EP1417356B1 - Electrolysis cell, particularly for electrochemically producing chlorine - Google Patents

Electrolysis cell, particularly for electrochemically producing chlorine Download PDF

Info

Publication number
EP1417356B1
EP1417356B1 EP02794511A EP02794511A EP1417356B1 EP 1417356 B1 EP1417356 B1 EP 1417356B1 EP 02794511 A EP02794511 A EP 02794511A EP 02794511 A EP02794511 A EP 02794511A EP 1417356 B1 EP1417356 B1 EP 1417356B1
Authority
EP
European Patent Office
Prior art keywords
anode
current collector
frame
cathode
electrolysis cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02794511A
Other languages
German (de)
French (fr)
Other versions
EP1417356A2 (en
Inventor
Fritz Gestermann
Hans-Dieter Pinter
Andreas Bulan
Walter Klesper
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covestro Deutschland AG
Original Assignee
Bayer MaterialScience AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer MaterialScience AG filed Critical Bayer MaterialScience AG
Publication of EP1417356A2 publication Critical patent/EP1417356A2/en
Application granted granted Critical
Publication of EP1417356B1 publication Critical patent/EP1417356B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/26Chlorine; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/65Means for supplying current; Electrode connections; Electric inter-cell connections

Definitions

  • the invention relates to an electrolytic cell, in particular for electrochemical Production of chlorine from aqueous solutions of hydrogen chloride is suitable.
  • hydrochloric acid Aqueous solutions of hydrogen chloride, hereafter called hydrochloric acid, fall as Byproduct in many processes, especially those where Chlorinated organic hydrocarbon compounds with chlorine oxidizing. Economically interesting is the recovery of chlorine from these hydrochloric acids, which can then be used for example for further chlorinations. Chlorine off For example, hydrochloric acids can be recovered electrolytically.
  • the anode compartment must be in the electrolytic cell described in US-A-5,770,035 be kept at a higher pressure than the cathode compartment. This will be the Cation exchange membrane on the gas diffusion electrode and this in turn pressed on the power distributor.
  • the adjustment of the pressure may e.g. by a . Liquid compression occur through which the chlorine gas formed in the anode chamber is directed.
  • a high oxygen pressure in the cathode compartment is advantageous because it is too low Voltage and thus leads to lower energy consumption.
  • US-A-5,770,035 known electrolytic cell has the disadvantage that the pressure in the cathode compartment, i. the oxygen pressure can only be increased if at the same time the pressure in the anode chamber is increased, otherwise the gas diffusion electrode is pushed away from the current collector and no longer on this rests.
  • a simultaneous increase in the pressure in the anode compartment is technically only to ensure by appropriate complex structural changes to the electrolyzer.
  • a one-sided increase in the pressure in the anode compartment can in the known Cell design cause the gap between the anode and cation exchange membrane increases, resulting in an undesirable increase in the operating voltage and thus leads to an increased energy consumption.
  • the object of the invention is to provide an electrolytic cell, in particular for electrochemical Production of chlorine from aqueous solutions of hydrogen chloride, too to ensure that even at a pressure difference between Anode space and cathode space the anode, the cation exchange membrane, the Gas diffusion electrode and the current collector abut each other directly.
  • the electrolysis cell according to the invention has an anode and a current collector each carried by an anode frame or a cathode frame are. Between the anode and the current collector is a cation exchange membrane and between cation exchange membrane and current collector one Gas diffusion electrode arranged. To the occurrence of a gap between them Components also at, for example, pressure differences between the anode and the To avoid the cathode side, the anode and / or the current collector according to the invention elastically connected to the anode frame or the cathode frame.
  • the anode and / or the current collector are preferably held so elastic, that pressure forces act on the anode and / or the current collector. It is the same also possible, the anode and / or the current collector in such a way with the anode or Cathode frame to connect that pulling forces, each in the direction of the other Electrode are directed to act on the anode or the current collector.
  • the anode or cathode frame to be elastic or an elastic element exhibit.
  • at least one elastic retaining element such as a spring, provided with the anode frame or the cathode frame connected is.
  • a plurality of holding elements provide, which are arranged in particular regularly.
  • the retaining elements are preferably arranged and / or formed such that on the anode and / or the current collector is applied a substantially uniform pressure. The Force per unit area is thus at substantially flat anodes or Current collectors substantially at any point of the anode or the current collector equal.
  • the holding elements are preferably designed as spring elements, in which it can be leaf or coil springs.
  • the Holding elements either directly to the frame or over a rear wall of the Anode or cathode compartment connected to the corresponding frame.
  • the size of the anode and / or the current collector is selected such that that it can be placed inside the frame and not on the frame or rests.
  • the anode and / or the current collector is thus exclusively of held the one or more holding elements.
  • the electrical contact takes place to the anode and / or the current collector also via the holding elements.
  • a additional electrical connection with anode and / or current collector can at This preferred embodiment is therefore eliminated.
  • the elastic attachment of Anode and / or current collector can for example by means of springs or other electrically conductive, elastic compounds such as e.g. Carbon felts or Metal sponges take place.
  • the elastic attachment by means of metallic springs.
  • springs as holding elements Titanium or titanium alloys used, as these of the in the electrolytic cell existing chemical substances are not damaged.
  • To the electric Conductivity of titanium springs can also be improved e.g. Copper springs with Titanium coated, are used.
  • the cell construction according to the invention ensures that the anode is directly on the cation exchange membrane, this directly on the gas diffusion electrode and this in turn rests directly on the current collector, i. that no gap exists between the named components. This is reliable even then Fall, when the electrolytic cell is operated so that in the anode compartment and in Cathode space different pressures are set.
  • anode frame and the cathode frame are preferably made resistant materials, such as noble metal coated or doped titanium or titanium alloys.
  • gas diffusion electrodes are used which contain a catalyst of the platinum group, preferably platinum or rhodium.
  • a catalyst of the platinum group preferably platinum or rhodium.
  • gas diffusion electrodes from E-TEK (USA) which have 30% by weight of platinum on activated carbon with a noble metal coating of the electrode of 1.2 mg Pt / cm 2 .
  • Suitable cation exchange membranes are those made of perfluoroethylene, which contain sulfonic acid groups as active centers.
  • sulfonic acid groups as active centers.
  • Commercially available membranes from DuPont can be used, such as the Membrane Nafion® 324.
  • membranes with carboxyl groups on the Cathode side conceivable.
  • Suitable anodes are, for example, titanium anodes, in particular with an acid-resistant, Chlorine-developing coating, e.g. based on ruthenium-coated Titanium.
  • the cathode-side power distributor can be made of titanium expanded metal or noble metal-coated titanium, with alternative resistant materials can be used.
  • the electrolysis cell according to the invention is particularly suitable for electrochemical Production of chlorine from aqueous solutions of hydrogen chloride or aqueous solutions of an alkali chloride, especially sodium chloride.
  • the pressure in the cathode compartment is preferred greater than that in the anode compartment when the current collector is held elastic
  • the differential pressure between the anode and cathode compartments may be e.g. between 0.01 and 1 bar, with larger differential pressures are possible.
  • the differential pressure is 20 to 350 mbar.
  • the anode is held elastic, it is advantageous if the pressure in the Anode space is greater than that in the cathode compartment.
  • an oxygen-containing is in the cathode compartment Gas, for example, pure oxygen, a mixture of oxygen and inert gases, in particular nitrogen, or air introduced, preferably oxygen or an oxygen-rich gas.
  • oxygen-containing gas is pure oxygen, in particular a purity of at least 99 vol .-% used.
  • the oxygen-containing gas is preferably supplied in such an amount that oxygen is superstoichiometrically based on the amount theoretically required according to equation (1).
  • the stoichiometric excess is preferably 1.1 to 3 times, preferably 1.2 to 1.5 times, the stoichiometric amount.
  • the surplus oxygen can be recycled, so that the stoichiometric excess is only of subordinate importance.
  • the aqueous solution of hydrogen chloride is introduced, the temperature of the supplied aqueous solution of hydrogen chloride is preferably 30 to 80 ° C, particularly preferably 50 to 70 ° C.
  • aqueous solutions of hydrogen chloride having a hydrogen chloride concentration of 5 to 20 wt .-%, particularly preferably from 10 to 15 wt .-%, are used.
  • Electrolysis preferably at a pressure in the anode compartment greater than 1 bar absolute carried out.
  • the pressure in the cathode compartment is preferably greater than 1 bar absolute, especially preferably 1.02 to 1.5 bar, particularly preferably 1.05 to 1.3 bar. It became namely found that at a higher pressure in the cathode compartment, i. a higher one Oxygen pressure, the electrolysis at the same current density at lower voltage, i.e. with lower energy consumption, can be done.
  • the adjustment of the pressure in the cathode compartment can be done, for example, by that the oxygen-containing gas supplied to the cathode space by a pressure-holding device is accumulated.
  • a suitable pressure-retaining device is, for example a liquid compression, through which the cathode space is shut off.
  • a throttling About valves also provides a suitable method for adjusting the Print dar.
  • Electrolytic cells shown schematically in FIGS. 1 to 4 are better Clarity because so illustrated that the individual components of the cell have gaps between them.
  • Electrolytic cell the individual components are directly adjacent.
  • Fig. 1 shows a first embodiment of an electrolytic cell according to the invention.
  • the current collector 10 is elastically attached to the cathode frame 12.
  • the cathode frame 12 is further connected to a rear wall 14. Through the current collector 10, the cathode frame 12 and the rear wall 14 is a cathode space 16th educated
  • the current collector 10 is more than one Spiral springs 18 held elastically.
  • the springs 18 are connected via intermediate parts, e.g. Z or Trapezoidal profiles, 20 attached to the rear wall 14.
  • intermediate parts e.g. Z or Trapezoidal profiles
  • the springs 18 are provided, which regularly are arranged distributed.
  • the springs 18 in several rows and Columns arranged to a substantially rectangular current collector 10 to hold.
  • the current collector 10 is of an assembled state on the cathode frame 12 adjacent seal 22 surrounded.
  • the shape of the seal 22 corresponds essentially the shape of the cathode frame 12.
  • the current collector 10 opposite an anode 24 is provided by an anode frame 26 is worn.
  • the attachment can here, for example by suitable provided on the anode frame 26 lugs or on the Rear wall 28 attached Z or trapezoidal profiles (not shown here) done on where the anode 24 rests.
  • an anode compartment 30 is formed.
  • a gas diffusion electrode 32 and a cation exchange membrane 34 are arranged between the anode 24 and the current collector 10 arranged.
  • the dimensions The gas diffusion electrode 32 are preferably such that they Current collector 10 completely covered.
  • the cation exchange membrane 34 is in contrast, larger, so that it is arranged between the two frames 12,26 and held by the frames 12, 26 in the assembled state.
  • the gas diffusion electrode becomes 32 from the current collector 10 to the cation exchange membrane 34th and pressed them onto the anode 24. It is particularly advantageous if the Anode 24 with the seal 36 in the installed state forms a plane
  • the anode compartment 30 is filled with hydrochloric acid via an HCl inlet 38 and the cathode compartment 16 is filled with oxygen or an oxygen-containing gas via an O 2 inlet 40.
  • the temperature of the hydrochloric acid is preferably 50 to 70 ° C in the electrolysis.
  • the electrolysis can also be carried out at a lower temperature.
  • the anode chamber 30 can be flowed through by the hydrochloric acid.
  • the chlorine formed leaves the anode chamber 30, for example, above a Cl 2 outlet 42. It is also conceivable that other flow variants are selected. For example, a flow through the anode compartment 30, from top to bottom is possible. It is also conceivable that no forced flow is given from the outside by means of a pump.
  • the cathode chamber 16 can be flowed through by the oxygen or the oxygen-containing gas. It is also conceivable to influence the oxygen within the cathode space 16 by means of internals in its flow direction. For example, porous materials, electrically conductive as well as non-conductive, can be used in the space behind the current collector 10.
  • the oxygen can, as shown in FIG. 1, be introduced from below via the O 2 inlet 40 and removed again via an O 2 outlet 44 at the top. However, it is also possible that the oxygen flows from top to bottom or that a lateral flow takes place in the cathode compartment 16 from eg bottom left to top right. With regard to the proceeding reaction, hyperstoichiometric oxygen should be offered.
  • the anode 24 can be installed in the electrolytic cell so that they over the Anodenrahmen 26 so far protrudes that when applied seal 36, the anode 24th forms a surface with the seal 36. It is also possible that the anode 24 so far below the seal 36 is that in the assembled state of Cell components, the seal 36 with the anode 24 forms a plane. Here is the compressibility of the seal 36 and the torques during assembly to consider the cell components.
  • the current collector 10 as shown in Fig. 1 is elastic with the rear wall 14th connected, so the pressure in the anode and in the cathode compartment the same size to get voted. It is also conceivable that the pressure in the cathode chamber 16 is greater is than that in the anode chamber 30. This pressure difference can also at higher absolute pressure can be selected.
  • Fig. 2 corresponds in principle to that shown in Fig. 1 Embodiment. Identical or similar components are therefore with the the same reference numerals.
  • the only difference from the one in Fig. 1 illustrated embodiment is that not the current collector 10, but the anode 24 via the springs 8 and the intermediate parts, e.g. Z or trapezoidal profiles, 20 are connected to the rear wall 28.
  • the intermediate parts, e.g. Z or trapezoidal profiles, 20 are connected to the rear wall 28.
  • the current collector 10 but the anode 24 elastically over the rear wall 28 with the anode frame 26 connected.
  • the third embodiment ( Figure 3) is a combination of the methods shown in Figs. 1 and 2 illustrated embodiments.
  • both the anode 24 and the current collector 10 via springs 18 elastically with the rear wall 28th or 14 connected.
  • the anode 24 presses against the cation exchange membrane 34 and the opposite current collector 10 presses against the gas diffusion electrode 32, so that in this embodiment a particularly high security exists that the corresponding components of the electrolytic cell rest against each other without a gap.
  • the substance guide of oxygen and hydrochloric acid can similarly as in the reference to FIGS. 1 and 2 illustrated embodiments.
  • the electrolysis cell can be operated in a wide pressure range in which it is ensured that the gas diffusion electrode 32 on the current collector 10 rests.
  • the fourth embodiment also corresponds in principle to the embodiment described with reference to FIGS. 1 to 3 described electrolytic cell. Same or similar components are therefore again denoted by the same reference numerals.
  • the main difference the electrolytic cell shown in Fig. 4 consists in the type of holding elements used 46.
  • the retaining elements 46 are not helical springs 18, as in the embodiments shown in Figs. 1 to 3, but by a Type leaf spring, on an inner side 48 of the anode frame 26 and the anode 24th is attached.
  • the holding element 46 is also one in the direction of Current collector 10 applied force applied to the anode 24, so that these too Embodiment no gap between current collector 10, gas diffusion electrode 32, Cation exchange membrane 34 and anode 24 consists.
  • the holding elements 46 can also serve as electrical contacts.
  • the current collector 10th to be secured to the cathode frame 12 with corresponding retaining elements 46.
  • the possible pressure differences as well as the material flow guidance are depending on the arrangement the holding elements 46 at least by holding the anode 24 and / or the current collector 10 as described above possible.
  • the anode 24 was built into the electrolysis cell so that it passed over the anode frame 26 protrude so far that when applied seal 36, the anode 24 with the seal 36 formed a surface.
  • the anode 24, the anode frame 26, the Current collector 10, the cathode frame 12 and the electrically conductive springs 18th consisted of a titanium-palladium alloy with 0.2 wt .-% palladium.
  • the Anode 24 was in the form of an expanded metal and was additionally with activated a ruthenium oxide layer. The thickness of the expanded metal was 1.5 mm.
  • the gaskets 36 were made of a fluoroelastomer as available from the company DuPont is sold under the name Viton®.
  • the current collector 10 was also formed in the form of a ruthenium oxide coated titanium expanded metal The contacting of the current collector 10 to the elastic springs 18th was done by spot welding.
  • As the gas diffusion electrode 32 was a gas diffusion electrode from E-TEK, USA, based on carbon with platinum catalyst.
  • the cation exchange membrane 34 was a membrane DuPont based on a Perfluorsulfonatpolymere under the name Nafion® 324 is commercially available. Through the cation exchange membrane 34 the electrolysis cell was separated into an anode and a cathode compartment.
  • the anode compartment was charged with a 14% by weight hydrochloric acid.
  • the temperature of the hydrochloric acid was 53 ° C.
  • the cathode compartment was charged with pure oxygen at a level greater than 99% by volume.
  • the pressure in the cathode compartment was 1 bar.
  • the differential pressure between the cathode space and the anode space was 0 bar.
  • the electrolysis was operated at a current density of 3000 A / m 2 , whereby a voltage of 1.05 V arose.
  • the anode compartment was charged with a 14% by weight hydrochloric acid.
  • the temperature of the hydrochloric acid was 53 ° C.
  • the cathode compartment was charged with pure oxygen at a level greater than 99% by volume.
  • the pressure in the cathode compartment was 1 bar.
  • the differential pressure between the cathode compartment and the anode compartment was 0.3 bar, so that a pressure of 1.3 bar resulted in the anode compartment.
  • the application of a differential pressure was necessary in contrast to the procedure of Example 1, so that the gas diffusion electrode 32 was pressed onto the current collector 10.
  • the electrolysis was operated as in Example 1 at a current density of 3000 A / m 2 . This resulted in a voltage of 1.21 V.
  • Example 1 shows that at a given pressure in the cathode compartment and constant current density set the electrolysis cell according to the invention (Example 1) can be operated at a lower pressure in the anode compartment and thereby a lower voltage occurs, resulting in a significant reduction in energy consumption entails.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Primary Cells (AREA)

Abstract

The invention relates to an electrolysis cell comprising an anode frame (26), an anode (24), a cation-exchange membrane (34), a gas diffusion electrode (32), a current collector (10) and a cathode frame (12), with the anode (24), the cation-exchange membrane (34), the gas diffusion electrode (32) and the current collector (10) being held together elastically so that there is no gap between the individual components anode (24), cation-exchange membrane (34), gas diffusion electrode (32) and current collector (10). The elastic cohesion is preferably achieved by the current collector (10) being elastically fastened to the cathode frame (12) and/or the anode (24) being elastically fastened to the anode frame (26).

Description

Die Erfindung betrifft eine Elektrolysezelle, die insbesondere zur elektrochemischen Herstellung von Chlor aus wässrigen Lösungen von Chlorwasserstoff geeignet ist.The invention relates to an electrolytic cell, in particular for electrochemical Production of chlorine from aqueous solutions of hydrogen chloride is suitable.

Wässrige Lösungen von Chlorwasserstoff, nachfolgend Salzsäure genannt, fallen als Nebenprodukt bei vielen Prozessen an, insbesondere bei solchen, bei denen organische Kohlenwasserstoff-Verbindungen mit Chlor oxidierend chloriert werden. Wirtschaftlich interessant ist die Wiedergewinnung von Chlor aus diesen Salzsäuren, das dann beispielsweise für weitere Chlorierungen eingesetzt werden kann. Chlor aus Salzsäuren kann beispielsweise elektrolytisch wiedergewonnen werden.Aqueous solutions of hydrogen chloride, hereafter called hydrochloric acid, fall as Byproduct in many processes, especially those where Chlorinated organic hydrocarbon compounds with chlorine oxidizing. Economically interesting is the recovery of chlorine from these hydrochloric acids, which can then be used for example for further chlorinations. Chlorine off For example, hydrochloric acids can be recovered electrolytically.

Aus US-A-5,770,035 ist die Elektrolyse von Salzsäure zu Chlor in einer Elektrolysezelle bekannt. Ein Anodenraum mit einer geeigneten Anode, z.B. einer edelmetallbeschichteten bzw. -dotierten Titanelektrode, wird mit der wässrigen Lösung von Chlorwasserstoff gefüllt. Das an der Anode gebildete Chlor entweicht aus dem Anodenraum und wird einer geeigneten Aufbereitung zugeführt. Der Anodenraum ist von einem Kathodenraum durch eine handelsübliche Kationenaustauschermembran getrennt. Auf der Kathodenseite liegt eine Gasdiffusionselektrode auf der Kationenaustauschermembran auf. Hinter der Gasdiffusionselektrode befindet sich ein Stromverteiler. Bei Gasdiffusionselektroden handelt es sich beispielsweise um Sauerstoffverzehrkathoden (SVK). Im Falle einer SVK als Gasdiffusionselektrode wird in den Kathodenraum üblicherweise ein sauerstoffhaltiges Gas oder reiner Sauerstoff eingeleitet, der an der SVK umgesetzt wird.From US-A-5,770,035 the electrolysis of hydrochloric acid to chlorine is in one Electrolysis cell known. An anode compartment with a suitable anode, e.g. one noble metal-coated or doped titanium electrode, with the aqueous Solution of hydrogen chloride filled. The chlorine formed at the anode escapes from the anode compartment and is fed to a suitable treatment. Of the Anode compartment is from a cathode compartment through a commercial cation exchange membrane separated. On the cathode side is a gas diffusion electrode on the cation exchange membrane. Behind the gas diffusion electrode there is a power distributor. Gas diffusion electrodes are for example, oxygen-consuming cathodes (SVK). In the case of SVK as a gas diffusion electrode In the cathode compartment is usually an oxygen-containing Gas or pure oxygen introduced, which is implemented at the SVK.

Der Anodenraum muss bei der in US-A-5,770,035 beschriebenen Elektrolysezelle auf einem höheren Druck gehalten werden als der Kathodenraum. Dadurch wird die Kationenaustauschermembran auf die Gasdiffusionselektrode und diese wiederum auf den Stromverteiler gedrückt. Die Einstellung des Drucks kann z.B. durch eine . Flüssigkeitstauchung erfolgen, durch die das in der Anodenkammer gebildete Chlorgas geleitet wird.The anode compartment must be in the electrolytic cell described in US-A-5,770,035 be kept at a higher pressure than the cathode compartment. This will be the Cation exchange membrane on the gas diffusion electrode and this in turn pressed on the power distributor. The adjustment of the pressure may e.g. by a . Liquid compression occur through which the chlorine gas formed in the anode chamber is directed.

Ein hoher Sauerstoffdruck im Kathodenraum ist von Vorteil, weil er zu niedrigerer Spannung und damit zu niedrigerem Energieverbrauch führt. Die aus US-A-5,770,035 bekannte Elektrolysezelle hat dabei jedoch den Nachteil, dass der Druck im Kathodenraum, d.h. der Sauerstoffdruck, nur dann erhöht werden kann, wenn gleichzeitig der Druck im Anodenraum erhöht wird, da ansonsten die Gasdiffusionselektrode vom Stromkollektor weggedrückt wird und nicht mehr auf diesem aufliegt. Eine gleichzeitige Erhöhung des Druckes im Anodenraum ist technisch nur durch entsprechende aufwendige bauliche Veränderungen am Elektrolyseur sicherzustellen. Eine einseitige Erhöhung des Drucks im Anodenraum kann bei dem bekannten Zelldesign dazu führen, dass sich der Spalt zwischen Anode und Kationenaustaschermembran vergrößert, was zu einer unerwünschten Erhöhung der Betriebsspannung und somit zu einem erhöhten Energieverbrauch führt.A high oxygen pressure in the cathode compartment is advantageous because it is too low Voltage and thus leads to lower energy consumption. US-A-5,770,035 However, known electrolytic cell has the disadvantage that the pressure in the cathode compartment, i. the oxygen pressure can only be increased if at the same time the pressure in the anode chamber is increased, otherwise the gas diffusion electrode is pushed away from the current collector and no longer on this rests. A simultaneous increase in the pressure in the anode compartment is technically only to ensure by appropriate complex structural changes to the electrolyzer. A one-sided increase in the pressure in the anode compartment can in the known Cell design cause the gap between the anode and cation exchange membrane increases, resulting in an undesirable increase in the operating voltage and thus leads to an increased energy consumption.

Aufgabe der Erfindung ist es, eine Elektrolysezelle, insbesondere zur elektrochemischen Herstellung von Chlor aus wässrigen Lösungen von Chlorwasserstoff, zu schaffen, bei der gewährleistet ist, dass auch bei einer Druckdifferenz zwischen Anodenraum und Kathodenraum die Anode, die Kationenaustauschermembran, die Gasdiffusionselektrode und der Stromkollektor unmittelbar aneinander anliegen.The object of the invention is to provide an electrolytic cell, in particular for electrochemical Production of chlorine from aqueous solutions of hydrogen chloride, too to ensure that even at a pressure difference between Anode space and cathode space the anode, the cation exchange membrane, the Gas diffusion electrode and the current collector abut each other directly.

Die Lösung der Aufgabe erfolgt erfindungsgemäß durch die Merkmale des Anspruchs 1.The object is achieved by the features of the invention Claim 1.

Die erfindungsgemäße Elektrolysezelle weist eine Anode und einen Stromkollektor auf, die jeweils von einem Anodenrahmen bzw. einem Kathodenrahmen getragen sind. Zwischen der Anode und dem Stromkollektor ist eine Kationenaustauschmembran und zwischen Kationenaustauschermembran und Stromkollektor eine Gasdiffusionselektrode angeordnet. Um das Auftreten eines Spaltes zwischen diesen Bauteilen auch bei beispielsweise Druckdifferenzen zwischen der Anoden- und der Kathodenseite zu vermeiden, ist die Anode und/oder der Stromkollektor erfindungsgemäß elastisch mit dem Anodenrahmen bzw. dem Kathodenrahmen verbunden. Auf Grund der elastischen Verbindung wird eine Kraft auf die Anode und/oder den Stromkollektor ausgeübt, so dass die Anode in Richtung des Stromkollektors und/oder der Stromkollektor in Richtung der Anode gedrückt wird. Hierdurch werden die Anode, die Kationenaustauschmembran, die Gasdiffusionselektrode und der Stromkollektor zusammengehalten, so dass kein Spalt oder Zwischenraum zwischen diesen entstehen kann. Hierdurch ist eine unerwünschte Erhöhung der Betriebsspannung vermieden.The electrolysis cell according to the invention has an anode and a current collector each carried by an anode frame or a cathode frame are. Between the anode and the current collector is a cation exchange membrane and between cation exchange membrane and current collector one Gas diffusion electrode arranged. To the occurrence of a gap between them Components also at, for example, pressure differences between the anode and the To avoid the cathode side, the anode and / or the current collector according to the invention elastically connected to the anode frame or the cathode frame. On The reason of the elastic connection is a force on the anode and / or the Current collector exerted, so that the anode in the direction of the current collector and / or the current collector is pressed in the direction of the anode. hereby be the anode, the cation exchange membrane, the gas diffusion electrode and the current collector held together, leaving no gap or gap can arise between them. This is an undesirable increase in Operating voltage avoided.

Die Anode und/oder der Stromkollektor sind vorzugsweise derart elastisch gehalten, dass auf die Anode und/oder den Stromkollektor Druckkräfte wirken. Ebenso ist es auch möglich, die Anode und/oder den Stromkollektor derart mit dem Anoden- bzw. Kathodenrahmen zu verbinden, dass Zugkräfte, die jeweils in Richtung der anderen Elektrode gerichtet sind, auf die Anode oder den Stromkollektor wirken.The anode and / or the current collector are preferably held so elastic, that pressure forces act on the anode and / or the current collector. It is the same also possible, the anode and / or the current collector in such a way with the anode or Cathode frame to connect that pulling forces, each in the direction of the other Electrode are directed to act on the anode or the current collector.

Zum elastischen Halten der Anode und/oder des Stromkollektors kann der Anoden- bzw. Kathodenrahmen elastisch ausgebildet sein oder ein elastisches Element aufweisen. Vorzugsweise ist mindestens ein elastisches Halteelement, wie beispielsweise eine Feder, vorgesehen, die mit dem Anodenrahmen bzw. dem Kathodenrahmen verbunden ist. Besonders bevorzugt ist es, mehrere Halteelemente vorzusehen, die insbesondere regelmäßig angeordnet sind. Die Halteelemente sind vorzugsweise derart angeordnet und/oder ausgebildet, dass auf die Anode und/oder den Stromkollektor eine im Wesentlichen gleichmäßige Pressung ausgeübt wird. Die Kraft pro Flächeneinheit ist somit bei im Wesentlichen flächigen Anoden oder Stromkollektoren im Wesentlichen an jeder Stelle der Anode oder des Stromkollektors gleich.For elastically holding the anode and / or the current collector, the anode or cathode frame to be elastic or an elastic element exhibit. Preferably, at least one elastic retaining element, such as a spring, provided with the anode frame or the cathode frame connected is. It is particularly preferred, a plurality of holding elements provide, which are arranged in particular regularly. The retaining elements are preferably arranged and / or formed such that on the anode and / or the current collector is applied a substantially uniform pressure. The Force per unit area is thus at substantially flat anodes or Current collectors substantially at any point of the anode or the current collector equal.

Die Halteelemente sind vorzugsweise als Federelemente ausgebildet, bei denen es sich beispielsweise um Blatt- oder Spiralfedern handeln kann. Vorzugsweise sind die Halteelemente entweder unmittelbar mit dem Rahmen oder über eine Rückwand des Anoden- bzw. Kathodenraums mit dem entsprechenden Rahmen verbunden.The holding elements are preferably designed as spring elements, in which it For example, it can be leaf or coil springs. Preferably, the Holding elements either directly to the frame or over a rear wall of the Anode or cathode compartment connected to the corresponding frame.

Vorzugsweise ist die Größe der Anode und/oder des Stromkollektors derart gewählt, dass diese innerhalb des Rahmens angeordnet werden kann und nicht am Rahmen anoder aufliegt. Die Anode und/oder der Stromkollektor ist somit ausschließlich von dem bzw. den Halteelementen gehalten.Preferably, the size of the anode and / or the current collector is selected such that that it can be placed inside the frame and not on the frame or rests. The anode and / or the current collector is thus exclusively of held the one or more holding elements.

Bei einer besonders bevorzugten Ausführungsform erfolgt der elektrische Kontakt zur Anode und/oder zum Stromkollektor ebenfalls über die Halteelemente. Eine zusätzliche elektrische Verbindung mit Anode und/oder Stromkollektor kann bei dieser bevorzugten Ausführungsform somit entfallen. Die elastische Befestigung von Anode und/oder Stromkollektor kann beispielsweise mittels Federn oder anderer elektrisch leitender, elastischer Verbindungen wie z.B. Kohlenstofffilzen oder Metallschwämmen erfolgen. Bevorzugt erfolgt die elastische Befestigung mittels metallischer Federn. Beispielsweise werden hierbei als Halteelemente Federn aus Titan oder Titanlegierungen eingesetzt, da diese von den in der Elektrolysezelle vorhandenen chemischen Stoffen nicht beschädigt werden. Um die elektrische Leitfähigkeit der Titanfedem zu verbessern, können auch z.B. Kupferfedern, die mit Titan ummantelt sind, eingesetzt werden.In a particularly preferred embodiment, the electrical contact takes place to the anode and / or the current collector also via the holding elements. A additional electrical connection with anode and / or current collector can at This preferred embodiment is therefore eliminated. The elastic attachment of Anode and / or current collector can for example by means of springs or other electrically conductive, elastic compounds such as e.g. Carbon felts or Metal sponges take place. Preferably, the elastic attachment by means of metallic springs. For example, here are springs as holding elements Titanium or titanium alloys used, as these of the in the electrolytic cell existing chemical substances are not damaged. To the electric Conductivity of titanium springs can also be improved e.g. Copper springs with Titanium coated, are used.

Bei sämtlichen, vorstehend beschriebenen bevorzugten Ausführungsformen ist es stets ausreichend, wenn die erforderlichen Zusammendrückkräfte in zusammengebautem Zustand der Elektrolysezelle auftreten.In all the preferred embodiments described above, it is always sufficient when the required compression forces in assembled Condition of the electrolysis cell occur.

Die erfindungsgemäße Zellkonstruktion stellt sicher, dass die Anode unmittelbar auf der Kationenaustauschermembran, diese unmittelbar auf der Gasdiffusionselektrode und diese wiederum unmittelbar auf dem Stromkollektor aufliegt, d.h. dass kein Spalt zwischen den genannten Komponenten besteht. Dies ist auch dann zuverlässig der Fall, wenn die Elektrolysezelle so betrieben wird, dass im Anodenraum und im Kathodenraum unterschiedliche Drücke eingestellt werden. The cell construction according to the invention ensures that the anode is directly on the cation exchange membrane, this directly on the gas diffusion electrode and this in turn rests directly on the current collector, i. that no gap exists between the named components. This is reliable even then Fall, when the electrolytic cell is operated so that in the anode compartment and in Cathode space different pressures are set.

Auch der Anodenrahmen und der Kathodenrahmen bestehen vorzugsweise aus beständigen Werkstoffen, wie z.B. edelmetallbeschichtetem oder dotiertem Titan bzw. Titanlegierungen.Also, the anode frame and the cathode frame are preferably made resistant materials, such as noble metal coated or doped titanium or titanium alloys.

Vorzugsweise werden Gasdiffusionselektroden eingesetzt, die einen Katalysator der Platingruppe, vorzugsweise Platin oder Rhodium enthalten. Beispielhaft seien Gasdiffusionselektroden der Firma E-TEK (USA) genannt, die 30 Gew.-% Platin auf Aktivkohle mit einer Edelmetallbeschichtung der Elektrode von 1,2 mg Pt/cm2 aufweisen.Preferably, gas diffusion electrodes are used which contain a catalyst of the platinum group, preferably platinum or rhodium. By way of example, mention may be made of gas diffusion electrodes from E-TEK (USA) which have 30% by weight of platinum on activated carbon with a noble metal coating of the electrode of 1.2 mg Pt / cm 2 .

Als Kationenaustauschermembran eignen sich beispielsweise solche aus Perfluorethylen, die als aktive Zentren Sulfonsäuregruppen enthalten. Beispielsweise können handelsübliche Membranen der Firma DuPont eingesetzt werden, etwa die Membran Nafion® 324. Es sind sowohl Einschichten-Membranen, die beidseitig Sulfonsäuregruppen mit gleichen Äquivalentgewichten haben, als auch Membranen, die auf beiden Seiten Sulfonsäuregruppen mit unterschiedlichen Äquivalentgewichten haben, geeignet. Ebenfalls sind Membranen mit Carboxylgruppen auf der Kathodenseite denkbar.Examples of suitable cation exchange membranes are those made of perfluoroethylene, which contain sulfonic acid groups as active centers. For example Commercially available membranes from DuPont can be used, such as the Membrane Nafion® 324. There are both single-layer membranes that are double-sided Have sulfonic acid groups with the same equivalent weights, as well as membranes, on both sides sulfonic acid groups with different equivalent weights have, suitable. Also, membranes with carboxyl groups on the Cathode side conceivable.

Geeignete Anoden sind beispielsweise Titananoden, insbesondere mit einer säurefesten, Chlor entwickelnden Beschichtung, z.B. auf Basis von mit Ruthenium beschichtetem Titan.Suitable anodes are, for example, titanium anodes, in particular with an acid-resistant, Chlorine-developing coating, e.g. based on ruthenium-coated Titanium.

Der kathodenseitige Stromverteiler kann beispielsweise aus Titan-Streckmetall oder edelmetallbeschichtetem Titan bestehen, wobei auch alternative beständige Werkstoffe eingesetzt werden können.The cathode-side power distributor can be made of titanium expanded metal or noble metal-coated titanium, with alternative resistant materials can be used.

Die erfindungsgemäße Elektrolysezelle eignet sich insbesondere zur elektrochemischen Herstellung von Chlor aus wässrigen Lösungen von Chlorwasserstoff oder wässrigen Lösungen eines Alkalichlorids, insbesondere Natriumchlorid. The electrolysis cell according to the invention is particularly suitable for electrochemical Production of chlorine from aqueous solutions of hydrogen chloride or aqueous solutions of an alkali chloride, especially sodium chloride.

Bei Einsatz der Elektrolysezelle ist der Druck im Kathodenraum vorzugsweise größer als der im Anodenraum, wenn der Stromkollektor elastisch gehalten ist Dabei kann der Differenzdruck zwischen Anoden- und Kathodenraum z.B. zwischen 0,01 und 1 bar betragen, wobei auch größere Differenzdrücke möglich sind. Vorzugsweise beträgt der Differenzdruck 20 bis 350 mbar.When using the electrolysis cell, the pressure in the cathode compartment is preferred greater than that in the anode compartment when the current collector is held elastic For example, the differential pressure between the anode and cathode compartments may be e.g. between 0.01 and 1 bar, with larger differential pressures are possible. Preferably the differential pressure is 20 to 350 mbar.

Wenn die Anode elastisch gehalten ist, ist es vorteilhaft, wenn der Druck im Anodenraum größer ist als der im Kathodenraum.If the anode is held elastic, it is advantageous if the pressure in the Anode space is greater than that in the cathode compartment.

Im Folgenden wird ein mit der erfindungsgemäßen Elektrolysezelle durchführbares Verfahren zur Herstellung von Chlor am Beispiel der Umsetzung von wässrigen Lösungen von Chlorwasserstoff naher ausgeführt. Die ebenfalls mögliche Umsetzung von Alkalichloriden, insbesondere von Natriumchlorid, kann in ähnlicher Weise erfolgen, wobei gegebenenfalls Verfahrensbedingungen zu variieren sind.In the following, a feasible with the electrolysis cell according to the invention Process for the preparation of chlorine by the example of the reaction of aqueous Solutions of hydrogen chloride carried out closer. The possible implementation of alkali chlorides, especially of sodium chloride, may be similar be carried out, where appropriate, process conditions are to be varied.

Bei der Durchführung des Verfahrens wird in den Kathodenraum ein sauerstoffhaltiges Gas, beispielsweise reiner Sauerstoff, ein Gemisch aus Sauerstoff und inerten Gasen, insbesondere Stickstoff, oder Luft eingeleitet, vorzugsweise Sauerstoff oder ein sauerstoffreiches Gas.In carrying out the process, an oxygen-containing is in the cathode compartment Gas, for example, pure oxygen, a mixture of oxygen and inert gases, in particular nitrogen, or air introduced, preferably oxygen or an oxygen-rich gas.

Besonders bevorzugt wird als sauerstoffhaltiges Gas reiner Sauerstoff, insbesondere einer Reinheit von mindestens 99 Vol.-%, eingesetzt.Particularly preferred oxygen-containing gas is pure oxygen, in particular a purity of at least 99 vol .-% used.

Das sauerstoffhaltige Gas wird bevorzugt in einer solchen Menge zugeführt, dass Sauerstoff bezogen auf die gemäß Gleichung (1) theoretisch benötigte Menge überstöchiometrisch vorliegt. Hierbei beträgt der stöchiometrische Überschuss vorzugsweise das 1,1 bis 3-fache, bevorzugt das 1,2 bis 1,5-fache der stöchiometrischen Menge. Der Überschusssauerstoff kann recycliert werden, so dass der stöchiometrische Überschuss nur eine untergeordnete Bedeutung erlangt.

Figure 00070001
The oxygen-containing gas is preferably supplied in such an amount that oxygen is superstoichiometrically based on the amount theoretically required according to equation (1). Here, the stoichiometric excess is preferably 1.1 to 3 times, preferably 1.2 to 1.5 times, the stoichiometric amount. The surplus oxygen can be recycled, so that the stoichiometric excess is only of subordinate importance.
Figure 00070001

In die Anodenkammer wird die wässrige Lösung des Chlorwasserstoffs eingeleitet Die Temperatur der zugeführten wässrigen Lösung von Chlorwasserstoff beträgt vorzugsweise 30 bis 80°C, insbesondere bevorzugt 50 bis 70°C.
Vorzugsweise werden wässrige Lösungen von Chlorwasserstoff mit einer Chlorwasserstoffkonzentration von 5 bis 20 Gew.-%, besonders bevorzugt von 10 bis 15 Gew.-%, eingesetzt.
In the anode chamber, the aqueous solution of hydrogen chloride is introduced, the temperature of the supplied aqueous solution of hydrogen chloride is preferably 30 to 80 ° C, particularly preferably 50 to 70 ° C.
Preferably, aqueous solutions of hydrogen chloride having a hydrogen chloride concentration of 5 to 20 wt .-%, particularly preferably from 10 to 15 wt .-%, are used.

Unabhängig von der gewählten erfindungsgemäßen Elektrolysezelle wird die Elektrolyse vorzugsweise bei einem Druck im Anodenraum größer als 1 bar absolut durchgeführt.Regardless of the selected electrolysis cell according to the invention is the Electrolysis preferably at a pressure in the anode compartment greater than 1 bar absolute carried out.

Der Druck im Kathodenraum ist vorzugsweise größer als 1 bar absolut, besonders bevorzugt 1,02 bis 1,5 bar, insbesondere bevorzugt 1,05 bis 1,3 bar. Es wurde nämlich gefunden, dass bei einem höheren Druck im Kathodenraum, d.h. einem höheren Sauerstoffdruck, die Elektrolyse bei gleicher Stromdichte bei niedrigerer Spannung, d.h. mit geringerem Energieverbrauch, erfolgen kann.The pressure in the cathode compartment is preferably greater than 1 bar absolute, especially preferably 1.02 to 1.5 bar, particularly preferably 1.05 to 1.3 bar. It became namely found that at a higher pressure in the cathode compartment, i. a higher one Oxygen pressure, the electrolysis at the same current density at lower voltage, i.e. with lower energy consumption, can be done.

Die Einstellung des Drucks im Kathodenraum kann beispielsweise dadurch erfolgen, dass das dem Kathodenraum zugeführte sauerstoffhaltige Gas durch eine Druckhaltevorrichtung angestaut wird. Eine geeignete Druckhaltevorrichtung ist beispielsweise eine Flüssigkeitstauchung, durch die der Kathodenraum abgesperrt wird. Eine Androsselung über Ventile stellt ebenfalls eine geeignete Methode zur Einstellung des Drucks dar.The adjustment of the pressure in the cathode compartment can be done, for example, by that the oxygen-containing gas supplied to the cathode space by a pressure-holding device is accumulated. A suitable pressure-retaining device is, for example a liquid compression, through which the cathode space is shut off. A throttling About valves also provides a suitable method for adjusting the Print dar.

Die erfindungsgemäße Elektrolysezelle wird nachfolgend anhand der Zeichnungen näher erläutert. Es zeigen:

Fig. 1:
eine erfindungsgemäße Elektrolysezelle mit elastisch befestigtem Stromkollektor,
Fig. 2:
eine erfindungsgemäße Elektrolysezelle mit elastisch befestigter Anode,
Fig. 3:
eine erfindungsgemäße Elektrolysezelle mit elastisch befestigtem Stromkollektor und elastisch befestigter Anode und
Fig. 4:
eine weitere Ausführungsform der erfindungsgemäßen Elektrolysezelle mit elastisch befestigter Anode.
The electrolytic cell according to the invention will be explained in more detail with reference to the drawings. Show it:
Fig. 1:
an electrolytic cell according to the invention with elastically fixed current collector,
Fig. 2:
an electrolytic cell according to the invention with elastically mounted anode,
3:
an electrolytic cell according to the invention with elastically fixed current collector and elastically mounted anode and
4:
a further embodiment of the electrolytic cell according to the invention with elastically mounted anode.

Die in den Fig. 1 bis 4 schematisch dargestellten Elektrolysezellen sind der besseren Übersichtlichkeit wegen so dargestellt, dass die einzelnen Komponenten der Zelle zueinander Zwischenräume aufweisen. In einer zusammengebauten erfindungsgemäßen Elektrolysezelle liegen die einzelnen Komponenten unmittelbar aneinander.The electrolysis cells shown schematically in FIGS. 1 to 4 are better Clarity because so illustrated that the individual components of the cell have gaps between them. In an assembled invention Electrolytic cell, the individual components are directly adjacent.

Fig. 1 zeigt eine erste Ausführungsform einer erfindungsgemäßen Elektrolysezelle. Der Stromkollektor 10 ist elastisch am Kathodenrahmen 12 befestigt. Der Kathodenrahmen 12 ist ferner mit einer Rückwand 14 verbunden. Durch den Stromkollektor 10, den Kathodenrahmen 12 und die Rückwand 14 ist ein Kathodenraum 16 ausgebildetFig. 1 shows a first embodiment of an electrolytic cell according to the invention. The current collector 10 is elastically attached to the cathode frame 12. The cathode frame 12 is further connected to a rear wall 14. Through the current collector 10, the cathode frame 12 and the rear wall 14 is a cathode space 16th educated

Im dargestellten Ausführungsbeispiel ist der Stromkollektor 10 über mehrere Spiralfedern 18 elastisch gehalten. Die Federn 18 sind über Zwischenteile, z.B. Z-oder Trapezprofile, 20 an der Rückwand 14 befestigt. Um eine gleichmäßige Andrückkraft von den Federn 18 auf den Stromkollektor 10 zu übertragen, sind je nach Größe des Stromkollektors 10 mehrere Federn 18 vorgesehen, die regelmäßig verteilt angeordnet sind. Beispielsweise sind die Federn 18 in mehreren Reihen und Spalten angeordnet, um einen im Wesentlichen rechteckigen Stromkollektor 10 zu halten. In the illustrated embodiment, the current collector 10 is more than one Spiral springs 18 held elastically. The springs 18 are connected via intermediate parts, e.g. Z or Trapezoidal profiles, 20 attached to the rear wall 14. To get a uniform Pressing force to be transmitted from the springs 18 to the current collector 10 are ever according to size of the current collector 10 a plurality of springs 18 are provided, which regularly are arranged distributed. For example, the springs 18 in several rows and Columns arranged to a substantially rectangular current collector 10 to hold.

Der Stromkollektor 10 ist von einer im zusammengebauten Zustand am Kathodenrahmen 12 anliegenden Dichtung 22 umgeben. Die Form der Dichtung 22 entspricht im Wesentlichen der Form des Kathodenrahmens 12.The current collector 10 is of an assembled state on the cathode frame 12 adjacent seal 22 surrounded. The shape of the seal 22 corresponds essentially the shape of the cathode frame 12.

Dem Stromkollektor 10 gegenüberliegend ist eine Anode 24 vorgesehen, die von einem Anodenrahmen 26 getragen wird. Die Befestigung kann hierbei beispielsweise durch geeignete an dem Anodenrahmen 26 vorgesehene Ansätze oder an der Rückwand 28 angebrachte Z- oder Trapezprofile (hier nicht dargestellt) erfolgen, auf denen die Anode 24 aufliegt. Entsprechend dem Kathodenraum 16 ist durch den Anodenrahmen 26, die Anode 24 und eine Rückwand 28 ein Anodenraum 30 ausgebildet. Zwischen der Anode 24 und dem Stromkollektor 10 ist eine Gasdiffusionselektrode 32 sowie eine Kationenaustauschmembran 34 angeordnet. Die Abmessungen der Gasdiffusionselektrode 32 sind vorzugsweise derart, dass diese den Stromkollektor 10 vollständig bedeckt. Die Kationenaustauschmembran 34 ist hingegen größer, so dass diese zwischen den beiden Rahmen 12,26 angeordnet ist und von den Rahmen 12,26 in zusammengebautem Zustand gehalten wird. Des Weiteren ist um eine sichere Abdichtung der beiden Rahmen 12,26 und der beiden Räume 16,30 zu gewährleisten, zwischen der Kationenaustauschmembran 34 und dem Anodenrahmen 26 eine Dichtung 36 sowie zwischen der Kationenaustauschermembran 34 und Kathodenrahmen 12 eine Dichtung 22 vorgesehen.The current collector 10 opposite an anode 24 is provided by an anode frame 26 is worn. The attachment can here, for example by suitable provided on the anode frame 26 lugs or on the Rear wall 28 attached Z or trapezoidal profiles (not shown here) done on where the anode 24 rests. According to the cathode space 16 is through the Anode frame 26, the anode 24 and a rear wall 28, an anode compartment 30 is formed. Between the anode 24 and the current collector 10 is a gas diffusion electrode 32 and a cation exchange membrane 34 arranged. The dimensions The gas diffusion electrode 32 are preferably such that they Current collector 10 completely covered. The cation exchange membrane 34 is in contrast, larger, so that it is arranged between the two frames 12,26 and held by the frames 12, 26 in the assembled state. Of Another is a secure sealing of the two frames 12,26 and the two Rooms 16.30 to ensure between the cation exchange membrane 34 and the anode frame 26, a seal 36 and between the cation exchange membrane 34 and cathode frame 12, a seal 22 is provided.

Bei dieser Ausführungsform wird beim Zusammenbau der Zelle die Gasdiffusionselektrode 32 von dem Stromkollektor 10 auf die Kationenaustauschermembran 34 und diese auf die Anode 24 gedrückt. Besonders vorteilhaft ist dabei, wenn die Anode 24 mit der Dichtung 36 im eingebauten Zustand eine Ebene bildetIn this embodiment, when the cell is assembled, the gas diffusion electrode becomes 32 from the current collector 10 to the cation exchange membrane 34th and pressed them onto the anode 24. It is particularly advantageous if the Anode 24 with the seal 36 in the installed state forms a plane

Durch die erfindungsgemäße Konstruktion (Fig. 1) kann unabhängig vom Druck im Anodenraum 30 der Druck im Kathodenraum 16 gewählt werden. Vorzugsweise wird bei dieser Ausführungsvariante im Kathodenraum 16 eine höherer Druck als im Anodenraum 30 gewählt. Die einzelnen Elemente der Elektrolysezelle werden mittels der Dichtungen 22,36 abgedichtet. Due to the construction according to the invention (Figure 1), regardless of the pressure in the Anode space 30 of the pressure in the cathode chamber 16 can be selected. Preferably is in this embodiment in the cathode chamber 16, a higher pressure than in the Anode space 30 is selected. The individual elements of the electrolytic cell are sealed by means of the seals 22,36.

Im Betrieb wird der Anodenraum 30 wird über einen HCl-Einlass 38 mit Salzsäure gefüllt und der Kathodenraum 16 über einen O2-Einlass 40 mit Sauerstoff oder einem sauerstoffhaltigem Gas. Die Temperatur der Salzsäure beträgt bei der Elektrolyse vorzugsweise 50 bis 70°C. Die Elektrolyse kann aber auch bei niedrigerer Temperatur durchgeführt werden. Während des Elektrolysebetriebes kann der Anodenraum 30 von der Salzsäure durchströmt werden. Das gebildete Chlor verlässt den Anodenraum 30 z.B. oben über einen Cl2-Auslass 42. Ebenso ist denkbar, dass andere Durchströmungsvarianten gewählt werden. So ist z.B. eine Durchströmung des Anodenraumes 30, von oben nach unten möglich. Ebenfalls denkbar ist, dass keine Zwangsströmung von außen mittels einer Pumpe aufgegeben wird. Durch die Bildung von Chlor entsteht ein Auftrieb innerhalb des Anodenraumes 30 der zu Pumpzwecken genutzt werden kann (Mamutpumpenprinzip). So können durch Einbauten, z.B. geeignete Leitbleche oder dgl., im Anodenraum 30 mit der entstehenden Strömung Konzentrationsdifferenzen vermieden werden.In operation, the anode compartment 30 is filled with hydrochloric acid via an HCl inlet 38 and the cathode compartment 16 is filled with oxygen or an oxygen-containing gas via an O 2 inlet 40. The temperature of the hydrochloric acid is preferably 50 to 70 ° C in the electrolysis. The electrolysis can also be carried out at a lower temperature. During the electrolysis operation, the anode chamber 30 can be flowed through by the hydrochloric acid. The chlorine formed leaves the anode chamber 30, for example, above a Cl 2 outlet 42. It is also conceivable that other flow variants are selected. For example, a flow through the anode compartment 30, from top to bottom is possible. It is also conceivable that no forced flow is given from the outside by means of a pump. The formation of chlorine creates a buoyancy within the anode space 30 which can be used for pumping purposes (Mamutpumpenprinzip). So can be avoided by internals, eg suitable baffles or the like., In the anode chamber 30 with the resulting flow concentration differences.

Der Kathodenraum 16 kann vom Sauerstoff bzw. dem sauerstofthaltigen Gas durchströmt werden. Es ist ebenfalls denkbar, den Sauerstoff innerhalb des Kathodenraumes 16 durch Einbauten in seiner Strömungsrichtung zu beeinflussen. So können z.B. poröse Materialien, elektrisch leitende wie auch nichtleitende, im Raum hinter dem Stromkollektor 10 eingesetzt werden. Der Sauerstoff kann wie in der Fig. 1 dargestellt über den O2-Einlass 40 von unten eingeleitet und über einen O2-Auslass 44 oben wieder abgeführt werden. Es ist jedoch ebenso möglich, dass der Sauerstoff von oben nach unten strömt oder dass eine seitliche Strömung im Kathodenraum 16 von z.B. unten links nach oben rechts erfolgt. Bezüglich der ablaufenden Reaktion sollte überstöchiometrisch Sauerstoff angeboten werden.The cathode chamber 16 can be flowed through by the oxygen or the oxygen-containing gas. It is also conceivable to influence the oxygen within the cathode space 16 by means of internals in its flow direction. For example, porous materials, electrically conductive as well as non-conductive, can be used in the space behind the current collector 10. The oxygen can, as shown in FIG. 1, be introduced from below via the O 2 inlet 40 and removed again via an O 2 outlet 44 at the top. However, it is also possible that the oxygen flows from top to bottom or that a lateral flow takes place in the cathode compartment 16 from eg bottom left to top right. With regard to the proceeding reaction, hyperstoichiometric oxygen should be offered.

Die Anode 24 kann so in die Elektrolysezelle eingebaut werden, dass sie über den Anodenrahmen 26 soweit hinausragt, dass bei aufgelegter Dichtung 36 die Anode 24 mit der Dichtung 36 eine Fläche bildet. Es ist ebenfalls möglich, dass die Anode 24 soweit unterhalb der Dichtung 36 liegt, dass im zusammengebauten Zustand der Zellkomponenten die Dichtung 36 mit der Anode 24 eine Ebene bildet. Hierbei ist die Kompressibilität der Dichtung 36 und die Anzugsmomente beim Zusammenbau der Zellkomponenten zu berücksichtigen.The anode 24 can be installed in the electrolytic cell so that they over the Anodenrahmen 26 so far protrudes that when applied seal 36, the anode 24th forms a surface with the seal 36. It is also possible that the anode 24 so far below the seal 36 is that in the assembled state of Cell components, the seal 36 with the anode 24 forms a plane. Here is the compressibility of the seal 36 and the torques during assembly to consider the cell components.

Wird der Stromkollektor 10 wie in Fig. 1 dargestellt elastisch mit der Rückwand 14 verbunden, so kann der Druck im Anoden- und im Kathodenraum gleich groß gewählt werden. Es ist ebenso denkbar, dass der Druck im Kathodenraum 16 größer ist als der im Anodenraum 30. Diese Druckdifferenz kann auch bei höherem absoluten Druck gewählt werden.If the current collector 10 as shown in Fig. 1 is elastic with the rear wall 14th connected, so the pressure in the anode and in the cathode compartment the same size to get voted. It is also conceivable that the pressure in the cathode chamber 16 is greater is than that in the anode chamber 30. This pressure difference can also at higher absolute pressure can be selected.

Die in Fig. 2 dargestellte Ausführungsform entspricht prinzipiell der in Fig. 1 dargestellten Ausführungsform. Identische oder ähnliche Bestandteile sind daher mit den selben Bezugszeichen gekennzeichnet. Der einzige Unterschied gegenüber der in Fig. 1 dargestellten Ausführungsform besteht darin, dass nicht der Stromkollektor 10, sondern die Anode 24 über die Federn 8 und die Zwischenteile, z.B. Z- oder Trapezprofile, 20 mit der Rückwand 28 verbunden sind. Somit ist nicht der Stromkollektor 10, sondern die Anode 24 elastisch über die Rückwand 28 mit dem Anodenrahmen 26 verbunden.The embodiment shown in Fig. 2 corresponds in principle to that shown in Fig. 1 Embodiment. Identical or similar components are therefore with the the same reference numerals. The only difference from the one in Fig. 1 illustrated embodiment is that not the current collector 10, but the anode 24 via the springs 8 and the intermediate parts, e.g. Z or trapezoidal profiles, 20 are connected to the rear wall 28. Thus, not the current collector 10, but the anode 24 elastically over the rear wall 28 with the anode frame 26 connected.

Im eingebauten Zustand wird die Anode 24 durch die metallischen Federn 18 auf die Kationenaustauschmembran 34, diese auf die Gasdiffusionselektrode 32 und diese wiederum auf den Stromkollektor 10 gedrückt. Die Stoffströme (Sauerstoff und Salzsäure) können in ähnlicher Weise geführt werden, wie in der Ausführungsvariante, die in Fig. 1 dargestellt istWhen installed, the anode 24 by the metallic springs 18 on the Cation exchange membrane 34, this on the gas diffusion electrode 32 and this in turn pressed on the current collector 10. The material flows (oxygen and Hydrochloric acid) can be conducted in a similar manner as in the variant embodiment, which is shown in Fig. 1

Wird die Anode 24 wie in Fig. 2 dargestellt über die Rückwand 28 elastisch mit dem Anodenrahmen 26 verbunden, so kann der Druck im Kathodenraum 16 gleich groß wie der im Anodenraum 30 gewählt werden. Der Druck im Anodenraum 30 sollte jedoch mindestens gleich groß wie der im Kathodenraum 16 sein, damit die Gasdiffusionselektrode 32 auf dem Stromkollektor 10 aufliegt. Is the anode 24 as shown in Fig. 2 on the rear wall 28 elastically with the Anodenrahmen 26 connected, so the pressure in the cathode chamber 16 equal how to be selected in the anode compartment 30. The pressure in the anode compartment 30 should however, be at least the same size as that in the cathode space 16, so that the gas diffusion electrode 32 rests on the current collector 10.

Die dritte Ausführungsform (Fig. 3) ist eine Kombination der in Fign. 1 und 2 dargestellten Ausführungsformen. In dieser Ausführungsform ist sowohl die Anode 24 als auch der Stromkollektor 10 über Federn 18 elastisch mit der Rückwand 28 bzw. 14 verbunden.The third embodiment (Figure 3) is a combination of the methods shown in Figs. 1 and 2 illustrated embodiments. In this embodiment, both the anode 24 and the current collector 10 via springs 18 elastically with the rear wall 28th or 14 connected.

In zusammengebautem Zustand drückt somit die Anode 24 gegen die Kationenaustauschmembran 34 und der gegenüberliegende Stromkollektor 10 drückt gegen die Gasdiffusionselektrode 32, so dass in dieser Ausführungsform eine besonders hohe Sicherheit besteht, dass die entsprechenden Komponenten der Elektrolysezelle ohne Spalt aneinander anliegen. Die Stoffführung von Sauerstoff und Salzsäure kann ähnlich erfolgen wie in den anhand Fign. 1 und 2 dargestellten Ausführungsformen.When assembled, thus, the anode 24 presses against the cation exchange membrane 34 and the opposite current collector 10 presses against the gas diffusion electrode 32, so that in this embodiment a particularly high security exists that the corresponding components of the electrolytic cell rest against each other without a gap. The substance guide of oxygen and hydrochloric acid can similarly as in the reference to FIGS. 1 and 2 illustrated embodiments.

Werden wie in Fig. 3 dargestellt sowohl der Stromkollektor 10 als auch die Anode 24 elastisch verbunden, so kann die Elektrolysezelle in einem großen Druckbereich betrieben werden, bei dem gewährleistet wird, dass die Gasdiffusionselektrode 32 auf den Stromkollektor 10 aufliegt.As shown in FIG. 3, both the current collector 10 and the anode 24 elastically connected, the electrolysis cell can be operated in a wide pressure range in which it is ensured that the gas diffusion electrode 32 on the current collector 10 rests.

Die vierte Ausführungsform (Fig. 4) entspricht prinzipiell ebenfalls den anhand Fign. 1 bis 3 beschriebenen Elektrolysezelle. Gleiche oder ähnliche Bauteile sind daher wiederum mit den gleichen Bezugszeichen bezeichnet. Der wesentliche Unterschied der in Fig. 4 dargestellten Elektrolysezelle besteht in der Art der verwendeten Halteelemente 46. Bei den Halteelementen 46 handelt es sich nicht um Spiralfedern 18, wie bei den in den in Fig. 1 bis 3 dargestellten Ausführungsformen, sondern um eine Art Blattfeder, die an einer Innenseite 48 des Anodenrahmens 26 und der Anode 24 befestigt ist. Durch das Halteelement 46 wird ebenfalls eine in Richtung des Stromkollektors 10 wirkende Kraft auf die Anode 24 aufgebracht, so dass auch diese Ausführungsform kein Spalt zwischen Stromkollektor 10, Gasdiffusionselektrode 32, Kationenaustauschmembran 34 und Anode 24 besteht. Entsprechend den Federn 18 (Fig. 1 - 3) können auch die Halteelemente 46 als elektrische Kontakte dienen. The fourth embodiment (FIG. 4) also corresponds in principle to the embodiment described with reference to FIGS. 1 to 3 described electrolytic cell. Same or similar components are therefore again denoted by the same reference numerals. The main difference the electrolytic cell shown in Fig. 4 consists in the type of holding elements used 46. The retaining elements 46 are not helical springs 18, as in the embodiments shown in Figs. 1 to 3, but by a Type leaf spring, on an inner side 48 of the anode frame 26 and the anode 24th is attached. By the holding element 46 is also one in the direction of Current collector 10 applied force applied to the anode 24, so that these too Embodiment no gap between current collector 10, gas diffusion electrode 32, Cation exchange membrane 34 and anode 24 consists. According to the springs 18 (FIGS. 1-3), the holding elements 46 can also serve as electrical contacts.

Ferner ist es möglich, zusätzlich oder anstelle der Anode 24 der Stromkollektor 10 mit entsprechenden Halteelementen 46 an dem Kathodenrahmen 12 zu befestigen.Further, it is possible, in addition to or instead of the anode 24, the current collector 10th to be secured to the cathode frame 12 with corresponding retaining elements 46.

Die möglichen Druckdifferenzen sowie die Stoffstromführung ist je nach Anordnung der Halteelemente 46 zumindest durch ein Halten der Anode 24 und/oder des Stromkollektors 10 wie vorstehend beschrieben möglich.The possible pressure differences as well as the material flow guidance are depending on the arrangement the holding elements 46 at least by holding the anode 24 and / or the current collector 10 as described above possible.

In den folgenden Beispielen wird ein mit Hilfe der erfindungsgemäßen Vorrichtung durchführbares Verfahren weiter erläutert, wobei die Beispiele nicht als Einschränkung des allgemeinen Erfindungsgedankens zu verstehen sind. In the following examples, a by means of the device according to the invention feasible method further, the examples are not limiting of the general inventive concept are to be understood.

Beispiel 1example 1

Es wurde eine Elektrolyse einer wässrigen Lösung von Chlorwasserstoff in einer Elektrolysezelle durchgeführt, wie sie in Fig. 1 schematisch dargestellt und oben näher beschrieben ist.It was an electrolysis of an aqueous solution of hydrogen chloride in one Electrolysis cell carried out, as shown schematically in Fig. 1 and above is described in more detail.

Die Anode 24 war so in die Elektrolysezelle eingebaut, dass sie über den Anodenrahmen 26 soweit hinausragte, dass bei aufgelegter Dichtung 36 die Anode 24 mit der Dichtung 36 eine Fläche bildete. Die Anode 24, der Anodenrahmen 26, der Stromkollektor 10, der Kathodenrahmen 12 und die elektrisch leitenden Federn 18 bestanden aus einer Titan-Palladium-Legierung mit 0,2 Gew.-% Palladium. Die Anode 24 war in Form eines Streckmetalls ausgebildet und wurde zusätzlich mit einer Ruthenium-Oxidschicht aktiviert. Die Dicke des Streckmetalls betrug 1,5 mm. Die Dichtungen 36 bestanden aus einem Fluorelastomer, wie es von der Firma DuPont unter der Bezeichnung Viton® vertrieben wird. Der Stromkollektor 10 war ebenfalls in Form eines Ruthentium-Oxid beschichteten Titan-Streckmetalls ausgebildet Die Kontaktierung des Stromkollektors 10 zu den elastischen Federn 18 erfolgte durch Punktschweißen. Als Gasdiffusionselektrode 32 wurde eine Gasdiffusionselektrode der Fa. E-TEK, USA auf Kohlenstoffbasis mit Platin-Katalysator eingesetzt. Bei der Kationenaustauschermembran 34 handelte es sich um eine Membran der Fa. DuPont auf Basis eines Perfluorsulfonatpolymers, die unter der Bezeichnung Nafion® 324 kommerziell verfügbar ist. Durch die Kationenaustauschermembran 34 wurde die Elektrolysezelle in einen Anoden- und einen Kathodenraum getrennt.The anode 24 was built into the electrolysis cell so that it passed over the anode frame 26 protrude so far that when applied seal 36, the anode 24 with the seal 36 formed a surface. The anode 24, the anode frame 26, the Current collector 10, the cathode frame 12 and the electrically conductive springs 18th consisted of a titanium-palladium alloy with 0.2 wt .-% palladium. The Anode 24 was in the form of an expanded metal and was additionally with activated a ruthenium oxide layer. The thickness of the expanded metal was 1.5 mm. The gaskets 36 were made of a fluoroelastomer as available from the company DuPont is sold under the name Viton®. The current collector 10 was also formed in the form of a ruthenium oxide coated titanium expanded metal The contacting of the current collector 10 to the elastic springs 18th was done by spot welding. As the gas diffusion electrode 32 was a gas diffusion electrode from E-TEK, USA, based on carbon with platinum catalyst. The cation exchange membrane 34 was a membrane DuPont based on a Perfluorsulfonatpolymere under the name Nafion® 324 is commercially available. Through the cation exchange membrane 34 the electrolysis cell was separated into an anode and a cathode compartment.

Der Anodenraum wurde mit einer 14 gew.-%igen Salzsäure beschickt. Die Temperatur der Salzsäure betrug 53°C. Der Kathodenraum wurde mit reinem Sauerstoff mit einem Gehalt von mehr als 99 Vol.-% beschickt. Der Druck im Kathodenraum betrug 1 bar. Der Differenzdruck zwischen Kathodenraum und Anodenraum betrug 0 bar. Die Elektrolyse wurde bei einer Stromdichte von 3000 A/m2 betrieben, wobei sich eine Spannung von 1,05 V einstellte. The anode compartment was charged with a 14% by weight hydrochloric acid. The temperature of the hydrochloric acid was 53 ° C. The cathode compartment was charged with pure oxygen at a level greater than 99% by volume. The pressure in the cathode compartment was 1 bar. The differential pressure between the cathode space and the anode space was 0 bar. The electrolysis was operated at a current density of 3000 A / m 2 , whereby a voltage of 1.05 V arose.

Beispiel 2 (Vergleichsbeispiel) Example 2 (comparative example )

Es wurde eine Elektrolyse einer wässrigen Lösung von Chlorwasserstoff in einer Elektrolysezelle durchgeführt, wie sie in Beispiel 1 beschrieben ist, wobei in diesem Fall jedoch der Stromkollektor 10 nicht elastisch mit dem Kathodenrahmen 12 verbunden war.It was an electrolysis of an aqueous solution of hydrogen chloride in one Electrolysis cell carried out as described in Example 1, wherein in this However, if the current collector 10 is not elastically connected to the cathode frame 12 was.

Der Anodenraum wurde mit einer 14 gew.-%igen Salzsäure beschickt. Die Temperatur der Salzsäure betrug 53°C. Der Kathodenraum wurde mit reinem Sauerstoff mit einem Gehalt von mehr als 99 Vol.-% beschickt. Der Druck im Kathodenraum betrug 1 bar. Der Differenzdruck zwischen Kathodenraum und Anodenraum betrug 0,3 bar, so dass sich im Anodenraum ein Druck von 1,3 bar ergab. Das Anlegen eines Differenzdrucks war im Gegensatz zum Vorgehen nach Beispiel 1 notwendig, damit die Gasdiffusionselektrode 32 auf den Stromkollektor 10 gedrückt wurde. Die Elektrolyse wurde, wie in Beispiel 1 bei einer Stromdichte von 3000 A/m2 betrieben. Dabei stellte sich eine Spannung von 1,21 V ein.The anode compartment was charged with a 14% by weight hydrochloric acid. The temperature of the hydrochloric acid was 53 ° C. The cathode compartment was charged with pure oxygen at a level greater than 99% by volume. The pressure in the cathode compartment was 1 bar. The differential pressure between the cathode compartment and the anode compartment was 0.3 bar, so that a pressure of 1.3 bar resulted in the anode compartment. The application of a differential pressure was necessary in contrast to the procedure of Example 1, so that the gas diffusion electrode 32 was pressed onto the current collector 10. The electrolysis was operated as in Example 1 at a current density of 3000 A / m 2 . This resulted in a voltage of 1.21 V.

Der Vergleich der Beispiele 1 und 2 zeigt, dass bei gegebenem Druck im Kathodenraum und konstant eingestellter Stromdichte die erfindungsgemäße Elektrolysezelle (Beispiel 1) mit geringerem Druck im Anodenraum betrieben werden kann und dabei eine geringere Spannung auftritt, was eine deutliche Reduzierung des Energiebedarfs zur Folge hat.The comparison of Examples 1 and 2 shows that at a given pressure in the cathode compartment and constant current density set the electrolysis cell according to the invention (Example 1) can be operated at a lower pressure in the anode compartment and thereby a lower voltage occurs, resulting in a significant reduction in energy consumption entails.

Claims (8)

  1. Electrolysis cell, in particular for the electrochemical preparation of chlorine from aqueous solutions of hydrogen chloride, comprising
    an anode frame (26) supporting an anode (24),
    a cathode frame (12) supporting a current collector (10),
    a cation-exchange membrane (34) located between the anode (24) and the current collector (10) and a gas diffusion electrode (32) located between the anode (24) and the current collector (10),
    characterized in that
    the anode (24) is elastically connected to the anode frame (26) and/or the current collector (10) is elastically connected to the cathode frame (12) to hold the anode (24), the cation-exchange membrane (34), the gas diffusion electrode (32) and the current collector (10) together.
  2. Electrolysis cell according to Claim 1, characterized in that an elastic holding element (18, 46) is provided between the anode (24) and the anode frame (26) and/or between the current collector (10) and the cathode frame (12).
  3. Electrolysis cell according to Claim 2, characterized in that a plurality of holding elements (18, 46) are provided.
  4. Electrolysis cell according to Claim 2 or 3, characterized in that the holding element or the holding elements (18, 46) are arranged and/or configured so that the anode (24) and/or the current collector (10) exerts an essentially uniform pressure.
  5. Electrolysis cell according to any of Claims 2 to 4, characterized in that the holding element or elements (18, 46) are configured as spring elements.
  6. Electrolysis cell according to any of Claims 2 to 5, characterized in that electrical contact to the anode (24) and/or to the current collector (10) is established by means of the holding elements (18, 46).
  7. Electrolysis cell according to any of Claims 2 to 6, characterized in that the anode frame (26) and/or the cathode frame (12) has/have a back wall (28 or 14) to which the holding element or elements (18) is/are connected.
  8. Electrolysis cell according to any of Claims 2 to 7, characterized in that the anode (24) and/or the current collector (10) is/are held solely by the elastic holding element or elements (18, 46).
EP02794511A 2001-08-03 2002-07-22 Electrolysis cell, particularly for electrochemically producing chlorine Expired - Lifetime EP1417356B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10138214A DE10138214A1 (en) 2001-08-03 2001-08-03 Chlorine generation electrolysis cell, having low operating voltage, has anode frame retained in a flexible array on cathode frame, cation exchange membrane, anode, gas diffusion electrode and current collector
DE10138214 2001-08-03
PCT/EP2002/008132 WO2003014419A2 (en) 2001-08-03 2002-07-22 Electrolysis cell, particularly for electrochemically producing chlorine

Publications (2)

Publication Number Publication Date
EP1417356A2 EP1417356A2 (en) 2004-05-12
EP1417356B1 true EP1417356B1 (en) 2005-01-12

Family

ID=7694328

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02794511A Expired - Lifetime EP1417356B1 (en) 2001-08-03 2002-07-22 Electrolysis cell, particularly for electrochemically producing chlorine

Country Status (13)

Country Link
US (1) US6841047B2 (en)
EP (1) EP1417356B1 (en)
JP (1) JP2004538365A (en)
KR (1) KR20040030924A (en)
CN (1) CN1564878A (en)
AT (1) ATE286995T1 (en)
BR (1) BR0211694A (en)
CA (1) CA2456048A1 (en)
DE (2) DE10138214A1 (en)
ES (1) ES2236610T3 (en)
HU (1) HUP0401578A3 (en)
PT (1) PT1417356E (en)
WO (1) WO2003014419A2 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7141147B2 (en) * 2001-06-15 2006-11-28 Akzo Nobel N.V. Electrolytic cell
DE10148600A1 (en) * 2001-10-02 2003-04-10 Bayer Ag Electrolyzer used for electrolyzing hydrochloric acid has gas diffusion electrodes fixed to current collector
DE10152792A1 (en) * 2001-10-25 2003-05-08 Bayer Ag Method of integrating a gas diffusion electrode into an electrochemical reaction apparatus
CN101220482B (en) * 2002-11-27 2011-02-09 旭化成化学株式会社 Bipolar zero-gap electrolytic cell
JP3924545B2 (en) * 2003-03-31 2007-06-06 三井化学株式会社 Method for discharging gas diffusion electrode
US7261798B2 (en) * 2004-01-28 2007-08-28 Hamilton Sundstrand Corporation Assembly for maintaining compression for electrical contact of the active area of an electrochemical cell
JP4834329B2 (en) * 2005-05-17 2011-12-14 クロリンエンジニアズ株式会社 Ion exchange membrane electrolytic cell
ITMI20060054A1 (en) * 2006-01-16 2007-07-17 Uhdenora Spa ELASTIC CURRENT DISTRIBUTOR FOR PERCOLATOR CELLS
DE102006023261A1 (en) 2006-05-18 2007-11-22 Bayer Materialscience Ag Process for the production of chlorine from hydrogen chloride and oxygen
US20120125782A1 (en) * 2009-05-26 2012-05-24 Chlorine Engineers Corp., Ltd. Gas diffusion electrode equipped ion exchange membrane electrolyzer
US8940139B2 (en) 2009-05-26 2015-01-27 Chlorine Engineers Corp., Ltd. Gas diffusion electrode equipped ion exchange membrane electrolyzer
ES2643234T3 (en) 2010-03-30 2017-11-21 Covestro Deutschland Ag Procedure for the preparation of diaryl carbonates and polycarbonates
SG174715A1 (en) 2010-03-30 2011-10-28 Bayer Materialscience Ag Process for preparing diaryl carbonates and polycarbonates
DE102012102210A1 (en) * 2012-03-15 2013-09-19 Solibro Gmbh Heating system for a vacuum deposition source and vacuum separation device
EP2746429A1 (en) 2012-12-19 2014-06-25 Uhdenora S.p.A Electrolytic cell
ITMI20130563A1 (en) * 2013-04-10 2014-10-11 Uhdenora Spa METHOD OF ADAPTATION OF ELECTROLYTIC CELLS HAVING FINISHED INTERELECTRODUCTS DISTANCES
CN105675680B (en) * 2014-04-21 2019-07-19 南通大学 A kind of dual chamber optical electro-chemistry electrolytic cell
CN103981533A (en) * 2014-05-30 2014-08-13 李欣 Cathode fastening spring bearer plate structure of electrolysis ozonator
DK2957659T3 (en) 2014-06-16 2019-05-06 Siemens Ag Gas diffusion layer, PEM electrolytic cell with such a gas diffusion layer and electrolyzer
CN104264183B (en) * 2014-09-24 2017-02-08 宁波华众和创工业设计有限公司 Quick-connection electrolysis tank
DE102018209520A1 (en) 2018-06-14 2019-12-19 Thyssenkrupp Uhde Chlorine Engineers Gmbh electrolysis cell
DE102020206448A1 (en) * 2020-05-25 2021-11-25 Siemens Aktiengesellschaft Device for attaching an electrode
EP4339335A1 (en) * 2022-09-15 2024-03-20 thyssenkrupp nucera AG & Co. KGaA Electrolysis cell

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1118243B (en) * 1978-07-27 1986-02-24 Elche Ltd MONOPOLAR ELECTROLYSIS CELL
FI72150C (en) * 1980-11-15 1987-04-13 Asahi Glass Co Ltd Alkalimetallkloridelektrolyscell.
DE3439265A1 (en) * 1984-10-26 1986-05-07 Hoechst Ag, 6230 Frankfurt ELECTROLYSIS APPARATUS WITH HORIZONTALLY ARRANGED ELECTRODES
US4732660A (en) * 1985-09-09 1988-03-22 The Dow Chemical Company Membrane electrolyzer
IT1282367B1 (en) 1996-01-19 1998-03-20 De Nora Spa IMPROVED METHOD FOR THE ELECTROLYSIS OF WATER SOLUTIONS OF HYDROCHLORIC ACID
JP3041786B1 (en) * 1999-02-03 2000-05-15 長一 古屋 Gas chamber material of gas diffusion electrode using shape memory alloy

Also Published As

Publication number Publication date
EP1417356A2 (en) 2004-05-12
CN1564878A (en) 2005-01-12
CA2456048A1 (en) 2003-02-20
DE10138214A1 (en) 2003-02-20
HUP0401578A2 (en) 2004-11-29
US20030047446A1 (en) 2003-03-13
HUP0401578A3 (en) 2005-07-28
DE50202014D1 (en) 2005-02-17
BR0211694A (en) 2004-07-13
ES2236610T3 (en) 2005-07-16
PT1417356E (en) 2005-05-31
WO2003014419A2 (en) 2003-02-20
US6841047B2 (en) 2005-01-11
WO2003014419A3 (en) 2003-09-18
KR20040030924A (en) 2004-04-09
ATE286995T1 (en) 2005-01-15
JP2004538365A (en) 2004-12-24

Similar Documents

Publication Publication Date Title
EP1417356B1 (en) Electrolysis cell, particularly for electrochemically producing chlorine
DE69016459T2 (en) ELECTROCHEMICAL CHLORINE DIOXIDE GENERATOR.
DE69215093T2 (en) Device and method for the electrochemical decomposition of salt solutions to form the corresponding bases and acids
DE69310168T2 (en) DEVICE WITH WATER-IONIZING ELECTRODES AND METHOD FOR USE THEREOF
DE2355876C2 (en) Bipolar electrode
EP0989206B1 (en) Electrolysis cell and use thereof
DE69707320T2 (en) Process for the electrolysis of aqueous solutions of hydrochloric acid
EP0068522B1 (en) Process and apparatus for the synthetic preparation of ozone by electrolysis, and its application
DE69901319T2 (en) Catalyst for gas diffusion electrode
DE2629506A1 (en) ELECTROLYSIS CELL FOR THE PRODUCTION OF ALKALIMETAL HYDROXIDES AND HALOGENES
WO2010078952A2 (en) Structured gas diffusion electrode for electrolysis cells
EP0182114A1 (en) Electrolysis apparatus with horizontally positioned electrodes
DD140262A5 (en) METHOD FOR CONTINUOUS PRODUCTION OF CHLORINE
DE3420483A1 (en) BIPOLAR ELECTROLYSIS WITH GAS DIFFUSION CATHODE
DE69322527T2 (en) Mattress for electrochemical cells
DD204949A5 (en) ELECTROLYT CELL OF THE FILTER PRESSURE TYPE
EP1283281B1 (en) Process for the electrochemical production of chlorine from aqueous hydrochloric acid solutions
DE3401812C2 (en) electrolysis cell
DE60302067T2 (en) DISTRIBUTION ELEMENT FOR ELECTROCHEMICAL CELL WITH ELECTROLYTE PERCOLATION
DE10203689A1 (en) Cathodic current distributor for electrolytic cells
DE3640584A1 (en) ELECTRODE ARRANGEMENT FOR GAS-GENERATING ELECTROLYSISTS WITH VERTICALLY ARRANGED PLATE ELECTRODES
DE2650825C3 (en) Bipolar electrolyzer
DE2125941C3 (en) Bipolar unit and electrolytic cell built up with it
DE60201177T2 (en) ELECTROCATALYTIC COMPOSITION FOR AN OXYGEN DEPOLARED CATHODE
DE4417744C1 (en) Process for the production of stable graphite cathodes for hydrochloric acid electrolysis and their use

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20040318

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BAYER MATERIALSCIENCE AG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: RO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050112

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050112

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050112

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050112

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050112

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50202014

Country of ref document: DE

Date of ref document: 20050217

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050412

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050324

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20050400796

Country of ref document: GR

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20050329

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20050615

Year of fee payment: 4

Ref country code: SE

Payment date: 20050615

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20050620

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20050628

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20050630

Year of fee payment: 4

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2236610

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050722

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050731

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ET Fr: translation filed
26N No opposition filed

Effective date: 20051013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060722

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060722

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070122

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20070122

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050112

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080703

Year of fee payment: 7

Ref country code: ES

Payment date: 20080821

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080718

Year of fee payment: 7

Ref country code: IT

Payment date: 20080728

Year of fee payment: 7

Ref country code: NL

Payment date: 20080703

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20090126

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050112

BERE Be: lapsed

Owner name: *BAYER MATERIALSCIENCE A.G.

Effective date: 20090731

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20100201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100202

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20090723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100201