1980-06-11
EP0011886B1 true EP0011886B1 (en) 1981-11-11

Family

ID=6055302

Family Applications (1)

Application Number Title Priority Date Filing Date
EP79200618A Expired EP0011886B1 (en) 1978-11-22 1979-10-25 Preparation of oxy-halogenated acids and their salts by electrolysis

Country Status (5)

Country Link
US (1) US4238302A (en)
EP (1) EP0011886B1 (en)
JP (1) JPS5573882A (en)
BR (1) BR7907561A (en)
DE (2) DE2850575A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5064514A (en) * 1990-03-30 1991-11-12 Olin Corporation Apparatus for the production of chloric acid
US5616234A (en) * 1995-10-31 1997-04-01 Pepcon Systems, Inc. Method for producing chlorine or hypochlorite product
US7611280B2 (en) * 2003-12-16 2009-11-03 Harco Laboratories, Inc. EMF sensor with protective sheath
US20130248375A1 (en) * 2012-03-02 2013-09-26 Miox Corporation Waste to Product On Site Generator
CN111039474A (en) * 2019-12-26 2020-04-21 西安泰金工业电化学技术有限公司 Power plant circulating water treatment system and method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1044769A (en) * 1963-11-05 1966-10-05 George Joseph Crane Production of chlorine dioxide from sodium chlorate feed stock containing sodium chloride
US3799849A (en) * 1972-06-26 1974-03-26 Hooker Chemical Corp Reactivation of cathodes in chlorate cells
FR2244708B1 (en) * 1973-09-25 1977-08-12 Ugine Kuhlmann
US3974051A (en) * 1975-05-07 1976-08-10 Diamond Shamrock Corporation Production of hypochlorite from impure saline solutions
US4085014A (en) * 1977-04-21 1978-04-18 Diamond Shamrock Corporation Elimination of impurities from sea water cell feed to prevent anode deposits
US4088550A (en) * 1977-05-25 1978-05-09 Diamond Shamrock Corporation Periodic removal of cathodic deposits by intermittent reversal of the polarity of the cathodes

Also Published As

Publication number Publication date
DE2961328D1 (en) 1982-01-14
DE2850575A1 (en) 1980-06-04
EP0011886A1 (en) 1980-06-11
BR7907561A (en) 1980-07-08
JPS5573882A (en) 1980-06-03
US4238302A (en) 1980-12-09

Similar Documents

Publication Publication Date Title
DE975587C (en) Method and arrangement for the production of titanium in an electrolytic cell
DE10030093C1 (en) Method and device for producing metal hydroxides or basic metal carbonates
DE2818601C2 (en)
EP0124087B1 (en) Method of enrichment of sulfuric acid
EP0599136B1 (en) Process for the production of pure nickel hydroxide and its use
EP0011886B1 (en) Preparation of oxy-halogenated acids and their salts by electrolysis
EP2546389A1 (en) Method for producing an ammonium or alkali metal peroxodisulfate in a non-separated electrolysis area
DE2251262A1 (en) CHEMICAL PROCESS
DE2619497B2 (en) Process for the electrolytic production of hypochlorite with reduced buildup
DE2432416A1 (en) PROCESS FOR THE RECOVERY OF ELECTROLYTICALLY PRODUCED ALKALINE LORATES
DE2011610C3 (en) Process for obtaining a metal from a solution containing traces of the metal ion by means of electrolysis
DE2701453C2 (en) Process for the preparation of tetraalkylthiuram disulfides by electrolytic oxidation of dialkyldithocarbamates
DD262679A5 (en) METHOD FOR REMOVING CHROMI-VI-IONES FROM WAESSEN SOLUTIONS
DE2124045A1 (en) Process for the electrolytic production of pure chlorine, hydrogen and pure concentrated alkali metal phosphate solutions and an electrolysis cell for carrying out the process
DE2060066B2 (en) Process for the production of magnesium hydroxide and chlorine gas by the electrolysis of aqueous electrolytes, the majority of which contain dissolved magnesium chloride and alkali metal chloride
DE4129308C2 (en) Process for the preparation of a titanium (III) sulfate solution and its use
DE1244749B (en) Method and device for the immediate and simultaneous production of inorganic alkali salts and chlorine gas
DE2213528A1 (en) Process for removing used coatings from metallic electrodes
EP0356805B1 (en) Process for the production of alkali dichromates and chromic acid
DE19624024A1 (en) Electrolytic production of halogens or halogen-oxygen or peroxy compounds
DE2945566A1 (en) ELECTROLYTIC PRODUCTION OF ALKALICHLORATES
US3960680A (en) Treatment of catalytic anodes
DE869046C (en) Procedure for carrying out electrolysis
DE2940741A1 (en) METHOD FOR ELECTROLYTICALLY PRODUCING NICKEL
DE2837774A1 (en) METHOD OF OPERATING AN ELECTROLYTIC CELL

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE FR GB IT NL

17P Request for examination filed

Effective date: 19801010

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE DE FR GB IT NL

REF Corresponds to:

Ref document number: 2961328

Country of ref document: DE

Date of ref document: 19820114

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19820824

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19820930

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19821031

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19831031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19840501

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19840629

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19841122

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19870701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881118

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT