EP1753894B1 - Method for producing peroxodisulfates in aqueous solution - Google Patents

Method for producing peroxodisulfates in aqueous solution Download PDF

Info

Publication number
EP1753894B1
EP1753894B1 EP05756088A EP05756088A EP1753894B1 EP 1753894 B1 EP1753894 B1 EP 1753894B1 EP 05756088 A EP05756088 A EP 05756088A EP 05756088 A EP05756088 A EP 05756088A EP 1753894 B1 EP1753894 B1 EP 1753894B1
Authority
EP
European Patent Office
Prior art keywords
electrodes
diamond
bipolar
coated
electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05756088A
Other languages
German (de)
French (fr)
Other versions
EP1753894A2 (en
Inventor
Wolfgang Thiele
Hans-Jürgen KRAMER
Hans-Jürgen FÖRSTER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
United Initiators GmbH and Co KG
United Initiators Inc
Original Assignee
United Initiators GmbH and Co KG
United Initiators Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Initiators GmbH and Co KG, United Initiators Inc filed Critical United Initiators GmbH and Co KG
Publication of EP1753894A2 publication Critical patent/EP1753894A2/en
Application granted granted Critical
Publication of EP1753894B1 publication Critical patent/EP1753894B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/28Per-compounds
    • C25B1/30Peroxides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/22Inorganic acids
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/28Per-compounds
    • C25B1/29Persulfates
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/036Bipolar electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • C25B11/059Silicon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • C25B9/75Assemblies comprising two or more cells of the filter-press type having bipolar electrodes

Definitions

  • the invention relates to a process for the preparation or regeneration of peroxydisulphuric acid and its salts by electrolysis of an aqueous solution containing sulfuric acid and / or metal sulphates.
  • metal sulfates includes sulfates of metals such as zinc, nickel or iron, as well as sulfates of alkali metals, alkaline earth metals or ammonium sulfate.
  • alkali metal sulfates or alkaline earth sulfates can be used as the metal sulfates, alkali metal sulfates or ammonium sulfate are preferably used.
  • diamond-coated electrodes can be used made of valve metals, preferably of niobium, or of ceramic materials, preferably of silicon [ DE 199 48 184.9 . DE 100 19 683 ].
  • the diamond layer is rendered conductive by doping with a trivalent or pentavalent element, preferably with boron.
  • platinum anodes used in the production of peroxodisulfate
  • thiocyanates as polarizers but it comes to cyanide-loaded anode gases, which require complex gas purification measures required.
  • diamond-coated anodes can be dispensed with.
  • Another advantage of the diamond-coated anodes in peroxodisulfate production is that even with lower sulfate content in the anolyte even significantly higher current yields can be achieved than when using platinum anodes.
  • FR 2790268 B1 is proposed such a bipolar electrolysis cell, wherein the bipolar electrodes consist of a ceramic substrate which is completely covered with a diamond film.
  • this cell is not specifically proposed for the production of peroxodisulfates, but for applications for pollutant degradation or for water disinfection.
  • DE 200 05 681 describes the use of double-sided diamond-coated bipolar electrodes.
  • an electrolysis cell construction suitable for different applications is proposed, which can be monopolar or bipolar, as undivided or split cell.
  • bipolar design diamond-coated silicon wafer electrodes are again used exclusively on both sides.
  • peroxodisulfates these cells can be used effectively with diamond electrodes coated on both sides and the relatively complex cell construction only for small persulfate throughputs. If you want to increase the throughput to technically relevant areas by a larger number of bipolar single cells, it comes in this construction to yield reductions by the strongly with the total voltage leakage currents in the supply and discharge lines.
  • the object underlying the present invention was therefore to provide a process for the preparation or regeneration of peroxodisulfuric acid and / or their salts, wherein the disadvantages of the previous methods and electrolysis cells shown at least partially be avoided. It has been found that peroxodisulfates can advantageously be produced in undivided or divided electrolysis cells in a simple manner using bipolar, unilaterally doped diamond-coated silicon electrodes, the uncoated silicon backs acting directly as cathodes.
  • the coating of the silicon electrode has a thickness of about 1 to about 20 ⁇ m, preferably about 5 ⁇ m.
  • the method of the invention advantageously enables the production of peroxodisulfuric acid and / or its salts on a true bipolar electrode with high current efficiency and low electrical energy consumption, although only the low-conductivity silicon is used as the cathode. In addition, there are no costs for a cathode coating.
  • bipolar, single-sided diamond coated silicon electrodes of the present invention is the lower catalytic activity of the silicon back surface as compared to a metallized back electrode, e.g. made of platinum or stainless steel. It has been found that this results in lower reduction losses of peroxodisulfate when electrolyzed in an undivided electrolysis cell. This results in undivided cells that the increase in the peroxodisulfate concentration with the electrolysis time is somewhat steeper and the achievable final concentration is higher than when using a metallized cathode under otherwise identical electrolysis conditions.
  • the process according to the invention for the preparation of peroxodisulfuric acid and / or its salts can be carried out both in undivided electrolysis cells and in electrolysis cells which are divided, for example by ion exchange membranes or porous diaphragms.
  • the bipolar, one-sided diamond-coated silicon electrodes according to the invention are particularly suitable for relatively simple constructed undivided electrolysis cells, as they are eg in DE G 200 05 681.6 for the disinfection of waters. It is advantageous for the current input when the monopolar edge anodes from a consist of diamond-coated valve metal.
  • valve metal refers to a metal that coats with anodic poling with an oxide layer that does not become conductive even at high voltages. When connected as an anode, the metal blocks. Connected as a cathode, the oxide layer dissolves and current flows reasonably uninhibited. Valve metals behave like a rectifier with different polarity. Examples of suitable valve metals are, for example, tantalum, titanium, niobium and zirconium. In the context of the present invention, preference is given to using niobium.
  • the monopolar edge cathodes are preferably made of a suitable, highly conductive material, such as e.g. Stainless steel, hastelloy, platinum and impregnated graphite. Highly alloyed stainless steels or Hastelloy are preferably used in the context of the present invention. Also, a metallized backside silicon peripheral cathode contacted with a power supply plate made of a highly conductive material, e.g. Copper, because of the good durability in undivided cells can be used. In particular, when using edge electrodes made of metallic materials, the current input due to the good conductivity in a simple manner and without major voltage drops can be optimally realized.
  • a suitable, highly conductive material such as e.g. Stainless steel, hastelloy, platinum and impregnated graphite. Highly alloyed stainless steels or Hastelloy are preferably used in the context of the present invention.
  • Electrodes stacks consisting of bipolar electrodes and edge electrodes with a current supply can also be electrically connected in parallel. If necessary, the distance of the bipolar electrodes can be adjusted or fixed by spacers. By means of such electrode stacks connected in parallel, it is possible to accommodate larger current capacities in an electrolytic cell without requiring an unacceptably high total voltage. Thus, the voltage can also be optimally adapted to the available rectifier voltage. In addition, by the short-circuit currents in the common supply and discharge lines for the electrolyte solutions can be further minimized, which also in a known manner by the arrangement can be supported by additional resistance paths in these lines.
  • Undivided bipolar cells constructed according to the invention can be used particularly advantageously if the peroxodisulfate concentration does not have to be too high for the particular application in question, such as e.g. for oxidative pollutant degradation in process solutions and wastewater.
  • the peroxodisulfate concentration does not have to be too high for the particular application in question, such as e.g. for oxidative pollutant degradation in process solutions and wastewater.
  • sodium peroxodisulfate reaction solutions containing 50 to 100 g / l still with current efficiencies between 75 and 50% and specific electrical energy consumption between 1.3 and 1.9 kWh / kg are produced very effectively.
  • An analog DE G 200 05 681.6 constructed undivided bipolar electrolysis cell contained 9 bipolar silicon electrodes, coated on one side with about 3 microns boron-doped diamond (average about 3,000 ppm boron).
  • the edge anode used was a power supply-equipped, one-sided diamond-coated niobium electrode.
  • the peripheral cathode with power supply was Hastelloy.
  • the bipolar electrodes had a dimension of 100 x 33 mm (33 cm 2 ).
  • the average distance of the approximately 1 mm thick bipolar electrodes was set by spacers to about 2 mm.
  • the electrolysis current was adjusted to 16.5 A constant, corresponding to an anodic and cathodic current density of 0.5 A / cm 2 .
  • the electrolyte used was 2 l of a 300 g / l sodium sulfate and 200 g / l sulfuric acid-containing aqueous solution. It was circulated from a recycle vessel at a rate of about 600 l / h via a heat exchanger and through the cell (batch mode). The electrolysis operation was maintained over 5000 h, with only the evaporated or decomposed water was added. In steady state, a concentration between 170 and 190 g / l sodium peroxodisulfate at a steady state temperature of about 35 ° C was. The total voltage at start-up was 50 V.
  • the mean cell voltage developed in the course of continuous operation as follows: Operating time of 5 h 50 h 500 h 5000 h Mean cell voltage 4.95 V 4,60 V 4.35 V 4.18 v
  • the electrodes were removed and weight loss determined. From this, the average decrease of the silicon electrode thickness to an average of 3 ⁇ m was calculated. The thickness of the silicon cathode thus only decreases by about 10 ⁇ m per year.
  • the nine bipolar electrodes and the two monopolar edge electrodes of the undivided electrolysis cell used in Examples 1 to 3 were used in a bipolar split cell.
  • For the separation of anolyte and catholyte cation exchange membranes were used, fixed on both sides by anode and cathode spacers made of plastic. The limited by sealing frame anodes and cathode compartments had a thickness of 2 - 3 mm.
  • Anolyte and catholyte were circulated in separate circuits with the interposition of a heat exchanger.
  • the catholyte used was a 500 g / l sulfuric acid.
  • the anolyte again consisted of a 200 g / l sulfuric acid and 300 g / l of sodium sulfate-containing aqueous solution.
  • 100 g / l were in the anolyte during the electrolysis Dissolved sodium sulfate (in total so 400 g / l sodium sulfate).
  • the anodic and cathodic current density was set to 0.5 A / cm 2, respectively.
  • the mean cell voltages were in the range of 5.5 and 6 V.
  • a still very low specific electric energy consumption of about 1.8 kWh / kg could be achieved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

A process for preparing or regenerating peroxodisulfuric acid and its salts by electrolysis of an aqueous solution containing sulfuric acid and/or metal sulfates at diamond-coated electrodes without addition of promoters is described, with bipolar silicon electrodes which are coated with diamond on one side and whose uncoated silicon rear side serves as cathode being used.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung bzw. Regenerierung von Peroxodischwefelsäure und ihren Salzen durch Elektrolyse einer Schwefelsäure und/oder Metallsulfate enthaltenden wässrigen Lösung. Wie hierin verwendet, umfasst der begriff "Metallsulfate" neben Sulfaten von Metallen wie beispielsweise Zink, Nickel oder Eisen auch Sulfate von Alkalimetallen, Erdalkalimetallen oder Ammoniumsulfat. So können als Metallsulfate beispielsweise Alkalisulfate oder Erdalkalisulfate verwendet werden, bevorzugt werden Alkalisulfate oder Ammoniumsulfat verwendet. Auch Mischungen aus verschiedenen Metallsulfaten, wie beispielsweise Magnesiumsulfat, Zinksulfat oder auch Nickel- bzw. Eisensulfat, können eingesetzt werden, vorzugsweise bei der Regenerierung von Atz- und Beizlösungen.The invention relates to a process for the preparation or regeneration of peroxydisulphuric acid and its salts by electrolysis of an aqueous solution containing sulfuric acid and / or metal sulphates. As used herein, the term "metal sulfates" includes sulfates of metals such as zinc, nickel or iron, as well as sulfates of alkali metals, alkaline earth metals or ammonium sulfate. For example, alkali metal sulfates or alkaline earth sulfates can be used as the metal sulfates, alkali metal sulfates or ammonium sulfate are preferably used. It is also possible to use mixtures of different metal sulfates, such as, for example, magnesium sulfate, zinc sulfate or else nickel or iron sulfate, preferably in the regeneration of etching and pickling solutions.

Im Stand der Technik ist bekannt, dass für die Herstellung von Peroxodisulfaten der Alkalimetalle und des Ammoniums diamantbeschichtete Elektroden aus Ventilmetallen, vorzugsweise aus Niob, oder aus keramischen Materialien, vorzugsweise aus Silizium eingesetzt werden können [ DE 199 48 184.9 , DE 100 19 683 ]. Die Diamantschicht wird dabei durch Dotierung mit einem drei- oder fünfwertigen Element, vorzugsweise mit Bor, leitfähig gemacht. Im Vergleich zu den bei der Peroxodisulfatherstellung bis dahin ausschließlich eingesetzten Anoden aus glattem Platin ergeben sich Vorteile dadurch, dass es infolge des an der Diamantoberfläche erreichbaren hohen Potenzials nicht erforderlich ist, dem Elektrolyten zur Erreichung ausreichend hoher Stromausbeuten potenzialerhöhende Zusätze zuzusetzen, wie es bei Platinanoden unverzichtbar ist. Bei der bevorzugten Verwendung von Thiocyanaten als Polarisatoren kommt es aber zu cyanidbelasteten Anodengasen, die aufwändige Gasreinigungsmaßnahmen erforderlich machen. Bei Verwendung diamantbeschichteter Anoden kann darauf verzichtet werden.It is known in the prior art that for the production of peroxodisulfates of the alkali metals and of the ammonium, diamond-coated electrodes can be used made of valve metals, preferably of niobium, or of ceramic materials, preferably of silicon [ DE 199 48 184.9 . DE 100 19 683 ]. The diamond layer is rendered conductive by doping with a trivalent or pentavalent element, preferably with boron. In comparison to the exclusively smooth anodized platinum anodes used in the production of peroxodisulfate, there are advantages in that, owing to the high potential achievable at the diamond surface, it is not necessary to add to the electrolyte sufficiently higher additions to achieve sufficiently high current yields, as is indispensable for platinum anodes is. In the preferred use of thiocyanates as polarizers but it comes to cyanide-loaded anode gases, which require complex gas purification measures required. When using diamond-coated anodes can be dispensed with.

Ein weiterer Vorteil der diamantbeschichteten Anoden bei der Peroxodisulfatherstellung besteht darin, dass auch bei niedrigerem Sulfatgehalt im Anolyten noch deutlich höhere Stromausbeuten erreicht werden können als bei Verwendung von Platinanoden.Another advantage of the diamond-coated anodes in peroxodisulfate production is that even with lower sulfate content in the anolyte even significantly higher current yields can be achieved than when using platinum anodes.

Trotz der guten Beständigkeit besonders der diamantbeschichteten Siliziumelektroden ergaben sich bei ihrem Einsatz jedoch eine Reihe von Nachteilen. So bestand das Problem einer geeigneten Stromzuführung. Infolge der relativ niedrigen elektrischen Leitfähigkeit des Silizium-Grundkörpers musste die Kontaktierung über die gesamte Fläche der Elektrodenrückseite vorgenommen werden, so dass der Stromtransport lediglich von der kontaktierten Rückseite über die geringe Stärke der Siliziumelektrode von etwa 1 bis 2 mm zur Diamantbeschichtung zu fließen braucht. Dieses Problem konnte durch Aufkleben der dazu vorzugsweise metallisierten Rückseiten der Siliziumplatten auf eine gut leitfähige metallische Unterlage mittels eines elektrisch leitenden Klebstoffs zwar prinzipiell gelöst werden, jedoch ist der dabei zu betreibende Aufwand relativ groß.However, despite the good resistance especially of the diamond-coated silicon electrodes, there were a number of disadvantages in their use. So there was the problem of a suitable power supply. As a result of the relatively low electrical conductivity of the silicon base body, the contact had to be made over the entire surface of the electrode back, so that the current transport needs only to flow from the contacted back over the small thickness of the silicon electrode of about 1 to 2 mm to the diamond coating. Although this problem could be solved in principle by gluing the preferably metallized rear sides of the silicon plates on a good conductive metallic substrate by means of an electrically conductive adhesive, but the effort to be operated is relatively large.

Ein weiterer Nachteil der diamantbeschichteten Siliziumelektroden des Standes der Technik besteht in ihren begrenzten Abmessungen von derzeit maximal 200 x 250 mm. Um trotzdem großflächige Anoden zum Einsatz in technischen Elektrolysezellen bereitstellen zu können, wurde in der EP 1 229 149 vorgeschlagen, eine größere Anzahl solcher Silizium-DiamantElektroden mittels elektrisch leitendem Kleber auf eine Metallgrundplatte, z.B. aus einem Ventilmetall, aufzukleben und die Kanten durch ein korrosionsbeständiges Harz, z.B. Epoxidharz zu versiegeln. Der zu betreibende Aufwand, beispielweise zur Bereitstellung des Leitklebers, z.B. aus Epoxidharz mit Silberpartikeln, und für die vollständige Beseitigung der Oxidschichten auf den zu verbindenden Flächen ist jedoch sehr hoch. Außerdem hat sich eine solche Elektrodenkonstruktion für die Herstellung von Peroxodisulfat als nicht ausreichend korrosionsbeständig erwiesen, so dass damit nur geringe Standzeiten von meist unter einem Jahr erreicht werden konnten.Another disadvantage of the diamond-coated silicon electrodes of the prior art is their limited dimensions of currently maximum 200 × 250 mm. In order to still be able to provide large-area anodes for use in technical electrolysis cells, was in the EP 1 229 149 proposed to stick a larger number of such silicon-diamond electrodes by means of electrically conductive adhesive on a metal base plate, for example of a valve metal, and to seal the edges by a corrosion-resistant resin, such as epoxy resin. However, the effort to be made, for example, to provide the conductive adhesive, for example made of epoxy resin with silver particles, and for the complete removal of the oxide layers on the surfaces to be joined is very high. In addition, such an electrode construction for the production of peroxodisulfate has proven to be insufficient corrosion resistant, so that only a short service life of less than one year could be achieved.

Eine andere Möglichkeit des Standes der Technik, Elektrolysezellen mit ausreichend großer Stromkapazität aufzubauen, besteht in der Reihenschaltung einer größeren Anzahl von bipolaren Silizium-Diamantelektroden. In FR 2790268 B1 wird eine solche bipolare Elektrolysezelle vorgeschlagen, bei der die bipolaren Elektroden aus einem keramischen Substrat bestehen, welches mit einem Diamant-Film vollständig umhüllt ist. Allerdings wird diese Zelle nicht speziell für die Herstellung von Peroxodisulfaten vorgeschlagen, sondern für Anwendungen zum Schadstoffabbau bzw. zur Wasserdesinfektion.Another possibility of the prior art, to build electrolysis cells with sufficiently large current capacity, is the series connection of a larger number of bipolar silicon diamond electrodes. In FR 2790268 B1 is proposed such a bipolar electrolysis cell, wherein the bipolar electrodes consist of a ceramic substrate which is completely covered with a diamond film. However, this cell is not specifically proposed for the production of peroxodisulfates, but for applications for pollutant degradation or for water disinfection.

Auch DE 200 05 681 beschreibt die Verwendung von beidseitig diamantbeschichteten bipolaren Elektroden.Also DE 200 05 681 describes the use of double-sided diamond-coated bipolar electrodes.

In EP 1 254 972 wird eine für unterschiedliche Anwendungen geeignete Elektrolysezellenkonstruktion vorgeschlagen, die monopolar oder bipolar, als ungeteilte oder geteilte Zelle ausgeführt werden kann. Bei der bipolaren Ausführung werden wieder ausschließlich beidseitig diamantbeschichtete Siliziumscheibenelektroden eingesetzt. Für die Herstellung von Peroxodisulfaten sind diese Zellen mit beidseitig diamantbeschichten Siliziumelektroden und der relativ aufwändigen Zellenkonstruktion lediglich für kleine Persulfat-Durchsatzleistungen effektiv einsetzbar. Will man durch eine größere Anzahl von bipolaren Einzelzellen die Durchsatzleistung bis in technisch relevante Bereiche erhöhen, kommt es bei dieser Konstruktion zu Ausbeuteminderungen durch die mit der Gesamtspannung stark ansteigenden Verlustströme in den Zu- und Abführungsleitungen.In EP 1 254 972 For example, an electrolysis cell construction suitable for different applications is proposed, which can be monopolar or bipolar, as undivided or split cell. In the bipolar design, diamond-coated silicon wafer electrodes are again used exclusively on both sides. For the production of peroxodisulfates, these cells can be used effectively with diamond electrodes coated on both sides and the relatively complex cell construction only for small persulfate throughputs. If you want to increase the throughput to technically relevant areas by a larger number of bipolar single cells, it comes in this construction to yield reductions by the strongly with the total voltage leakage currents in the supply and discharge lines.

Die der vorliegenden Erfindung zugrundeliegende Aufgabe war somit die Bereitstellung eines Verfahrens zur Herstellung bzw. Regenerierung von Peroxodischwefelsäure und/oder ihren Salzen, wobei die dargestellten Nachteile der bisherigen Verfahren und Elektrolysezellen zumindest teilweise vermieden werden. Es wurde gefunden, dass sich Peroxodisulfate vorteilhafterweise in ungeteilten oder geteilten Elektrolysezellen in einfacher Weise unter Verwendung von bipolaren, einseitig mit dotiertem Diamant beschichteten Siliziumelektroden herstellen lassen, wobei die unbeschichteten Siliziumrückseiten direkt als Kathoden wirken.The object underlying the present invention was therefore to provide a process for the preparation or regeneration of peroxodisulfuric acid and / or their salts, wherein the disadvantages of the previous methods and electrolysis cells shown at least partially be avoided. It has been found that peroxodisulfates can advantageously be produced in undivided or divided electrolysis cells in a simple manner using bipolar, unilaterally doped diamond-coated silicon electrodes, the uncoated silicon backs acting directly as cathodes.

Die Beschichtung der Siliziumelektrode weist erfindungsgemäß eine Dicke von etwa 1 bis etwa 20 µm, bevorzugt von etwa 5 µm auf.According to the invention, the coating of the silicon electrode has a thickness of about 1 to about 20 μm, preferably about 5 μm.

Es war in hohem Maße überraschend, dass es lediglich der Beschichtung der Anodenseite der bipolaren Elektrode bedarf, um mit der dann als Kathode fungierenden unbeschichteten Siliziumrückseite zufriedenstellende Ergebnisse zu erreichen. Im Fall einer ungeteilten Bipolarzelle wurde darüber hinaus überraschenderweise gefunden, dass mit einer erfindungsgemäßen Siliziumkathode geringere Persulfatverluste durch kathodische Reduktion entstehen, im Vergleich zu den bei der Persulfatherstellung im Stand der Technik üblicherweise eingesetzten Metallkathoden.It was highly surprising that it only takes the coating of the anode side of the bipolar electrode in order to achieve satisfactory results with the then uncoated silicon back side acting as a cathode. In the case of an undivided bipolar cell, moreover, it has surprisingly been found that with a silicon cathode according to the invention lower persulfate losses result from cathodic reduction, in comparison to the metal cathodes conventionally used in the preparation of persulfate in the prior art.

Es wurde weiter gefunden, dass sich mit den erfindungsgemäßen bipolaren Elektroden nicht nur hohe Persulfat-Bildungsraten erreichen lassen, sondern dies auch bei geringstmöglichen Zellspannungen und damit niedrigen spezifischen Elektroenergieverbräuchen erfolgen kann. Das beruht einerseits auf der Erkenntnis, dass die Silizium-Kathodenoberflächen durch die kathodische Belastung von anfänglich vorhandenen, schlecht leitenden Oxidschichten befreit werden und im Verlauf der Elektrolyse diese weiterhin völlig frei gehalten werden können. Beispielsweise konnte im Dauerversuch (vgl. Beispiel 1) nachgewiesen werden, dass sich mit zunehmender Betriebszeit die Zellspannung sogar weiter verringert, während bei den auf eine Metallunterlage aufgeklebten diamantbeschichteten Siliziumelektroden des Standes der Technik infolge der zunehmenden Korrosion eine umgekehrte Tendenz zu beobachten ist.It has also been found that not only high persulfate formation rates can be achieved with the bipolar electrodes according to the invention, but that this can also be done with the lowest possible cell voltages and thus low specific electrical energy consumption. This is based on the one hand on the finding that the silicon-cathode surfaces are freed by the cathodic load of initially present, poorly conducting oxide layers and in the course of electrolysis these can still be kept completely free. For example, in the endurance test (see Example 1), it could be demonstrated that with increasing operating time the cell voltage is even further reduced, while with the diamond-coated silicon electrodes of the prior art glued onto a metal support, a reverse tendency can be observed due to the increasing corrosion.

Somit ermöglicht das erfindungsgemäße Verfahren vorteilhafterweise die Herstellung von Peroxodischwefelsäure und/oder ihren Salzen an einer echten bipolaren Elektrode mit hoher Stromausbeute und geringem Elektroenergieverbrauch, obwohl als Kathode nur das gering leitfähige Silizium verwendet wird. Zudem fallen keine Kosten für eine Kathodenbeschichtung an.Thus, the method of the invention advantageously enables the production of peroxodisulfuric acid and / or its salts on a true bipolar electrode with high current efficiency and low electrical energy consumption, although only the low-conductivity silicon is used as the cathode. In addition, there are no costs for a cathode coating.

Ein weiterer Vorteil der erfindungsgemäßen bipolaren, einseitig diamantbeschichteten Siliziumelektroden besteht in der geringeren katalytischen Aktivität der Siliziumrückseite im Vergleich mit einer metallisierten Elektrodenrückseite, z.B. aus Platin oder Edelstahl. Es wurde gefunden, dass sich dadurch geringere Reduktionsverluste an Peroxodisulfat ergeben, wenn in einer ungeteilten Elektrolysezelle elektrolysiert wird. Dies führt bei ungeteilten Zellen dazu, dass der Anstieg der Peroxodisulfat-Konzentration mit der Elektrolysedauer etwas steiler verläuft und die erreichbare Endkonzentration höher ist als bei Verwendung einer metallisierten Kathode unter sonst gleichen Elektrolysebedingungen.Another advantage of the bipolar, single-sided diamond coated silicon electrodes of the present invention is the lower catalytic activity of the silicon back surface as compared to a metallized back electrode, e.g. made of platinum or stainless steel. It has been found that this results in lower reduction losses of peroxodisulfate when electrolyzed in an undivided electrolysis cell. This results in undivided cells that the increase in the peroxodisulfate concentration with the electrolysis time is somewhat steeper and the achievable final concentration is higher than when using a metallized cathode under otherwise identical electrolysis conditions.

Gegenüber den beidseitig mit dotiertem Diamant beschichteten bipolaren Elektroden des Standes der Technik ergeben sich somit vorteilhafterweise sowohl Kosteneinsparungen für die Elektroden selbst und für die damit ausgestatteten Elektrolysezellen, als auch durch die erreichbaren niedrigeren Elektroenergieverbräuche.In comparison with the bipolar electrodes of the prior art coated on both sides with doped diamond, there are thus advantageously both cost savings for the electrodes themselves and for the electrolysis cells equipped therewith, as well as the achievable lower electrical energy consumption.

Das erfindungsgemäße Verfahren zur Herstellung von Peroxodischwefelsäure und/oder ihren Salzen kann sowohl in ungeteilten Elektrolysezellen als auch in Elektrolysezellen durchgeführt werden, welche gelteilt sind, beispielsweise durch lonenaustauschmembranen oder poröse Diaphragmen.The process according to the invention for the preparation of peroxodisulfuric acid and / or its salts can be carried out both in undivided electrolysis cells and in electrolysis cells which are divided, for example by ion exchange membranes or porous diaphragms.

Die erfindungsgemäßen bipolaren, einseitig diamantbeschichteten Siliziumelektroden sind insbesondere geeignet für relativ einfach aufgebaute ungeteilte Elektrolysezellen, wie sie z.B. in DE G 200 05 681.6 für die Desinfektion von Wässern beschrieben werden. Dabei ist es für den Stromeintrag vorteilhaft, wenn die monopolaren Randanoden aus einem diamantbeschichtetem Ventilmetall bestehen. Der Begriff "Ventilmetall" bezeichnet ein Metall das sich bei anodischer Polung mit einer Oxidschicht überzieht, die auch bei hohen Spannungen nicht leitend wird. Als Anode geschaltet blockiert das Metall. Als Kathode geschaltet, löst sich die Oxidschicht auf und Strom fließt einigermaßen ungehemmt. Ventilmetalle verhalten sich bei unterschiedlicher Polung somit wie ein Gleichrichter. Beispiele für geeignete Ventilmetalle sind z.B. Tantal, Titan, Niob und Zirkonium. Im Rahmen der vorliegenden Erfindung wird bevorzugt Niob verwendet.The bipolar, one-sided diamond-coated silicon electrodes according to the invention are particularly suitable for relatively simple constructed undivided electrolysis cells, as they are eg in DE G 200 05 681.6 for the disinfection of waters. It is advantageous for the current input when the monopolar edge anodes from a consist of diamond-coated valve metal. The term "valve metal" refers to a metal that coats with anodic poling with an oxide layer that does not become conductive even at high voltages. When connected as an anode, the metal blocks. Connected as a cathode, the oxide layer dissolves and current flows reasonably uninhibited. Valve metals behave like a rectifier with different polarity. Examples of suitable valve metals are, for example, tantalum, titanium, niobium and zirconium. In the context of the present invention, preference is given to using niobium.

Die monopolaren Randkathoden bestehen vorzugsweise aus einem geigneten, gut leitfähigem Werkstoff, wie z.B. Edelstahl, Hastelloy, Platin und imprägniertem Graphit. Bevorzugt werden im Rahmen der vorliegenden Erfindung hochlegierte Edelstähle oder Hastelloy verwendet. Auch eine Silizium-Randkathode mit metallisierter Rückseite, kontaktiert mit einer Stromzuführungsplatte aus einem gut leitfähigen Material, z.B. Kupfer, kann wegen der guten Dauerbeständigkeit in ungeteilten Zellen verwendet werden. Insbesondere bei Einsatz von Randelektroden aus metallischen Werkstoffen ist der Stromeintrag wegen der guten Leitfähigkeit in einfacher Weise und ohne größere Spannungabfälle optimal realisierbar.The monopolar edge cathodes are preferably made of a suitable, highly conductive material, such as e.g. Stainless steel, hastelloy, platinum and impregnated graphite. Highly alloyed stainless steels or Hastelloy are preferably used in the context of the present invention. Also, a metallized backside silicon peripheral cathode contacted with a power supply plate made of a highly conductive material, e.g. Copper, because of the good durability in undivided cells can be used. In particular, when using edge electrodes made of metallic materials, the current input due to the good conductivity in a simple manner and without major voltage drops can be optimally realized.

In einer Elektrolysezelle können auch mehrere aus bipolaren Elektroden und Randelektroden mit Stromzuführung bestehende Elektrodenstapel elektrisch parallel geschaltet werden. Falls erforderlich, kann der Abstand der bipolaren Elektroden durch Abstandshalter bzw. Spacer eingestellt bzw. fixiert werden. Durch solche parallel geschaltete Elektrodenstapel ist es möglich, größere Stromkapazitäten in einer Elektrolysezelle unterzubringen, ohne dass eine unvertretbar hohe Gesamtspannung erforderlich ist. Damit kann die Spannung auch optimal an die verfügbare Gleichrichterspannung angepasst werden. Außerdem können dadurch die Kurzschlussströme in den gemeinsamen Zu- und Abführungsleitungen für die Elektrolytlösungen weiter minimiert werden, was zudem in bekannter Weise durch die Anordnung von zusätzlichen Widerstandsstrecken in diesen Leitungen unterstützt werden kann.In an electrolytic cell, several electrode stacks consisting of bipolar electrodes and edge electrodes with a current supply can also be electrically connected in parallel. If necessary, the distance of the bipolar electrodes can be adjusted or fixed by spacers. By means of such electrode stacks connected in parallel, it is possible to accommodate larger current capacities in an electrolytic cell without requiring an unacceptably high total voltage. Thus, the voltage can also be optimally adapted to the available rectifier voltage. In addition, by the short-circuit currents in the common supply and discharge lines for the electrolyte solutions can be further minimized, which also in a known manner by the arrangement can be supported by additional resistance paths in these lines.

Erfindungsgemäß aufgebaute ungeteilte Bipolarzellen sind besonders vorteilhaft einsetzbar, wenn die Peroxodisulfatkonzentration für den betreffenden Anwendungsfall nicht allzu hoch sein muss, wie z.B. für den oxidativen Schadstoffabbau in Prozesslösungen und Abwässern. Wie aus Beispiel 2 ersichtlich ist, können in einer ungeteilten Zelle mit den erfindungsgemäßen bipolaren Elektroden im Batch-Betrieb Natriumperoxodisulfat-Reaktionslösungen mit einem Gehalt von 50 bis 100 g/l noch mit mit Stromausbeuten zwischen 75 und 50 % und spezifischen Elektroenergieverbräuchen zwischen 1,3 und 1,9 kWh/kg sehr effektiv hergestellt werden.Undivided bipolar cells constructed according to the invention can be used particularly advantageously if the peroxodisulfate concentration does not have to be too high for the particular application in question, such as e.g. for oxidative pollutant degradation in process solutions and wastewater. As can be seen from Example 2, in an undivided cell with the bipolar electrodes according to the invention in batch mode sodium peroxodisulfate reaction solutions containing 50 to 100 g / l still with current efficiencies between 75 and 50% and specific electrical energy consumption between 1.3 and 1.9 kWh / kg are produced very effectively.

Noch bessere Stromausbeuten bzw. die gleichen Ausbeuten bei höheren Peroxodisulfat-Endkonzentrationen können durch Abschirmung der Kathode mittels geeigneter, den Stofftransport zur Kathodenoberfläche hemmender Materialien erreicht werden, wie aus Beispiel 3 ersichtlich ist. Für diese Zwecke geeignete Materialien sind beispielsweise PVC-Gazen. In ungeteilten Zellen können somit mit dem erfindungsgemäßen Verfahren noch Natrium-Peroxodisulfat-Konzentrationen von 150 bis 200 g/l mit vertretbaren Stromausbeuten um die 50 % hergestellt werden, wenn auch mit höheren Zellspannungen.Even better current yields or the same yields at higher final peroxodisulfate concentrations can be achieved by shielding the cathode by means of suitable, material transport to the cathode surface inhibiting materials, as can be seen from Example 3. Suitable materials for these purposes are, for example, PVC gauzes. In undivided cells, sodium peroxodisulfate concentrations of 150 to 200 g / l can still be produced with acceptable current yields of around 50% with the method according to the invention, albeit with higher cell voltages.

Falls höhere Endkonzentrationen an Peroxodisulfaten, z.B. im Bereich von 200 bis 400 g/l Natriumperoxodisulfat erwünscht sind, ist die Verwendung geteilter Elektrolysezellen mit den erfindungsgemäßen bipolaren Siliziumelektroden bevorzugt. Wie aus Beispiel 4 ersichtlich ist, sind damit Stromausbeuten zwischen etwa 75 und 85 % erreichbar, allerdings mit einem aufwändigeren Zellenaufbau und bei höheren Zellspannungen von etwa 5,5 bis 6 V. Es sind damit allerdings immer noch vergleichsweise sehr günstige spezifische Elektroenergieverbräuche von unter 2,0 kWh/kg erreichbar.If higher final concentrations of peroxodisulfates, for example in the range from 200 to 400 g / l of sodium peroxodisulfate, are desired, the use of divided electrolysis cells with the bipolar silicon electrodes according to the invention is preferred. As can be seen from Example 4, thus current efficiencies between about 75 and 85% can be achieved, but with a more complex cell structure and higher cell voltages of about 5.5 to 6 V. However, it is still comparatively very favorable specific electrical energy consumption of less than 2 , 0 kWh / kg achievable.

Ein weiterer überraschender Effekt des erfindungsgemäßen Verfahrens sind die im Dauerversuch mit saurem persulfathaltigem Elektrolyten in ungeteilten Elektrolysezellen festgestellten sehr geringen Abtragsraten an den Siliziumkathoden. So wurden bei einem ca. 7monatigen Dauerversuch (vgl. Beispiel 1) in einer ungeteilten Zelle mit einem stationären Natriumperoxodisulfatgehalt von ca. 150 g/l überraschend geringe Abtragsraten von nur 2 bis 3 µm festgestellt. Das war besonders deshalb überraschend, weil unter diesen sehr stark korrosiven Bedingungen selbst an Platinkathoden des Standes der Technik ein 10 bis 100fach stärkerer Abtrag zu beobachten war. Auch Kathoden aus Graphit oder hochlegierten Edelstählen erwiesen sich in solchen Peroxodisulfat enthaltenden schwefelsauren Elektrolytlösungen als ungeeignet, da nicht ausreichend korrosionsbeständig.Another surprising effect of the process according to the invention is the very low removal rates on the silicon cathodes observed in the continuous test with acid persulfate-containing electrolyte in undivided electrolysis cells. Thus, in an approximately 7-month long-term experiment (see Example 1) in an undivided cell with a steady sodium peroxodisulfate content of about 150 g / l surprisingly low removal rates of only 2 to 3 microns were found. This was particularly surprising because under these very highly corrosive conditions, a 10 to 100 times greater erosion was observed even in platinum cathodes of the prior art. Even cathodes made of graphite or high-alloy stainless steels proved in such peroxodisulfate containing sulfuric acid electrolyte solutions as unsuitable because not sufficiently resistant to corrosion.

BeispieleExamples Beispiel 1:Example 1:

Eine analog DE G 200 05 681.6 aufgebaute ungeteilte bipolare Elektrolysezelle enthielt 9 bipolare Siliziumelektroden, einseitig mit ca. 3 µm bordotiertem Diamant beschichtet (durchschnittlich ca. 3.000 ppm Bor). Als Randanode diente eine mit Stromzuführung ausgestattete, einseitig diamantbeschichtete Niobelektrode. Die Randkathode mit Stromzuführung bestand aus Hastelloy. Die bipolaren Elektroden hatten eine Abmessung von 100 x 33 mm (33 cm2). Der mittlere Abstand der etwa 1 mm starken bipolaren Elektroden wurde durch Abstandshalter auf ca. 2 mm eingestellt. Der Elektrolysestrom wurde auf 16,5 A konstant eingeregelt, einer anodischen und kathodischen Stromdichte von 0,5 A/cm2 entsprechend. Die gesamte Stromkapazität der Elektrolysezelle ergab sich daraus mit 10 x 16,5 = 165 A. Als Elektrolyt dienten 2 I einer 300 g/l Natriumsulfat und 200 g/l Schwefelsäure enthaltenden wässrigen Lösung. Sie wurde aus einem Umlaufgefäß mit einer Geschwindigkeit von ca. 600 l/h im Kreislauf über einen Wärmeaustauscher und durch die Zelle gepumpt (Batch-Betrieb). Der Elektrolysebetrieb wurde über 5000 h aufrecht erhalten, wobei lediglich das verdampfte bzw. zersetzte Wasser ergänzt wurde. Im stationären Zustand stellte sich eine Konzentration zwischen 170 und 190 g/l Natriumperoxodisulfat bei einer stationären Temperatur von ca. 35 °C ein. Die Gesamtspannung bei Inbetriebnahme lag bei 50 V. Die mittlere Zellspannung entwickelte sich im Verlauf des Dauerbetriebes wie folgt: Betriebszeit von 5 h 50 h 500 h 5000 h Mittlere Zellspannung 4,95 V 4,60 V 4,35 V 4,18 V An analog DE G 200 05 681.6 constructed undivided bipolar electrolysis cell contained 9 bipolar silicon electrodes, coated on one side with about 3 microns boron-doped diamond (average about 3,000 ppm boron). The edge anode used was a power supply-equipped, one-sided diamond-coated niobium electrode. The peripheral cathode with power supply was Hastelloy. The bipolar electrodes had a dimension of 100 x 33 mm (33 cm 2 ). The average distance of the approximately 1 mm thick bipolar electrodes was set by spacers to about 2 mm. The electrolysis current was adjusted to 16.5 A constant, corresponding to an anodic and cathodic current density of 0.5 A / cm 2 . The total current capacity of the electrolysis cell resulted from this with 10 × 16.5 = 165 A. The electrolyte used was 2 l of a 300 g / l sodium sulfate and 200 g / l sulfuric acid-containing aqueous solution. It was circulated from a recycle vessel at a rate of about 600 l / h via a heat exchanger and through the cell (batch mode). The electrolysis operation was maintained over 5000 h, with only the evaporated or decomposed water was added. In steady state, a concentration between 170 and 190 g / l sodium peroxodisulfate at a steady state temperature of about 35 ° C was. The total voltage at start-up was 50 V. The mean cell voltage developed in the course of continuous operation as follows: Operating time of 5 h 50 h 500 h 5000 h Mean cell voltage 4.95 V 4,60 V 4.35 V 4.18 v

Nach 5.000 Betriebsstunden wurden die Elektroden ausgebaut und der Gewichtsverlust bestimmt. Daraus wurde die mittlere Abnahme der Silizium-Elektrodenstärke zu durchschnittlich 3 µm berechnet. Die Dicke der Siliziumkathode nimmt also nur um etwa 10 µm pro Jahr ab.After 5,000 hours of operation, the electrodes were removed and weight loss determined. From this, the average decrease of the silicon electrode thickness to an average of 3 μm was calculated. The thickness of the silicon cathode thus only decreases by about 10 μm per year.

Beispiel 2:Example 2:

Mit der ungeteilten Elektrolysezelle aus Beispiel 1 wurde unter den gleichen Elektrolysebedingungen (Stromdichte, Temperatur, Batch-Betrieb, Elektrolytzusammensetzung) die Abhängigkeit der Stromausbeute von der erreichten Endkonzentration an Natriumperoxodisulfat (NaPS) bestimmt. Es wurden folgende Ergebnisse erhalten: Endkonzentration an NaPS in g/l 25 50 75 100 125 150 Stromausbeute der NaPS-Bildung in % 84 77 64 50 40 34 With the undivided electrolysis cell from Example 1, the dependence of the current yield on the final concentration of sodium peroxodisulfate (NaPS) achieved was determined under the same electrolysis conditions (current density, temperature, batch mode, electrolyte composition). The following results were obtained: Final concentration of NaPS in g / l 25 50 75 100 125 150 Current efficiency of NaPS formation in% 84 77 64 50 40 34

Bei der sich nach längerer Betriebszeit einstellenden günstigsten Zellspannung von etwa 4,2 V ergab sich für die Endkonzentration von 50 g/l ein spezifischer Elektroenergieverbrauch von 1,23 kWh/kg, für die Endkonzentration von 100 g/l NaPS trotz der auf 50 % abgesunkenen Stromausbeute immer noch von 1,89 kWh/kg.For the final concentration of 50 g / l, a specific electric energy consumption of 1.23 kWh / kg was found for the most favorable cell voltage of approximately 4.2 V after longer operating time, and 50% for the final concentration of 100 g / l NaPS. sinking current output still of 1.89 kWh / kg.

Beispiel 3:Example 3:

Die gleiche ungeteilte Elektrolysezelle wie in Beispiel 1 und 2 wurde mit einer auf den Kathoden der bipolaren Elektrodenplatten sowie der Randkathode aufliegenden PVC-Gaze ausgerüstet, die durch einen Kunststoffspacer an die Oberfläche angedrückt wurde. Unter den gleichen Elektrolysebedingungen wie im Beispiel 2 wurde wieder elektrolysiert. Es wurden folgende Stromausbeuten, bezogen auf die erreichte NaPS-Endkonzentration, erhalten. Endkonzentration an NaPS in g/l 50 75 100 125 150 175 200 Stromausbeute der NaPS-Bildung in % 84 77 73 68 61 54 49 The same undivided electrolysis cell as in Examples 1 and 2 was equipped with a resting on the cathodes of the bipolar electrode plates and the peripheral cathode PVC gauze, which was pressed by a Kunststoffspacer to the surface. Under the same electrolysis conditions as in Example 2 was electrolysed again. The following current yields, based on the final NaPS concentration achieved, were obtained. Final concentration of NaPS in g / l 50 75 100 125 150 175 200 Current efficiency of NaPS formation in% 84 77 73 68 61 54 49

Selbst im Konzentrationsbereich zwischen 100 und 200 g/l wurden noch relativ günstige Stromausbeuten erreicht, die im Durchschnitt etwa 20 % höher waren als ohne Abschirmung der Kathodenoberflächen. Allerdings lagen die Zellspannungen durch den zusätzlichen Widerstand der Gazeabschirmung um etwa 0,8 V höher. Trotzdem ergab sich z.B. bei 150 g/l NaPS-Endkonzentration immer noch ein sehr günstiger spezifischer Elektroenergieverbrauch von etwa 1,85 kWh/kg.Even in the concentration range between 100 and 200 g / l relatively cheap current yields were achieved, which were on average about 20% higher than without shielding the cathode surfaces. However, the cell voltages were about 0.8 V higher due to the additional resistance of the gauze shield. Nevertheless, e.g. at 150 g / l NaPS final concentration still a very favorable specific electric energy consumption of about 1.85 kWh / kg.

Beispiel 4:Example 4:

Die neun bipolaren Elektroden sowie die beiden monopolaren Randelektroden der in den Beispielen 1 bis 3 verwendeten ungeteilten Elektrolysezelle wurden in einer geteilten Bipolarzelle eingesetzt. Zur Separierung von Anolyt und Katholyt wurden Kationenaustauschermembranen eingesetzt, beidseitig fixiert durch Anoden- und Kathodenspacer aus Kunststoff. Die durch Dichtrahmen begrenzten Anoden und Kathodenräume hatten eine Stärke von je 2 - 3 mm. Anolyt und Katholyt wurden in getrennten Kreisläufen unter Zwischenschaltung eines Wärmeaustauschers im Kreislauf gefördert. Als Katholyt diente eine 500 g/l Schwefelsäure. Der Anolyt bestand wieder aus einer 200 g/l Schwefelsäure und 300 g/l Natriumsulfat enthaltenden wässrigen Lösung. Um bei den angestrebten hohen NaPS-Endkonzentrationen eine zu große Verarmung an Natriumsulfat sowohl durch den Verbrauch zur Peroxodisulfatbildung, als auch durch die Oberführung von Na+-Ionen durch die Kationenaustauschermembran in den Katholyten zu vermeiden, wurden im Anolyten während der Elektrolyse 100 g/l Natriumsulfat nachgelöst (insgesamt also 400 g/l Natriumsulfat). Die anodische und kathodische Stromdichte wurde auf jeweils 0,5 A/cm2 eingestellt.The nine bipolar electrodes and the two monopolar edge electrodes of the undivided electrolysis cell used in Examples 1 to 3 were used in a bipolar split cell. For the separation of anolyte and catholyte cation exchange membranes were used, fixed on both sides by anode and cathode spacers made of plastic. The limited by sealing frame anodes and cathode compartments had a thickness of 2 - 3 mm. Anolyte and catholyte were circulated in separate circuits with the interposition of a heat exchanger. The catholyte used was a 500 g / l sulfuric acid. The anolyte again consisted of a 200 g / l sulfuric acid and 300 g / l of sodium sulfate-containing aqueous solution. In order to avoid an excessive depletion of sodium sulfate both at the desired high final NaPS concentrations by the consumption of peroxodisulfate, as well as by the upper charge of Na + ions through the cation exchange membrane in the catholyte, 100 g / l were in the anolyte during the electrolysis Dissolved sodium sulfate (in total so 400 g / l sodium sulfate). The anodic and cathodic current density was set to 0.5 A / cm 2, respectively.

Unter sonst vergleichbaren Elektrolysebedingungen wurden folgende Stromausbeuten für verschiedene NaPS-Endkonzentrationen erhalten:

  • bei 200 g/ NaPS-Endkonzentration eine Stromausbeute von 86 %
  • bei 300 g/l NaPS-Endkonzentration eine Stromausbeute von 82 %
  • bei 400 g/l NaPS-Endkonzentration eine Stromausbeute von 74 %
Under otherwise comparable electrolysis conditions, the following current yields for different final NaPS concentrations were obtained:
  • at 200 g / NaPS final concentration, a current efficiency of 86%
  • at 300 g / l NaPS final concentration, a current efficiency of 82%
  • At 400 g / l NaPS final concentration, a current efficiency of 74%

Die mittleren Zellspannungen lagen im Bereich von 5,5 und 6 V. Für die Endkonzentration von 400 g/l konnte damit ein immer noch sehr niedriger spezifischer Elektroenergieverbrauch von ca. 1,8 kWh/kg erreicht werden.The mean cell voltages were in the range of 5.5 and 6 V. For the final concentration of 400 g / l, a still very low specific electric energy consumption of about 1.8 kWh / kg could be achieved.

Claims (7)

  1. Process for producing peroxodisulphuric acid and/or its salts by electrolysis of aqueous solutions of sulphuric acid and/or metal sulphates at diamond-coated electrodes without addition of promoters, characterized in that bipolar silicon electrodes are used which are coated on one side with doped diamond and whose uncoated silicon rear side serves as a cathode.
  2. Process according to claim 1, characterized in that the electrolysis is carried out in undivided electrolytic cells.
  3. Process according to claim 1, characterized in that the electrolysis is carried out in electrolytic cells which are divided by ion-exchange membranes or porous diaphragms.
  4. Process according to one of the claims 1 to 3, characterized in that a diamond-coated anode composed of a valve metal e.g. niobium and provided with a power supply is used as an edge anode.
  5. Process according to one of the claims 1 to 4, characterized in that stainless steel, Hastelloy, platinum, impregnated graphite or silicon which has been metallized on one side is used for the edge cathode provided with a power supply.
  6. Process according to one of the claims 1 to 5, characterized in that a plurality of electrode stacks comprising bipolar electrodes and edge electrodes provided with a power supply are connected electrically in parallel within an electrolytic cell.
  7. A bipolar undivided or divided electrolytic cell equipped with bipolar electrodes coated with diamond on one side for use in a process according to one of the claims 1 to 6.
EP05756088A 2004-06-05 2005-06-03 Method for producing peroxodisulfates in aqueous solution Active EP1753894B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004027623A DE102004027623A1 (en) 2004-06-05 2004-06-05 Process for the preparation of peroxodisulfates in aqueous solution
PCT/EP2005/006008 WO2005121408A2 (en) 2004-06-05 2005-06-03 Method for producing peroxodisulfates in aqueous solution

Publications (2)

Publication Number Publication Date
EP1753894A2 EP1753894A2 (en) 2007-02-21
EP1753894B1 true EP1753894B1 (en) 2007-09-12

Family

ID=35429257

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05756088A Active EP1753894B1 (en) 2004-06-05 2005-06-03 Method for producing peroxodisulfates in aqueous solution

Country Status (10)

Country Link
US (3) US20070187254A1 (en)
EP (1) EP1753894B1 (en)
JP (1) JP4852037B2 (en)
KR (1) KR20070042141A (en)
CN (1) CN100591805C (en)
AT (1) ATE373118T1 (en)
BR (1) BRPI0511816B1 (en)
DE (2) DE102004027623A1 (en)
ES (1) ES2290917T3 (en)
WO (1) WO2005121408A2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009004155A1 (en) * 2009-01-09 2010-07-15 Eilenburger Elektrolyse- Und Umwelttechnik Gmbh Process and apparatus for regenerating peroxodisulfate pickling solutions
JP5106523B2 (en) 2009-12-16 2012-12-26 株式会社東芝 Etching method, microstructure manufacturing method, and etching apparatus
JP5751884B2 (en) * 2011-03-29 2015-07-22 森永乳業株式会社 Bipolar electrolytic cell
WO2012142435A2 (en) * 2011-04-15 2012-10-18 Advanced Diamond Technologies, Inc. Electrochemical system and method for on-site generation of oxidants at high current density
EP2546389A1 (en) * 2011-07-14 2013-01-16 United Initiators GmbH & Co. KG Method for producing an ammonium or alkali metal peroxodisulfate in a non-separated electrolysis area
PL2872673T3 (en) 2012-07-13 2020-12-28 United Initiators Gmbh Undivided electrolytic cell and use of the same
CN104487615B (en) * 2012-07-13 2017-08-25 联合引发剂有限责任两合公司 Unseparated electrolytic cell and its application
TW201406998A (en) * 2012-07-13 2014-02-16 United Initiators Gmbh & Co Kg Undivided electrolytic cell and use thereof
DE102021115850B4 (en) 2021-06-18 2022-12-29 Technische Universität Bergakademie Freiberg, Körperschaft des öffentlichen Rechts Process for leaching metal-bearing ores using an electrochemically produced leaching solution

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3926770A (en) * 1972-06-08 1975-12-16 Ppg Industries Inc Electrolytic cell having silicon bipolar electrodes
TW364024B (en) * 1995-08-17 1999-07-11 Eilenburger Elektrolyse & Umwelttechnik Gmbh Process for the combined electrochemical preparation of sodium peroxodisulfate and sodium hydroxide solution
US5681445A (en) * 1995-12-21 1997-10-28 Hydro-Quebec Modified surface bipolar electrode
JP3554630B2 (en) * 1996-04-11 2004-08-18 ペルメレック電極株式会社 Electrolytic electrode with durability
JPH1161472A (en) * 1997-08-08 1999-03-05 Shinko Pantec Co Ltd Electrolytic cell of hydrogen/oxygen generator and electrode therefor
FR2790268B1 (en) * 1999-02-25 2001-05-11 Suisse Electronique Microtech ELECTROLYSIS CELL WITH BIPOLAR ELECTRODE COMPRISING DIAMOND
DE19911746A1 (en) * 1999-03-16 2000-09-21 Basf Ag Diamond electrodes
DE19948184C2 (en) * 1999-10-06 2001-08-09 Fraunhofer Ges Forschung Electrochemical production of peroxodisulfuric acid using diamond coated electrodes
DE10015209A1 (en) * 2000-03-27 2001-10-11 Eilenburger Elektrolyse & Umwelttechnik Gmbh Electrochemical disinfection of water, e.g. drinking, industrial and waste water, involves passing sub-streams in parallel to anode and cathode segments of array of electrode plates, spacers and separator membranes
DE20005681U1 (en) * 2000-03-27 2000-06-21 Eilenburger Elektrolyse & Umwelttechnik Gmbh Electrolytic cell for disinfecting water
DE10019683A1 (en) * 2000-04-20 2001-10-25 Degussa Process for the preparation of alkali metal and ammonium peroxodisulfate
EP1229149A1 (en) * 2001-01-31 2002-08-07 CSEM Centre Suisse d'Electronique et de Microtechnique SA Large-sized electrode
EP1254972A1 (en) * 2001-05-01 2002-11-06 CSEM Centre Suisse d'Electronique et de Microtechnique SA Modular electrochemical cell
JP2004099914A (en) * 2002-09-04 2004-04-02 Permelec Electrode Ltd Method for producing peroxodisulfate

Also Published As

Publication number Publication date
DE102004027623A1 (en) 2005-12-22
WO2005121408A2 (en) 2005-12-22
US9840783B2 (en) 2017-12-12
BRPI0511816A (en) 2007-12-26
ATE373118T1 (en) 2007-09-15
US20070187254A1 (en) 2007-08-16
US20160186338A1 (en) 2016-06-30
US20110132771A1 (en) 2011-06-09
CN1965107A (en) 2007-05-16
WO2005121408A3 (en) 2006-06-08
JP2008501856A (en) 2008-01-24
ES2290917T3 (en) 2008-02-16
BRPI0511816B1 (en) 2015-07-28
DE502005001500D1 (en) 2007-10-25
CN100591805C (en) 2010-02-24
JP4852037B2 (en) 2012-01-11
EP1753894A2 (en) 2007-02-21
KR20070042141A (en) 2007-04-20

Similar Documents

Publication Publication Date Title
EP1753894B1 (en) Method for producing peroxodisulfates in aqueous solution
EP0989206B1 (en) Electrolysis cell and use thereof
EP0428171B1 (en) Electrolysis cell for the manufacture of peroxo- and perhalogenate compounds
CN101235515B (en) Method for preparing active silver electrode
EP1409767A1 (en) Electrochemical production of peroxopyrosulphuric acid using diamond coated electrodes
EP2732073B1 (en) Undivided electrolytic cell and use of the same
Yu et al. Efficient Electrocatalytic Degradation of 4-Chlorophenol Using a Ti/RuO 2–SnO 2–TiO 2/PbO 2–CeO 2 Composite Electrode
CN106835193B (en) A kind of Pb bases/3D-PbO2/MeOx composite anodes and preparation method thereof
JPH04231489A (en) Manufacture of chromic acid using bipolar film
EP1148155B1 (en) Process for producing alkali metal and ammonium peroxide disulphate
WO1993020261A1 (en) Bipolar filter press cell for producing peroxodisulphates
EP2401422A2 (en) Method and device for regenerating peroxodisulfate pickling solution
CN112939156A (en) Electrochemical reaction system and method with electrode self-repairing function
CN1165295A (en) Mcdified surface bipolar electrode
CN101349017B (en) Method for reducing sulfur dyes by electrocatalysis
EP0717791A1 (en) Electrolytic cell with multiple partial electrodes and at least one antipolar counter-electrode
CN1297691C (en) Method for preparing nickel hypophosphite by electrolytic method
JPH06173061A (en) Gas electrode structure and electrolytic method using said gas electrode structure
EP2872673B1 (en) Undivided electrolytic cell and use of the same
JPS5871382A (en) Electrolytic cell
CN109972164A (en) A kind of bipolarity electrolysis unit
CN112830555A (en) Double-potential anode electrolysis device and method
CN113912164A (en) Preparation method of multi-metal doped graphene composite electrode material for oilfield sewage sterilization
DE102010024299A1 (en) Use of chlorine-alkali single element electrolysis cell comprising anode half-cell, cathode half-cell and ion exchange membrane between anode- and cathode half-cell, for producing peroxodisulfate from sulfate solution and sulfuric acid

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061109

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20071001

REF Corresponds to:

Ref document number: 502005001500

Country of ref document: DE

Date of ref document: 20071025

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070912

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2290917

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070912

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071213

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070912

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070912

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080212

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070912

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071212

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070912

26N No opposition filed

Effective date: 20080613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070912

BERE Be: lapsed

Owner name: DEGUSSA INITIATORS G.M.B.H. & CO. KG

Effective date: 20080630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071212

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080313

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080603

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140618

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20140611

Year of fee payment: 10

Ref country code: IT

Payment date: 20140626

Year of fee payment: 10

Ref country code: FI

Payment date: 20140611

Year of fee payment: 10

Ref country code: NL

Payment date: 20140618

Year of fee payment: 10

Ref country code: ES

Payment date: 20140627

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140619

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150603

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150603

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 373118

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150603

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150603

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20150701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150603

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150603

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20161201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150604

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230519

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230531

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230601

Year of fee payment: 19