EP2870658B1 - Antenna system for broadband satellite communication in the ghz frequency range, comprising horn antennas with geometrical constrictions - Google Patents

Antenna system for broadband satellite communication in the ghz frequency range, comprising horn antennas with geometrical constrictions Download PDF

Info

Publication number
EP2870658B1
EP2870658B1 EP13734659.9A EP13734659A EP2870658B1 EP 2870658 B1 EP2870658 B1 EP 2870658B1 EP 13734659 A EP13734659 A EP 13734659A EP 2870658 B1 EP2870658 B1 EP 2870658B1
Authority
EP
European Patent Office
Prior art keywords
antenna
horn
antenna system
polarization
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13734659.9A
Other languages
German (de)
French (fr)
Other versions
EP2870658A1 (en
Inventor
Joerg Oppenlaender
Michael Wenzel
Alexander MOESSINGER
Michael Seifried
Christoph Haeussler
Alexander Friesch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lisa Draexlmaier GmbH
Original Assignee
Lisa Draexlmaier GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lisa Draexlmaier GmbH filed Critical Lisa Draexlmaier GmbH
Publication of EP2870658A1 publication Critical patent/EP2870658A1/en
Application granted granted Critical
Publication of EP2870658B1 publication Critical patent/EP2870658B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/064Two dimensional planar arrays using horn or slot aerials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/02Waveguide horns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/02Waveguide horns
    • H01Q13/025Multimode horn antennas; Horns using higher mode of propagation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/02Waveguide horns
    • H01Q13/0275Ridged horns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism
    • H01Q15/08Refracting or diffracting devices, e.g. lens, prism formed of solid dielectric material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/24Polarising devices; Polarisation filtersĀ 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
    • H01Q19/08Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens for modifying the radiation pattern of a radiating horn in which it is located
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0025Modular arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0075Stripline fed arrays

Definitions

  • the invention relates to an antenna system for broadband communication between earth stations and satellites, in particular for mobile and aeronautical applications.
  • the weight and size of the antenna system are very important because they reduce the payload of the aircraft and cause additional operating costs.
  • the problem therefore is to provide antenna systems that are as small and lightweight as possible, which nevertheless satisfy the regulatory requirements for transmitting and receiving operation when operating on mobile carriers.
  • envelopes envelopes or masks
  • All these regulatory provisions are intended to ensure that no interference of adjacent satellites can occur in the directional transmission mode of a mobile satellite antenna.
  • envelopes envelopes or masks
  • envelopes envelopes or masks
  • the for a given distance angle given values may not be exceeded in the transmission mode of the antenna system. This leads to stringent requirements for the angle-dependent antenna characteristic.
  • the antenna gain must drop sharply. This can be achieved physically only by very homogeneous amplitude and phase assignments of the antenna. Typically, therefore, parabolic antennas are used which have these properties.
  • parabolic mirrors are poorly suited for most mobile applications, especially on airplanes, because of their size and because of their circular aperture.
  • the antennas are mounted on the fuselage and therefore may only have the lowest possible height because of the additional air resistance.
  • Antennas which are designed as sections of paraboloid ("banana-shaped mirror"), although possible, but have geometrie DIN only a very low efficiency.
  • Antenna fields which are constructed of individual radiators and have suitable feed networks, however, can be performed in any geometry and any length to aspect ratio without the antenna efficiency suffers. In particular, antenna fields of very low height can be realized.
  • horns are by far the most efficient single emitters in fields.
  • horns can be designed broadband.
  • grating lobes In the case of antenna fields which are constructed from horn radiators and are fed with pure waveguide networks, however, the known problem of significant parasitic sidelobes (so-called ā€œgrating lobesā€ or ā€œgrating lobesā€) occurs in the antenna pattern. These grating lobes are caused by the fact that the beam centers (phase centers) of the antenna elements which form the antenna field, due to the dimension of the Hohleiternetztechnike by design too far away from each other. This can, especially at frequencies above about 20 GHz, at certain beam angles to the positive interference of the antenna radiator and thus lead to the unwanted emission of electromagnetic power in unwanted solid angle ranges.
  • reception and transmission frequencies are also far apart in terms of frequency, and if the distance between the beam centers has to be designed according to the minimum useful wavelength of the transmission band, then the horns regularly become so small that the reception band can no longer be supported by them.
  • the minimum useful wavelength is only about 1cm. So that the radiation elements of the antenna field are dense, so no parasitic side lobes (grating lobes) occur, the aperture area of a square horn may only be about 1cm x 1cm. However, conventional horns of this size have only a very low performance in the reception band at approx. 18 GHz - 21 GHz, since they have to be operated close to the cut-off frequency because of the finite aperture angle. The Ka-receiving band can no longer support such horns or their efficiency decreases very much in this band.
  • the horns are generally intended to support two orthogonal polarizations, which further restricts the geometrical margin, since an orthomode transducer, so-called transducers, becomes necessary at the horn output.
  • An embodiment of the orthomode signal converter in waveguide technology fails regularly because at higher GHz frequencies not enough space is available.
  • feed networks for fields of horns which are implemented in high-power technology, produce only very small dissipative losses.
  • the individual horns of the fields are fed by waveguide components and the entire feed network also consists of waveguide components.
  • the receiving and the transmitting band are far apart in terms of frequency, however, the problem arises that conventional waveguides can no longer support the then required frequency bandwidth.
  • the required bandwidth is more than 13 GHz (18 GHz - 31 GHz).
  • Conventional rectangular waveguides can not efficiently support such a large bandwidth.
  • grating-free free antenna diagrams can be achieved if the phase centers of the individual emitters are less than one wavelength of the maximum useful frequency.
  • the side lobes of the antenna diagram can be suppressed by parabolic amplitude assignments of such antenna fields (eg JD Kraus and RJ Marhefka, "Antennas: for all applications", 3rd ed., McGraw-Hill series in electrical engineering, 2002 ).
  • an antenna pattern which is optimally adapted to the regulatory mask for a given antenna size can be achieved (eg DE 10 2010 019 081 A1 ; Seifried, Wenzel et. al.).
  • an antenna device with a dual polarized four-comb antenna horn having an electrically conductive line with first and second opposite ends along a horn axis. On an inside of the electrically conductive Line four electrically conductive webs are arranged. A printed circuit board containing a dielectric substrate is connected across the first end of the dual polarized four-comb antenna horn and across the horn axis. Further, an electrically conductive pattern is formed on the dielectric substrate defining feed elements for the dual polarized four-comb antenna horn.
  • the DE 10 2010 019 081 A1 discloses an antenna for broadband satellite communication consisting of a field of primary horns interconnected by a waveguide feed network.
  • the Korean patent application KR20100072693 describes an antenna for improving the transmission / reception module having a horn antenna unit and a plurality of mode change units, wherein the horn antenna unit has a rectangular opening side and a grating is formed on the inner surface of the horn antenna unit.
  • the mode changing unit is formed inside the horn antenna unit as a staircase shape.
  • the object of the invention is to provide a broadband antenna system in the GHz frequency range, in particular for aeronautical applications, which allows a regulatory compliant transmission mode with maximum spectral power density at minimum dimensions and at the same time has a high antenna efficiency and low intrinsic noise in the receive mode.
  • the antenna system consists of at least four horns, the horns supporting two mutually orthogonal linear polarizations and are equipped in both polarization planes with constrictions.
  • the bandwidth of the horns can be greatly increased. This makes it possible, even broad transmit and receive bands or in large frequency spacing, as with the Ka-band, to use existing transmit and receive tapes.
  • both the horn radiators and the constrictions will be designed stepwise.
  • Horn horns can then be optimally adapted to the Nutzfrequenzb selected impedance.
  • the distance between the opposite, stepped constrictions and the opening of the associated horn cross-section is then selected in a preferred embodiment such that this distance decreases from stage to stage from the aperture opening to the horn end and at each stage to the respective distance and to the respective horn opening lower Cut-off frequency is less than the lowest usable frequency.
  • the horns are designed to support two orthogonal linear polarizations. With such horns, insulations far exceeding 40 dB can be achieved. Especially with signal codings with high spectral efficiency such isolation values are required.
  • the lower limit frequency belonging to the respective distance and to the respective horn opening can be determined by numerical simulation methods.
  • the distance of the phase centers of directly adjacent horn is smaller or at most equal to the wavelength ā‡ s of the highest transmission frequency below which, for regulatory reasons, no grating lobes may occur.
  • gradation of the horns and the stages of the constrictions are chosen so that at least for a part of the stages, for the distance d i of the i-th stages of two opposite Constrictions and the associated edge length a i of Hornstrahlerqueritess at the i-th stage (see. Fig. 4d ) d i ā‡ p 1 2 ā‡ ā‡ ā‡ e a i 2 - p 2 a i where ā‡ E denotes the wavelength of the lowest usable frequency and p 1 between 0.3 and 0.4 and p 2 between 0.25 and 0.35.
  • the apertures of the horns are approximately square with edge length a 0 . Then the horns are dense along two orthogonal directions and the antenna system is very well impedance matched to the useful frequency bands if for at least a portion of the stages, for the distance d i of the ith stages of two opposing constrictions and the associated edge length a i of the horn cross section at the i-th stage (cf. Fig.
  • an antenna system results which does not have any parasitic sidelobes (grating lobes) in any section through the antenna diagram and can also have a maximum antenna gain in all usable frequency bands.
  • Such antenna systems are particularly advantageous for aeronautical applications because they allow global deployment.
  • the individual radiators support a first and a second polarization and the two polarizations are mutually orthogonal.
  • the first and second polarization are linear polarizations.
  • the signals of the two orthogonal polarizations are carried in separate feed networks, which has the advantage that with the aid of corresponding components, such as e.g. Polarizers or 90 Ā° hybrid couplers, both linearly polarized signals and circularly polarized signals can be sent or received.
  • corresponding components such as e.g. Polarizers or 90 Ā° hybrid couplers
  • the antennas can have the smallest possible size and nevertheless a regulatory compliant transmission mode with maximum spectral power density is possible, it is also provided according to an advantageous development of the invention that at least a portion of the individual radiator is dimensioned so that the distance of the directly adjacent individual radiator Phase centers of the individual radiator is less than or equal to the wavelength of the highest transmission frequency at which no parasitic sidelobes (grating lobes) may occur (reference frequency in the transmission band).
  • At least four adjacent individual radiators are also located in different directly adjacent modules, then at least one direction is defined by the antenna field, so that for this direction the distance of the phase centers of the individual radiators is less than or equal to the wavelength of the highest transmission frequency, in which no parasitic side lobes ( grating-lobes) may occur.
  • grating lobes In this direction, preferably along a straight line through the antenna field, directly adjacent individual radiators are then close, so that no parasitic side lobes ("grating lobes") can occur in the corresponding section through the antenna pattern. Otherwise, would These grating awards lead to a strong reduction of the regulatory allowed spectral power density.
  • Such rectangular modules can be assembled in a space-saving manner to antenna fields.
  • the rectangular modules can be fed in a relatively simple manner with binary microstrip networks.
  • the individual radiators In order to realize antennas with the lowest possible dissipative losses, it is advantageous to design the individual radiators as horn radiators, which belong to the lowest-loss antennas. Both horns with rectangular and with a round aperture can be used. If grating lobes are not to occur in any section through the antenna pattern, square aperture horns are advantageous, the size of the aperture opening then being chosen such that the spacing of the phase centers of directly adjacent horns is less than or equal to the wavelength of the highest transmission frequency as the reference frequency. in which no grating praise may occur.
  • the horns can be advantageously carried out as a dielectrically filled horns.
  • the effective wavelength in the horns increases and these are able to support much larger bandwidths than would be the case without filling.
  • dielectric fillings lead to parasitic losses through the dielectric, these losses remain comparatively small, especially in the case of very small horns. For example, e.g. For applications in the Ka band, a dielectric filling with a dielectric constant of about 2 is sufficient. With horns only a few centimeters deep, this leads to losses of ā‡ 0.2 dB when using suitable materials.
  • the horns are designed as stepped horns ("stepped horns"). By adjusting the width and length of the steps, as well as the number of stages, can then the antenna can be optimally adapted to the respective usable frequency bands.
  • a further improvement in the reception power in particular in the case of very small horn radiators, can be achieved by equipping the individual horn radiators with a dielectric cross-septum or a dielectric lens.
  • the insertion loss (S 11 ) in the receiving band can be significantly reduced by such structures, even if the aperture areas of the individual radiators are already so small that a free-space wave without these additional dielectric structures would already be almost completely reflected.
  • the horns of the antenna array are fed in parallel according to a further advantageous development of the invention. This is most effective when the microstrip lines and the waveguides are constructed as binary trees, since the number of power dividers needed in the general case of arbitrary values of the total number of individual radiators N and arbitrary values of the number of individual radiators in a module N i becomes so minimal.
  • the binary trees are in the general case neither completely nor completely symmetrical.
  • the feed networks of the antenna system can be designed as complete and fully symmetrical binary trees and all individual emitters can have equal length feeder lines, ie also similar attenuations.
  • microstrip lines are located on a thin substrate and are guided in closed metallic cavities, wherein the cavities are typically filled with air.
  • a substrate is typically referred to as being thin if its thickness is smaller than the width of the microstrip lines.
  • the production of densely packed antenna systems can be greatly facilitated by being constructed of multiple layers and by having the microstrip feed networks of the two orthogonal polarizations between different layers.
  • the modules of the antenna system can then be assembled from a few layers.
  • the layers of aluminum or similar electrically conductive materials which can be structured with the known structuring method (milling, etching, lasers, wire erosion, water cutting, etc.).
  • the microstrip line networks are patterned on a substrate by known etching techniques.
  • the cavities through which the microstrip lines are routed are structured directly with the metallic layers. If the cavities are designed as notches or depressions in the metal layers lying above and below the microstrip line, then the microstrip line lies together with its substrate in a cavity which consists of two half shells. The walls of the cavity can be electrically closed by providing the substrate with electrical vias. In such arrangements, "fences" by Vias can almost completely prevent the loss of electromagnetic power.
  • reception and transmission bands of the antenna are very far apart in terms of frequency, then it may be the case that standard hollow conductors (rectangular waveguides) can no longer support the required bandwidth.
  • the number and arrangement of constrictions depend on the design of the antenna system.
  • double-ridged waveguides are advantageous, which can have a significantly larger bandwidth than standard waveguide.
  • These Waveguides have a geometric constriction parallel to the supported polarization direction, preventing the formation of parasitic higher modes.
  • dielectrically filled waveguides are used for the waveguide supply networks.
  • Such waveguides require much less space than air-filled waveguide.
  • a part or a whole waveguide network may additionally consist of dielectric filled waveguides. Also a partial filling is possible.
  • LNA low noise amplifier
  • HPA high power amplifier
  • Such frequency diplexers separate the reception from the transmission band.
  • waveguide diplexers are advantageous because they can achieve a very high isolation and are also very low attenuation.
  • each module of the antenna array is equipped with a diplexer directly at its output or input.
  • At the input and output of these diplexers are then all signal combinations in pure form: polarization 1 in the receiving band, polarization 2 in the receiving band, polarization 1 in the transmission band and polarization 2 in the transmission band.
  • the modules can then be interconnected by four corresponding waveguide networks. This embodiment has the advantage that the waveguide feed networks do not have to be very broadband in terms of frequency because they each only have to be suitable for signals of the receiving or transmitting band.
  • the frequency diplexers are mounted only at the input or output of the waveguide networks. Such an embodiment saves space, but typically requires a broadband design of the waveguide networks.
  • both the intra-modular Microstrip lines networks as well as the inter-modular waveguide networks are designed so that they can simultaneously support the transmitting and the receiving band.
  • the antenna is provided with frequency diplexers which are connected to a suitable radio frequency switching matrix, then dynamic switching between the orthogonal polarizations is possible (polarization switching).
  • Such embodiments are particularly advantageous when the antenna is to be used in satellite services, which work with the so-called ā€œspot beamā€ technology.
  • spot beam coverage areas (cells) of relatively small area are formed on the earth's surface (typical diameter in the Ka-band approx. 200km -300km).
  • frequency re-use adjacent cells are only distinguished by the polarization of the signals.
  • the antenna is used in satellite services where the polarization of the transmit signal is fixed and does not change temporally or geographically, it is advantageous if the first intra-modular microstrip line network and the associated inter-modular waveguide network point to the Receiving band of the Antennne, and the second intra-modular microstrip network and the associated inter-modular waveguide network are designed for the transmission band of the antenna system.
  • This embodiment has the advantage that the respective feed networks can be optimized for the respective usable frequency band, and thus a very low-loss antenna system of very high performance is created.
  • the feed networks are equipped with so-called 90 Ā° hybrid couplers.
  • 90 Ā° hybrid couplers are four-ports which convert two orthogonal linearly polarized signals into two orthogonal circularly polarized signals and vice versa. With such arrangements, it is then possible to send or receive also circularly polarized signals.
  • the antenna array for receiving and transmitting circularly polarized signals can also be equipped with a so-called polarizer.
  • these are suitably structured metallic layers ("layers") which lie in a plane approximately perpendicular to the propagation direction of the electromagnetic wave.
  • the metallic structure acts in such a way that it acts capacitively in one direction and inductively in the orthogonal direction. For two orthogonally polarized signals, this means that a phase difference is imposed on the two signals. If the phase difference is now set to be just 90 Ā° when passing through the polarizer, then two orthogonal linearly polarized signals are converted to two orthogonal circularly polarized signals, and vice versa.
  • the polarizer advantageously consists of several layers, which are mounted at a certain distance (typically in the region of a quarter wavelength) from each other.
  • a particularly suitable embodiment of the polarizer is a multi-layer meander polarizer.
  • metallic meander structures of suitable dimensions are patterned on a typically thin substrate using the usual structuring methods.
  • the substrates structured in this way are then glued onto foam boards or laminated to form sandwiches.
  • foams are e.g. low-loss closed-cell foams such as Rohacell or XPS in question.
  • very high useful bandwidths and high cross-polarization isolations are achieved when the polarizer is not mounted exactly perpendicular to the direction of propagation of the electromagnetic wave in front of the antenna field, but slightly tilted.
  • the typical distance of the polarizer to the aperture surface of the antenna array is in the range of a wavelength of the useful frequency and the tilt angle to the aperture plane in the range of 2 Ā° to 10 Ā°.
  • Parabole amplitude assignments of the aperture are particularly suitable in the case of flat aperture openings for this purpose. Parabole amplitude assignments are characterized in that the power contributions of the individual radiators from the edge of the antenna field towards the center increase and z. B. results in a parabolic-like course.
  • Such amplitude assignments of the antenna field lead to a suppression of the side lobes in the antenna pattern and thus to a higher regulatory allowable spectral power density.
  • the amplitude occupancy of the antenna field system is preferably designed to be at least along the direction through the antenna system in which the radiating elements are dense. acts.
  • the beam elements are dense in the direction in which the distance of the phase centers of the individual radiators is less than or equal to the wavelength of the highest transmission frequency at which no significant parasitic side lobes (grating lobes) may occur.
  • Fig. 1 represents an exemplary embodiment of an antenna module of an antenna according to the invention.
  • the individual emitters 1 are designed here as rectangular horns, which can support two orthogonal polarizations.
  • the intra-modular microstrip line networks 2, 3 for the two orthogonal polarizations are located between different layers.
  • the dimensions of the individual radiators and the size of their aperture surfaces are chosen so that the distance of the phase centers of the individual beam elements along both major axes is smaller than ā‡ min , where ā‡ min denotes the wavelength of the highest useful frequency. This distance ensures that parasitic sidelobes, so-called ā€œgrating lobes", can not occur in any direction in the antenna diagram up to the highest usable frequency (reference frequency).
  • both microstrip line networks provide a 64: 1 power splitter as they combine the signals from 64 individual emitters.
  • An exemplary internal organization of the two microstrip transmission networks is in Fig. 2 shown.
  • the modules comprise a smaller or larger number of horns.
  • K / Ka band antennas e.g. 4 x 4 modules are optimal.
  • the microstrip line networks then provide a 16: 1 power splitter that merges the signals from 16 individual emitters.
  • the microstrip lines in this case are relatively short and their noise contribution therefore remains small.
  • an antenna with optimum performance parameters can be constructed by appropriate design of the module sizes.
  • the modules are only made as large as necessary in order to feed them with waveguides can. The parasitic noise contribution of the microstrip lines is thereby minimized.
  • the two microstrip line networks 2, 3 couple the merged signals into polarized-to-waveguide couplings 4, 5, respectively, according to polarization, as shown in FIG Fig. 1b is shown.
  • polarized-to-waveguide couplings 4, 5 By means of these waveguide couplings 4, 5, an arbitrarily large number of modules can be coupled efficiently and with low attenuation to form an antenna system according to the invention with the aid of waveguide networks.
  • Fig. 2 shows two exemplary microstrip line networks 2, 3 for feeding the individual radiator 1 of the 8 x 8 antenna module of Fig. 1 , Both networks are designed as binary 64: 1 power dividers.
  • the orthogonally polarized signals in the individual horns of the 8 x 8 module or coupled is input or output to the waveguide couplings 4a and 5a in waveguides. Since the two microstrip line networks 2, 3 are typically superimposed in two planes, waveguide feedthroughs 4b and 5b are also located on the corresponding board in order to create an opening and the connection to the waveguide couplings 4a and 5a, respectively.
  • the microstrip line networks 2, 3 can be made by any known method. Whereby low-loss substrates for antennas are particularly suitable.
  • Fig. 3 shows by way of example how different antenna modules 8 can be coupled to antenna systems according to the invention.
  • Antenna systems according to the invention consist of a number M of modules, where M must be at least two.
  • modules may e.g. also be arranged in a circle. Also, not all modules must have the same size (number of individual emitters).
  • the modules 8 are now connected to each other by means of the waveguide networks 9, 10.
  • the waveguide networks 9, 10 themselves each represent an M: 1 power divider, so that the two orthogonally polarized signals can be fed into the antenna system via the sum ports 13, 14 or be coupled out of the antenna system.
  • waveguides 9, 10 can be provided with a wide variety of waveguides, such as, for example, waveguide networks.
  • waveguide networks Conventional rectangular or round waveguides or broad-banded ridged waveguides are used. Dielectric filled waveguide are conceivable.
  • the antenna consists of an antenna array of N individual radiators 1, wherein each individual radiator 1 can support two independent orthogonal polarizations and N denotes the total number of individual radiators 1 of the antenna array.
  • the individual radiators 1 are dimensioned (s. Fig. 1 ) that for at least one direction through the antenna array, the distance of the phase centers of the horns is less than or equal to the wavelength of the highest transmission frequency at which no grating lobes may occur.
  • the individual radiators 1 are supplied separately by microstrip lines for each of the two orthogonal polarizations (see FIG. Fig. 2 Microstrip-to-waveguide couplings 6, 7).
  • microstrip lines of one orthogonal polarization are connected to the first intra-modular microstrip line network 2 and the microstrip lines of the other orthogonal polarization are connected to the second intra-modular microstrip network 3.
  • the first micro-strip intra-modular network 2 is coupled to the first inter-modular waveguide network 9 and the second micro-strip intra-modular network 3 is coupled to the second inter-modular waveguide network 10 such that the first inter-modular waveguide network 9 receives all of the one orthogonal signals Polarization at the first sum port 13 merges and the second inter-modular waveguide network 10 all signals of the other orthogonal polarization at the second summing port 14 merges.
  • microstrip line networks 2, 3 and the waveguide networks 9, 10 are constructed here as complete and fully symmetrical binary trees, so that all individual radiators 1 are fed in parallel.
  • the Figures 3c and 3d show a physical realization of a corresponding antenna system.
  • the modules 8 consist of individual radiators 1 and have two different sizes, ie the number of individual radiators 1 per module 8 is not the same for all modules 8.
  • the middle four modules 8 each have 8 individual emitters 1 more than the other four modules 8.
  • the height of the antenna system at the left and right edges is less than in the central area.
  • Such embodiments are particularly advantageous when the antenna system must be optimally adapted to an aerodynamic radome.
  • the modules 8 are fed separately with two waveguide networks 9 and 10 for each polarization.
  • the waveguide networks 9, 10 are located in two separate layers behind the modules and the modules are connected to the waveguide networks 9, 10 through the coupling points 11, 12, which are coupled to the waveguide couplings of the modules 4, 5 ,. Both waveguide networks 9, 10 are realized here as cutouts.
  • the receive frequency band is about 19GHz - 20GHz and the Transmitting frequency band at approx. 29GHz - 30GHz.
  • the aperture of the individual radiators 1 In order to fulfill the condition that the antenna pattern in the transmission band is free of parasitic sidelobes ("grating lobes"), the aperture of the individual radiators 1 must not be more than 1 cm x 1 cm in size ā‡ min is 1 cm).
  • the primary individual radiators 1 are designed as ridged horns. Such horns have a much wider than conventional horns frequency bandwidth.
  • the impedance matching of such toothed horns to the free space then takes place according to the method of antenna physics.
  • the serrated horns are designed to support two orthogonal polarizations. This is e.g. achieved in that the horns are serrated quadruple symmetrical ("quad-ridged").
  • the signals of the orthogonal polarizations are supplied and removed by separate microstrip line networks 2, 3.
  • Fig. 4a schematically shows the detailed structure of a equipped with symmetrical geometrical constrictions horn with the example of a four-tooth horn horn 1.
  • the horn 1 consists of three segments (layers), which are located between the segments, the two microstrip lines networks 2.3.
  • the horns 1 are provided with symmetrical geometric constrictions 15, 16 corresponding to the orthogonal directions of polarization which extend along the propagation direction of the electromagnetic wave.
  • Such horns are referred to as "toothed" horns.
  • Is shown in Fig. 4a an exemplary quadruple toothed single horn that can support broadband two orthogonal polarizations.
  • the geometric constrictions are executed stepped and the distance of the constrictions 15, 16 to each other decreases in the direction of the coupling and decoupling.
  • a very large frequency bandwidth can be achieved.
  • horn horns 1 can be realized, which can also support frequency far distant transmitting and receiving tapes without significant losses in efficiency.
  • An example of this are K / Ka band satellite antennas.
  • the reception band lies at 18 GHz - 21 GHz and the transmission band at 28 GHz - 31 GHz.
  • the depth, width and length of the steps depend on the desired frequency bands and can be determined with numerical simulation methods.
  • the coupling or decoupling of the signals onto the microstrip network 2, 3 typically takes place at the narrowest point of the constrictions 15, 16 for the respective polarization direction, which allows a very broadband impedance matching.
  • Fig. 4d schematically shows a part of the longitudinal section through a toothed horn at the location of two opposing constrictions 16.
  • the constrictions 16 are executed stepped and the distance d i of opposite stages decreases from the aperture of the horn (above) to the horn end (down) down.
  • the horn itself is stepped (cf. Fig. 4a-c ), so that at each stage, the edge length a i of the horn opening in the corresponding cross section from the aperture of the horn to the horn end also decreases.
  • the distances d i and the associated edge lengths a i , or at least a part thereof, are now designed so that the associated lower limit frequency of the respective toothed waveguide section is below the lowest useful frequency of the horn. Only when this condition is met can the electromagnetic wave of the appropriate wavelength penetrate into the horn to waveguide-to-microstrip line coupling, where it can be coupled in and out.
  • the distances d i and the associated edge lengths a i are advantageously chosen so that a sufficient distance to the cutoff frequency remains and the attenuation does not become too high.
  • Fig. 5 3 schematically shows the structure according to the invention of a 2 ā‡ 2 antenna module consisting of four quadruple toothed horns 1, four outcouplings 17 on the microstrip line networks 2, 3, two microstrip line networks 2, 3 separated for each of the two orthogonal polarizations, and outcouplings of the microstrip line networks 2, 3 on the waveguide coupling 4, 5 has.
  • the constrictions as symmetrical teeth 15, 16 of the horns 1 are also shown.
  • the two orthogonally polarized signals pol 1 and pol 2 whose reception or radiation is supported by the horns 1 are fed through the extraction or injection points 17 in the corresponding microstrip line network 2, 3 and extracted from this.
  • microstrip line networks 2, 3 are designed as binary 4: 1 power dividers and couple the sum signals into the waveguides 4, 5.
  • the distance of the phase centers of two adjacent horns 1 in the vertical direction is smaller than ā‡ min , so that at least in this direction in the antenna diagram no unwanted parasitic side lobes ("grating lobes") can occur and the horns are dense in this direction.
  • phase centers of the horns 1 fall in the in Fig. 5 illustrated example with the beam centers of the horns 1 together. In general, however, this is not necessarily the case. However, the position of the phase center of a horn 1 of any geometry can be determined by numerical simulation methods.
  • microstrip lines For the coupling and decoupling of the signals supported by the toothed horns 1 microstrip lines are due to their known broadband in a special way. In addition, microstrip lines require very little space, so that highly efficient, broadband horn antenna systems whose antenna diagrams have no parasitic side lobes ("grating lobes"), even for very high frequencies (eg 30 GHz - 40 GHz) can be realized.
  • grating lobes parasitic side lobes
  • Fig. 6 a further embodiment of the invention is shown.
  • the antenna modules of dielectric filled horns 18 are constructed.
  • the horns 18 filled with a dielectric 19 are arranged here by way of example in an 8 ā‡ 8 antenna field and are coupled to one another via the microstrip line networks 2 and 3.
  • the microstrip line networks 2, 3 couple the sum signals into the waveguide couplings 4, 5.
  • the dielectric packing (dielectric) 19 also consists of three segments, each defined by the microstrip line networks 2, 3.
  • the individual radiators 1 can support two widely spaced frequency bands, they are executed stepped in their interior, as in the sections Fig. 7b-c is shown by way of example.
  • the extraction or coupling of the highest frequency band is typically at the narrowest or lowest point by the microstrip network 3, which is farthest from the aperture of the single radiator 1.
  • the lower frequency band is switched on or coupled in at a further point to the aperture opening, by a microstrip line network 2.
  • the depth, width and length of the steps depend on the desired frequency bands and can also be determined with numerical simulation methods.
  • the horn 1 can also be designed so that both inputs and outputs can support both the transmit and the receive frequency band.
  • the dielectric filling body 19 is also designed to match exactly stepped.
  • the shape of the filling body 19 on the aperture surface depends on the electromagnetic requirements of the antenna pattern of the single radiator 1.
  • the filler 19 can be performed flat as shown at the aperture opening. However, there are also other, for example, inward or outward curved versions possible.
  • dielectrics come a variety of known materials such as Teflon, polypropylene, polyethylene, polycarbonate, or polymethylpentene in question.
  • a dielectric having a dielectric constant of about 2 is sufficient (e.g., Teflon, polymethylpentene).
  • the horn antenna 18 is completely filled with a dielectric 19.
  • embodiments with only partial filling are also possible.
  • the advantage of using dielectrically filled horns is that the horns themselves have a much less complex internal structure than in the case of toothed horns.
  • Fig. 7d is an advantageous embodiment of a stepped executed dielectrically filled horn radiator, which has a rectangular aperture has shown schematically.
  • Fig. 7d shows the view of the horn from above (top view) with the aperture edges k 1 and k 2 , and the longitudinal sections through the horn along the lines AA 'and B-B'.
  • the horn is now designed so that there is a first rectangular cross-section through the horn, the opening of which has a long edge k E , and a second cross-section exists through the horn, the opening of which has a long edge k s .
  • the horn support the reception band.
  • the horn can also support the transmission band, and this is true even if the reception band and transmission band are far apart.
  • Such stepped horn radiators can also be operated without or only with partial dielectric filling and that the in Fig. 7d illustrated embodiment can be extended to any number of rectangular horn sections and thus to any number of Nutzb Sn.
  • the edge lengths k 1 and k 2 of the rectangular aperture of the horn are chosen so that both k 1 as well as k 2 are smaller or highest equal to the wavelength of the reference frequency, which is in the transmission band of the antenna.
  • the available space is then optimally utilized and a maximum antenna gain is achieved.
  • Fig. 8 shows an exemplary 2 x 2 antenna module, which consists of four dielectrically filled horns 18. As in Figure 7b-c shown here are the inputs or outputs in the microstrip network 2, 3 completely embedded in the dielectric 19. Otherwise, the module does not differ from the corresponding module of toothed horns, as in Fig. 5 is shown, the microstrip line networks 2, 3 are connected to the waveguide couplings 4, 5 respectively.
  • Fig. 9 is shown a further advantageous embodiment.
  • the module is equipped with a dielectric grid 20 extending over the entire aperture opening.
  • Such dielectric gratings 20 can greatly improve the impedance matching, particularly at the lower frequency band of the single radiators 1, by reducing the effective wavelength in the vicinity of the aperture openings of the single radiators 1.
  • Fig. 9 This is achieved by the fact that dielectric crosses are located above the centers of the aperture openings of the individual radiators. It is, however Other embodiments such as cylinders, spherical body, cuboid etc. possible. Also, the dielectric grid 20 need not be regular or periodic. For example, it is conceivable that the grating for the horns 1 at the edge of the antenna has a different geometry than for the horns 1 in the center. Thus, for example, edge effects could be modeled.
  • Fig. 10a-b represents an exemplary module, which is built in layer technology.
  • modules according to the invention can be produced particularly cost-effectively.
  • the reproducibility of the modules is guaranteed.
  • the first layer consists of an optional polarizer 21, which is used in circularly polarized signals.
  • the polarizer 21 converts linearly polarized signals into circularly polarized and vice versa, depending on the polarization of the incident signal.
  • circularly polarized signals are converted into linearly polarized signals, so that they can be received lossless from the horns of the module.
  • the linearly polarized signals radiated from the horns are converted into circularly polarized signals and then radiated into the clearance.
  • the next two layers form the front part of the horn radiation field, which comprises the primary horn structures 22 without coupling-in or coupling-out unit.
  • the following layers 23a, 2 and 23b form the coupling in and out of the first linear polarization from the horns of the field.
  • the microstrip line network 2 of the first polarization and its substrate are embedded in metallic carriers (layers) 23a, 23b.
  • the carriers 23a, 23b have recesses (notches) at the locations where a microstrip line runs (cf. Fig. 11d , Reference numeral 25).
  • microstrip line network 3 of the second, orthogonal polarization with its substrate is embedded in the carriers 23b, 23c.
  • the primary horn structures 22, the carriers 23a-c and waveguide terminations 24 are electrically conductive and can be inexpensively produced using the known methods of metal working, for example, made of aluminum (eg milling, laser cutting, water jet cutting, electroeroding).
  • the layers from plastic materials, which are subsequently completely or partially coated with an electrically conductive layer (for example galvanically or chemically).
  • an electrically conductive layer for example galvanically or chemically.
  • the plastic layers e.g. also the known injection molding process can be used.
  • Such embodiments have the advantage over layers of aluminum or other metals that a significant weight reduction can result, which is particularly advantageous in applications of the antenna system on aircraft.
  • the layer technique described can be used equally well for antenna modules made of toothed horns as well as modules made of dielectrically filled horns.
  • Fig. 11a-d 10 show the detail structure of the microstrip line networks 2, 3 embedded in the metallic carriers.
  • the recesses (notches) 25 are designed so that the microstrip lines 26 of the microstrip line networks 2, 3 run in closed metallic cavities. The microwave losses are thereby minimized.
  • the substrates (circuit board) of the microstrip lines 26 since with the finite thickness of the substrates (circuit board) of the microstrip lines 26 a gap remains between the metallic layers, could escape through the microwave power, it is provided to the substrates with metallic vias 27 at the edges of the notches, so that the metallic supports are galvanically connected, and so the cavities are completely electrically closed. If the plated-through holes 27 are sufficiently dense along the microwave lines 26, then microwave power can no longer escape.
  • the plated-through holes 27 are flush with the metallic walls of the cavity 25.
  • the electromagnetic properties of such a structure are similar to those of an air-filled coaxial line.
  • a very broadband microwave line is possible and parasitic higher modes are not capable of propagation.
  • the tolerance requirements are low.
  • the plated-through holes may also be dispensed with, as well as without them Vias then virtually no microwave power can escape through the then very narrow slots.
  • the Hornstrahlereinkopplitch or -auskopplungen 6, 7 are integrated directly into the metallic carrier.
  • Fig. 12 shows the vacuum model of an exemplary 8 x 8 antenna module.
  • the horns 1 are densely packed and still leaves more than enough space for the microstrip line networks 2, 3, and for the waveguide terminations 28 of the individual radiator 1 and the waveguide couplings 4, 5.
  • a dielectric grating 20 is mounted in front of the aperture plane.
  • the waveguide networks which couple the modules together from toothed waveguides.
  • toothed waveguides can have a much greater frequency bandwidth than conventional waveguides or can be designed specifically for different useful bands.
  • FIG Fig. 13 An exemplary network of dual-toothed waveguides is shown in FIG Fig. 13 shown schematically.
  • the rectangular waveguides are provided with symmetrical geometrical constrictions 29, which are supplemented by vertical constrictions 30 at the location of the power dividers.
  • the design of the toothed waveguides and corresponding power dividers can be done by the methods of numerical simulation of such components, depending on the requirements of the network.
  • the waveguides of the inter-modular waveguide networks are completely or partially filled with a dielectric.
  • Such fillings can significantly reduce the space requirement compared to unfilled waveguides with the same useful frequency. This results in very compact, space-optimized antennas, which are particularly suitable for applications on aircraft.
  • Both standard waveguides and waveguides with geometric constrictions can be filled with a dielectric.
  • the antenna is equipped with a multilayer meander polarizer.
  • Fig. 14 shows an example of a position of such a polarizer.
  • multilayer meander polarizers are used.
  • Fig. 14 several of the in Fig. 14 layers shown in parallel planes arranged one above the other. Between the layers there is a low-loss layer of foam material (eg Rohacell, XPS) with a thickness in the region of a quarter of a wavelength. With lower axle ratio requirements, however, fewer layers may be used. Likewise, more layers can be used if the axis ratio requirements are high.
  • a low-loss layer of foam material eg Rohacell, XPS
  • fewer layers may be used.
  • more layers can be used if the axis ratio requirements are high.
  • An advantageous arrangement is a 4-layer meander polarizer with the axial ratios of less than 1 dB can be achieved, which is usually sufficient in practice.
  • the design of the meander polarizers depends on the useful frequency bands of the antenna system and can be done with methods of numerical simulation of such structures.
  • the meandering lines 31 are in the embodiment of Fig. 14 at an angle of about 45 Ā° to the main axes of the antenna. This results in incident, linearly polarized along a major axis signals are converted into circularly polarized signals. Depending on which main axis the signals are linearly polarized, a left-circularly polarized or a right-circularly polarized signal is produced.
  • the meander polarizer is a linear device, the process is reciprocal, i. In the same way, left- and right-circularly polarized signals are converted into linearly polarized signals.
  • the polarizer 21 may be mounted in front of the aperture opening. This makes it possible in a relatively simple manner to use the antenna for both linearly polarized signals and for circularly polarized signals, without the need to change the internal structure for it.
  • the antenna is equipped with a parabolic amplitude assignment, which is realized by a corresponding design of the power divider of the feed networks. Since the antenna pattern must be below a mask prescribed by regulations, such amplitude assignments can achieve much higher maximum permitted spectral EIRP densities in the transmit mode than without such assignments. This is of great advantage, in particular for antennas with a small aperture area, since the maximum regulatory-compliant spectral EIRP density is directly proportional to the achievable data rate and thus to the cost of a corresponding service.
  • Fig. 15a such an amplitude assignment is shown schematically.
  • the power contributions of the individual horns fall from the center of the aperture to the edge.
  • this is exemplified by different degrees of blackening (dark: high performance contribution, bright: low contribution to performance).
  • the contributions to performance fall in both main axis directions (azimuth and elevation). This results in an approximately optimally matched to the regulatory mask antenna pattern for all angles of rotation ("skew").
  • amplitude occupancy only runs parabolically in the area around the antenna center, but increases again when approaching the edge, so that there is a closed curve around the antenna center and the power contributions of the individual radiators from the center of the antenna to each point of this curve fall off.
  • amplitude assignments may be of particular advantage for non-rectangular antennas.
  • EIRP SD maximum regulatory compliant spectral EIRP density
  • skew the angle of rotation about the main beam axis
  • the EIRP SD would be about 8 dB lower in the range of 0 Ā° skew to about 55 Ā° skew, and about 4 dB lower in the range of about 55 Ā° skew to about 90 Ā° skew.
  • Fig. 16-18 show the basic structure of a number of antenna systems according to the invention with different functional scope in the form of block diagrams.
  • the antenna system whose basic structure in Fig. 16 is particularly suitable for applications in the K / Ka band (reception band approx. 19.2GHz -20.2GHz, transmission band approx. 29GHz -30GHz) where the polarizations of the transmission and reception signals are fixed and orthogonal to each other (ie Polarization direction of the signals does not change).
  • a polarizer 21 is provided. This is followed by an antenna field 32, which is constructed either of four-toothed ("quad-ridged") horn radiators or of dielectrically filled horn radiators.
  • the aperture openings of the individual horns typically have dimensions smaller than 1cm x 1cm in this frequency range.
  • the antenna array 32 is organized in modules, each individual radiator having two microstrip line couplings or outcouplings 33 separated by polarization, which in turn are connected to two microstrip line networks 36 separated by polarization.
  • the microstrip line network 36 of one polarization be placed on the transmit band and the microstrip line network 36 of the other polarization on the receive band.
  • the polarizer 21 is oriented such that the signals in the transmission band 34 are right-handed circular and the signals in the reception band 35 are circularly polarized left-handed.
  • the signals separated by polarization and frequency band of the two microstrip line networks 36 of the individual modules are now coupled with microstrip line-to-waveguide couplings 37 in two waveguide networks 38.
  • the two waveguide networks 38 will be optimized for the corresponding band they are to support.
  • different waveguide cross sections can be used for the receive band waveguide network and the transmit band waveguide network.
  • a receive band frequency filter 39 is provided to protect the low noise receive amplifier, which is typically mounted directly on the receive band output of the antenna, from being overdriven by the strong transmit signals.
  • an optional transmission band filter 40 is also provided. This is e.g. required when a transmit band power amplifier (HPA), not shown, does not have a sufficient filter at its output.
  • HPA transmit band power amplifier
  • the in Fig. 16 shown construction of an antenna system according to the invention has another, especially for satellite antennas, very important advantage. Since the transmit band feed network and the receive band feed network are completely separated from each other both at the microstrip line level and at the waveguide level, it becomes possible to use different amplitude assignments for the two networks.
  • the receive band feed network is homozygously occupied, i. the power contributions of all of the antenna's horns are the same in the receive band and all power dividers at both the receive band microstrip line level and the receive band waveguide network level are balanced 3dB power dividers when the feed network is constructed as a complete and fully symmetric binary tree.
  • the transmit band feed network can be provided with a parabolic amplitude assignment independently of the receive band feed network in such a way that the regulatory compliant spectral EIRP density becomes maximum.
  • the essential features of satellite antennas are the G / T and the maximum regulatory compliant spectral EIRP density.
  • the G / T is directly proportional to the data rate that can be received via the antenna.
  • the maximum regulatory EIRP spectral density is directly proportional to the data rate that can be transmitted with the antenna.
  • Fig. 17 the structure of an antenna system according to the invention is shown in the form of a block diagram, which allows simultaneous operation with all four possible polarization combinations of the signals.
  • the antenna system initially consists of an antenna array 41 of broadband, dual polarized horns, e.g. fourfold toothed horns, which are organized according to the invention in modules.
  • Each horn radiator receives two orthogonal linear polarized signals which, however, also contain the full information when operating with circularly polarized signals.
  • the main difference to the embodiment in Fig. 16 consists in the fact that is not separated at the level of the feed networks in a receive band and a transmit band feed network, but the signals are separated only according to their different polarization.
  • All signals 42 of the same polarization are combined after the extraction 33 from the antenna field in the first microstrip network, all signals of the orthogonal polarization 43 in the second microstrip network.
  • the two microstrip line networks 36 are designed such that they support both the transmission band and the receiving band.
  • An optimization of the feed networks on one of the tapes is possible here only to a limited extent. However, all four polarization combinations are simultaneously available for this.
  • microstrip networks 36 of the present invention are typically already broadband by design (coaxial line like construction) to simultaneously support the receive and transmit bands
  • waveguide networks 44 must be used if very large bandwidths are required specially designed. This can be done by the in Fig. 13 described toothed waveguide done. However, it is also possible to use, for example, dielectrically filled waveguides.
  • the frequency diplexers 45, 46 are e.g. low attenuation waveguide diplexer.
  • two 90 Ā° hybrid couplers 47, 48 When operating with circularly polarized signals, two 90 Ā° hybrid couplers 47, 48, one for the receive 49 and one for the transmit band 50, are additionally provided, with the aid of which at the output of the frequency diplexers 45, 46 present linear polarized signals, circular polarized signals can be combined.
  • the 90 Ā° hybrid couplers 47, 48 are, for example, low-attenuation waveguide couplers.
  • the antenna system can also be used for simultaneous operation with four different linearly and four different circularly polarized signals be used. Many other combinations and the corresponding antenna configurations are possible.
  • Fig. 18 the structure of an antenna system according to the invention in the form of a block diagram is shown, which has the same scope of functions as in Fig. 16 has shown antenna, but is organized differently.
  • a polarizer 21 is used instead of the 90 Ā° hybrid couplers 47, 48 of the design Fig. 17 ,
  • the feed networks 36, 44 process again two orthogonal polarizations separated from each other (in this case left-circular and whilzikular) and are each designed correspondingly broadband for the receiving band and the transmission band.
  • the frequency diplexers 45, 46 are then directly the four polarization combinations of circularly polarized signals simultaneously.
  • the frequency-diplexer 45 for the first circular polarization the signal in the receive and transmit band
  • the frequency diplexer 46 for the second (to the first orthogonal) circular polarization the signal in the receive and transmit band.
  • radomes by the radome material and the radome curvature may have polarization anisotropies which cause the axis ratio of circularly polarized signals to be greatly altered as it passes through the radome.
  • a structure of the antenna after Fig. 17 now allows the axis ratio of the circularly polarized signals, for example, in the transmit mode to be adjusted so that a subsequent, caused by the Radom trimgang polarization distortion is compensated. A degradation of the cross-polarization isolation thus does not take place effectively.

Description

Die Erfindung betrifft ein Antennensystem zur breitbandigen Kommunikation zwischen Erdfunkstellen und Satelliten, insbesondere fĆ¼r mobile und aeronautische Anwendungen.The invention relates to an antenna system for broadband communication between earth stations and satellites, in particular for mobile and aeronautical applications.

Der Bedarf an drahtlosen BreitbandkanƤlen zur DatenĆ¼bertragung mit sehr hohen Datenraten, insbesondere im Bereich der mobilen Satellitenkommunikation steigt stƤndig an. Es fehlt jedoch insbesondere im aeronautischen Bereich an geeigneten Antennen, welche insbesondere die fĆ¼r den mobilen Einsatz erforderlichen Bedingungen, wie geringe Abmessungen und geringes Gewicht, erfĆ¼llen kƶnnen. FĆ¼r die gerichtete, drahtlose Datenkommunikation mit Satelliten (z.B. im Ku- oder Ka-Band) bestehen zudem extreme Anforderungen an die Sendecharakteristik der Antennensysteme, da eine Stƶrung benachbarter Satelliten zuverlƤssig ausgeschlossen werden muss.The demand for wireless broadband data transmission channels with very high data rates, especially in the field of mobile satellite communications, is steadily increasing. However, especially in the aeronautical field, there is a lack of suitable antennas, which in particular can fulfill the conditions required for mobile use, such as small dimensions and low weight. For directional, wireless data communication with satellites (for example in the Ku or Ka band), there are also extreme demands on the transmission characteristics of the antenna systems, since interference with neighboring satellites must be reliably excluded.

In aeronautischen Anwendungen sind das Gewicht und die GrĆ¶ĆŸe des Antennensystems von sehr groƟer Bedeutung, da sie die Nutzlast des Flugzeugs verringern und zusƤtzliche Betriebskosten verursachen.In aeronautical applications, the weight and size of the antenna system are very important because they reduce the payload of the aircraft and cause additional operating costs.

Das Problem besteht deshalb darin, mƶglichst kleine und leichte Antennensysteme zur VerfĆ¼gung zu stellen, welche dennoch im Betrieb auf mobilen TrƤgern den regulatorischen Anforderungen an den Sende- und Empfangsbetrieb genĆ¼gen.The problem therefore is to provide antenna systems that are as small and lightweight as possible, which nevertheless satisfy the regulatory requirements for transmitting and receiving operation when operating on mobile carriers.

Die regulatorischen Anforderungen an den Sendebetrieb ergeben sich z.B. aus den Normen 47 CFR 25.209, 47 CFR 25.222, 47 CFR 25.138, ITU-R M.1643, ITU-R S.524-7, ETSI EN 302 186 oder ETSI EN 301 459. Alle diese regulatorischen Vorschriften sollen sicherstellen, dass im gerichteten Sendebetrieb einer mobilen Satellitenantenne keine Stƶrung benachbarter Satelliten auftreten kann. Hierzu werden typischerweise Envelopen (HĆ¼llkurven bzw. Masken) maximaler spektraler Leistungsdichte in AbhƤngigkeit vom Abstandswinkel zum Zielsatelliten definiert. Die fĆ¼r einen bestimmten Abstandswinkel vorgegebenen Werte dĆ¼rfen im Sendebetrieb des Antennensystems nicht Ć¼berschritten werden. Dies fĆ¼hrt zu strengen Anforderungen an die winkelabhƤngige Antennencharakteristik. Mit zunehmendem Abstandswinkel vom Zielsatelliten muss der Antennengewinn stark abfallen. Dies kann physikalisch nur durch sehr homogene Amplituden- und Phasenbelegungen der Antenne erreicht werden. Typischerweise werden daher Parabolantennen verwendet, die diese Eigenschaften aufweisen.For example, the regulatory requirements for broadcasting arise from the standards 47 CFR 25.209, 47 CFR 25.222, 47 CFR 25.138, ITU-R M.1643, ITU-R S.524-7, ETSI EN 302 186 or ETSI EN 301 459. All these regulatory provisions are intended to ensure that no interference of adjacent satellites can occur in the directional transmission mode of a mobile satellite antenna. For this purpose, envelopes (envelopes or masks) of maximum spectral power density are typically defined as a function of the distance angle to the target satellite. The for a given distance angle given values may not be exceeded in the transmission mode of the antenna system. This leads to stringent requirements for the angle-dependent antenna characteristic. As the distance from the target satellite increases, the antenna gain must drop sharply. This can be achieved physically only by very homogeneous amplitude and phase assignments of the antenna. Typically, therefore, parabolic antennas are used which have these properties.

FĆ¼r die meisten mobilen Anwendungen, insbesondere auf Flugzeugen, sind Parabolspiegel wegen ihrer GrĆ¶ĆŸe und wegen ihrer kreisfƶrmigen Apertur allerdings nur sehr schlecht geeignet. Bei Verkehrsflugzeugen zum Beispiel werden die Antennen auf dem Rumpf montiert und dĆ¼rfen daher wegen des zusƤtzlichen Luftwiderstandes nur eine mƶglichst geringe Hƶhe besitzen.However, parabolic mirrors are poorly suited for most mobile applications, especially on airplanes, because of their size and because of their circular aperture. In commercial aircraft, for example, the antennas are mounted on the fuselage and therefore may only have the lowest possible height because of the additional air resistance.

Antennen welche als Ausschnitte aus Paraboloiden ("bananenfƶrmige Spiegel") ausgefĆ¼hrt sind, sind zwar mƶglich, besitzen jedoch geometriebedingt nur eine sehr geringe Effizienz.Antennas which are designed as sections of paraboloid ("banana-shaped mirror"), although possible, but have geometriebedingt only a very low efficiency.

Antennenfelder, welche aus Einzelstrahlern aufgebaut sind und Ć¼ber geeignete Speisenetzwerke verfĆ¼gen, kƶnnen hingegen in beliebigen Geometrien und beliebigem LƤngen zu SeitenverhƤltnis ausgefĆ¼hrt werden, ohne dass die Antenneneffizienz darunter leidet. Insbesondere kƶnnen Antennenfelder sehr geringer Hƶhe realisiert werden.Antenna fields, which are constructed of individual radiators and have suitable feed networks, however, can be performed in any geometry and any length to aspect ratio without the antenna efficiency suffers. In particular, antenna fields of very low height can be realized.

Bei Antennenfeldern tritt jedoch insbesondere dann, wenn das Empfangsfrequenzband und das Sendefrequenzband weit auseinander liegen (wie z.B. im Ka-Band mit Empfangsfrequenzen bei ca. 18 GHz - 21 GHz und Sendefrequenzen bei ca. 28 GHz - 31 GHz) das Problem auf, dass die Einzelstrahler der Felder eine sehr groƟe Bandbreite unterstĆ¼tzen mĆ¼ssen.In the case of antenna fields, however, especially when the reception frequency band and the transmission frequency band are far apart (such as in the Ka band with reception frequencies at about 18 GHz - 21 GHz and transmission frequencies at about 28 GHz - 31 GHz), the problem arises that the Single radiators of the fields have to support a very large bandwidth.

Es ist bekannt, dass Hornstrahler die mit Abstand effizientesten Einzelstrahler in Feldern sind. Zudem kƶnnen Hornstrahler breitbandig ausgelegt werden.It is well known that horns are by far the most efficient single emitters in fields. In addition, horns can be designed broadband.

Bei Antennenfeldern, welche aus Hornstrahlern aufgebaut sind und mit reinen Hohleiternetzwerken gespeist werden, tritt allerdings das bekannte Problem signifikanter parasitƤrer Nebenkeulen (sog. "grating lobes" oder "Gitterkeulen") im Antennendiagramm auf. Diese Gitterkeulen entstehen dadurch, dass die Strahlzentren (Phasenzentren) der Antennenelemente, welche das Antennenfeld bilden, wegen der Dimension der Hohleiternetzwerke konstruktionsbedingt einen zu groƟen Abstand zueinander haben. Dies kann, insbesondere bei Frequenzen oberhalb etwa 20 GHz, unter bestimmten Strahlwinkeln zur positiven Interferenz der Antennenstrahler und damit zur unerwĆ¼nschten Abstrahlung von elektromagnetischer Leistung in unerwĆ¼nschte Raumwinkelbereiche fĆ¼hren.In the case of antenna fields which are constructed from horn radiators and are fed with pure waveguide networks, however, the known problem of significant parasitic sidelobes (so-called "grating lobes" or "grating lobes") occurs in the antenna pattern. These grating lobes are caused by the fact that the beam centers (phase centers) of the antenna elements which form the antenna field, due to the dimension of the Hohleiternetzwerke by design too far away from each other. This can, especially at frequencies above about 20 GHz, at certain beam angles to the positive interference of the antenna radiator and thus lead to the unwanted emission of electromagnetic power in unwanted solid angle ranges.

Liegen Empfangs- und Sendefrequenz zudem frequenzmƤƟig weit auseinander und muss der Abstand der Strahlzentren aus regulatorischen GrĆ¼nden gemƤƟ der minimalen NutzwellenlƤnge des Sendebandes ausgelegt werden, dann werden die Hornstrahler regelmƤƟig so klein, dass das Empfangsband von ihnen nicht mehr unterstĆ¼tzt werden kann.If reception and transmission frequencies are also far apart in terms of frequency, and if the distance between the beam centers has to be designed according to the minimum useful wavelength of the transmission band, then the horns regularly become so small that the reception band can no longer be supported by them.

Im Ka-Band beispielsweise liegt die minimale NutzwellenlƤnge bei nur ca. 1cm. Damit die Strahlelemente des Antennenfeldes dicht liegen, also keine parasitƤren Nebenkeulen (Gitterkeulen) auftreten, darf die AperturflƤche eines quadratischen Hornstrahlers nur noch ca. 1cm x 1cm betragen. Konventionelle Hƶrner dieser GrĆ¶ĆŸe besitzen im Empfangsband bei ca. 18 GHz - 21 GHz jedoch nur noch eine sehr geringe LeistungsfƤhigkeit, da sie wegen des endlichen Ɩffnungswinkels nahe an der cut-off Frequenz betrieben werden mĆ¼ssen. Das Ka-Empfangsband kƶnnen solche Hƶrner nicht mehr unterstĆ¼tzen oder ihre Effizienz nimmt in diesem Band sehr stark ab.In Ka band, for example, the minimum useful wavelength is only about 1cm. So that the radiation elements of the antenna field are dense, so no parasitic side lobes (grating lobes) occur, the aperture area of a square horn may only be about 1cm x 1cm. However, conventional horns of this size have only a very low performance in the reception band at approx. 18 GHz - 21 GHz, since they have to be operated close to the cut-off frequency because of the finite aperture angle. The Ka-receiving band can no longer support such horns or their efficiency decreases very much in this band.

Zudem sollen die Hornstrahler im Allgemeinen zwei orthogonale Polarisationen unterstĆ¼tzen, was den geometrischen Spielraum weiter einschrƤnkt, da ein orthomode Signalwandler, sogenannte Transducer, am Hornausgang notwendig wird. Eine AusfĆ¼hrung der orthomode Signalwandler in Hohlleitertechnologie scheitert regelmƤƟig daran, dass bei hƶheren GHz Frequenzen nicht genĆ¼gend Bauraum zur VerfĆ¼gung steht.In addition, the horns are generally intended to support two orthogonal polarizations, which further restricts the geometrical margin, since an orthomode transducer, so-called transducers, becomes necessary at the horn output. An embodiment of the orthomode signal converter in waveguide technology fails regularly because at higher GHz frequencies not enough space is available.

Sind die Hornstrahler in Feldern dicht gepackt, dann besteht ein weiteres Problem darin, dass im zur VerfĆ¼gung stehenden Bauraum hinter dem Hornfeld keine effizienten Speisenetzwerke mehr untergebracht werden kƶnnen.If the horns packed tightly in fields, then another problem is that in the available space behind the horn field no more efficient feed networks can be accommodated.

Es ist bekannt, das Speisenetzwerke fĆ¼r Felder von Hornstrahlern, welche in Hohleitertechnologie ausgefĆ¼hrt sind, nur sehr geringe dissipative Verluste erzeugen. Im optimalen Fall werden die einzelnen Hornstrahler der Felder von Hohlleiterkomponenten gespeist und das gesamte Speisenetzwerk besteht ebenfalls aus Hohlleiterkomponenten. Im Fall, dass das Empfangs- und das Sendeband frequenzmƤƟig weit auseinander liegen entsteht jedoch das Problem, dass konventionelle Hohlleiter die dann benƶtigte Frequenzbandbreite nicht mehr unterstĆ¼tzen kƶnnen.It is known that feed networks for fields of horns, which are implemented in high-power technology, produce only very small dissipative losses. In the optimal case, the individual horns of the fields are fed by waveguide components and the entire feed network also consists of waveguide components. In the case that the receiving and the transmitting band are far apart in terms of frequency, however, the problem arises that conventional waveguides can no longer support the then required frequency bandwidth.

Beispielsweise betrƤgt im Ka-band die benƶtigte Bandbreite mehr als 13 GHz (18 GHz - 31 GHz). Konventionelle Rechteckhohlleiter kƶnnen eine solch groƟe Bandbreite nicht effizient unterstĆ¼tzen.For example, in the Ka band the required bandwidth is more than 13 GHz (18 GHz - 31 GHz). Conventional rectangular waveguides can not efficiently support such a large bandwidth.

Damit ergeben sich folgende Problemstellungen fĆ¼r mobile, insbesondere aeronautische Satellitenantennen geringer GrĆ¶ĆŸe, die simultan gelƶst werden mĆ¼ssen:

  1. 1. regulatorisch konformes Antennendiagramm ohne parasitƤren Nebenkeulen (Gitterkeulen) im Sendefrequenzband, das den Betrieb der Antenne mit maximaler spektraler Leistungsdichte erlaubt,
  2. 2. Hohe Antenneneffizienz sowohl im Empfangsband als auch im Sendeband auch bei kleinen Einzelstrahlerdimensionen,
  3. 3. Effiziente Speisenetzwerke, welche einen mƶglichst geringen Bauraum in Anspruch nehmen und mƶglichst geringe dissipative Verluste erzeugen,
  4. 4. Mƶglichst kompakter und raumsparender Aufbau der Antenne bei gleichzeitig mƶglichst hoher Antenneneffizienz.
This results in the following problems for mobile, in particular aeronautical satellite antennas of small size, which must be solved simultaneously:
  1. 1. regulatory compliant antenna diagram without parasitic side lobes (grating lobes) in the transmit frequency band, which allows the operation of the antenna with maximum spectral power density,
  2. 2. High antenna efficiency both in the reception band and in the transmission band, even with small individual radiator dimensions,
  3. 3. Efficient feed networks, which take up the smallest possible installation space and generate the lowest possible dissipative losses,
  4. 4. The most compact and space-saving design of the antenna with the highest possible antenna efficiency.

Werden diese Probleme durch eine geeignete Anordnung gelƶst, dann kann auch dann, wenn nur ein begrenzter Bauraum fĆ¼r eine kleine Antenne zur VerfĆ¼gung steht, ein breitbandiges leistungsfƤhiges System zur VerfĆ¼gung gestellt werden.If these problems are solved by a suitable arrangement, then even if only a limited space for a small antenna is available, a broadband powerful system can be made available.

Es ist bekannt, dass mit Antennen welche als Felder von Einzelstrahlern ausgelegt sind, grating-lobe freie Antennendiagramme dann erzielt werden kƶnnen, wenn die Phasenzentren der Einzelstrahler weniger als eine WellenlƤnge der maximalen Nutzfrequenz auseinander liegen. Zudem ist bekannt, dass durch parabole Amplitudenbelegungen solcher Antennenfelder die Nebenkeulen des Antennendiagrams unterdrĆ¼ckt werden kƶnnen (z.B. J.D. Kraus und R.J. Marhefka, "Antennas: for all applications", 3rd ed., McGraw-Hill series in electrical engineering, 2002 ). Durch spezielle Amplitudenbelegungen kann ein bei gegebener AntennengrĆ¶ĆŸe optimal an die regulatorische Maske angepasstes Antennendiagramm erzielt werden (z.B. DE 10 2010 019 081 A1 ; Seifried, Wenzel et. al.).It is known that with antennas which are designed as fields of individual emitters, grating-free free antenna diagrams can be achieved if the phase centers of the individual emitters are less than one wavelength of the maximum useful frequency. In addition, it is known that the side lobes of the antenna diagram can be suppressed by parabolic amplitude assignments of such antenna fields (eg JD Kraus and RJ Marhefka, "Antennas: for all applications", 3rd ed., McGraw-Hill series in electrical engineering, 2002 ). By special amplitude assignments, an antenna pattern which is optimally adapted to the regulatory mask for a given antenna size can be achieved (eg DE 10 2010 019 081 A1 ; Seifried, Wenzel et. al.).

GemƤƟ der US 6 271 799 B1 wird eine Antennenvorrichtung mit einem doppelt polarisierten Vierkamm-Antennenhorn offenbart, das eine elektrisch leitende Leitung mit einem ersten und einem zweiten gegenĆ¼berliegenden Ende entlang einer Hornachse aufweist. Auf einer Innenseite der elektrisch leitfƤhigen Leitung sind vier elektrisch leitfƤhige Stege angeordnet. Eine gedruckte Leiterplatte, die ein dielektrisches Substrat enthƤlt, ist Ć¼ber das erste Ende des dual polarisierten Vierkamm-Antennenhorns und quer zur Hornachse verbunden. Ferner ist auf dem dielektrischen Substrat ein elektrisch leitendes Muster ausgebildet, das Speisungselemente fĆ¼r das dual polarisierte Vierkamm-Antennenhorn definiert.According to the US Pat. No. 6,271,799 B1 US 6,360,860 discloses an antenna device with a dual polarized four-comb antenna horn having an electrically conductive line with first and second opposite ends along a horn axis. On an inside of the electrically conductive Line four electrically conductive webs are arranged. A printed circuit board containing a dielectric substrate is connected across the first end of the dual polarized four-comb antenna horn and across the horn axis. Further, an electrically conductive pattern is formed on the dielectric substrate defining feed elements for the dual polarized four-comb antenna horn.

Die DE 10 2010 019 081 A1 offenbart eine Antenne zur Breitband-Satellitenkommunikation bestehend aus einem Feld von primƤren Hornstrahlern, welche durch ein Hohlleiter-Speisenetzwerk miteinander verbunden sind.The DE 10 2010 019 081 A1 discloses an antenna for broadband satellite communication consisting of a field of primary horns interconnected by a waveguide feed network.

Die koreanische Patentanmeldung KR20100072693 beschreibt eine Antenne zur Verbesserung des Sende-/Empfangsmoduls mit einer Hornantenneneinheit und mehrere Moduswechseleinheiten, wobei die Hornantenneneinheit eine rechteckige Ɩffnungsseite aufweist und ein Gitter an der InnenflƤche der Hornantenneneinheit ausgebildet ist. Die ModusƤnderungseinheit ist innerhalb der Hornantenneneinheit als Treppenform ausgebildet.The Korean patent application KR20100072693 describes an antenna for improving the transmission / reception module having a horn antenna unit and a plurality of mode change units, wherein the horn antenna unit has a rectangular opening side and a grating is formed on the inner surface of the horn antenna unit. The mode changing unit is formed inside the horn antenna unit as a staircase shape.

Die Aufgabe der Erfindung besteht darin, ein breitbandiges Antennensystem im GHz Frequenzbereich, insbesondere fĆ¼r aeronautische Anwendungen, zur VerfĆ¼gung zu stellen, das bei minimalen Dimensionen einen regulatorisch konformen Sendebetrieb mit maximaler spektraler Leistungsdichte erlaubt und gleichzeitig im Empfangsbetrieb eine hohe Antenneneffizienz und ein geringes Eigenrauschen aufweist.The object of the invention is to provide a broadband antenna system in the GHz frequency range, in particular for aeronautical applications, which allows a regulatory compliant transmission mode with maximum spectral power density at minimum dimensions and at the same time has a high antenna efficiency and low intrinsic noise in the receive mode.

Diese Aufgabe wird durch das Antennensystem nach Anspruch 1 und dem Antennenfeld nach Anspruch 13 gelƶst.This object is achieved by the antenna system according to claim 1 and the antenna array according to claim 13.

ErfindungsgemƤƟ besteht das Antennensystem aus zumindest vier Hornstrahlern, wobei die Hornstrahler zwei zueinander orthogonale lineare Polarisationen unterstĆ¼tzen und in beiden Polarisationsebenen mit Konstriktionen ausgestattet sind. Indem in den beiden Polarisationsebenen mit symmetrischen geometrischen Konstriktionen lƤngs der Ausbreitungsrichtung der elektromagnetischen Welle die Hornstrahler verengt werden (mit "ZƤhnen" versehen), kann die Bandbreite der Hornstrahler stark vergrĆ¶ĆŸert werden. Damit ist es mƶglich, auch breite Sende- und EmpfangsbƤnder oder sich in groƟem Frequenzabstand, wie beim Ka-Band, befindliche Sende- und EmpfangsbƤnder zu bedienen.According to the invention, the antenna system consists of at least four horns, the horns supporting two mutually orthogonal linear polarizations and are equipped in both polarization planes with constrictions. By narrowing the horns in the two polarization planes with symmetrical geometrical constrictions along the propagation direction of the electromagnetic wave (provided with "teeth"), the bandwidth of the horns can be greatly increased. This makes it possible, even broad transmit and receive bands or in large frequency spacing, as with the Ka-band, to use existing transmit and receive tapes.

Damit bei weit auseinander liegenden NutzfrequenzbƤndern die einzelnen gezahnten Hornstrahler noch optimal betrieben werden kƶnnen, werden sowohl die Hornstrahler als auch die Konstriktionen stufenfƶrmig auszulegen. Durch geeignete Wahl der Hƶhe und Breite der Stufen des Hornstrahlers sowie der Stufen der Konstriktionen kƶnnen die Hornstrahler dann optimal an die NutzfrequenzbƤnder impedanzangepasst werden.So that the individual serrated horns can still be optimally operated with widely spaced useful frequency bands, both the horn radiators and the constrictions will be designed stepwise. By suitable choice of the height and width of the stages of the horn and the stages of the constrictions Horn horns can then be optimally adapted to the NutzfrequenzbƤnder impedance.

Der Abstand der gegenĆ¼berliegenden, gestuften Konstriktionen und die Ɩffnung des zugehƶrigen Hornquerschnitts wird in einer bevorzugten AusfĆ¼hrungsform dann so gewƤhlt, dass dieser Abstand von Stufe zu Stufe von der Aperturƶffnung zum Hornende hin abnimmt und auf jeder Stufe die zum jeweiligen Abstand und zur jeweiligen Hornƶffnung gehƶrende untere Grenzfrequenz ("cut-off" Frequenz) kleiner ist als die niedrigste Nutzfrequenz.The distance between the opposite, stepped constrictions and the opening of the associated horn cross-section is then selected in a preferred embodiment such that this distance decreases from stage to stage from the aperture opening to the horn end and at each stage to the respective distance and to the respective horn opening lower Cut-off frequency is less than the lowest usable frequency.

Um eine hohe Kreuzpolarisationsentkopplung zu erreichen ist es auƟerdem von Vorteil, wenn die Hornstrahler so ausgelegt sind, dass sie zwei orthogonale lineare Polarisationen unterstĆ¼tzen. Mit solchen Hornstrahlern kƶnnen Isolationen von weit mehr als 40 dB erreicht werden. Insbesondere bei Signalkodierungen mit hoher spektraler Effizienz sind solche Isolationswerte erforderlich.To achieve high cross-polarization decoupling, it is also advantageous if the horns are designed to support two orthogonal linear polarizations. With such horns, insulations far exceeding 40 dB can be achieved. Especially with signal codings with high spectral efficiency such isolation values are required.

Die zum jeweiligen Abstand und zur jeweiligen Hornƶffnung gehƶrende untere Grenzfrequenz kann mit numerischen Simulationsverfahren bestimmt werden.The lower limit frequency belonging to the respective distance and to the respective horn opening can be determined by numerical simulation methods.

Damit zusƤtzlich im Antennendiagramm des Antennensystems keine parasitƤren Nebenkeulen (grating-lobes) auftreten, ist der Abstand der Phasenzentren direkt benachbarter Hornstrahler kleiner oder hƶchstens gleich der WellenlƤnge Ī»s der hƶchsten Sendefrequenz, unterhalb der aus regulatorischen GrĆ¼nden keine grating-lobes auftreten dĆ¼rfen.Thus, in addition no parasitic side lobes (grating lobes) occur in the antenna diagram of the antenna system, the distance of the phase centers of directly adjacent horn is smaller or at most equal to the wavelength Ī» s of the highest transmission frequency below which, for regulatory reasons, no grating lobes may occur.

Es ist zudem vorteilhaft die Apertur der Hornstrahler rechteckig zu wƤhlen, und zwar bevorzugt so, dass beide KantenlƤngen kleiner oder hƶchstens gleich Ī»S sind. Die zur VerfĆ¼gung stehende AperturflƤche wird damit optimal ausgenutzt und ein maximaler Antennengewinn erzielt.It is also advantageous to choose the aperture of the horns rectangular, and preferably so that both edge lengths are less than or equal to Ī» S. The available aperture area is thus optimally utilized and a maximum antenna gain is achieved.

FĆ¼r Antennensysteme, welche aus mehreren Hornstrahlern bestehen, hat sich als vorteilhaft erwiesen, wenn die Abstufung der Hornstrahler und die Stufen der Konstriktionen so gewƤhlt sind, dass mindestens fĆ¼r einen Teil der Stufen, fĆ¼r den Abstand di der i-ten Stufen zweier gegenĆ¼ber liegender Konstriktionen und die zugehƶrige KantenlƤnge ai des Hornstrahlerquerschnitts an der i-ten Stufe (vgl. Fig. 4d) d i ā‰¤ p 1 2 ā¢ Ļ€ Ī» E a i 2 āˆ’ p 2 a i

Figure imgb0001
gilt, wobei Ī»E die WellenlƤnge der niedrigsten Nutzfrequenz bezeichnet und p1 zwischen 0,3 und 0,4 und p2 zwischen 0,25 und 0,35 liegen.For antenna systems which consist of several horns has proved to be advantageous if the gradation of the horns and the stages of the constrictions are chosen so that at least for a part of the stages, for the distance d i of the i-th stages of two opposite Constrictions and the associated edge length a i of Hornstrahlerquerschnitts at the i-th stage (see. Fig. 4d ) d i ā‰¤ p 1 2 ā¢ Ļ€ Ī» e a i 2 - p 2 a i
Figure imgb0001
where Ī» E denotes the wavelength of the lowest usable frequency and p 1 between 0.3 and 0.4 and p 2 between 0.25 and 0.35.

In diesem Fall kann nicht nur eine gute Impedanzanpassung des Hornstrahlers an die NutzfrequenzbƤnder erzielt werden, sondern auch eine gute Impedanzanpassung des Antennensystems insgesamt. Dies gilt selbst dann, wenn die NutzfrequenzbƤnder weit auseinander liegen.In this case, not only a good impedance matching of the horn to the usable frequency bands can be achieved, but also a good impedance matching of the antenna system as a whole. This is true even if the usable frequency bands are far apart.

Wie sich zudem gezeigt hat, kann insbesondere fĆ¼r K/Ka-Band Frequenzen (Empfangsband: ca. 18GHz - 21GHz, Sendeband ca. 28GHz - 31GHz) eine sehr gute Impedanzanpassung erreicht werden, wenn p1 =0,35, p2 =0,29 und 0,5cm < a0 < 1cm gilt, wobei a0 die lƤngere Kante der rechteckigen Apertur des Hornstrahlers bezeichnet.As has also been shown, especially for K / Ka band frequencies (reception band: approx. 18GHz - 21GHz, transmission band approx. 28GHz - 31GHz) a very good impedance matching can be achieved, if p 1 = 0.35, p 2 = 0 , 29 and 0.5cm <a 0 <1cm , where a 0 denotes the longer edge of the rectangular aperture of the horn.

In einer weiteren vorteilhaften AusfĆ¼hrungsform sind die Aperturen der Hornstrahler nƤherungsweise quadratisch mit KantenlƤnge a0 . Dann liegen die Hornstrahler entlang zweier orthogonaler Richtungen dicht und das Antennensystem ist sehr gut an die NutzfrequenzbƤnder impedanzangepasst, wenn mindestens fĆ¼r einen Teil der Stufen, fĆ¼r den Abstand di der i-ten Stufen zweier gegenĆ¼ber liegender Konstriktionen und die zugehƶrige KantenlƤnge ai des Hornstrahlerquerschnitts an der i-ten Stufe (vgl. Fig. 4d) d i ā‰¤ p 1 2 ā¢ Ļ€ Ī» E a i 2 āˆ’ p 2 a i

Figure imgb0002
und gleichzeitig Ī» S ā‰„ a 0 ā‰„ Ī» S 2
Figure imgb0003
gilt, wobei hier p1 =0,35 und p2 =0,29 sind und Ī»S die WellenlƤnge der hƶchsten Nutzfrequenz bezeichnet.In a further advantageous embodiment, the apertures of the horns are approximately square with edge length a 0 . Then the horns are dense along two orthogonal directions and the antenna system is very well impedance matched to the useful frequency bands if for at least a portion of the stages, for the distance d i of the ith stages of two opposing constrictions and the associated edge length a i of the horn cross section at the i-th stage (cf. Fig. 4d ) d i ā‰¤ p 1 2 ā¢ Ļ€ Ī» e a i 2 - p 2 a i
Figure imgb0002
and at the same time Ī» S ā‰„ a 0 ā‰„ Ī» S 2
Figure imgb0003
where p 1 = 0.35 and p 2 = 0.29 and Ī» S denotes the wavelength of the highest usable frequency.

Werden fĆ¼r die Hornstrahler des Antennensystems die Bedingungen (1) und (3) erfĆ¼llt, dann ergibt sich ein Antennensystem, dass in keinem Schnitt durch das Antennendiagramm parasitƤre Nebenkeulen (grating lobes) aufweist und zudem Ć¼ber einen maximalen Antennengewinn in allen NutzfrequenzbƤndern verfĆ¼gen kann. Solche Antennensysteme sind insbesondere fĆ¼r aeronautische Anwendungen vorteilhaft, weil sie einen globalen Einsatz erlauben.If conditions (1) and (3) are fulfilled for the antenna system's horns, then an antenna system results which does not have any parasitic sidelobes (grating lobes) in any section through the antenna diagram and can also have a maximum antenna gain in all usable frequency bands. Such antenna systems are particularly advantageous for aeronautical applications because they allow global deployment.

Nach einer vorteilhaften Weiterentwicklung der Erfindung unterstĆ¼tzen die Einzelstrahler eine erste und eine zweite Polarisation und die beiden Polarisationen sind zueinander orthogonal. Nach einer weiteren vorteilhaften Weiterentwicklung der Erfindung sind die erste und zweite Polarisation lineare Polarisationen.According to an advantageous further development of the invention, the individual radiators support a first and a second polarization and the two polarizations are mutually orthogonal. According to a further advantageous development of the invention, the first and second polarization are linear polarizations.

Die Signale der beiden orthogonalen Polarisationen werden in getrennten Speisenetzwerken gefĆ¼hrt, was den Vorteil hat, dass mit Hilfe entsprechender Komponenten, wie z.B. Polarisatoren oder 90Ā° Hybridkopplern, sowohl linear polarisierte Signale als auch zirkular polarisierte Signale gesendet, bzw. empfangen werden kƶnnen.The signals of the two orthogonal polarizations are carried in separate feed networks, which has the advantage that with the aid of corresponding components, such as e.g. Polarizers or 90 Ā° hybrid couplers, both linearly polarized signals and circularly polarized signals can be sent or received.

Damit die Antennen eine mƶglichst geringe GrĆ¶ĆŸe besitzen kƶnnen und trotzdem ein regulatorisch konformer Sendebetrieb mit maximaler spektraler Leistungsdichte mƶglich wird, ist zudem gemƤƟ einer vorteilhaften Weiterentwicklung der Erfindung vorgesehen, dass zumindest ein Teil der Einzelstrahler so dimensioniert wird, dass fĆ¼r direkt benachbarte Einzelstrahler der Abstand der Phasenzentren der Einzelstrahler kleiner oder gleich der WellenlƤnge der hƶchsten Sendefrequenz ist, bei der keine parasitƤren Nebenkeulen (grating-lobes) auftreten dĆ¼rfen (Referenzfrequenz im Sendeband).So that the antennas can have the smallest possible size and nevertheless a regulatory compliant transmission mode with maximum spectral power density is possible, it is also provided according to an advantageous development of the invention that at least a portion of the individual radiator is dimensioned so that the distance of the directly adjacent individual radiator Phase centers of the individual radiator is less than or equal to the wavelength of the highest transmission frequency at which no parasitic sidelobes (grating lobes) may occur (reference frequency in the transmission band).

Befinden sich mindestens vier benachbarte Einzelstrahler zudem in verschiedenen direkt benachbarten Modulen, dann wird mindestens eine Richtung durch das Antennenfeld definiert, so dass fĆ¼r diese Richtung der Abstand der Phasenzentren der Einzelstrahler kleiner oder gleich der WellenlƤnge der hƶchsten Sendefrequenz ist, bei der keine parasitƤren Nebenkeulen (grating-lobes) auftreten dĆ¼rfen.If at least four adjacent individual radiators are also located in different directly adjacent modules, then at least one direction is defined by the antenna field, so that for this direction the distance of the phase centers of the individual radiators is less than or equal to the wavelength of the highest transmission frequency, in which no parasitic side lobes ( grating-lobes) may occur.

In dieser Richtung, vorzugsweise entlang einer geraden Linie durch das Antennenfeld, liegen direkt benachbarte Einzelstrahler dann dicht, so dass keine parasitƤren Nebenkeulen ("grating-lobes") im entsprechenden Schnitt durch das Antennendiagramm auftreten kƶnnen. Andernfalls wĆ¼rden diese grating-lobes zu einer starken Reduktion der regulatorisch erlaubten spektralen Leistungsdichte fĆ¼hren.In this direction, preferably along a straight line through the antenna field, directly adjacent individual radiators are then close, so that no parasitic side lobes ("grating lobes") can occur in the corresponding section through the antenna pattern. Otherwise, would These grating awards lead to a strong reduction of the regulatory allowed spectral power density.

Als Einzelstrahler kommen im Prinzip alle bekannten Strahlelemente, welche zwei orthogonale Polarisationen unterstĆ¼tzen, in Frage. Dies sind z.B. rechteckige oder runde Hornstrahler.In principle, all known radiation elements which support two orthogonal polarizations come into consideration as individual radiators. These are e.g. rectangular or round horns.

Weiterhin vorteilhaft ist es, wenn die Module eine zumindest nƤherungsweise rechteckige Geometrie besitzen, also Ni = n1 x nk Einzelstrahler enthalten, wobei Ni, n, i, l, k gerade Zahlen sind, āˆ‘ i N i = N

Figure imgb0004
gilt und N die Gesamtzahl der Einzelstrahler ist. Solche rechteckigen Module lassen sich in platzsparender Weise zu Antennenfeldern zusammensetzen. Zudem kƶnnen die rechteckigen Module in relativ einfacher Weise mit binƤr aufgebauten Mikrostreifenleitungsnetzwerken gespeist werden.It is also advantageous if the modules have an at least approximately rectangular geometry, ie N i = n 1 xn k single radiators, where N i , n, i, l, k are even numbers, Ī£ i N i = N
Figure imgb0004
and N is the total number of individual emitters. Such rectangular modules can be assembled in a space-saving manner to antenna fields. In addition, the rectangular modules can be fed in a relatively simple manner with binary microstrip networks.

Um Antennen mit mƶglichst geringen dissipativen Verlusten zu realisieren ist es vorteilhaft die Einzelstrahler als Hornstrahler auszubilden, die zu den verlustƤrmsten Antennen gehƶren. Dabei kƶnnen sowohl Hornstrahler mit rechteckiger als auch mit runder Aperturƶffnung verwendet werden. Falls in keinem Schnitt durch das Antennendiagramm grating-lobes auftreten sollen, sind Hornstrahler mit quadratischer Aperturƶffnung vorteilhaft, wobei die GrĆ¶ĆŸe der Aperturƶffnung dann so gewƤhlt wird, dass der Abstand der Phasenzentren direkt benachbarter Hornstrahler kleiner oder gleich der WellenlƤnge der hƶchsten Sendefrequenz als Referenzfrequenz ist, bei der keine grating-lobes auftreten dĆ¼rfen.In order to realize antennas with the lowest possible dissipative losses, it is advantageous to design the individual radiators as horn radiators, which belong to the lowest-loss antennas. Both horns with rectangular and with a round aperture can be used. If grating lobes are not to occur in any section through the antenna pattern, square aperture horns are advantageous, the size of the aperture opening then being chosen such that the spacing of the phase centers of directly adjacent horns is less than or equal to the wavelength of the highest transmission frequency as the reference frequency. in which no grating praise may occur.

Die Hƶrner (Hornstrahler) kƶnnen vorteilhafterweise auch als dielektrisch gefĆ¼llte Hƶrner ausgefĆ¼hrt werden. Entsprechend den dielektrischen Eigenschaften der FĆ¼llung steigt dann die effektive WellenlƤnge in den Hƶrnern und diese sind in der Lage sehr viel grĆ¶ĆŸere Bandbreiten zu unterstĆ¼tzen als dies ohne FĆ¼llung der Fall wƤre. Dielektrische FĆ¼llungen fĆ¼hren zwar zu parasitƤren Verlusten durch das Dielektrikum, doch insbesondere bei sehr kleinen Hƶrnern bleiben diese Verluste vergleichsweise klein. So ist z.B. fĆ¼r Anwendungen im Ka-Band eine dielektrische FĆ¼llung mit einer DielektrizitƤtszahl von ca. 2 ausreichend. Bei nur wenige Zentimeter tiefen Hƶrnern fĆ¼hrt dies bei der Verwendung geeigneter Materialen zu Verluste von < 0.2 dB.The horns (horns) can be advantageously carried out as a dielectrically filled horns. According to the dielectric properties of the filling, the effective wavelength in the horns increases and these are able to support much larger bandwidths than would be the case without filling. Although dielectric fillings lead to parasitic losses through the dielectric, these losses remain comparatively small, especially in the case of very small horns. For example, e.g. For applications in the Ka band, a dielectric filling with a dielectric constant of about 2 is sufficient. With horns only a few centimeters deep, this leads to losses of <0.2 dB when using suitable materials.

Liegen das Sende- und das Empfangsband frequenzmƤƟig weit auseinander dann sind, nach einer weiteren vorteilhaften Ausgestaltung der Erfindung, die Hornstrahler als gestufte Hƶrner ("Stufenhƶrner") ausgefĆ¼hrt. Mittels Einstellung der Breite und LƤnge der Stufen, sowie der Anzahl der Stufen, kann dann die Antenne an die jeweiligen NutzfrequenzbƤnder optimal angepasst werden.If the transmitting and receiving bands are far apart in terms of frequency then, according to a further advantageous embodiment of the invention, the horns are designed as stepped horns ("stepped horns"). By adjusting the width and length of the steps, as well as the number of stages, can then the antenna can be optimally adapted to the respective usable frequency bands.

Eine weitere Verbesserung der Empfangsleistung, insbesondere bei sehr kleinen Hornstrahlern, kann dadurch erreicht werden, dass die einzelnen Hornstrahler mit einem dielektrischen Cross-Septum oder einer dielektrischen Linse ausgestattet werden. Die EinfĆ¼gungsdƤmpfung (S11) im Empfangsband kann durch solche Strukturen signifikant reduziert werden, und zwar auch dann, wenn die AperturflƤchen der Einzelstrahler bereits so klein sind, dass eine Freiraumwelle ohne diese zusƤtzlichen dielektrischen Strukturen bereits fast vollstƤndig reflektiert werden wĆ¼rde.A further improvement in the reception power, in particular in the case of very small horn radiators, can be achieved by equipping the individual horn radiators with a dielectric cross-septum or a dielectric lens. The insertion loss (S 11 ) in the receiving band can be significantly reduced by such structures, even if the aperture areas of the individual radiators are already so small that a free-space wave without these additional dielectric structures would already be almost completely reflected.

Da bei parallel gespeisten Einzelstrahlern die dissipativen Verluste, etwa durch eine dielektrische FĆ¼llung, nur einmal auftreten, sind nach einer weiteren vorteilhaften Weiterentwicklung der Erfindung die Hornstrahler des Antennenfeldes parallel gespeist. Am effektivsten ist dies dann, wenn die Mikrostreifenleitungen und die Hohlleiter als binƤre BƤume aufgebaut sind, da die Anzahl der benƶtigten Leistungsteiler im allgemeinen Fall beliebiger Werte der Gesamtzahl von Einzelstrahlern N und beliebiger Werte der Zahl der Einzelstrahler in einem Module Ni so minimal wird.Since in parallel-fed individual radiators, the dissipative losses, such as by a dielectric filling occur only once, the horns of the antenna array are fed in parallel according to a further advantageous development of the invention. This is most effective when the microstrip lines and the waveguides are constructed as binary trees, since the number of power dividers needed in the general case of arbitrary values of the total number of individual radiators N and arbitrary values of the number of individual radiators in a module N i becomes so minimal.

Die binƤren BƤume sind dabei im allgemeinen Fall weder vollstƤndig noch vollstƤndig symmetrisch.The binary trees are in the general case neither completely nor completely symmetrical.

Gilt jedoch nach einer vorteilhaften Weiterentwicklung der Erfindung fĆ¼r alle Module des Antennensystems oder zumindest fĆ¼r den grĆ¶ĆŸten Teil der Module Ni = 2 ni , mit ni einer ganzen Zahl, dann kann die Anzahl der benƶtigten Leistungsteiler weiter reduziert werden, weil dann jedenfalls ein Teil der binƤren BƤume vollstƤndig ist.Applies, however, according to an advantageous development of the invention for all modules of the antenna system or at least for most of the modules N i = 2 n i , with n i of an integer, then the number of required power dividers can be further reduced, because then at least part of the binary trees is complete.

Besonders gĆ¼nstig ist es, wenn zusƤtzlich N = 2 n , mit n einer ganzen Zahl, gilt. Dann kƶnnen die Speisenetzwerke des Antennensystems als vollstƤndige und vollstƤndig symmetrische binƤre BƤume ausgelegt werden und alle Einzelstrahler kƶnnen gleich lange Speiseleitungen, d.h. auch gleichartige DƤmpfungen, haben.It is particularly favorable if, in addition, N = 2 n , where n is an integer. Then the feed networks of the antenna system can be designed as complete and fully symmetrical binary trees and all individual emitters can have equal length feeder lines, ie also similar attenuations.

Weiterhin vorteilhaft ist es, wenn die Mikrostreifenleitungen sich auf einem dĆ¼nnen Substrat befinden und in geschlossenen metallischen HohlrƤumen gefĆ¼hrt werden, wobei die HohlrƤume typischerweise mit Luft gefĆ¼llt sind. Ein Substrat wird typischerweise dabei dann als dĆ¼nn bezeichnet, wenn seine Dicke kleiner als die Breite der Mikrostreifenleitungen ist.It is also advantageous if the microstrip lines are located on a thin substrate and are guided in closed metallic cavities, wherein the cavities are typically filled with air. A substrate is typically referred to as being thin if its thickness is smaller than the width of the microstrip lines.

Dieser koaxialleitungsƤhnliche Aufbau mit typischerweise Luft als FĆ¼llung fĆ¼hrt zu vergleichweise verlustarmen Hochfrequenzleitungen. So hat sich gezeigt, dass die dissipativen Verluste solcher Leitungen z.B. bei Ka-band Frequenzen nur um zirka einen Faktor 5 bis 10 hƶher als die Verluste von Hohlleitern sind. Da diese Leitungen nur fĆ¼r vergleichsweise kurze Strecken verwendet werden, bleiben die absoluten Verluste vergleichsweise klein. Auch der Rauschbeitrag solcher Leitungen zum Eigenrauschen des Systems bleibt damit relativ klein.This coaxial line-like structure with typically air as a filling leads to comparatively low-loss high-frequency lines. Thus, it has been found that the dissipative losses of such lines e.g. at Ka-band frequencies are only about a factor of 5 to 10 higher than the losses of waveguides. Since these lines are used only for relatively short distances, the absolute losses remain relatively small. The noise contribution of such lines to the inherent noise of the system thus remains relatively small.

Die Herstellung dicht gepackter Antennensysteme kann dadurch stark erleichtert werden, dass sie aus mehreren Lagen aufgebaut sind und sich die Mikrostreifenleitungsspeisenetzwerke der beiden orthogonalen Polarisationen zwischen unterschiedlichen Lagen befinden. Die Module des Antennensystems kƶnnen dann aus wenigen Lagen zusammengebaut werden. Vorteilhafterweise sind die Lagen aus Aluminium oder Ƥhnlichen elektrisch leitenden Werkstoffen, welche mit den bekannten Strukturierungsverfahren (FrƤsen, Ƅtzen, Lasern, Drahterodieren, Wasserschneiden, etc.) strukturiert werden kƶnnen. Die Mikrostreifenleitungsnetzwerke werden mit bekannten Ƅtzverfahren auf einem Substrat strukturiert.The production of densely packed antenna systems can be greatly facilitated by being constructed of multiple layers and by having the microstrip feed networks of the two orthogonal polarizations between different layers. The modules of the antenna system can then be assembled from a few layers. Advantageously, the layers of aluminum or similar electrically conductive materials, which can be structured with the known structuring method (milling, etching, lasers, wire erosion, water cutting, etc.). The microstrip line networks are patterned on a substrate by known etching techniques.

Vorteilhafterweise werden die HohlrƤume, durch welche die Mikrostreifenleitungen gefĆ¼hrt werden, direkt mit den metallischen Lagen strukturiert. Werden die HohlrƤume als Kerben oder Vertiefungen in der jeweils Ć¼ber und unter der Mikrostreifenleitung liegenden metallischen Lagen ausgefĆ¼hrt, dann liegt die Mikrostreifenleitung zusammen mit ihrem Substrat in einem Hohlraum, welcher aus zwei Halbschalen besteht. Die WƤnde des Hohlraums kƶnnen elektrisch geschlossen werden indem das Substrat mit elektrischen Durchkontaktierungen (Vias) versehen wird. "ZƤune" von Vias kƶnnen in solchen Anordnungen dabei den Verlust elektromagnetischer Leistung fast vollstƤndig verhindern.Advantageously, the cavities through which the microstrip lines are routed are structured directly with the metallic layers. If the cavities are designed as notches or depressions in the metal layers lying above and below the microstrip line, then the microstrip line lies together with its substrate in a cavity which consists of two half shells. The walls of the cavity can be electrically closed by providing the substrate with electrical vias. In such arrangements, "fences" by Vias can almost completely prevent the loss of electromagnetic power.

Liegen das Empfangs- und das Sendeband der Antenne frequenzmƤƟig sehr weit auseinander, dann kann es der Fall sein, dass Standard-Hohleiter (Rechteckhohlleiter) die erforderliche Bandbreite nicht mehr unterstĆ¼tzen kƶnnen. In diesem Fall ist es vorteilhaft, die Hohlleiter lƤngs der Ausbreitungsrichtung der elektromagnetischen Welle mit geometrischen Konstriktionen (Verengungen) zu versehen. Durch solche Konstriktionen kann die Nutzbandbreite stark erhƶht werden. Zahl und Anordnung der Konstriktionen hƤngen dabei von der Auslegung des Antennensystems ab.If the reception and transmission bands of the antenna are very far apart in terms of frequency, then it may be the case that standard hollow conductors (rectangular waveguides) can no longer support the required bandwidth. In this case, it is advantageous to provide the waveguides along the propagation direction of the electromagnetic wave with geometric constrictions (constrictions). By such constrictions, the useful bandwidth can be greatly increased. The number and arrangement of constrictions depend on the design of the antenna system.

Bei sehr groƟen Nutzbandbreiten sind sogenannte double-ridged Hohlleiter vorteilhaft, welche eine signifikant grĆ¶ĆŸere Bandbreite als Standard-Hohlleiter besitzen kƶnnen. Diese Hohlleiter verfĆ¼gen Ć¼ber eine geometrische Konstriktion parallel zur unterstĆ¼tzten Polarisationsrichtung, was die Entstehung parasitƤrer hƶherer Moden verhindert.For very large useful bandwidths so-called double-ridged waveguides are advantageous, which can have a significantly larger bandwidth than standard waveguide. These Waveguides have a geometric constriction parallel to the supported polarization direction, preventing the formation of parasitic higher modes.

Bei sehr hohen Nutzfrequenzen oder sehr dicht liegenden Einzelstrahlern besteht eine vorteilhafte Weiterentwicklung der Erfindung darin, dass dielektrisch gefĆ¼llte Hohlleiter fĆ¼r die Hohlleiterspeisenetzwerke verwendet werden. Solche Hohlleiter benƶtigen wesentlich weniger Bauraum als luftgefĆ¼llte Hohlleiter. Je nach Anforderungen an den Bauraum kann dabei zusƤtzlich ein Teil oder ein ganzes Hohlleiternetzwerk aus dielektrisch gefĆ¼llten Hohlleitern bestehen. Auch eine teilweise FĆ¼llung ist mƶglich.At very high useful frequencies or very close individual emitters, an advantageous development of the invention is that dielectrically filled waveguides are used for the waveguide supply networks. Such waveguides require much less space than air-filled waveguide. Depending on the requirements of the installation space, a part or a whole waveguide network may additionally consist of dielectric filled waveguides. Also a partial filling is possible.

Zur weiteren Verarbeitung der Signale, z.B. durch Ankopplung eines rauscharmen VerstƤrkers ("Low-Noise Amplifier", LNA) an das Empfangs-Speisenetzwerk und/oder eines LeistungsverstƤrkers ("High Power Amplifier", HPA) an das Sende-Speisenetzwerk, kann es vorteilhaft sein die Speisenetzwerke mit Frequenz-Diplexern auszustatten. Solche Frequenz-Diplexer trennen das Empfangs- vom Sendeband. Hierbei sind insbesondere Hohlleiter-Diplexer vorteilhaft, weil sie eine sehr hohe Isolation erreichen kƶnnen und zudem sehr dƤmpfungsarm sind.For further processing of the signals, e.g. By coupling a low noise amplifier (LNA) to the receive feed network and / or a high power amplifier (HPA) to the transmit feed network, it may be advantageous to feed the frequency diplexer feed networks equip. Such frequency diplexers separate the reception from the transmission band. In particular waveguide diplexers are advantageous because they can achieve a very high isolation and are also very low attenuation.

An welcher Stelle die Frequenz-Diplexer in die Speisenetzwerke eingefĆ¼gt werden, hƤngt vom jeweiligen Anwendungsfall ab. So ist z.B. denkbar, dass jedes Modul des Antennenfelds direkt an seinem Ausgang bzw. Eingang mit einem Diplexer ausgestattet wird. Am Ein- bzw. Ausgang dieser Diplexer liegen dann alle Signalkombinationen in reiner Form vor: Polarisation 1 im Empfangsband, Polarisation 2 im Empfangsband, Polarisation 1 im Sendeband und Polarisation 2 im Sendeband. Die Module kƶnnen dann durch vier entsprechende Hohlleiternetzwerke miteinander verbunden werden. Diese AusfĆ¼hrungsform hat den Vorteil, dass die Hohlleiter-Speisenetzwerke frequenzmƤƟig nicht sehr breitbandig sein mĆ¼ssen, weil sie jeweils lediglich fĆ¼r Signale des Empfangs- bzw. des Sendebandes geeignet sein mĆ¼ssen.At which point the frequency diplexers are inserted into the feed networks depends on the particular application. For example, e.g. conceivable that each module of the antenna array is equipped with a diplexer directly at its output or input. At the input and output of these diplexers are then all signal combinations in pure form: polarization 1 in the receiving band, polarization 2 in the receiving band, polarization 1 in the transmission band and polarization 2 in the transmission band. The modules can then be interconnected by four corresponding waveguide networks. This embodiment has the advantage that the waveguide feed networks do not have to be very broadband in terms of frequency because they each only have to be suitable for signals of the receiving or transmitting band.

Es ist jedoch auch denkbar, dass die Frequenz-Diplexer lediglich jeweils am Ein- bzw. Ausgang der Hohlleiternetzwerke angebracht werden. Eine solche AusfĆ¼hrungsform spart Bauraum, erfordert jedoch typischerweise eine breitbandige Auslegung der Hohlleiternetzwerke.However, it is also conceivable that the frequency diplexers are mounted only at the input or output of the waveguide networks. Such an embodiment saves space, but typically requires a broadband design of the waveguide networks.

FĆ¼r Anwendungen, bei denen in unterschiedlichen Polarisationen gesendet bzw. empfangen werden soll, oder bei Anwendungen, bei denen die Polarisation des Sende- bzw. des Empfangsignals dynamisch wechselt ("Polarization Diversity"), ist es vorteilhaft, wenn sowohl die intra-modularen Mikrostreifenleitungsnetzwerke als auch die inter-modularen Hohleiternetzwerke so ausgelegt sind, dass sie simultan das Sende- und das Empfangsband unterstĆ¼tzen kƶnnen.For applications in which to transmit or receive in different polarizations, or in applications in which the polarization of the transmit or the receive signal changes dynamically ("polarization diversity"), it is advantageous if both the intra-modular Microstrip lines networks as well as the inter-modular waveguide networks are designed so that they can simultaneously support the transmitting and the receiving band.

Wird die Antenne mit Frequenz-Diplexern versehen, welche mit einer geeigneten Hochfrequenz-Schaltungsmatrix ("switching matrix") verbunden sind, dann ist das dynamische Umschalten zwischen den orthogonalen Polarisationen mƶglich ("polarization switching").If the antenna is provided with frequency diplexers which are connected to a suitable radio frequency switching matrix, then dynamic switching between the orthogonal polarizations is possible (polarization switching).

Solche AusfĆ¼hrungsformen sind insbesondere dann von Vorteil, wenn die Antenne in Satellitendiensten eingesetzt werden soll, welche mit der sog. "spot beam" Technologie arbeiten. Bei der "spot beam" Technologie entstehen auf der ErdoberflƤche Abdeckungsgebiete (Zellen) relativ kleiner FlƤche (typischer Durchmesser im Ka-band ca. 200km -300km). Um in benachbarten Zellen dieselben FrequenzbƤnder verwenden zu kƶnnen ("frequency re-use"), werden benachbarte Zellen lediglich durch die Polarisation der Signale unterschieden.Such embodiments are particularly advantageous when the antenna is to be used in satellite services, which work with the so-called "spot beam" technology. In "spot beam" technology, coverage areas (cells) of relatively small area are formed on the earth's surface (typical diameter in the Ka-band approx. 200km -300km). In order to be able to use the same frequency bands in neighboring cells ("frequency re-use"), adjacent cells are only distinguished by the polarization of the signals.

Bei Anwendung der Antenne auf sich schnell bewegenden TrƤgern, insbesondere auf Flugzeugen, finden dann typischerweise sehr viele und sehr schnelle Zellenwechsel statt und die Antenne muss in der Lage sein die Polarisation der Empfangs- bzw. Sendesignale schnell umzuschalten.When using the antenna on fast-moving carriers, in particular on aircraft, then typically very many and very fast cell changes take place and the antenna must be able to quickly switch the polarization of the receive or transmit signals.

Wird die Antenne hingegen in Satellitendiensten eingesetzt, bei denen die Polarisation des Empfangs- bzw. Sendesignals fest ist und sich weder zeitlich noch geographisch Ƥndert, dann ist es von Vorteil, wenn das erste intra-modulare Mikrostreifenleitungsnetzwerk und das zugehƶrige inter-modulare Hohleiternetzwerk auf das Empfangsband der Antennne, und das zweite intra-modulare Mikrostreifenleitungsnetzwerk und das zugehƶrige inter-modulare Hohleiternetzwerk auf das Sendeband des Antennensystems ausgelegt sind.On the other hand, if the antenna is used in satellite services where the polarization of the transmit signal is fixed and does not change temporally or geographically, it is advantageous if the first intra-modular microstrip line network and the associated inter-modular waveguide network point to the Receiving band of the Antennne, and the second intra-modular microstrip network and the associated inter-modular waveguide network are designed for the transmission band of the antenna system.

Diese AusfĆ¼hrungsform hat den Vorteil, dass die jeweiligen Speisenetzwerke auf das jeweilige Nutzfrequenzband optimiert werden kƶnnen, und damit ein sehr verlustarmes Antennensystem sehr hoher LeistungsfƤhigkeit entsteht.This embodiment has the advantage that the respective feed networks can be optimized for the respective usable frequency band, and thus a very low-loss antenna system of very high performance is created.

Sind die Strahlelemente des Antennensystems auf zwei orthogonale lineare Polarisationen ausgelegt, dann sind nach einer vorteilhaften Ausgestaltung der Erfindung die Speisenetzwerke mit sog. 90Ā° Hybridkopplern ausgestattet. 90Ā° Hybridkoppler sind dabei Vier-Tore welche zwei orthogonale linear polarisierte Signale in zwei orthogonale zirkular polarisierte Signale umwandeln bzw. umgekehrt. Mit solchen Anordnungen ist es dann mƶglich, auch zirkular polarisierte Signale zu senden bzw. zu empfangen.If the radiation elements of the antenna system are designed for two orthogonal linear polarizations, then according to an advantageous embodiment of the invention, the feed networks are equipped with so-called 90 Ā° hybrid couplers. 90 Ā° hybrid couplers are four-ports which convert two orthogonal linearly polarized signals into two orthogonal circularly polarized signals and vice versa. With such arrangements, it is then possible to send or receive also circularly polarized signals.

Alternativ hierzu kann das Antennenfeld zum Empfang und zum Senden zirkular polarisierter Signale auch mit einem sogenannten Polarisator ausgestattet werden. Typischerweise handelt es sich hierbei um geeignet strukturierte metallische Schichten ("Layer") welche in einer Ebene annƤhernd senkrecht zur Ausbreitungsrichtung der elektromagnetischen Welle liegen. Die metallische Struktur wirkt dabei derart, dass sie in einer Richtung kapazitiv und in der orthogonalen Richtung induktiv wirkt. FĆ¼r zwei orthogonal polarisierte Signale bedeutet dies, dass den beiden Signalen ein Phasenunterschied aufgeprƤgt wird. Wird der Phasenunterschied nun so eingestellt, dass er beim Durchgang durch den Polarisator gerade 90Ā° betrƤgt, dann werden zwei orthogonale linear polarisierte Signale in zwei orthogonale zirkular polarisierte Signale umgewandelt bzw. umgekehrt.Alternatively, the antenna array for receiving and transmitting circularly polarized signals can also be equipped with a so-called polarizer. Typically, these are suitably structured metallic layers ("layers") which lie in a plane approximately perpendicular to the propagation direction of the electromagnetic wave. The metallic structure acts in such a way that it acts capacitively in one direction and inductively in the orthogonal direction. For two orthogonally polarized signals, this means that a phase difference is imposed on the two signals. If the phase difference is now set to be just 90 Ā° when passing through the polarizer, then two orthogonal linearly polarized signals are converted to two orthogonal circularly polarized signals, and vice versa.

Um groƟe Nutzbandbreiten zu erhalten besteht der Polarisator vorteilhafterweise aus mehreren Schichten, welche in einem bestimmten Abstand (typischerweise im Bereich einer Viertel WellenlƤnge) voneinander angebracht werden.In order to obtain large useful bandwidths, the polarizer advantageously consists of several layers, which are mounted at a certain distance (typically in the region of a quarter wavelength) from each other.

Eine besonders geeignete AusfĆ¼hrungsform des Polarisators ist ein Mehr-Lagen-MƤanderpolarisator. Hierbei werden mit den Ć¼blichen Strukturierungsverfahren metallische MƤanderstrukturen geeigneter Dimension auf einem typischerweise dĆ¼nnen Substrat strukturiert. Die so strukturierten Substrate werden dann auf Schaumplatten geklebt, bzw. zu Sandwiches laminiert. Als SchƤume kommen z.B. verlustarme geschlossenzellige SchƤume wie Rohacell oder XPS in Frage.A particularly suitable embodiment of the polarizer is a multi-layer meander polarizer. In this case, metallic meander structures of suitable dimensions are patterned on a typically thin substrate using the usual structuring methods. The substrates structured in this way are then glued onto foam boards or laminated to form sandwiches. As foams are e.g. low-loss closed-cell foams such as Rohacell or XPS in question.

Vorteilhaft ist hier eine Abfolge von Schaumplatten, Klebefolien und strukturierten Substraten aufeinanderzulegen und mit einer Presse zu verpressen. In relativ einfacher Weise entsteht dann ein geeigneter Polarisator geringen Gewichts.It is advantageous here to superimpose a sequence of foam sheets, adhesive sheets and structured substrates on one another and to press them with a press. In a relatively simple manner then creates a suitable polarizer light weight.

GemƤƟ einer weiteren vorteilhaften Ausgestaltung der Erfindung werden sehr hohe Nutzbandbreiten und hohe Kreuzpolarisations-Isolationen erreicht, wenn der Polarisator nicht genau senkrecht zur Ausbreitungsrichtung der elektromagnetischen Welle vor dem Antennenfeld angebracht wird, sondern leicht verkippt. In diesen Anordnungen ist der typische Abstand des Polarisators zur AperturflƤche des Antennenfeldes im Bereich einer WellenlƤnge der Nutzfrequenz und der Kippwinkel gegenĆ¼ber der Aperturebene im Bereich von 2Ā° bis 10Ā°.According to a further advantageous embodiment of the invention, very high useful bandwidths and high cross-polarization isolations are achieved when the polarizer is not mounted exactly perpendicular to the direction of propagation of the electromagnetic wave in front of the antenna field, but slightly tilted. In these arrangements, the typical distance of the polarizer to the aperture surface of the antenna array is in the range of a wavelength of the useful frequency and the tilt angle to the aperture plane in the range of 2 Ā° to 10 Ā°.

Da das Antennendiagramm ("antenna pattern") des Antennensystems im Sendeband unter einer regulatorisch vorgegebenen Maske liegen muss, und bei kleinen Antennen nur dann mit hohen spektralen Leistungsdichten gesendet werden kann, wenn das Diagramm so nahe wie mƶglich an der Maske liegt, kann es von Vorteil sein, das Antennensystem mit einer Amplitudenbelegung ("aperture amplitude tapering") zu versehen. Insbesondere bei ebenen Aperturƶffnungen sind hierzu parabole Amplitudenbelegungen der Apertur besonders geeignet. Parabole Amplitudenbelegungen sind dabei dadurch gekennzeichnet, dass die LeistungsbeitrƤge der Einzelstrahler vom Rand des Antennenfeldes zur Mitte hin zunehmen und sich z. B. ein parabel-Ƥhnlicher Verlauf ergibt.Since the antenna pattern of the antenna system in the transmission band must be below a regulatory mask, and for small antennas can only be sent with high spectral power densities, if the diagram as close as possible to the mask It may be advantageous to provide the antenna system with an amplitude amplitude tapering. Parabole amplitude assignments of the aperture are particularly suitable in the case of flat aperture openings for this purpose. Parabole amplitude assignments are characterized in that the power contributions of the individual radiators from the edge of the antenna field towards the center increase and z. B. results in a parabolic-like course.

Solche Amplitudenbelegungen des Antennenfeldes fĆ¼hren zu einer UnterdrĆ¼ckung der Nebenkeulen im Antennendiagramm und damit zu einer hƶheren regulatorisch erlaubten spektralen Leistungsdichte.Such amplitude assignments of the antenna field lead to a suppression of the side lobes in the antenna pattern and thus to a higher regulatory allowable spectral power density.

Da die Nebenkeulen bei Anwendungen in geostationƤren Satellitendiensten nur entlang einer Tangente an den geostationƤren Orbit am Ort des Zielsatelliten unterdrĆ¼ckt werden mĆ¼ssen, wird die Amplitudenbelegung des Antennenfeldsystems vorzugsweise so gestaltet, dass sie zumindest entlang der Richtung durch das Antennensystem, in welcher die Strahlelemente dicht liegen, wirkt. Dabei liegen die Strahlelemente in der Richtung dicht, in welcher der Abstand der Phasenzentren der Einzelstrahler kleiner oder gleich der WellenlƤnge der hƶchsten Sendefrequenz ist, bei der keine signifikanten parasitƤren Nebenkeulen (grating-lobes)auftreten dĆ¼rfen.Since the side lobes in applications in geostationary satellite services only need to be suppressed along a tangent to the geostationary orbit at the location of the target satellite, the amplitude occupancy of the antenna field system is preferably designed to be at least along the direction through the antenna system in which the radiating elements are dense. acts. In this case, the beam elements are dense in the direction in which the distance of the phase centers of the individual radiators is less than or equal to the wavelength of the highest transmission frequency at which no significant parasitic side lobes (grating lobes) may occur.

DarĆ¼ber hinaus sind weitere Vorteile und Merkmale der vorliegenden Erfindung aus der Beschreibung bevorzugter AusfĆ¼hrungsformen ersichtlich. Die dort beschriebenen Merkmale kƶnnen alleinstehend oder in Kombination mit einem oder mehreren der oben erwƤhnten Merkmale umgesetzt werden. Die folgende Beschreibung der bevorzugten AusfĆ¼hrungsformen erfolgt dabei unter Bezugnahme auf die begleitenden Zeichnungen.In addition, other advantages and features of the present invention will be apparent from the description of preferred embodiments. The features described therein may be implemented alone or in combination with one or more of the features mentioned above. The following description of the preferred embodiments will be made with reference to the accompanying drawings.

KURZE BESCHREIBUNG DER FIGURENBRIEF DESCRIPTION OF THE FIGURES

  • Fig. 1a-b zeigen schematisch ein erfindungsgemƤƟes Antennenmodul, welches aus einem Feld von 8 x 8 Einzelstrahlern besteht; Fig. 1a-b schematically show an inventive antenna module, which consists of a field of 8 x 8 individual radiators;
  • Fig. 2a-b zeigen beispielhafte Mikrostreifenleitungsspeisenetzwerke fĆ¼r ein 8 x 8 Antennenmodul; Fig. 2a-b show exemplary microstrip feed networks for an 8x8 antenna module;
  • Fig. 3a-d stellen schematisch den beispielhaften Aufbau einer erfindungsgemƤƟen Antenne aus Antennenmodulen und die Vernetzung der Module durch Hohlleiternetzwerke dar; Fig. 3a-d schematically illustrate the exemplary structure of an antenna according to the invention of antenna modules and the networking of the modules by waveguide networks;
  • Fig. 4a-d zeigen den Detailaufbau eines einzelnen vierfach gezahnten ("quad-ridged") Hornstrahlers; Fig. 4a-d show the detailed structure of a single quadruple-toothed horn radiator;
  • Fig. 5 stellt schematisch den Detailaufbau eines 2 x 2 Antennenmoduls aus vierfach gezahnten ("quad-ridged") Hornstrahlers dar; Fig. 5 schematically illustrates the detailed structure of a 2 x 2 antenna module of four-toothed ("quad-ridged") horn radiator;
  • Fig. 6a-b zeigen ein exemplarisches 8 x 8 Antennenmodul, welches aus dielektrisch gefĆ¼llten Hornstrahlern besteht; Fig. 6a-b show an exemplary 8 x 8 antenna module, which consists of dielectrically filled horns;
  • Fig. 7a-d stellen den beispielhaften Detailaufbau eines einzelnen dielektrisch gefĆ¼llten Hornstrahlers dar; Fig. 7a-d illustrate the exemplary detailed construction of a single dielectrically filled horn radiator;
  • Fig. 8 zeigt schematisch den Detailaufbau eines 2 x 2 Moduls aus dielektrisch gefĆ¼llten Hornstrahlern; Fig. 8 schematically shows the detailed structure of a 2 x 2 module of dielectrically filled horns;
  • Fig. 9 zeigt ein erfindungsgemƤƟes Modul, das zur Verbesserung der Impedanzanpassung mit einem dielektrischen Gitter versehen ist; Fig. 9 shows a module according to the invention, which is provided for improving the impedance matching with a dielectric grid;
  • Fig. 10a-b zeigen ein erfindungsgemƤƟes Modul in Lagentechnik; Fig. 10a-b show a module according to the invention in layering technique;
  • Fig. 11a-d zeigen den Detailaufbau eines erfindungsgemƤƟen Moduls in Lagentechnik; Fig. 11a-d show the detailed structure of a module according to the invention in layering technology;
  • Fig. 12 zeigt schematisch das Vakuummodel eines erfindungsgemƤƟen Moduls; Fig. 12 schematically shows the vacuum model of a module according to the invention;
  • Fig. 13 zeigt den exemplarischen Aufbau eines Hohlleiter-Leistungsteilers, welcher aus zweifachgezƤhnten ("double-ridged") Hohlleitern zusammengesetzt ist; Fig. 13 shows the exemplary construction of a waveguide power divider composed of double-ridged waveguides;
  • Fig. 14 zeigt schematisch eine Lage eines Polarisators; Fig. 14 schematically shows a position of a polarizer;
  • Fig. 15a-b zeigen beispielhaft eine schematische Amplitudenbelegung eines erfindungsgemƤƟen Antennensystems und die daraus resultierende maximale regulatorisch konforme spektrale EIRP Dichte; Fig. 15a-b show, by way of example, a schematic amplitude assignment of an antenna system according to the invention and the resulting maximum regulatory-compliant spectral EIRP density;
  • Fig. 16 zeigt einen mƶglichen Aufbau eines erfindungsgemƤƟen Antennensystems mit fester Polarisation des Sende- und des Empfangssignals in Form eines Blockdiagramms; Fig. 16 shows a possible construction of an antenna system according to the invention with fixed polarization of the transmitted and the received signal in the form of a block diagram;
  • Fig. 17 zeigt einen mƶglichen Aufbau eines erfindungsgemƤƟen Antennensystems mit variabler Polarisation des Sende- und des Empfangssignals unter Verwendung von 90Ā° Hybridkopplern in Form eines Blockdiagramms; Fig. 17 shows a possible construction of a variable polarization antenna system according to the invention of the transmitted and received signals using 90 Ā° hybrid couplers in the form of a block diagram;
  • Fig. 18 zeigt schematisch den Aufbau eines erfindungsgemƤƟen Antennensystems mit variabler Polarisation des Sende- und des Empfangssignals unter Verwendung eines Polarisators in Form eines Blockdiagramms. Fig. 18 schematically shows the structure of an antenna system according to the invention with variable polarization of the transmitting and Receive signal using a polarizer in the form of a block diagram.

Die in den Zeichnungen dargestellten exemplarischen AusfĆ¼hrungsformen der Antenne und ihrer Komponenten werden im Folgenden nƤher erlƤutert.The exemplary embodiments of the antenna and its components shown in the drawings are explained in more detail below.

Fig. 1 stellt eine beispielhafte AusfĆ¼hrungsform eines Antennenmoduls einer erfindungsgemƤƟen Antenne dar. Die Einzelstrahler 1 sind hier als rechteckige Hornstrahler ausgelegt, welche zwei orthogonale Polarisationen unterstĆ¼tzen kƶnnen. Fig. 1 represents an exemplary embodiment of an antenna module of an antenna according to the invention. The individual emitters 1 are designed here as rectangular horns, which can support two orthogonal polarizations.

Die intra-modularen Mikrostreifenleitungsnetzwerke 2, 3 fĆ¼r die beiden orthogonalen Polarisationen befinden sich zwischen unterschiedlichen Lagen.The intra-modular microstrip line networks 2, 3 for the two orthogonal polarizations are located between different layers.

Das Antennenmodul besteht aus insgesamt 64 primƤren Einzelstrahlern 1 welche in einem 8 x 8 Antennenfeld angeordnet sind (Ni = 64). Die Dimensionen der Einzelstrahler und die GrĆ¶ĆŸe ihrer AperturflƤchen ist dabei so gewƤhlt, dass der Abstand der Phasenzentren der einzelnen Strahlelemente entlang beider Hauptachsen kleiner als Ī»min ist, wobei Ī»min die WellenlƤnge der hƶchsten Nutzfrequenz bezeichnet. Durch diesen Abstand ist sichergestellt, dass im Antennendiagramm bis zur hƶchsten Nutzfrequenz (Referenzfrequenz) in keiner Richtung parasitƤre Nebenkeulen, sog. "grating lobes", auftreten kƶnnen.The antenna module consists of a total of 64 primary individual emitters 1 which are arranged in an 8 x 8 antenna field ( N i = 64). The dimensions of the individual radiators and the size of their aperture surfaces are chosen so that the distance of the phase centers of the individual beam elements along both major axes is smaller than Ī» min , where Ī» min denotes the wavelength of the highest useful frequency. This distance ensures that parasitic sidelobes, so-called "grating lobes", can not occur in any direction in the antenna diagram up to the highest usable frequency (reference frequency).

Im exemplarischen Fall des in Fig. 1 gezeigten Antennenmoduls stellen beide Mikrostreifenleitungsnetzwerke einen 64:1 Leistungsteiler dar, da sie die Signale von 64 Einzelstrahlern zusammenfĆ¼hren. Eine beispielhafte interne Organisation der beiden Mikrostreifenleitungsnetzwerke ist in Fig. 2 dargestellt.In the exemplary case of in Fig. 1 As shown in the antenna module shown, both microstrip line networks provide a 64: 1 power splitter as they combine the signals from 64 individual emitters. An exemplary internal organization of the two microstrip transmission networks is in Fig. 2 shown.

Es sind jedoch auch AusfĆ¼hrungsformen denkbar, fĆ¼r die die Module eine kleinere oder grĆ¶ĆŸere Zahl von Hornstrahlern umfassen. FĆ¼r K/Ka-Band Antennen z.B. sind 4 x 4 Module optimal. Die Mikrostreifenleitungsnetzwerke stellen dann einen 16:1 Leistungsteiler dar, der die Signale von 16 Einzelstrahlern zusammenfĆ¼hrt. Die Mikrostreifenleitungen werden in diesem Fall relativ kurz und ihr Rauschbeitrag bleibt daher klein.However, embodiments are also conceivable for which the modules comprise a smaller or larger number of horns. For K / Ka band antennas e.g. 4 x 4 modules are optimal. The microstrip line networks then provide a 16: 1 power splitter that merges the signals from 16 individual emitters. The microstrip lines in this case are relatively short and their noise contribution therefore remains small.

Durch entsprechende Auslegung der ModulgrĆ¶ĆŸen kann damit je nach Anwendung eine Antenne mit optimalen Leistungsparametern konstruiert werden. Vorteilhafterweise werden die Module nur so groƟ gemacht, wie erforderlich, um sie mit Hohlleitern speisen zu kƶnnen. Der parasitƤre Rauschbeitrag der Mikrostreifenleitungen wird dadurch minimiert.Depending on the application, an antenna with optimum performance parameters can be constructed by appropriate design of the module sizes. Advantageously, the modules are only made as large as necessary in order to feed them with waveguides can. The parasitic noise contribution of the microstrip lines is thereby minimized.

Die beiden Mikrostreifenleitungsnetzwerke 2, 3 koppeln die zusammengefĆ¼hrten Signale jeweils nach Polarisationen getrennt in Mikrostreifen-zu-Hohleiterkopplungen 4, 5 wie dies in Fig. 1b dargestellt ist. Durch diese Hohlleiterkopplungen 4, 5 kann eine beliebig groƟe Zahl von Modulen mit Hilfe von Hohlleiternetzwerken effizient und dƤmpfungsarm zu einem erfindungsgemƤƟen Antennensystem verkoppelt werden.The two microstrip line networks 2, 3 couple the merged signals into polarized-to-waveguide couplings 4, 5, respectively, according to polarization, as shown in FIG Fig. 1b is shown. By means of these waveguide couplings 4, 5, an arbitrarily large number of modules can be coupled efficiently and with low attenuation to form an antenna system according to the invention with the aid of waveguide networks.

Fig. 2 zeigt zwei beispielhafte Mikrostreifenleitungsnetzwerke 2, 3 zur Speisung der Einzelstrahler 1 des 8 x 8 Antennenmoduls der Fig. 1. Beide Netzwerke sind als binƤre 64:1 Leistungsteiler ausgelegt. Fig. 2 shows two exemplary microstrip line networks 2, 3 for feeding the individual radiator 1 of the 8 x 8 antenna module of Fig. 1 , Both networks are designed as binary 64: 1 power dividers.

Durch die beiden zueinander orthogonalen Mikrostreifen-zu-Hohleiterkopplungen 6, 7 werden die orthogonal polarisierten Signale in die einzelnen Hornstrahler des 8 x 8 Moduls ein- bzw. ausgekoppelt. Das Summensignal wird an den Hohlleiterkopplungen 4a bzw. 5a in Hohlleiter ein- bzw. ausgekoppelt. Da die beiden Mikrostreifenleitungsnetzwerke 2, 3 typischerweise in zwei Ebenen Ć¼bereinander liegen, befinden sich HohlleiterdurchfĆ¼hrungen 4b bzw. 5b ebenfalls auf der entsprechenden Platine, um einen Durchbruch und die Verbindung zu den Hohlleiterkopplungen 4a bzw. 5a zu schaffen.By the two mutually orthogonal microstrip-to-Hohleiterkopplungen 6, 7, the orthogonally polarized signals in the individual horns of the 8 x 8 module or coupled. The sum signal is input or output to the waveguide couplings 4a and 5a in waveguides. Since the two microstrip line networks 2, 3 are typically superimposed in two planes, waveguide feedthroughs 4b and 5b are also located on the corresponding board in order to create an opening and the connection to the waveguide couplings 4a and 5a, respectively.

Die Mikrostreifenleitungsnetzwerke 2, 3 kƶnnen mit allen bekannten Verfahren hergestellt werden. Wobei sich verlustarme Substrate fĆ¼r Antennen in besonderer Weise eignen.The microstrip line networks 2, 3 can be made by any known method. Whereby low-loss substrates for antennas are particularly suitable.

Fig. 3 zeigt exemplarisch wie verschiedene Antennenmodule 8 zu erfindungsgemƤƟen Antennensystemen verkoppelt werden kƶnnen. Fig. 3 shows by way of example how different antenna modules 8 can be coupled to antenna systems according to the invention.

ErfindungsgemƤƟe Antennensysteme bestehen aus einer Anzahl M von Modulen, wobei M mindestens zwei sein muss. In Fig. 3 sind beispielhaft Module mit Ni = 8 x 8 = 64 (i = 1,...,16) Einzelstrahlern 1 dargestellt. M ist gleich 16 und die Module sind in einem 8 x 2 Feld angeordnet (vgl. Fig.3a), was eine rechteckige Antenne mit N = āˆ‘ i N i = 64 Ɨ 16 = 1024

Figure imgb0005
Einzelstrahlern ergibt.Antenna systems according to the invention consist of a number M of modules, where M must be at least two. In Fig. 3 are exemplary modules with N i = 8 x 8 = 64 (i = 1, ..., 16) single radiators 1 shown. M is equal to 16 and the modules are arranged in an 8 x 2 field (cf. 3a ), which is a rectangular antenna with N = Ī£ i N i = 64 Ɨ 16 = 1024
Figure imgb0005
Single radiators results.

Andere Anordnungen der Module und andere ModulgrĆ¶ĆŸen sind jedoch ebenfalls denkbar. So kƶnnen die Module z.B. auch kreisfƶrmig angeordnet werden. Auch mĆ¼ssen nicht alle Module die gleiche GrĆ¶ĆŸe (Anzahl der Einzelstrahler) besitzen.However, other arrangements of the modules and other module sizes are also conceivable. Thus, the modules may e.g. also be arranged in a circle. Also, not all modules must have the same size (number of individual emitters).

Die Module 8 werden nun mit Hilfe der Hohlleiternetzwerke 9, 10 miteinander vernetzt. Hierzu werden die entsprechenden Hohlleitereinkoppelstellen 11, 12 der Hohlleiternetzwerke 9, 10 mit den entsprechenden Hohlleiterkopplungen 4, 5 (vgl. Fig. 1b) der einzelnen Module 8 verbunden.The modules 8 are now connected to each other by means of the waveguide networks 9, 10. For this purpose, the corresponding waveguide coupling points 11, 12 of the waveguide networks 9, 10 with the corresponding waveguide couplings 4, 5 (see. Fig. 1b ) of the individual modules 8 connected.

Die Hohlleiternetzwerke 9, 10 selbst stellen jedes fĆ¼r sich einen M:1 Leistungsteiler dar, so dass die beiden orthogonal polarisierten Signale Ć¼ber die Summenports 13, 14 in das Antennensystem eingespeist bzw. aus dem Antennensystem ausgekoppelt werden kƶnnen.The waveguide networks 9, 10 themselves each represent an M: 1 power divider, so that the two orthogonally polarized signals can be fed into the antenna system via the sum ports 13, 14 or be coupled out of the antenna system.

Je nach Anwendung und erforderlicher Frequenzbandbreite kƶnnen fĆ¼r die Hohlleiternetzwerke 9, 10 verschiedenste Hohlleiter, wie z.B. konventionelle rechteckige oder runde Hohleiter oder breitbandigere gezahnte ("ridged") Hohlleiter, zum Einsatz kommen. Auch dielektrisch gefĆ¼llte Hohlleiter sind denkbar.Depending on the application and the required frequency bandwidth, waveguides 9, 10 can be provided with a wide variety of waveguides, such as, for example, waveguide networks. Conventional rectangular or round waveguides or broad-banded ridged waveguides are used. Dielectric filled waveguide are conceivable.

So kann es z.B. vorteilhaft sein den Teil des Hohlleiternetzwerks, der direkt an die Hohlleiterkopplung 4, 5 anschlieƟt, mit einem Dielektrikum zu fĆ¼llen. Die Dimensionen der dielektrisch gefĆ¼llten Hohleiter verringern sich dann erheblich, so dass deren Bauraumbedarf minimal wird.So it can be e.g. be advantageous to fill the part of the waveguide network, which connects directly to the waveguide coupling 4, 5, with a dielectric. The dimensions of the dielectrically filled waveguides are then significantly reduced, so that their space requirement is minimal.

Die in Fig. 3 dargestellte Antenne ist damit entsprechend Anspruch 1 aufgebaut:
Die Antenne besteht aus einem Antennenfeld von N Einzelstrahlern 1 wobei jeder Einzelstrahler 1 zwei unabhƤngige orthogonale Polarisationen unterstĆ¼tzen kann und N die Gesamtzahl der Einzelstrahler 1 des Antennenfeldes bezeichnet.
In the Fig. 3 illustrated antenna is thus constructed according to claim 1:
The antenna consists of an antenna array of N individual radiators 1, wherein each individual radiator 1 can support two independent orthogonal polarizations and N denotes the total number of individual radiators 1 of the antenna array.

Zudem ist das Antennenfeld aus Modulen 8 aufgebaut, wobei jedes Modul Ni Einzelstrahler enthƤlt und āˆ‘ i N i = N

Figure imgb0006
gilt.In addition, the antenna array is constructed of modules 8, each module contains N i single radiator and Ī£ i N i = N
Figure imgb0006
applies.

Im AusfĆ¼hrungsbeispiel der Fig. 3 gilt dabei zusƤtzlich, dass jedes Modul Ni = n1 x nk Einzelstrahler enthƤlt, Ni , n, i, l, k ganze Zahlen sind und āˆ‘ i N i = N

Figure imgb0007
gilt.In the embodiment of Fig. 3 In addition, it holds that each module contains N i = n 1 Ɨ n k single radiators, N i , n , i , l , k are integers and Ī£ i N i = N
Figure imgb0007
applies.

Die Einzelstrahler 1 sind so dimensioniert (s. Fig. 1), dass fĆ¼r mindestens eine Richtung durch das Antennenfeld der Abstand der Phasenzentren der Hornstrahler kleiner oder gleich der WellenlƤnge der hƶchsten Sendefrequenz ist, bei der keine grating-lobes auftreten dĆ¼rfen.The individual radiators 1 are dimensioned (s. Fig. 1 ) that for at least one direction through the antenna array, the distance of the phase centers of the horns is less than or equal to the wavelength of the highest transmission frequency at which no grating lobes may occur.

Die Einzelstrahler 1 werden fĆ¼r jede der beiden orthogonalen Polarisationen getrennt durch Mikrostreifenleitungen gespeist (s. Fig. 2, Mikrostreifen-zu-Hohleiterkopplungen 6, 7).The individual radiators 1 are supplied separately by microstrip lines for each of the two orthogonal polarizations (see FIG. Fig. 2 Microstrip-to-waveguide couplings 6, 7).

Die Mikrostreifenleitungen der einen orthogonalen Polarisation sind zu dem ersten intra-modularen Mikrostreifenleitungsnetzwerk 2 verbunden und die Mikrostreifenleitungen der anderen orthogonalen Polarisation sind zu dem zweiten intra-modularen Mikrostreifenleitungsnetzwerk 3 verbunden.The microstrip lines of one orthogonal polarization are connected to the first intra-modular microstrip line network 2 and the microstrip lines of the other orthogonal polarization are connected to the second intra-modular microstrip network 3.

Das erste intra-modulare Mikrostreifennetzwerk 2 ist an das erste inter-modulare Hohlleiternetzwerk 9 angekoppelt und das zweite intra-modulare Mikrostreifennetzwerk 3 ist an das zweite inter-modulare Hohleiternetzwerk 10 angekoppelt, so dass das erste inter-modulare Hohleiternetzwerk 9 alle Signale der einen orthogonalen Polarisation am ersten Summenport 13 zusammenfĆ¼hrt und das zweite inter-modulare Hohleiternetzwerk 10 alle Signale der anderen orthogonalen Polarisation am zweiten Summenport 14 zusammenfĆ¼hrt .The first micro-strip intra-modular network 2 is coupled to the first inter-modular waveguide network 9 and the second micro-strip intra-modular network 3 is coupled to the second inter-modular waveguide network 10 such that the first inter-modular waveguide network 9 receives all of the one orthogonal signals Polarization at the first sum port 13 merges and the second inter-modular waveguide network 10 all signals of the other orthogonal polarization at the second summing port 14 merges.

Zudem sind die Mikrostreifenleitungsnetzwerke 2, 3 und die Hohlleiternetzwerke 9, 10 hier als vollstƤndige und vollstƤndig symmetrische binƤre BƤume aufgebaut, so dass alle Einzelstrahler 1 parallel gespeist werden.In addition, the microstrip line networks 2, 3 and the waveguide networks 9, 10 are constructed here as complete and fully symmetrical binary trees, so that all individual radiators 1 are fed in parallel.

Die Figuren 3c und 3d zeigen eine physikalische Realisierung eines entsprechenden Antennensystems. Die Module 8 bestehen aus Einzelstrahler 1 und haben zwei unterschiedliche GrĆ¶ĆŸen, d.h. die Anzahl der Einzelstrahler 1 pro Modul 8 ist nicht fĆ¼r alle Module 8 gleich. Die mittleren vier Module 8 besitzen jeweils 8 Einzelstrahler 1 mehr als die anderen vier Module 8. Dies fĆ¼hrt dazu, dass die Hƶhe des Antennensystems am linken und rechten Rand geringer ist als im mittleren Bereich. Solche AusfĆ¼hrungsformen sind insbesondere dann von Vorteil, wenn das Antennensystem optimal an ein aerodynamisches Radom angepasst werden muss.The Figures 3c and 3d show a physical realization of a corresponding antenna system. The modules 8 consist of individual radiators 1 and have two different sizes, ie the number of individual radiators 1 per module 8 is not the same for all modules 8. The middle four modules 8 each have 8 individual emitters 1 more than the other four modules 8. As a result, the height of the antenna system at the left and right edges is less than in the central area. Such embodiments are particularly advantageous when the antenna system must be optimally adapted to an aerodynamic radome.

Die Module 8 werden mit zwei Hohlleiternetzwerken 9 und 10 fĆ¼r jede Polarisation getrennt gespeist. Die Hohlleiternetzwerke 9, 10 befinden sich dabei in zwei getrennten Schichten hinter den Modulen und die Module werden mit den Hohlleiternetzwerken 9, 10 durch die Einkoppelstellen 11, 12 verbunden, welche an die Hohlleiterkopplungen der Module 4, 5, angekoppelt sind. Beide Hohlleiternetzwerke 9, 10 sind hier als AusfrƤsungen realisiert.The modules 8 are fed separately with two waveguide networks 9 and 10 for each polarization. The waveguide networks 9, 10 are located in two separate layers behind the modules and the modules are connected to the waveguide networks 9, 10 through the coupling points 11, 12, which are coupled to the waveguide couplings of the modules 4, 5 ,. Both waveguide networks 9, 10 are realized here as cutouts.

Liegen nun das Sende- und das Empfangsband des Antennensystems frequenzmƤƟig weit auseinander, dann kann der Fall auftreten, dass die Dimensionen der Einzelstrahler 1 des Feldes so klein werden mĆ¼ssen, dass das tiefer liegende der beiden FrequenzbƤnder in die NƤhe der Grenzfrequenz der Einzelstrahler 1 kommt, oder sogar darunter liegt. Konventionelle Hornstrahler zum Beispiel kƶnnen dieses Frequenzband dann nicht mehr unterstĆ¼tzen oder ihre Effizienz nimmt stark ab.If the transmission and reception bands of the antenna system are far apart in terms of frequency, then the case may arise that the dimensions of the individual radiators 1 of the field must become so small that the lower of the two frequency bands comes close to the cutoff frequency of the individual radiators 1, or even lower. Conventional horns, for example, can no longer support this frequency band or their efficiency drops sharply.

So liegt z.B. bei einem K/Ka-Band Betrieb das Empfangsfrequenzband bei ca. 19GHz - 20GHz und das Sendefrequenzband bei ca. 29GHz - 30GHz. Um die Bedingung dafĆ¼r, dass das Antennendiagramm im Sendeband frei von parasitƤren Nebenkeulen ("grating lobes") ist, zu erfĆ¼llen, darf die Apertur der Einzelstrahler 1 hƶchstens 1cm x 1cm groƟ sein Ī»min ist 1cm).For example, in a K / Ka band operation, the receive frequency band is about 19GHz - 20GHz and the Transmitting frequency band at approx. 29GHz - 30GHz. In order to fulfill the condition that the antenna pattern in the transmission band is free of parasitic sidelobes ("grating lobes"), the aperture of the individual radiators 1 must not be more than 1 cm x 1 cm in size Ī» min is 1 cm).

Konventionelle dual polarisierte Hornstrahler zum Beispiel mit einer Aperturƶffnung von nur 1cm x 1cm funktionieren allerdings bei 19GHz - 20GHz (Ī»max= 1.58cm) so gut wie gar nicht mehr, weil eine akzeptable Impedanzanpassung an den Freiraum nicht mehr mƶglich ist. Zudem mĆ¼sste der Hornstrahler sehr nahe an der unteren Grenzfrequenz ("cutoff"-Frequenz) betrieben werden, was zu sehr hohen dissipativen Verlusten und zu einer sehr geringen Antenneneffizienz fĆ¼hren wĆ¼rde.Conventional dual polarized horns, for example, with an aperture of only 1cm x 1cm, however, hardly work at 19GHz - 20GHz (Ī» max = 1.58cm), because an acceptable impedance match to the free space is no longer possible. In addition, the horn would have to be operated very close to the lower cutoff frequency ("cutoff" frequency), which would lead to very high dissipative losses and to a very low antenna efficiency.

Die primƤren Einzelstrahler 1 sind als gezahnte ("ridged") Hornstrahler ausgefĆ¼hrt. Solche Hornstrahler besitzen eine gegenĆ¼ber konventionellen Hornstrahlern stark erweiterte Frequenzbandbreite.The primary individual radiators 1 are designed as ridged horns. Such horns have a much wider than conventional horns frequency bandwidth.

Die Impedanzanpassung solcher gezahnten Hƶrner an den Freiraum erfolgt dann nach Verfahren der Antennenphysik. Die gezahnten Hƶrner sind dabei so ausgelegt, dass sie zwei orthogonale Polarisationen unterstĆ¼tzen. Dies wird z.B. dadurch erreicht, dass die Hƶrner vierfach symmetrisch gezahnt sind ("quad-ridged"). Die Signale der orthogonalen Polarisationen werden durch getrennte Mikrostreifenleitungsnetzwerke 2, 3 zu- und abgefĆ¼hrt.The impedance matching of such toothed horns to the free space then takes place according to the method of antenna physics. The serrated horns are designed to support two orthogonal polarizations. This is e.g. achieved in that the horns are serrated quadruple symmetrical ("quad-ridged"). The signals of the orthogonal polarizations are supplied and removed by separate microstrip line networks 2, 3.

Fig. 4a zeigt schematisch den detaillierte Aufbau eines mit symmetrischen geometrischen Konstriktionen ausgestatteten Hornstrahlers am Beispiel eines vierfach gezahnten Hornstrahlers 1. Der Hornstrahler 1 besteht aus drei Segmenten (Lagen), wobei sich zwischen den Segmenten die beiden Mikrostreifenleitungsnetzwerke 2,3 befinden. Fig. 4a schematically shows the detailed structure of a equipped with symmetrical geometrical constrictions horn with the example of a four-tooth horn horn 1. The horn 1 consists of three segments (layers), which are located between the segments, the two microstrip lines networks 2.3.

Die Hornstrahler 1 sind mit symmetrischen geometrischen Konstriktionen 15, 16 entsprechend der orthogonalen Polarisationsrichtungen ausgestattet, welche sich entlang der Ausbreitungsrichtung der elektromagnetischen Welle erstrecken.The horns 1 are provided with symmetrical geometric constrictions 15, 16 corresponding to the orthogonal directions of polarization which extend along the propagation direction of the electromagnetic wave.

Solche Hƶrner werden als "gezahnte" Hƶrner bezeichnet. Dargestellt ist in Fig. 4a ein beispielhaftes vierfach gezahntes Einzelhorn, das breitbandig zwei orthogonale Polarisationen unterstĆ¼tzen kann.Such horns are referred to as "toothed" horns. Is shown in Fig. 4a an exemplary quadruple toothed single horn that can support broadband two orthogonal polarizations.

Wie in den Schnitten in Fig. 4b und 4c gezeigt, sind die geometrischen Konstriktionen gestuft ausgefĆ¼hrt und der Abstand der Konstriktionen 15, 16 zueinander verkleinert sich in Richtung der Ein- und Auskoppelstellen. Hierdurch kann eine sehr groƟe Frequenzbandbreite erreicht werden. Insbesondere kƶnnen Hornstrahler 1 realisiert werden, die auch frequenzmƤƟig weit entfernte Sende- und EmpfangsbƤnder ohne wesentliche EinbuƟen in der Effizienz unterstĆ¼tzen kƶnnen. Ein Beispiel hierfĆ¼r sind K/Ka Band Satellitenantennen. Hier liegt das Empfangsband bei 18 GHz - 21 GHz und das Sendeband bei 28 GHz - 31 GHz.As in the cuts in Fig. 4b and 4c are shown, the geometric constrictions are executed stepped and the distance of the constrictions 15, 16 to each other decreases in the direction of the coupling and decoupling. As a result, a very large frequency bandwidth can be achieved. Especially horn horns 1 can be realized, which can also support frequency far distant transmitting and receiving tapes without significant losses in efficiency. An example of this are K / Ka band satellite antennas. Here the reception band lies at 18 GHz - 21 GHz and the transmission band at 28 GHz - 31 GHz.

Die Tiefe, Breite und LƤnge der Stufen richtet sich nach den gewĆ¼nschten NutzfrequenzbƤndern und kann mit numerischen Simulationsmethoden bestimmt werden.The depth, width and length of the steps depend on the desired frequency bands and can be determined with numerical simulation methods.

Die Ein- bzw. Auskopplung der Signale auf die Mikrostreifenleitungsnetzwerke 2, 3 erfolgt typischerweise an der engsten Stelle der Konstriktionen 15, 16 fĆ¼r die jeweilige Polarisationsrichtung, was eine sehr breitbandige Impedanzanpassung erlaubt.The coupling or decoupling of the signals onto the microstrip network 2, 3 typically takes place at the narrowest point of the constrictions 15, 16 for the respective polarization direction, which allows a very broadband impedance matching.

Fig. 4d zeigt schematisch einen Teil des LƤngsschnittes durch ein gezahntes Horn an der Stelle zweier gegenĆ¼ber liegender Konstriktionen 16. Die Konstriktionen 16 sind gestuft ausgefĆ¼hrt und der Abstand di gegenĆ¼ber liegender Stufen nimmt von der Apertur des Hornstrahlers (oben) zum Hornende (unten) hin ab. Fig. 4d schematically shows a part of the longitudinal section through a toothed horn at the location of two opposing constrictions 16. The constrictions 16 are executed stepped and the distance d i of opposite stages decreases from the aperture of the horn (above) to the horn end (down) down.

ZusƤtzlich ist das Horn selbst gestuft (vgl. Fig. 4a-c), so dass bei jeder Stufe die KantenlƤnge ai der Hornƶffnung im entsprechenden Querschnitt von der Apertur des Hornstrahlers zum Hornende hin ebenfalls abnimmt.In addition, the horn itself is stepped (cf. Fig. 4a-c ), so that at each stage, the edge length a i of the horn opening in the corresponding cross section from the aperture of the horn to the horn end also decreases.

Die AbstƤnde di und die zugehƶrigen KantenlƤngen ai , oder jedenfalls mindestens ein Teil davon, werden nun so ausgelegt, dass die zugehƶrige untere Grenzfrequenz des jeweiligen gezahnten Hohlleiterabschnitts unter der niedrigsten Nutzfrequenz des Hornstrahlers liegt. Nur wenn diese Bedingung erfĆ¼llt ist, kann die elektromagnetische Welle der entsprechenden WellenlƤnge in den Hornstrahler bis zu Hohlleiter-zu-Mikrostreifenleitungskopplung eindringen, und dort ein- bzw. ausgekoppelt werden.The distances d i and the associated edge lengths a i , or at least a part thereof, are now designed so that the associated lower limit frequency of the respective toothed waveguide section is below the lowest useful frequency of the horn. Only when this condition is met can the electromagnetic wave of the appropriate wavelength penetrate into the horn to waveguide-to-microstrip line coupling, where it can be coupled in and out.

Da die dissipative DƤmpfung bei AnnƤherung an die untere Grenzfrequenz stark zunimmt, werden die AbstƤnde di und die zugehƶrigen KantenlƤngen ai vorteilhafter weise so gewƤhlt, dass ein genĆ¼gender Abstand zur Grenzfrequenz verbleibt und die DƤmpfung nicht zu hoch wird.Since the dissipative damping greatly increases when approaching the lower limit frequency, the distances d i and the associated edge lengths a i are advantageously chosen so that a sufficient distance to the cutoff frequency remains and the attenuation does not become too high.

Zudem muss berĆ¼cksichtigt werden, dass bei Antennensystemen, welche aus mehreren Hornstrahlern bestehen, gegenseitige Kopplungen der Strahler wirksam sind.In addition, it must be taken into account that in antenna systems which consist of several horn radiators, mutual couplings of the radiators are effective.

Wie sich gezeigt hat, kann eine gĆ¼nstige AusfĆ¼hrungsform dennoch durch eine analytische Bedingung, welche die KantenlƤnge ai der Apertur im entsprechenden Querschnitt durch das Horn und den Abstand di enthƤlt, beschrieben werden.As has been shown, a favorable embodiment can nevertheless be described by an analytical condition which includes the edge length a i of the aperture in the corresponding cross section through the horn and the distance d i .

In Fig. 5 ist schematisch der erfindungsgemƤƟe Aufbau eines 2 x 2 Antennenmoduls dargestellt, das aus vier vierfach gezahnten Hornstrahlern 1, vier Auskopplungen 17 auf die Mikrostreifenleitungsnetzwerke 2, 3, zwei fĆ¼r jede der beiden orthogonalen Polarisationen getrennte Mikrostreifenleitungsnetzwerke 2, 3, und Auskopplungen der Mikrostreifenleitungsnetzwerke 2, 3 auf die Hohlleiterkopplung 4, 5 verfĆ¼gt. Die Konstriktionen als symmetrische Zahnung 15, 16 der Hornstrahler 1 sind ebenfalls dargestellt.In Fig. 5 3 schematically shows the structure according to the invention of a 2 Ɨ 2 antenna module consisting of four quadruple toothed horns 1, four outcouplings 17 on the microstrip line networks 2, 3, two microstrip line networks 2, 3 separated for each of the two orthogonal polarizations, and outcouplings of the microstrip line networks 2, 3 on the waveguide coupling 4, 5 has. The constrictions as symmetrical teeth 15, 16 of the horns 1 are also shown.

Die beiden orthogonal polarisierten Signale pol 1 und pol 2, deren Empfang bzw. Abstrahlung von den Hornstrahlern 1 unterstĆ¼tzt wird, werden durch die Aus- bzw. Einkopplungsstellen 17 in das entsprechende Mikrostreifenleitungsnetzwerk 2, 3 eingespeist bzw. aus diesem extrahiert.The two orthogonally polarized signals pol 1 and pol 2 whose reception or radiation is supported by the horns 1 are fed through the extraction or injection points 17 in the corresponding microstrip line network 2, 3 and extracted from this.

Die Mikrostreifenleitungsnetzwerke 2, 3 wiederum sind als binƤre 4:1 Leistungsteiler ausgelegt und koppeln die Summensignale in die Hohlleiter 4, 5.The microstrip line networks 2, 3 in turn are designed as binary 4: 1 power dividers and couple the sum signals into the waveguides 4, 5.

Der Abstand der Phasenzentren zweier benachbarter Hornstrahler 1 in vertikaler Richtung ist dabei kleiner als Ī»min, so dass zumindest in dieser Richtung im Antennendiagram keine unerwĆ¼nschten parasitƤren Nebenkeulen ("grating lobes") auftreten kƶnnen und die Hornstrahler in dieser Richtung dicht liegen.The distance of the phase centers of two adjacent horns 1 in the vertical direction is smaller than Ī» min , so that at least in this direction in the antenna diagram no unwanted parasitic side lobes ("grating lobes") can occur and the horns are dense in this direction.

Die Phasenzentren der Hornstrahler 1 fallen in dem in Fig. 5 dargestellten Beispiel mit den Strahlzentren der Hornstrahler 1 zusammen. Im Allgemeinen ist dies jedoch nicht notwendigerweise der Fall. Die Lage des Phasenzentrums eines Hornstrahlers 1 beliebiger Geometrie kann jedoch mit numerischen Simulationsmethoden bestimmt werden.The phase centers of the horns 1 fall in the in Fig. 5 illustrated example with the beam centers of the horns 1 together. In general, however, this is not necessarily the case. However, the position of the phase center of a horn 1 of any geometry can be determined by numerical simulation methods.

FĆ¼r die Ein- und Auskopplung der von den gezahnten Hornstrahlern 1 unterstĆ¼tzten Signale eignen sich Mikrostreifenleitungen wegen ihrer bekannten Breitbandigkeit in besonderer Weise. Zudem benƶtigen Mikrostreifenleitungen nur sehr wenig Bauraum, so dass hocheffiziente, breitbandige Hornstrahler-Antennensysteme, deren Antennendiagramme keine parasitƤren Nebenkeulen ("grating lobes") aufweisen, auch noch fĆ¼r sehr hohe Frequenzen (z.B. 30 GHz - 40 GHz) realisiert werden kƶnnen.For the coupling and decoupling of the signals supported by the toothed horns 1 microstrip lines are due to their known broadband in a special way. In addition, microstrip lines require very little space, so that highly efficient, broadband horn antenna systems whose antenna diagrams have no parasitic side lobes ("grating lobes"), even for very high frequencies (eg 30 GHz - 40 GHz) can be realized.

In Fig. 6 ist eine weitere AusfĆ¼hrungsform der Erfindung dargestellt. Hier sind die Antennenmodule aus dielektrisch gefĆ¼llten Hornstrahlern 18 aufgebaut. Die mit einem Dielektrikum 19 gefĆ¼llten Hornstrahler 18 sind hier beispielhaft in einem 8 x 8 Antennenfeld angeordnet und werden Ć¼ber die Mikrostreifenleitungsnetzwerke 2 und 3 miteinander verkoppelt.In Fig. 6 a further embodiment of the invention is shown. Here, the antenna modules of dielectric filled horns 18 are constructed. The horns 18 filled with a dielectric 19 are arranged here by way of example in an 8 Ɨ 8 antenna field and are coupled to one another via the microstrip line networks 2 and 3.

Die Mikrostreifenleitungsnetzwerke 2, 3 koppeln die Summensignale in die Hohlleiterkopplungen 4, 5.The microstrip line networks 2, 3 couple the sum signals into the waveguide couplings 4, 5.

In den Fig. 7a-c ist der interne Aufbau eines vollstƤndig mit einem Dielektrikum gefĆ¼llten einzelnen Hornstrahlers 18 dargestellt. Wie der Hornstrahler 18 selbst, besteht auch der dielektrische FĆ¼llkƶrper (Dielektrikum) 19 aus drei Segmenten, welche jeweils durch die Mikrostreifenleitungsnetzwerke 2, 3 definiert sind.In the Fig. 7a-c the internal structure of a completely filled with a dielectric individual horn radiator 18 is shown. Like the horn 18 itself, the dielectric packing (dielectric) 19 also consists of three segments, each defined by the microstrip line networks 2, 3.

Damit die Einzelstrahler 1 zwei weit auseinander liegende FrequenzbƤnder unterstĆ¼tzen kƶnnen, sind sie in ihrem Innern gestuft ausgefĆ¼hrt, wie dies in den Schnitten Fig. 7b-c beispielhaft dargestellt ist. Die Aus- bzw. Einkopplung des am hƶchsten liegenden Frequenzbands erfolgt typischerweise an der engsten bzw. am tiefsten liegenden Stelle durch das Mikrostreifenleitungsnetzwerk 3, das am weitesten von der Aperturƶffnung des Einzelstrahlers 1 entfernt ist. Das tiefer liegende Frequenzband wird an einer weiter zur Aperturƶffnung hin liegenden Stelle, durch eine Mikrostreifenleitungsnetzwerk 2 aus- bzw. eingekoppelt.So that the individual radiators 1 can support two widely spaced frequency bands, they are executed stepped in their interior, as in the sections Fig. 7b-c is shown by way of example. The extraction or coupling of the highest frequency band is typically at the narrowest or lowest point by the microstrip network 3, which is farthest from the aperture of the single radiator 1. The lower frequency band is switched on or coupled in at a further point to the aperture opening, by a microstrip line network 2.

Die Tiefe, Breite und LƤnge der Stufen richtet sich nach den gewĆ¼nschten NutzfrequenzbƤndern und kann auch hier mit numerischen Simulationsmethoden bestimmt werden.The depth, width and length of the steps depend on the desired frequency bands and can also be determined with numerical simulation methods.

Liegen die beiden Ein- bzw. Auskoppelstellen der Mikrostreifenleitungsnetzwerke 2, 3 rƤumlich genĆ¼gend dicht beieinander, dann kann der Hornstrahler 1 jedoch auch so ausgelegt werden, das beide Ein- bzw. Auskoppelungen sowohl das Sende- als auch das Empfangsfrequenzband unterstĆ¼tzen kƶnnen.If the two input or output coupling points of the microstrip line networks 2, 3 spatially sufficiently close to each other, then the horn 1 can also be designed so that both inputs and outputs can support both the transmit and the receive frequency band.

Der dielektrische FĆ¼llkƶrper 19 ist entsprechend passgenau ebenfalls gestuft ausgefĆ¼hrt. Die Form des FĆ¼llkƶrpers 19 an der AperturoberflƤche richtet sich nach den elektromagnetischen Erfordernissen an das Antennendiagramm des Einzelstrahlers 1. Der FĆ¼llkƶrper 19 kann wie dargestellt an der Aperturƶffnung eben ausgefĆ¼hrt werden. Es sind jedoch auch andere, z.B. nach Innen oder AuƟen gewƶlbte, AusfĆ¼hrungen mƶglich.The dielectric filling body 19 is also designed to match exactly stepped. The shape of the filling body 19 on the aperture surface depends on the electromagnetic requirements of the antenna pattern of the single radiator 1. The filler 19 can be performed flat as shown at the aperture opening. However, there are also other, for example, inward or outward curved versions possible.

Als Dielektrika kommen verschiedenste bekannte Materialen wie etwa Teflon, Polypropylen, Polyethylen, Polycarbonat, oder Polymethylpenten in Frage. Zur simultanen Abdeckung des K und das Ka Bandes beispielsweise reicht ein Dielektrikum mit einer DielektrizitƤtszahl von etwa 2 aus (z.B. Teflon, Polymethylpenten).As dielectrics come a variety of known materials such as Teflon, polypropylene, polyethylene, polycarbonate, or polymethylpentene in question. For example, for simultaneous coverage of the K and Ka tape, a dielectric having a dielectric constant of about 2 is sufficient (e.g., Teflon, polymethylpentene).

In der in Fig. 7 dargestellten beispielhaften AusfĆ¼hrungsform ist der Hornstrahler 18 vollstƤndig mit einem Dielektrikum 19 gefĆ¼llt. Es sind jedoch auch AusfĆ¼hrungsformen mit nur teilweiser FĆ¼llung mƶglich.In the in Fig. 7 illustrated exemplary embodiment, the horn antenna 18 is completely filled with a dielectric 19. However, embodiments with only partial filling are also possible.

Der Vorteil der Verwendung von dielektrisch gefĆ¼llten Hƶrnern besteht darin, dass die Hƶrner selbst eine wesentlich weniger komplexe innere Struktur aufweisen als im Fall von gezahnten Hƶrnern.The advantage of using dielectrically filled horns is that the horns themselves have a much less complex internal structure than in the case of toothed horns.

Um hocheffiziente Antennen auch noch bei sehr hohen GHz-Frequenzen darzustellen, ist es jedoch auch denkbar, z.B. vierfach gezahnte Hornstrahler mit einem Dielektrikum zu fĆ¼llen. Auch andere Horngeometrien mit dielektrischer FĆ¼llung oder teilweiser FĆ¼llung sind mƶglich.However, in order to display high-efficiency antennas even at very high GHz frequencies, it is also conceivable, e.g. fourfold toothed horn with a dielectric to fill. Other horn geometries with dielectric filling or partial filling are also possible.

In Fig. 7d ist eine vorteilhafte AusfĆ¼hrungsform eines gestuft ausgefĆ¼hrten dielektrisch gefĆ¼llten Hornstrahlers, welcher Ć¼ber eine rechteckige Apertur verfĆ¼gt schematisch dargestellt.In Fig. 7d is an advantageous embodiment of a stepped executed dielectrically filled horn radiator, which has a rectangular aperture has shown schematically.

Fig. 7d zeigt die Ansicht des Horns von oben (Draufsicht) mit den Aperturkanten k1 und k2, sowie die LƤngsschnitte durch den Hornstrahler entlang der Linien A-A' und B-B'. Fig. 7d shows the view of the horn from above (top view) with the aperture edges k 1 and k 2 , and the longitudinal sections through the horn along the lines AA 'and B-B'.

Der Hornstrahler ist nun so ausgelegt, dass ein erster rechteckiger Querschnitt durch das Horn existiert, dessen Ɩffnung eine lange Kante kE besitzt, und ein zweiter Querschnitt durch das Horn existiert, dessen Ɩffnung eine lange Kante ks hat.The horn is now designed so that there is a first rectangular cross-section through the horn, the opening of which has a long edge k E , and a second cross-section exists through the horn, the opening of which has a long edge k s .

Liegt nun das Empfangsband des Antennensystems frequenzmƤƟig tiefer als das Sendeband und wird die Kante kE nun so gewƤhlt, dass die zugehƶrige untere Grenzfrequenz eines dielektrisch gefĆ¼llten Hohlleiters mit einer langen Kante kE unter der niedrigsten Nutzfrequenz des Empfangsbandes des Antennensystems liegt, dann kann der Hornstrahler das Empfangsband unterstĆ¼tzen.If now the reception band of the antenna system is lower in frequency than the transmission band and the edge k E is now chosen so that the associated lower limit frequency of a dielectric filled waveguide with a long edge k E is below the lowest useful frequency of the receiving band of the antenna system, then the horn support the reception band.

Wird zudem die Kante ks so gewƤhlt, dass die zugehƶrige untere Grenzfrequenz eines dielektrisch gefĆ¼llten Hohlleiters mit einer langen Kante ks unter der niedrigsten Nutzfrequenz des Sendebands des Antennensystems liegt, dann kann der Hornstrahler auch das Sendeband unterstĆ¼tzen, und dies gilt auch dann wenn Empfangsband und Sendeband weit auseinander liegen.In addition, if the edge k s chosen so that the associated lower limit frequency of a dielectric filled waveguide with a long edge k s is below the lowest usable frequency of the transmission band of the antenna system, then the horn can also support the transmission band, and this is true even if the reception band and transmission band are far apart.

Da in Fig. 7d die Kante ks orthogonal zur Kante kE liegt werden von einem solchen Hornstrahler gleichzeitig zwei orthogonale lineare Polarisationen unterstĆ¼tzt, da die entsprechenden Hohlleitermoden linear polarisiert und orthogonal zueinander sind.Because in Fig. 7d the edge k s is orthogonal to the edge k E , two orthogonal linear polarizations are simultaneously supported by such a horn, since the respective waveguide modes are linearly polarized and orthogonal to one another.

Derart gestuft ausgefĆ¼hrte Hornstrahler kƶnnen auch ohne oder nur mit teilweiser dielektrischer FĆ¼llung entsprechend betrieben werden kƶnnen und dass die in Fig. 7d dargestellte AusfĆ¼hrungsform auf eine beliebige Zahl von rechteckigen Hornquerschnitten und somit auf eine beliebige Zahl von NutzbƤndern erweitert werden kann.Such stepped horn radiators can also be operated without or only with partial dielectric filling and that the in Fig. 7d illustrated embodiment can be extended to any number of rectangular horn sections and thus to any number of NutzbƤndern.

Sollen die Hornstrahler des Antennensystems nun dicht liegen, d.h. sollen keine parasitƤren Nebenkeulen (grating lobes) im Antennendiagramm des Antennensystems auftreten, dann sind in einer weiteren vorteilhaften AusfĆ¼hrungsform die KantenlƤngen k1 und k2 der rechteckigen Apertur der Hornstrahler so gewƤhlt, dass sowohl k1 als auch k2 kleiner oder hƶchsten gleich der WellenlƤnge der Referenzfrequenz sind, welche im Sendeband der Antenne liegt.If the horns of the antenna system are now close, ie should no parasitic side lobes (grating lobes) occur in the antenna pattern of the antenna system, then in a further advantageous embodiment, the edge lengths k 1 and k 2 of the rectangular aperture of the horn are chosen so that both k 1 as well as k 2 are smaller or highest equal to the wavelength of the reference frequency, which is in the transmission band of the antenna.

In diesem Fall wird der zur VerfĆ¼gung stehende Bauraum dann optimal ausgenutzt und ein maximaler Antennengewinn wird erzielt.In this case, the available space is then optimally utilized and a maximum antenna gain is achieved.

Fig. 8 zeigt ein beispielhaftes 2 x 2 Antennenmodul, das aus vier dielektrisch gefĆ¼llten Hornstrahlern 18 besteht. Wie in Fig.7b-c dargestellt sind hier die Ein- bzw. Auskopplungen in die Mikrostreifenleitungsnetzwerke 2, 3 vollstƤndig in das Dielektrikum 19 eingebettet. Ansonsten unterscheidet sich das Modul nicht von dem entsprechenden Modul aus gezahnten Hornstrahlern, wie es in Fig. 5 dargestellt ist, die Mikrostreifenleitungsnetzwerke 2, 3 sind jeweils mit die Hohlleiterkopplungen 4, 5 verbunden. Fig. 8 shows an exemplary 2 x 2 antenna module, which consists of four dielectrically filled horns 18. As in Figure 7b-c shown here are the inputs or outputs in the microstrip network 2, 3 completely embedded in the dielectric 19. Otherwise, the module does not differ from the corresponding module of toothed horns, as in Fig. 5 is shown, the microstrip line networks 2, 3 are connected to the waveguide couplings 4, 5 respectively.

In Fig. 9 ist eine weitere vorteilhafte AusfĆ¼hrungsform dargestellt. Hier ist das Modul mit einem sich Ć¼ber die gesamte Aperturƶffnung erstreckenden dielektrischen Gitter 20 ausgestattet. Solche dielektrischen Gitter 20 kƶnnen die Impedanzanpassung insbesondere am unteren Frequenzband der Einzelstrahler 1 stark verbessern indem sie in der NƤhe der Aperturƶffnungen der Einzelstrahler 1 die effektive WellenlƤnge reduzieren.In Fig. 9 is shown a further advantageous embodiment. Here, the module is equipped with a dielectric grid 20 extending over the entire aperture opening. Such dielectric gratings 20 can greatly improve the impedance matching, particularly at the lower frequency band of the single radiators 1, by reducing the effective wavelength in the vicinity of the aperture openings of the single radiators 1.

Im in Fig. 9 dargestellten Beispiel wird dies dadurch erreicht, dass sich Ć¼ber den Zentren der Aperturƶffnungen der Einzelstrahler dielektrische Kreuze befinden. Es sind jedoch auch andere AusfĆ¼hrungsformen wie Zylinder, Kugelkƶrper, Quader etc. mƶglich. Auch muss das dielektrische Gitter 20 keinesfalls regelmƤƟig oder periodisch sein. So ist z.B. denkbar, dass das Gitter fĆ¼r die Hornstrahler 1 am Rand der Antenne eine andere Geometrie besitzt als fĆ¼r die Hornstrahler 1 im Zentrum. Damit lieƟen sich z.B. Randeffekte modellieren.Im in Fig. 9 This is achieved by the fact that dielectric crosses are located above the centers of the aperture openings of the individual radiators. It is, however Other embodiments such as cylinders, spherical body, cuboid etc. possible. Also, the dielectric grid 20 need not be regular or periodic. For example, it is conceivable that the grating for the horns 1 at the edge of the antenna has a different geometry than for the horns 1 in the center. Thus, for example, edge effects could be modeled.

Fig. 10a-b stellt ein exemplarisches Modul dar, das in Lagentechnik aufgebaut ist. Durch diese Technik lassen sich erfindungsgemƤƟe Module besonders kostengĆ¼nstig produzieren. Zudem ist auch bei sehr hohen Frequenzen (hohen Toleranzanforderungen) die Reproduzierbarkeit der Module gewƤhrleistet. Fig. 10a-b represents an exemplary module, which is built in layer technology. By this technique, modules according to the invention can be produced particularly cost-effectively. In addition, even at very high frequencies (high tolerance requirements), the reproducibility of the modules is guaranteed.

Die erste Lage besteht aus einem optionalen Polarisator 21, der bei zirkulƤr polarisierten Signalen zum Einsatz kommt. Der Polarisator 21 verwandelt linear polarisierte Signale in zirkular polarisierte und umgekehrt, je nach Polarisation des einfallenden Signals. So werden auf das Antennensystem einfallende zirkular polarisierte Signale in linear polarisierte Signale umgewandelt, so dass sie von den Hornstrahlern des Moduls verlustfrei empfangen werden kƶnnen. Andererseits werden die von den Hornstrahlern abgestrahlten linear polarisierten Signale in zirkular polarisierte Signale umgewandelt und dann in den Freiraum abgestrahlt.The first layer consists of an optional polarizer 21, which is used in circularly polarized signals. The polarizer 21 converts linearly polarized signals into circularly polarized and vice versa, depending on the polarization of the incident signal. Thus, incident on the antenna system circularly polarized signals are converted into linearly polarized signals, so that they can be received lossless from the horns of the module. On the other hand, the linearly polarized signals radiated from the horns are converted into circularly polarized signals and then radiated into the clearance.

Die beiden nƤchsten Lagen bilden den vorderen Teil des Hornstrahlerfelds, der die primƤren Hornstrukturen 22 ohne Ein- bzw. Auskoppeleinheit umfasst.The next two layers form the front part of the horn radiation field, which comprises the primary horn structures 22 without coupling-in or coupling-out unit.

Die folgenden Lagen 23a, 2 und 23b bilden die Ein- bzw. Auskopplung der ersten linearen Polarisation aus den Hornstrahlern des Feldes. Das Mikrostreifenleitungsnetzwerk 2 der ersten Polarisation und sein Substrat sind in metallische TrƤger (Lagen) 23a, 23b eingebettet. Die TrƤger 23a, 23b verfĆ¼gen Ć¼ber Aussparungen (Kerben) an den Stellen, an denen eine Mikrostreifenleitung verlƤuft (vgl. auch Fig. 11d, Bezugszeichen 25).The following layers 23a, 2 and 23b form the coupling in and out of the first linear polarization from the horns of the field. The microstrip line network 2 of the first polarization and its substrate are embedded in metallic carriers (layers) 23a, 23b. The carriers 23a, 23b have recesses (notches) at the locations where a microstrip line runs (cf. Fig. 11d , Reference numeral 25).

In gleicher Weise ist das Mikrostreifenleitungsnetzwerk 3 der zweiten, orthogonalen Polarisation mit seinem Substrat in die TrƤger 23b, 23c eingebettet.Likewise, the microstrip line network 3 of the second, orthogonal polarization with its substrate is embedded in the carriers 23b, 23c.

In der letzten Lage sind die HohlleiterabschlĆ¼sse 24 der Hornstrahler sowie die Hohlleiterauskopplungen 4 und 5.In the last position, the waveguide terminations 24 of the horns and the waveguide outcouplings 4 and 5.

Die primƤren Hornstrukturen 22, die TrƤger 23a-c und HohlleiterabschlĆ¼sse 24 sind elektrisch leitend und lassen sich kostengĆ¼nstig mit den bekannten Verfahren der Metallbearbeitung z.B. aus Aluminium herstellen (z.B. FrƤsen, Laserschneiden, Wasserstrahlschneiden, Elektroerodieren).The primary horn structures 22, the carriers 23a-c and waveguide terminations 24 are electrically conductive and can be inexpensively produced using the known methods of metal working, for example, made of aluminum (eg milling, laser cutting, water jet cutting, electroeroding).

Es ist jedoch auch denkbar, die Lagen aus Plastikmaterialen herzustellen, welche anschlieƟend ganz oder teilweise mit einer elektrisch leitenden Schicht Ć¼berzogen werden (z.B. galvanisch oder chemisch). Zur Herstellung der Plastiklagen kƶnnen dabei z.B. auch die bekannten Spritzgussverfahren verwendet werden. Solche AusfĆ¼hrungsformen haben gegenĆ¼ber Lagen aus Aluminium oder anderen Metallen den Vorteil, dass sich eine erhebliche Gewichtsreduktion ergeben kann, was insbesondere bei Anwendungen des Antennensystems auf Flugzeugen von Vorteil ist.However, it is also conceivable to produce the layers from plastic materials, which are subsequently completely or partially coated with an electrically conductive layer (for example galvanically or chemically). For the production of the plastic layers, e.g. also the known injection molding process can be used. Such embodiments have the advantage over layers of aluminum or other metals that a significant weight reduction can result, which is particularly advantageous in applications of the antenna system on aircraft.

Mit dieser Lagentechnik wird damit selbst bei sehr hohen GHz-Frequenzen ein hocheffizientes und kostengĆ¼nstiges Antennenmodul zur VerfĆ¼gung gestellt.With this layer technology, a highly efficient and cost-effective antenna module is made available even at very high GHz frequencies.

Die beschriebene Lagentechnik lƤsst sich sowohl fĆ¼r Antennenmodule aus gezahnten Hƶrnern als auch fĆ¼r Module aus dielektrisch gefĆ¼llten Hƶrnern in gleicher Weise anwenden.The layer technique described can be used equally well for antenna modules made of toothed horns as well as modules made of dielectrically filled horns.

Fig. 11a-d zeigen den Detailaufbau der in die metallischen TrƤger eingebetteten Mikrostreifenleitungsnetzwerke 2, 3. Die Aussparungen (Kerben) 25 sind so ausgefĆ¼hrt, dass die Mikrostreifenleitungen 26 der Mikrostreifenleitungsnetzwerke 2, 3 in geschlossenen metallischen KavitƤten verlaufen. Die Mikrowellenverluste werden dadurch minimiert. Fig. 11a-d 10 show the detail structure of the microstrip line networks 2, 3 embedded in the metallic carriers. The recesses (notches) 25 are designed so that the microstrip lines 26 of the microstrip line networks 2, 3 run in closed metallic cavities. The microwave losses are thereby minimized.

Da bei endlicher Dicke der Substrate (Platine) der Mikrostreifenleitungen 26 zwischen den metallischen Lagen ein Spalt verbleibt, durch den Mikrowellenleistung entweichen kƶnnte, ist zudem vorgesehen, die Substrate mit metallischen Durchkontaktierungen (Vias) 27 an den RƤndern der Kerben zu versehen, so dass die metallischen TrƤger galvanisch verbunden sind, und so die KavitƤten vollstƤndig elektrisch geschlossen werden. Liegen die Durchkontaktierungen 27 entlang der Mikrowellenleitungen 26 genĆ¼gend dicht, dann kann keine Mikrowellenleistung mehr entweichen.In addition, since with the finite thickness of the substrates (circuit board) of the microstrip lines 26 a gap remains between the metallic layers, could escape through the microwave power, it is provided to the substrates with metallic vias 27 at the edges of the notches, so that the metallic supports are galvanically connected, and so the cavities are completely electrically closed. If the plated-through holes 27 are sufficiently dense along the microwave lines 26, then microwave power can no longer escape.

Vorzugsweise schlieƟen die Durchkontaktierungen 27 mit den metallischen WƤnden der KavitƤt 25 bĆ¼ndig ab. Wird zudem ein dĆ¼nnes, verlustarmes Substrat (Platinenmaterial) verwendet, dann sind die elektromagnetischen Eigenschaften eines solchen Aufbaus denen einer luftgefĆ¼llten Koaxialleitung Ƥhnlich. Insbesondere ist eine sehr breitbandige Mikrowellenleitung mƶglich und parasitƤre hƶhere Moden sind nicht ausbreitungsfƤhig. Zudem sind selbst bei sehr hohen GHz-Frequenzen die Toleranzanforderungen gering.Preferably, the plated-through holes 27 are flush with the metallic walls of the cavity 25. In addition, if a thin, low-loss substrate (board material) is used, the electromagnetic properties of such a structure are similar to those of an air-filled coaxial line. In particular, a very broadband microwave line is possible and parasitic higher modes are not capable of propagation. In addition, even at very high GHz frequencies, the tolerance requirements are low.

Bei sehr dĆ¼nnen Substraten (z.B. < 20Āµm) und entsprechend niedrigen Nutzfrequenzen kann unter UmstƤnden auf die Durchkontaktierungen auch verzichtet werden, da auch ohne Durchkontaktierungen dann praktisch keine Mikrowellenleistung durch die dann sehr schmalen Schlitze entweichen kann.In the case of very thin substrates (eg <20 Ī¼m) and correspondingly low useful frequencies, the plated-through holes may also be dispensed with, as well as without them Vias then virtually no microwave power can escape through the then very narrow slots.

Die Hornstrahlereinkopplungen bzw. -auskopplungen 6, 7 sind direkt in die metallischen TrƤger integriert.The Hornstrahlereinkopplungen or -auskopplungen 6, 7 are integrated directly into the metallic carrier.

Fig. 12 zeigt das Vakuummodell eines beispielhaften 8 x 8 Antennenmoduls. Die Hornstrahler 1 sind dicht gepackt und dennoch verbleibt mehr als ausreichend Bauraum fĆ¼r die Mikrostreifenleitungsnetzwerke 2, 3, sowie fĆ¼r die HohlleiterabschlĆ¼sse 28 der Einzelstrahler 1 und die Hohlleiterkopplungen 4, 5. Ein dielektrisches Gitter 20 ist vor der Aperturebene angebracht. Fig. 12 shows the vacuum model of an exemplary 8 x 8 antenna module. The horns 1 are densely packed and still leaves more than enough space for the microstrip line networks 2, 3, and for the waveguide terminations 28 of the individual radiator 1 and the waveguide couplings 4, 5. A dielectric grating 20 is mounted in front of the aperture plane.

In einer weiteren vorteilhaften AusfĆ¼hrungsform sind die Hohlleiternetzwerke, welche die Module miteinander verkoppeln aus gezahnten Hohlleitern aufgebaut. Dies hat den Vorteil, dass gezahnte Hohlleiter eine sehr viel grĆ¶ĆŸere Frequenzbandbreite besitzen kƶnnen als konventionelle Hohlleiter bzw. gezielt auf unterschiedliche NutzbƤnder ausgelegt werden kƶnnen.In a further advantageous embodiment, the waveguide networks, which couple the modules together from toothed waveguides. This has the advantage that toothed waveguides can have a much greater frequency bandwidth than conventional waveguides or can be designed specifically for different useful bands.

Ein beispielhaftes Netzwerk aus zweifach gezahnten Hohlleitern ist in Fig. 13 schematisch dargestellt. Die rechteckigen Hohlleiter sind mit symmetrischen geometrischen Konstriktionen 29 versehen, welche an der Stelle der Leistungsteiler durch senkrechte Konstriktionen 30 ergƤnzt werden.An exemplary network of dual-toothed waveguides is shown in FIG Fig. 13 shown schematically. The rectangular waveguides are provided with symmetrical geometrical constrictions 29, which are supplemented by vertical constrictions 30 at the location of the power dividers.

Die Auslegung der gezahnten Hohlleiter und der entsprechenden Leistungsteiler kann mit den Verfahren der numerischen Simulation solcher Bauteile erfolgen, je nach den Anforderungen an das Netzwerk.The design of the toothed waveguides and corresponding power dividers can be done by the methods of numerical simulation of such components, depending on the requirements of the network.

Es mĆ¼ssen nicht notwendigerweise zweifach gezahnte Hohlleiter zum Einsatz kommen. Auch z.B. einfach gezahnte oder vierfach gezahnte Hohlleiter sind denkbar.It does not necessarily have to use double-toothed waveguides. Also, e.g. simply toothed or fourfold toothed waveguides are conceivable.

In einer nicht dargestellten AusfĆ¼hrungsform sind die Hohlleiter der inter-modularen Hohlleiternetzwerke ganz oder teilweise mit einem Dielektrikum gefĆ¼llt. Solche FĆ¼llungen kƶnnen bei gleicher Nutzfrequenz den Bauraumbedarf im Vergleich zu ungefĆ¼llten Hohlleitern erheblich verringern. Es ergeben sich dann sehr kompakte, bauraumoptimierte Antennen, welche insbesondere fĆ¼r Anwendungen auf Flugzeugen geeignet sind. Es kƶnnen dabei sowohl Standard-Hohlleiter als auch Hohlleiter mit geometrischen Konstriktionen mit einem Dielektrikum gefĆ¼llt werden.In one embodiment, not shown, the waveguides of the inter-modular waveguide networks are completely or partially filled with a dielectric. Such fillings can significantly reduce the space requirement compared to unfilled waveguides with the same useful frequency. This results in very compact, space-optimized antennas, which are particularly suitable for applications on aircraft. Both standard waveguides and waveguides with geometric constrictions can be filled with a dielectric.

In einer weiteren vorteilhaften AusfĆ¼hrungsform ist die Antenne mit einem Mehrlagen-MƤanderpolarisator ausgestattet.In a further advantageous embodiment, the antenna is equipped with a multilayer meander polarizer.

Fig. 14 zeigt exemplarisch eine Lage eines solchen Polarisators. Fig. 14 shows an example of a position of such a polarizer.

Um AchsenverhƤltnisse der zirkular polarisierten Signale in der NƤhe von 1 (0 dB) zu erreichen, werden Mehrlagen-MƤanderpolarisatoren verwendet.In order to achieve axis ratios of the circularly polarized signals in the vicinity of 1 (0 dB), multilayer meander polarizers are used.

In einer nicht dargestellten AusfĆ¼hrungform werden hierzu mehrere der in Fig. 14 gezeigten Lagen in parallelen Ebenen Ć¼bereinander angeordnet. Zwischen den Lagen befindet sich eine verlustarme Schicht aus Schaummaterial (z.B. Rohacell, XPS) mit einer Dicke im Bereich eines Viertels einer WellenlƤnge. Bei geringeren Anforderungen an das AchsenverhƤltnis kƶnnen jedoch auch weniger Lagen verwendet werden. Genauso kƶnnen mehr Lagen verwendet werden, falls die Anforderungen an das AchsenverhƤltnis hoch sind.In one embodiment, not shown, several of the in Fig. 14 layers shown in parallel planes arranged one above the other. Between the layers there is a low-loss layer of foam material (eg Rohacell, XPS) with a thickness in the region of a quarter of a wavelength. With lower axle ratio requirements, however, fewer layers may be used. Likewise, more layers can be used if the axis ratio requirements are high.

Eine vorteilhafte Anordnung ist ein 4-Lagen MƤanderpolarisator mir dem AchsenverhƤltnisse von unter 1 dB erzielt werden kƶnnen, was in der Praxis meist ausreichend ist.An advantageous arrangement is a 4-layer meander polarizer with the axial ratios of less than 1 dB can be achieved, which is usually sufficient in practice.

Die Auslegung der MƤanderpolarisatoren richtet sich nach den NutzfrequenzbƤndern des Antennensystems und kann mit Verfahren der numerischen Simulation solcher Strukturen erfolgen.The design of the meander polarizers depends on the useful frequency bands of the antenna system and can be done with methods of numerical simulation of such structures.

Die MƤanderlinien 31 liegen im AusfĆ¼hrungsbeispiel der Fig. 14 in einem Winkel von etwa 45Ā° zu den Hauptachsen der Antenne. Dies fĆ¼hrt dazu, dass einfallende, entlang einer Hauptachse linear polarisierte Signale in zirkular polarisierte Signale umgewandelt werden. Je nachdem zu welcher Hauptachse die Signale linear polarisiert sind entsteht ein links-zirkular polarisiertes oder ein rechts-zirkular polarisiertes Signal.The meandering lines 31 are in the embodiment of Fig. 14 at an angle of about 45 Ā° to the main axes of the antenna. This results in incident, linearly polarized along a major axis signals are converted into circularly polarized signals. Depending on which main axis the signals are linearly polarized, a left-circularly polarized or a right-circularly polarized signal is produced.

Da der MƤander-Polarisator ein lineares Bauelement ist, ist der Vorgang reziprok, d.h. in gleicher Weise werden links- bzw. rechtszirkular polarisierte Signale in linear polarisierte Signale umgewandelt.Since the meander polarizer is a linear device, the process is reciprocal, i. In the same way, left- and right-circularly polarized signals are converted into linearly polarized signals.

Ebenfalls ist denkbar, fĆ¼r die Polarisatoren andere geometrische Strukturen als MƤander zu verwenden. Es ist eine Vielzahl von passiven geometrischen Leiterstrukturen bekannt, mit denen sich linear polarisierte in zirkular polarisierte Signale umwandeln lassen. Es hƤngt vom Anwendungsfall ab, welche Strukturen fĆ¼r die Antenne am geeignetsten sind.It is also conceivable to use other geometric structures as meanders for the polarizers. There are a variety of passive geometric conductor structures known, with which linear polarized can be converted into circularly polarized signals. It depends on the application, which structures are most suitable for the antenna.

Wie in Fig. 10 gezeigt, kann der Polarisator 21 vor der Aperturƶffnung angebracht werden. Damit ist es in relativ einfacher Weise mƶglich, die Antenne sowohl fĆ¼r linear polarisierte Signale als auch fĆ¼r zirkular polarisierte Signale zu verwenden, ohne das die interne Struktur dafĆ¼r verƤndert werden muss.As in Fig. 10 As shown, the polarizer 21 may be mounted in front of the aperture opening. This makes it possible in a relatively simple manner to use the antenna for both linearly polarized signals and for circularly polarized signals, without the need to change the internal structure for it.

In einer weiteren vorteilhaften AusfĆ¼hrungsform ist die Antenne mit einer parabolen Amplitudenbelegung ausgestattet, welche durch eine entsprechende Auslegung der Leistungsteiler der Speisenetzwerke realisiert ist. Da das Antennendiagramm unter einer regulatorisch vorgegebenen Maske liegen muss, kƶnnen durch solche Amplitudenbelegungen sehr viel hƶhere maximal erlaubte spektrale EIRP Dichten im Sendebetrieb erreicht werden, als ohne solche Belegungen. Insbesondere fĆ¼r Antennen mit kleiner AperturflƤche ist dies von groƟem Vorteil, da die maximale regulatorisch konforme spektrale EIRP Dichte direkt proportional zur erreichbaren Datenrate und damit zu den Kosten eines entsprechenden Dienstes ist.In a further advantageous embodiment, the antenna is equipped with a parabolic amplitude assignment, which is realized by a corresponding design of the power divider of the feed networks. Since the antenna pattern must be below a mask prescribed by regulations, such amplitude assignments can achieve much higher maximum permitted spectral EIRP densities in the transmit mode than without such assignments. This is of great advantage, in particular for antennas with a small aperture area, since the maximum regulatory-compliant spectral EIRP density is directly proportional to the achievable data rate and thus to the cost of a corresponding service.

In Fig. 15a ist eine solche Amplitudenbelegung schematisch dargestellt. Die LeistungsbeitrƤge der einzelnen Hornstrahler fallen von der Mitte der Apertur zum Rand hin ab. In Fig. 15a ist dies durch unterschiedliche SchwƤrzungsgrade beispielhaft dargestellt (dunkel: hoher Leistungsbeitrag, hell: geringer Leistungsbeitrag). Hier fallen die LeistungsbeitrƤge in beiden Hauptachsenrichtungen (Azimut und Elevation) ab. Dies ergibt fĆ¼r alle Verdrehwinkel ("skew") ein annƤhernd optimal an die regulatorische Maske angepasstes Antennendiagramm.In Fig. 15a such an amplitude assignment is shown schematically. The power contributions of the individual horns fall from the center of the aperture to the edge. In Fig. 15a this is exemplified by different degrees of blackening (dark: high performance contribution, bright: low contribution to performance). Here, the contributions to performance fall in both main axis directions (azimuth and elevation). This results in an approximately optimally matched to the regulatory mask antenna pattern for all angles of rotation ("skew").

Je nach Anforderungen an das Antennendiagramm kann es jedoch auch ausreichend sein die Apertur nur in einer Richtung zu belegen.Depending on the requirements of the antenna diagram, however, it may also be sufficient to occupy the aperture in one direction only.

Auch ist denkbar, dass die Amplitudenbelegung nur im Bereich um das Antennenzentrum parabol verlƤuft, bei AnnƤherung an den Rand aber wieder ansteigt, so dass eine geschlossene Kurve um das Antennenzentrum existiert und die LeistungsbeitrƤge der Einzelstrahler von der Mitte der Antenne zu jedem Punkt dieser Kurve hin abfallen. Solche Amplitudenbelegungen kƶnnen insbesondere fĆ¼r nicht-rechteckige Antennen von Vorteil sein.It is also conceivable that the amplitude occupancy only runs parabolically in the area around the antenna center, but increases again when approaching the edge, so that there is a closed curve around the antenna center and the power contributions of the individual radiators from the center of the antenna to each point of this curve fall off. Such amplitude assignments may be of particular advantage for non-rectangular antennas.

In Fig. 15b ist beispielhaft die aus einer in beiden Hauptachsenrichtungen parabolen Amplitudenbelegung einer rechteckigen 64 x 20 Ka-Band Antenne folgende maximale regulatorisch konforme spektrale EIRP Dichte (EIRP SD) in AbhƤngigkeit des Verdrehwinkels um die Hauptstrahlachse("skew") dargestellt. Ohne parabole Belegung wƤre die EIRP SD im Bereich von 0Ā° skew bis ca. 55Ā° skew um etwa 8 dB niedriger und im Bereich von ca. 55Ā° skew bis ca. 90Ā° skew um ca. 4 dB niedriger.In Fig. 15b By way of example, the maximum regulatory compliant spectral EIRP density (EIRP SD), as a function of the angle of rotation about the main beam axis ("skew"), is shown by a parabolic amplitude distribution of a rectangular 64 Ɨ 20 Ka band antenna in both main axis directions. Without parabolic coverage, the EIRP SD would be about 8 dB lower in the range of 0 Ā° skew to about 55 Ā° skew, and about 4 dB lower in the range of about 55 Ā° skew to about 90 Ā° skew.

Die Fig. 16-18 zeigen den prinzipiellen Aufbau einer Reihe von erfindungsgemƤƟen Antennensystemen mit unterschiedlichem Funktionsumfang in Form von Blockdiagrammen.The Fig. 16-18 show the basic structure of a number of antenna systems according to the invention with different functional scope in the form of block diagrams.

Das Antennensystem, deren prinzipieller Aufbau in Fig. 16 dargestellt ist, eignet sich insbesondere fĆ¼r Anwendungen im K/Ka Band (Empfangsband ca. 19.2GHz -20.2GHz, Sendeband ca. 29GHz -30GHz), bei denen die Polarisationen des Sende- und des Empfangsignals fest vorgegeben und orthogonal zueinander sind (d.h. die Polarisationsrichtung der Signale Ƥndert sich nicht).The antenna system, whose basic structure in Fig. 16 is particularly suitable for applications in the K / Ka band (reception band approx. 19.2GHz -20.2GHz, transmission band approx. 29GHz -30GHz) where the polarizations of the transmission and reception signals are fixed and orthogonal to each other (ie Polarization direction of the signals does not change).

Da im K/Ka Band typischerweise mit zirkular polarisierten Signalen gearbeitet wird, ist zunƤchst ein Polarisator 21 vorgesehen. Dem folgt ein Antennenfeld 32, welches entweder aus vierfach gezahnten ("quad-ridged") Hornstrahlern oder aus dielektrisch gefĆ¼llten Hornstrahlern aufgebaut ist. Die Aperturƶffnungen der einzelnen Hornstrahler haben in diesem Frequenzbereich typischerweise Dimensionen kleiner 1cm x 1cm.Since the K / Ka band typically uses circularly polarized signals, initially a polarizer 21 is provided. This is followed by an antenna field 32, which is constructed either of four-toothed ("quad-ridged") horn radiators or of dielectrically filled horn radiators. The aperture openings of the individual horns typically have dimensions smaller than 1cm x 1cm in this frequency range.

Das Antennenfeld 32 ist erfindungsgemƤƟ in Modulen organisiert, wobei jeder Einzelstrahler Ć¼ber zwei nach Polarisationen getrennte Mikrostreifenleitungseinkopplungen bzw. -auskopplungen 33 verfĆ¼gt, welche wiederum nach Polarisationen getrennt zu zwei Mikrostreifenleitungsnetzwerken 36 verbunden sind.The antenna array 32 according to the invention is organized in modules, each individual radiator having two microstrip line couplings or outcouplings 33 separated by polarization, which in turn are connected to two microstrip line networks 36 separated by polarization.

Da die Polarisation der Sende- und der Empfangssignale fest vorgegeben und typischerweise orthogonal zueinander ist, ist hier vorgesehen, das Mikrostreifenleitungsnetzwerk 36 der einen Polarisation auf das Sendeband und das Mikrostreifenleitungsnetzwerk 36 der anderen Polarisation auf das Empfangsband auszulegen.Since the polarization of the transmit and receive signals is fixed and typically orthogonal to one another, it is envisaged here that the microstrip line network 36 of one polarization be placed on the transmit band and the microstrip line network 36 of the other polarization on the receive band.

Dies hat den Vorteil, dass das Mikrostreifenleitungsnetzwerk 36 des Empfangsbandes auf minimale Verluste hin ausgelegt werden kann, und damit das G/T der Antenne optimal wird.This has the advantage that the microstrip network 36 of the receiving band can be designed for minimum losses, and thus the G / T of the antenna becomes optimal.

Im beispielhaften Aufbau von Fig. 16 ist der Polarisator 21 so orientiert, dass die Signale im Sendeband 34 rechtshƤndig zirkular und die Signale im Empfangsband 35 linkshƤndig zirkulƤr polarisiert sind.In the exemplary construction of Fig. 16 the polarizer 21 is oriented such that the signals in the transmission band 34 are right-handed circular and the signals in the reception band 35 are circularly polarized left-handed.

Die nach Polarisation und Frequenzband getrennten Signale der beiden Mikrostreifenleitungsnetzwerke 36 der einzelnen Module werden nun mit Mikrostreifenleitungs-zu-Hohlleiterkopplungen 37 in zwei Hohlleiternetzwerke 38 gekoppelt.The signals separated by polarization and frequency band of the two microstrip line networks 36 of the individual modules are now coupled with microstrip line-to-waveguide couplings 37 in two waveguide networks 38.

Auch hier ist vorgesehen, dass die beiden Hohlleiternetzwerke 38 auf das entsprechende Band, das sie unterstĆ¼tzen sollen, optimiert werden.Again, it is envisaged that the two waveguide networks 38 will be optimized for the corresponding band they are to support.

So kƶnnen z.B. unterschiedliche Hohlleiterquerschnitte fĆ¼r das Empfangsband-Hohleiternetzwerk und das Sendeband-Hohleiternetzwerk verwendet werden. Insbesondere kƶnnen vergrĆ¶ĆŸerte Hohlleiterquerschnitte verwendet werden, was die dissipativen Verluste in den Hohlleiternetzwerken stark vermindern und damit die Effizienz der Antennen erheblich erhƶhen kann.For example, different waveguide cross sections can be used for the receive band waveguide network and the transmit band waveguide network. In particular, you can enlarged waveguide cross-sections can be used, which greatly reduce the dissipative losses in the waveguide networks and thus can significantly increase the efficiency of the antennas.

Weiterhin ist ein Empfangsband-Frequenzfilter 39 vorgesehen um den rauscharmen EmpfangsverstƤrker, welcher typischerweise direkt am Empfangsband-Ausgang der Antenne montiert wird, vor Ɯbersteuerung durch die starken Sendesignale zu schĆ¼tzen.Furthermore, a receive band frequency filter 39 is provided to protect the low noise receive amplifier, which is typically mounted directly on the receive band output of the antenna, from being overdriven by the strong transmit signals.

Um die regulatorisch geforderte SeitenbandunterdrĆ¼ckung im Sendeband zu erreichen ist zudem ein optionaler Sendebandfilter 40 vorgesehen. Dieser ist z.B. dann erforderlich, wenn ein Sendeband-LeistungsverstƤrker (HPA), nicht dargestellt, nicht Ć¼ber einen ausreichenden Filter an seinem Ausgang verfĆ¼gt.In order to achieve the regulatory sideband suppression in the transmission band, an optional transmission band filter 40 is also provided. This is e.g. required when a transmit band power amplifier (HPA), not shown, does not have a sufficient filter at its output.

Der in Fig. 16 dargestellte Aufbau eines erfindungsgemƤƟen Antennensystems hat einen weiteren, insbesondere fĆ¼r Satellitenantennen, sehr wichtigen Vorteil. Da das Sendeband-Speisenetzwerk und das Empfangsband-Speisenetzwerk sowohl auf der Ebene der Mikrostreifenleitungen als auch auf der Ebene der Hohlleiter vollstƤndig voneinander getrennt sind, wird es mƶglich, unterschiedliche Amplitudenbelegungen fĆ¼r die beiden Netzwerke zu verwenden.The in Fig. 16 shown construction of an antenna system according to the invention has another, especially for satellite antennas, very important advantage. Since the transmit band feed network and the receive band feed network are completely separated from each other both at the microstrip line level and at the waveguide level, it becomes possible to use different amplitude assignments for the two networks.

So kann z.B. das Empfangsband-Speisenetzwerk homogen belegt werden, d.h. die LeistungsbeitrƤge aller Hornstrahler der Antenne sind im Empfangsband gleich und alle Leistungsteiler sowohl auf der Ebene des Empfangsband-Mikrostreifenleitungsnetzwerks als auch auf der Ebene des Empfangsband-Hohlleiternetzwerks sind symmetrische 3dB-Leistungsteiler, wenn das Speisenetzwerk als vollstƤndiger und vollstƤndig symmetrischer binƤrer Baum aufgebaut ist.Thus, e.g. the receive band feed network is homozygously occupied, i. the power contributions of all of the antenna's horns are the same in the receive band and all power dividers at both the receive band microstrip line level and the receive band waveguide network level are balanced 3dB power dividers when the feed network is constructed as a complete and fully symmetric binary tree.

Da homogene Amplitudenbelegungen zum maximal mƶglichen Antennengewinn fĆ¼hren, wird damit erreicht, dass die Antenne im Empfangsband maximal leistungsfƤhig wird und das VerhƤltnis von Antennengewinn und Eigenrauschen G/T der Antenne maximal wird.Since homogeneous amplitude assignments lead to the maximum possible antenna gain, this ensures that the antenna is maximally efficient in the receiving band and the ratio of antenna gain and inherent noise G / T of the antenna becomes maximum.

Andererseits kann das Sendband-Speisenetzwerk unabhƤngig vom Empfangsband-Speisenetzwerk derart mit einer parabolen Amplitudenbelegung versehen werden, dass die regulatorisch konforme spektrale EIRP Dichte maximal wird.On the other hand, the transmit band feed network can be provided with a parabolic amplitude assignment independently of the receive band feed network in such a way that the regulatory compliant spectral EIRP density becomes maximum.

Zwar reduziert sich durch solche parabolen Amplitudenbelegungen der Antennengewinn, was jedoch unkritisch ist, weil dies konstruktionsbedingt nur auf das Sendeband beschrƤnkt bleibt und das Empfangsband nicht betrifft.Although reduced by such parabolic amplitude assignments of the antenna gain, but this is not critical, because this is due to the design limited only to the transmission band and does not affect the receiving band.

Die wesentlichen Leistungsmerkmale von Satellitenantennen, insbesondere von Satellitenantennen geringer GrĆ¶ĆŸe, sind das G/T und die maximale regulatorisch konforme spektrale EIRP Dichte.The essential features of satellite antennas, especially satellite antennas of small size, are the G / T and the maximum regulatory compliant spectral EIRP density.

Das G/T ist direkt proportional zur Datenrate, welche Ć¼ber die Antenne empfangen werden kann. Die maximale regulatorisch konforme spektrale EIRP Dichte ist direkt proportional zur Datenrate, welche mit der Antenne gesendet werden kann.The G / T is directly proportional to the data rate that can be received via the antenna. The maximum regulatory EIRP spectral density is directly proportional to the data rate that can be transmitted with the antenna.

Mit Antennensystemen, welche entsprechend Fig. 16 aufgebaut sind, kƶnnen beide Leistungsmerkmale unabhƤngig voneinander optimiert werden.With antenna systems, which accordingly Fig. 16 are constructed, both features can be optimized independently.

Bei sehr kleinen Satellitenantennen ergibt sich daraus noch ein weiterer Vorteil. Dort besteht nƤmlich das Problem, das die Breite des Hauptstrahls im Empfangsband so groƟ werden kann, dass nicht nur Signale des Zielsatelliten, sondern auch Signale benachbarter Satelliten empfangen werden. Die Signale benachbarter Satelliten wirken dann effektiv wie ein zusƤtzlicher Rauschbeitrag, der zu einer erheblichen Degradation des effektiven G/T fĆ¼hren kann.For very small satellite antennas, this results in another advantage. Namely, there is a problem that the width of the main beam in the reception band can become so large that not only signals of the target satellite but also signals of adjacent satellites are received. The signals from adjacent satellites then effectively act as an additional noise contribution, which can lead to a significant degradation of the effective G / T.

Bei erfindungsgemƤƟen Antennensystemen, welche entsprechend Fig. 16 aufgebaut sind, kann dieses Problem zumindest teilweise gelƶst werden. Wird nƤmlich z.B. das Empfangsband-Speisenetzwerk nicht homogen amplitudenbelegt, sondern hyperbol amplitudenbelegt, dann sinkt die Breite des Hauptstrahls der Antenne. Hyperbole Amplitudenbelegungen zeichnen sich dabei dadurch aus, dass die LeistungsbeitrƤge der Einzelstrahler des Antennenfelds von der Mitte zum Rand hin zunehmen.In antenna systems according to the invention, which accordingly Fig. 16 are constructed, this problem can be solved at least partially. If, for example, the reception band feed network is not homogeneously occupied by amplitude, but is occupied by hyperbol amplitude, then the width of the main beam of the antenna decreases. Hyperbolic amplitude assignments are characterized by the fact that the power contributions of the individual radiators of the antenna field increase from the middle to the edge.

Durch eine zumindest in einem Teilbereich des Antennensystems hyperbolen Amplitudenbelegung kann damit erreicht werden, das die StƤrke der von benachbarten Satelliten durch die Antenne empfangenen Stƶrsignale abnimmt und das effektive G/T in einem solchen Interferenzszenario zunimmt.By means of a hyperbolic amplitude occupancy, at least in a partial area of the antenna system, it is possible to achieve that the intensity of the interference signals received by neighboring satellites by the antenna decreases and the effective G / T increases in such an interference scenario.

In Fig. 17 ist der Aufbau eines erfindungsgemƤƟen Antennensystems in Form eines Blockschaltbildes dargestellt, welche den simultanen Betrieb mit allen vier mƶglichen Polarisationskombinationen der Signale erlaubt.In Fig. 17 the structure of an antenna system according to the invention is shown in the form of a block diagram, which allows simultaneous operation with all four possible polarization combinations of the signals.

Das Antennensystem besteht zunƤchst aus einem Antennenfeld 41 von breitbandigen, dual polarisierten Hornstrahlern, also z.B. vierfach gezahnten Hornstrahlern, welche erfindungsgemƤƟ in Modulen organisiert sind.The antenna system initially consists of an antenna array 41 of broadband, dual polarized horns, e.g. fourfold toothed horns, which are organized according to the invention in modules.

Im Gegensatz zur AusfĆ¼hrungsform, die in Fig. 16 dargestellt ist, wird hier jedoch kein Polarisator verwendet, sondern jeder Hornstrahler empfƤngt bzw. sendet zwei orthogonale lineare polarisierte Signale, welche jedoch auch beim Betrieb mit zirkular polarisierten Signalen die vollstƤndige Information enthalten.In contrast to the embodiment, which in Fig. 16 is shown, but here no polarizer is used, but Each horn radiator receives two orthogonal linear polarized signals which, however, also contain the full information when operating with circularly polarized signals.

Der wesentliche Unterschied zur AusfĆ¼hrungsform in Fig. 16 besteht nun darin, dass auf der Ebene der Speisenetzwerke nicht in ein Empfangsband- und ein Sendeband-Speisenetzwerk getrennt wird, sondern die Signale nur entsprechend ihrer unterschiedlichen Polarisation getrennt werden.The main difference to the embodiment in Fig. 16 consists in the fact that is not separated at the level of the feed networks in a receive band and a transmit band feed network, but the signals are separated only according to their different polarization.

Alle Signale 42 gleicher Polarisation werden nach der Auskoppelung 33 aus dem Antennenfeld im ersten Mikrostreifenleitungsnetzwerk zusammengefĆ¼hrt, alle Signale der orthogonalen Polarisation 43 im zweiten Mikrostreifenleitungsnetzwerk.All signals 42 of the same polarization are combined after the extraction 33 from the antenna field in the first microstrip network, all signals of the orthogonal polarization 43 in the second microstrip network.

Die beiden Mikrostreifenleitungsnetzwerke 36 sind dabei derart ausgelegt, dass sie sowohl das Sendeband als auch das Empfangsband unterstĆ¼tzen. Eine Optimierung der Speisenetzwerke auf eines der BƤnder ist hier nur eingeschrƤnkt mƶglich. DafĆ¼r stehen allerdings simultan alle vier Polarisationskombinationen zur VerfĆ¼gung.The two microstrip line networks 36 are designed such that they support both the transmission band and the receiving band. An optimization of the feed networks on one of the tapes is possible here only to a limited extent. However, all four polarization combinations are simultaneously available for this.

WƤhrend die erfindungsgemƤƟen Mikrostreifenleitungsnetzwerke 36 konstruktionsbedingt (koaxialleitungsƤhnlicher Aufbau) typischerweise bereits so breitbandig sind, dass sie das Empfangs- und das Sendeband simultan unterstĆ¼tzen kƶnnen, mĆ¼ssen nach dem Ɯbergang 37 Mikrostreifen-zu-Hohleiter die Hohlleiternetzwerke 44, falls sehr groƟe Bandbreiten erforderlich sind, dazu speziell ausgelegt werden. Dies kann z.B. durch die in Fig. 13 beschriebenen gezahnten Hohlleiter erfolgen. Es ist jedoch auch mƶglich, z.B. dielektrisch gefĆ¼llte Hohlleiter zu verwenden.While microstrip networks 36 of the present invention are typically already broadband by design (coaxial line like construction) to simultaneously support the receive and transmit bands, after transition 37 microstrip to waveguides, waveguide networks 44 must be used if very large bandwidths are required specially designed. This can be done by the in Fig. 13 described toothed waveguide done. However, it is also possible to use, for example, dielectrically filled waveguides.

Zur Trennung von Empfangsband- und Sendebandsignalen sind zwei Frequenz-Diplexer 45, 46, jeweils einer fĆ¼r jede Polarisation, vorgesehen. Die Frequenz-Diplexer 45, 46 sind dabei z.B. dƤmpfungsarme Hohlleiter-Diplexer.For the separation of receive band and transmit band signals, two frequency diplexers 45, 46 are provided, one for each polarization. The frequency diplexers 45, 46 are e.g. low attenuation waveguide diplexer.

Beim Betrieb mit linear polarisierten Signalen sind dann am Ausgang der beiden Diplexer alle linearen Polarisationskombinationen simultan verfĆ¼gbar: Jeweils zwei orthogonal polarisierte lineare Signale sowohl im Empfangsband 49 als auch im Sendeband 50.When operating with linearly polarized signals, all linear polarization combinations are then simultaneously available at the output of the two diplexers: two orthogonally polarized linear signals both in the reception band 49 and in the transmission band 50.

Beim Betrieb mit zirkular polarisierten Signalen sind zusƤtzlich zwei 90Ā° Hybridkoppler 47, 48, einer fĆ¼r das Empfangs- 49 und einer fĆ¼r das Sendeband 50, vorgesehen, mit deren Hilfe aus den am Ausgang der Frequenz-Diplexers 45, 46 vorliegenden lineare polarisierten Signale, zirkular polarisierte Signale kombiniert werden kƶnnen. Die 90Ā° Hybridkoppler 47, 48 sind dabei z.B. dƤmpfungsarme Hohlleiterkoppler.When operating with circularly polarized signals, two 90 Ā° hybrid couplers 47, 48, one for the receive 49 and one for the transmit band 50, are additionally provided, with the aid of which at the output of the frequency diplexers 45, 46 present linear polarized signals, circular polarized signals can be combined. The 90 Ā° hybrid couplers 47, 48 are, for example, low-attenuation waveguide couplers.

Am Ausgang der beiden 90Ā° Hybridkoppler 47, 48 liegen dann alle vier mƶglichen zirkular polarisierten Signale (im Empfangs- 49 und Sendeband 50 je rechtshƤndig und linkshƤndig zirkular) simultan vor.At the output of the two 90 Ā° hybrid couplers 47, 48 are then all four possible circularly polarized signals (in the receiving 49 and transmit band 50 each right-handed and left-handed circular) before simultaneously.

Werden zwischen Diplexer 45, 46 und 90Ā° Hybridkoppler 47, 48 entsprechende HF-Schalter und/oder HF-Koppler eingebaut und damit die linear polarisierten Signale ausgekoppelt, dann kann das Antennensystem auch zum simultanen Betrieb mit vier unterschiedlichen linear und vier unterschiedlichen zirkular polarisierten Signalen verwendet werden. Auch viele andere Kombinationsmƶglichkeiten und die entsprechenden Antennenkonfigurationen sind mƶglich.If appropriate RF switches and / or RF couplers are installed between diplexer 45, 46 and 90 Ā° hybrid couplers 47, 48 and thus the linearly polarized signals are coupled out, then the antenna system can also be used for simultaneous operation with four different linearly and four different circularly polarized signals be used. Many other combinations and the corresponding antenna configurations are possible.

In Fig. 18 ist der Aufbau eines erfindungsgemƤƟen Antennensystems in Form eines Blockschaltbildes dargestellt, welche denselben Funktionsumfang wie die in Fig. 16 dargestellte Antenne hat, jedoch anders organisiert ist.In Fig. 18 the structure of an antenna system according to the invention in the form of a block diagram is shown, which has the same scope of functions as in Fig. 16 has shown antenna, but is organized differently.

Im Aufbau nach Fig. 18 wird zum Betrieb mit zirkular polarisierten Signalen ein Polarisator 21 verwendet anstatt der 90Ā° Hybridkoppler 47, 48 des Aufbaus nach Fig. 17.Under construction Fig. 18 For operation with circularly polarized signals, a polarizer 21 is used instead of the 90 Ā° hybrid couplers 47, 48 of the design Fig. 17 ,

Die Speisenetzwerke 36, 44 verarbeiten wieder zwei orthogonale Polarisationen getrennt voneinander (hier linkszirkuar und rechtszikular) und sind jedes entsprechend breitbandig fĆ¼r das Empfangsband und das Sendeband ausgelegt.The feed networks 36, 44 process again two orthogonal polarizations separated from each other (in this case left-circular and rechtszikular) and are each designed correspondingly broadband for the receiving band and the transmission band.

Am Ausgang der Frequenz-Diplexer 45, 46 liegen dann direkt die vier Polarisationskombinationen zirkulƤr polarisierter Signale simultan an. Am Frequenz-Diplexer 45 fĆ¼r die erste zirkulare Polarisation das Signal im Empfangs- und Sendeband, am Frequenz-Diplexer 46 fĆ¼r die zweite (zur ersten orthogonale) zirkulare Polarisation das Signal im Empfangs- und Sendeband.At the output of the frequency diplexers 45, 46 are then directly the four polarization combinations of circularly polarized signals simultaneously. At the frequency-diplexer 45 for the first circular polarization, the signal in the receive and transmit band, at the frequency diplexer 46 for the second (to the first orthogonal) circular polarization, the signal in the receive and transmit band.

Durch die Verwendung von zwei 90Ā° Hybridkopplern (nicht dargestellt), welche Ƥhnlich wie im Aufbau der Fig. 17 mit den Diplexern 45, 46 verbunden werden, kann auch der Aufbau nach Fig. 18 fĆ¼r den Betrieb linear polarisierter Signale ausgelegt werden, bzw. es ist mit der entsprechenden Schaltungsmatrix ein simultaner Betrieb mit zirkulƤr und linear polarisierten Signalen mƶglich.Through the use of two 90 Ā° hybrid couplers (not shown), which are similar in construction to the Fig. 17 can be connected to the diplexers 45, 46, also the structure after Fig. 18 be designed for the operation of linearly polarized signals, or it is possible with the corresponding circuit matrix, a simultaneous operation with circular and linearly polarized signals.

Der Vorteil des Aufbaus nach Fig. 18 liegt darin, dass beim Betrieb mit zirkular polarisierten Signalen keine 90Ā° Hybridkoppler benƶtigt werden. Dies kann je nach Anwendung z.B. Bauraum oder Gewicht sparen. Auch kƶnnen sich unter UmstƤnden Kostenvorteile ergeben.The advantage of the construction after Fig. 18 This is because when operating with circularly polarized signals no 90 Ā° hybrid couplers are needed. This may vary depending on the application eg space or weight saving. Also, there may be cost benefits.

Der Vorteil des Aufbaus nach Fig. 17 liegt hingegen darin, dass beim Betrieb mit zirkular polarisierten Signalen das AchsenverhƤltnis der zirkulƤr polarisierten Signale Ć¼ber die jeweiligen LeistungsbeitrƤge am Eingang der 90Ā° Hybridkoppler 47, 48 im Prinzip frei einstellbar ist.The advantage of the construction after Fig. 17 On the other hand, in operation with circularly polarized signals, the axis ratio of the circularly polarized signals via the respective power contributions at the input of the 90 Ā° hybrid coupler 47, 48 is in principle freely adjustable.

Dies kann z.B. dann von Vorteil sein, wenn die Antenne unter einem Radom betrieben wird. Es ist bekannt, dass insbesondere fĆ¼r hohe GHz-Frequenzen Radome durch das Radommaterial und die RadomkrĆ¼mmung Polarisationsanisotropien aufweisen kƶnnen, die dazu fĆ¼hren, dass das AchsenverhƤltnis zirkular polarisierter Signale beim Durchgang durch das Radom stark verƤndert wird.This can e.g. then be advantageous if the antenna is operated under a radome. It is known that, in particular for high GHz frequencies, radomes by the radome material and the radome curvature may have polarization anisotropies which cause the axis ratio of circularly polarized signals to be greatly altered as it passes through the radome.

Dieser Effekt hat zur Folge, dass die Kreuzpolarisationsisolation stark absinken kann, was die erreichbare Kanaltrennung stark verschlechtern kann und letztendlich zu einer Degradation der erreichbaren Datenrate fĆ¼hrt.This effect has the consequence that the cross-polarization isolation can fall sharply, which can severely degrade the achievable channel separation and ultimately leads to a degradation of the achievable data rate.

Ein Aufbau der Antenne nach Fig. 17 erlaubt nun das AchsverhƤltnis der zirkular polarisierten Signale, z.B. im Sendebetrieb, so einzustellen, dass eine darauffolgende, durch den Radomdurchgang bewirkte Polarisationsverzerrung ausgeglichen wird. Eine Degradation der Kreuzpolarisationsisolation findet damit effektiv nicht statt.A structure of the antenna after Fig. 17 now allows the axis ratio of the circularly polarized signals, for example, in the transmit mode to be adjusted so that a subsequent, caused by the Radomdurchgang polarization distortion is compensated. A degradation of the cross-polarization isolation thus does not take place effectively.

Claims (16)

  1. Antenna system,
    having at least four single radiating elements (1), wherein the single radiating elements are in the form of horn antennas, and the horn antennas (1) support two mutually orthogonal linear polarizations and are equipped with constrictions (15, 16) in both polarization planes, characterized in that the walls of the horn antennas (1) and the geometric constrictions (15, 16) are at least to some extent of stepped design and the aperture of the horn antennas (1) is at any rate approximately rectangular, the interval between two opposite constrictions (15, 16) and the cross section of the horn antenna opening decreases from the aperture to the horn end of the horn antenna (1) from step to step, at least for some of these steps the steps are designed such that, for the interval di between the integer i-th steps, wherein i ā‰„ 0 in two opposite constrictions (15, 16) and the associated edge length ai of the opening of the horn antenna cross section of the integer i-th step, d l ā‰¤ p 1 2 ā¢ Ļ€ Ī» F a l 2 āˆ’ p 2 a l ,
    Figure imgb0010
    holds when Ī»E denotes the free-space wavelength of the lowest useful frequency of the antenna system, p1 is between 0.3 and 0.4 and p2 is between 0.25 and 0.35, wherein preferably p1 = 0.35 and p2 = 0.29.
  2. Antenna system according to Claim 1, characterized in that the constrictions (15, 16) are in symmetrical form with respect to the horn antenna central axis.
  3. Antenna system according to either of the preceding claims, characterized in that the steps in the walls of the horn antennas (1) and the steps in the symmetrical geometric constrictions (15, 16) are provided with optimum impedance matching to useful frequencies of the antenna system with respect to one another.
  4. Antenna system according to Claim 3, characterized in that the interval between two opposite constrictions (15, 16) decreases from the aperture to the horn end of the horn antenna (1) from step to step, and on each step the lower cut-off frequency, associated with the respective interval, of the horn section associated with the respective step is lower than the lowest useful frequency of the antenna system.
  5. Antenna system according to one of the preceding claims, characterized in that the aperture of the horn antennas (1) is at any rate approximately square,
    and Ī» S ā‰„ a 0 ā‰„ Ī» S 2
    Figure imgb0011
    holds, wherein a0 denotes the edge length of the aperture and ā€¢S denotes the free-space wavelength of the highest useful frequency of the antenna system and p1 = 0.35 and p2 = 0.29.
  6. Antenna system according to one of the preceding claims, characterized in that some of the horn antennas (1) or all the horn antennas (1) are equipped with a dielectric cross septum and/or a dielectric lens.
  7. Antenna system according to one of the preceding claims, characterized in that the horn antennas (1) are to some extent or completely filled with a dielectric (19).
  8. Antenna system according to one of the preceding claims, characterized in that at least some of the horn antennas (1) are dimensioned such that the interval between the phase centers of two directly adjacent horn antennas (1) is less than or at most equal to the wavelength of a reference frequency that lies in the transmission band of the antenna system.
  9. Antenna system according to one of the preceding claims, characterized in that the horn antennas (1) are fed by a first microstrip line (2) for the first of the orthogonal linear polarizations and by a second microstrip line (3) for the second of the orthogonal linear polarizations, and the microstrip lines (2) for the first polarization and the microstrip lines (3) for the second polarization each form separate microstrip line networks (2, 3).
  10. Antenna system according to one of the preceding claims, characterized in that microstrip lines of the microstrip line networks (2, 3) are situated on a thin substrate and are routed in cavities, the walls of which are at least to some extent electrically conductive.
  11. Antenna system according to one of the preceding claims, characterized in that the antenna system is constructed from various layers (22, 23a, 23b, 23c, 24) and a microstrip line network (2) for one polarization and a microstrip line network (3) for the other polarization are in this case situated separately from one another between the layers.
  12. Antenna system according to Claim 11, characterized in that the different layers (22, 23a, 23b, 23c, 24) form an antenna module (8) and are made from metal, and the microstrip lines (26) of the microstrip line networks (2, 3) are routed in cavities that are designed as notches (25) in the layers (23a, 23b, 23c), one notch (25) being situated above and one being situated below the microstrip line (26).
  13. Antenna array having a plurality of antenna systems according to one of the preceding claims that comprises waveguide networks (9, 10) and are coupled to one another thereby.
  14. Antenna array according to Claim 13, characterized in that a first waveguide network (9) brings together all the signals of the first polarization and a second waveguide network (10) brings together all the signals of the second polarization.
  15. Antenna array according to either of claims 13 and 14, characterized in that at least some of the waveguide networks (9, 10) have at least one geometric constriction (15, 16) along the direction of propagation of the electromagnetic wave.
  16. Antenna array according to Claim 15, characterized in that at least some of the waveguide networks (9, 10) are designed as single-ridged or double-ridged waveguides.
EP13734659.9A 2012-07-03 2013-07-02 Antenna system for broadband satellite communication in the ghz frequency range, comprising horn antennas with geometrical constrictions Active EP2870658B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012013130 2012-07-03
PCT/EP2013/001923 WO2014005691A1 (en) 2012-07-03 2013-07-02 Antenna system for broadband satellite communication in the ghz frequency range, comprising horn antennas with geometrical constrictions

Publications (2)

Publication Number Publication Date
EP2870658A1 EP2870658A1 (en) 2015-05-13
EP2870658B1 true EP2870658B1 (en) 2019-10-23

Family

ID=48748151

Family Applications (4)

Application Number Title Priority Date Filing Date
EP13734661.5A Withdrawn EP2870659A1 (en) 2012-07-03 2013-07-02 Antenna system for broadband satellite communication in the ghz frequency range, comprising dielectrically filled horn antennas
EP15178569.8A Withdrawn EP2955788A1 (en) 2012-07-03 2013-07-02 Antenna system for broadband satellite communication in the ghz frequency range with dielectrically filled horn radiators
EP13734662.3A Active EP2870660B1 (en) 2012-07-03 2013-07-02 Antenna system for broadband satellite communication in the ghz frequency range, comprising a feeding arrangement
EP13734659.9A Active EP2870658B1 (en) 2012-07-03 2013-07-02 Antenna system for broadband satellite communication in the ghz frequency range, comprising horn antennas with geometrical constrictions

Family Applications Before (3)

Application Number Title Priority Date Filing Date
EP13734661.5A Withdrawn EP2870659A1 (en) 2012-07-03 2013-07-02 Antenna system for broadband satellite communication in the ghz frequency range, comprising dielectrically filled horn antennas
EP15178569.8A Withdrawn EP2955788A1 (en) 2012-07-03 2013-07-02 Antenna system for broadband satellite communication in the ghz frequency range with dielectrically filled horn radiators
EP13734662.3A Active EP2870660B1 (en) 2012-07-03 2013-07-02 Antenna system for broadband satellite communication in the ghz frequency range, comprising a feeding arrangement

Country Status (5)

Country Link
US (3) US10211543B2 (en)
EP (4) EP2870659A1 (en)
CN (3) CN104428948B (en)
ES (2) ES2763866T3 (en)
WO (3) WO2014005693A1 (en)

Families Citing this family (69)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
CN103811876B (en) * 2014-02-26 2016-08-17 äø­å›½å·„ē؋ē‰©ē†ē ”ē©¶é™¢ē”µå­å·„ē؋ē ”ē©¶ę‰€ A kind of chip-Filled Dielectrics electromagnetic horn being applied to terahertz wave band phased array
US9383261B2 (en) * 2014-06-13 2016-07-05 Ge Aviation Systems Llc Method of eliminating spurious signals and a relative navigation system
US9843108B2 (en) * 2014-07-25 2017-12-12 Futurewei Technologies, Inc. Dual-feed dual-polarized antenna element and method for manufacturing same
DE102014112467B4 (en) 2014-08-29 2017-03-30 Lisa DrƤxlmaier GmbH FOOD NETWORK FOR ANTENNA SYSTEMS
DE102014112487A1 (en) 2014-08-29 2016-03-03 Lisa DrƤxlmaier GmbH GROUP ANTENNA OF HORN BEAMS WITH DIELECTRIC COVER
DE102014112485B4 (en) 2014-08-29 2024-03-07 Lisa DrƤxlmaier GmbH HORN BEAM ANTENNA WITH REDUCED COUPLING BETWEEN ANTENNA ELEMENTS
DE102014112825B4 (en) 2014-09-05 2019-03-21 Lisa DrƤxlmaier GmbH Steghorn radiator with additional groove
KR102302466B1 (en) * 2014-11-11 2021-09-16 ģ£¼ģ‹ķšŒģ‚¬ ģ¼€ģ“ģ— ė”ėø”ģœ  Waveguide slotted array antenna
DE102015101721A1 (en) 2015-02-06 2016-08-11 Lisa DrƤxlmaier GmbH Positioning system for antennas
EP3306747A4 (en) * 2015-06-03 2019-01-02 Mitsubishi Electric Corporation Horn antenna
US10886615B2 (en) * 2015-08-18 2021-01-05 Maxlinear, Inc. Interleaved multi-band antenna arrays
US9559428B1 (en) 2015-08-25 2017-01-31 Viasat, Inc. Compact waveguide power combiner/divider for dual-polarized antenna elements
CN105098366A (en) * 2015-09-09 2015-11-25 č„æ安äø‰ē»“通äæ”ęœ‰é™č“£ä»»å…¬åø Ridge waveguide planar array antenna employing mechanical center feeding
KR101698030B1 (en) * 2015-10-01 2017-01-19 ķ˜„ėŒ€ģžė™ģ°Øģ£¼ģ‹ķšŒģ‚¬ Antenna
CN105470651B (en) * 2016-01-04 2018-05-29 北äŗ¬čˆŖē©ŗčˆŖ天大学 A kind of ultra-wideband compact feed based on coated by dielectric
DE102016101583B4 (en) 2016-01-29 2017-09-07 Lisa DrƤxlmaier GmbH Radom
US10854984B2 (en) * 2016-03-10 2020-12-01 The Boeing Company Air-filled quad-ridge radiator for AESA applications
DE102016112582A1 (en) * 2016-07-08 2018-01-11 Lisa DrƤxlmaier GmbH Phased array antenna element
DE102016112581A1 (en) * 2016-07-08 2018-01-11 Lisa DrƤxlmaier GmbH Phased array antenna
BR112018016972B1 (en) * 2016-07-14 2022-11-16 Huawei Technologies Co., Ltd ANTENNA, SYSTEM COMPRISING AN ANTENNA AND METHOD FOR MANUFACTURING AN ANTENNA
CN106129597A (en) * 2016-08-12 2016-11-16 南äŗ¬č‚Æ微弗通äæ”ꊀęœÆęœ‰é™å…¬åø Open ended waveguide, antenna submatrix, panel antenna array and plate aerial
EP3309897A1 (en) * 2016-10-12 2018-04-18 VEGA Grieshaber KG Waveguide coupling for radar antenna
US20210336316A1 (en) * 2016-12-29 2021-10-28 Radsee Technologies Ltd. Antenna array
US11205847B2 (en) 2017-02-01 2021-12-21 Taoglas Group Holdings Limited 5-6 GHz wideband dual-polarized massive MIMO antenna arrays
DE102017112552A1 (en) * 2017-06-07 2018-12-13 Lisa DrƤxlmaier GmbH ANTENNA WITH SEVERAL SINGLE RADIATORS
CN107342454B (en) * 2017-06-09 2020-02-21 å®ę³¢å¤§å­¦ Waveguide slot array antenna
US10665931B2 (en) * 2017-08-01 2020-05-26 Lockheed Martin Corporation Waveguide aperture design for geo satellites
WO2019026374A1 (en) * 2017-08-04 2019-02-07 ć‚½ćƒ‹ćƒ¼ę Ŗ式会ē¤¾ Communication device, information processing device, and information processing method
EP3460908B1 (en) * 2017-09-25 2021-07-07 Gapwaves AB Phased array antenna
CN107658568A (en) * 2017-09-27 2018-02-02 北äŗ¬ę˜Ÿé™…安č®Æē§‘ęŠ€ęœ‰é™å…¬åø Dual-band and dual-polarization Shared aperture waveguide trumpet planar array antenna
CN108039587B (en) * 2017-12-01 2024-04-09 重åŗ†å›ŗꁒ通äæ”č®¾å¤‡ęœ‰é™å…¬åø Microstrip line for 2.2GHz to 2.5GHz signal reception
CN110098856B (en) * 2018-01-31 2021-06-22 华äøŗꊀęœÆęœ‰é™å…¬åø Antenna device and related equipment
CN108832276A (en) * 2018-04-24 2018-11-16 č„æ安ēŗ¢å¶é€šč®Æē§‘ęŠ€ęœ‰é™å…¬åø Millimeter wave grid cell type flat plate array antenna
US11071198B2 (en) * 2018-05-27 2021-07-20 Vu Systems, LLC Highly integrated miniature radiometer chip
EP3791438A4 (en) * 2018-07-02 2021-07-21 Sea Tel, Inc. (DBA Cobham Satcom) Open ended waveguide antenna for one-dimensional active arrays
DE102018211422A1 (en) * 2018-07-10 2020-01-16 Vega Grieshaber Kg Level radar antenna arrangement for measuring a level in a container
JP2020031426A (en) * 2018-08-20 2020-02-27 ę—„ęœ¬é›»ē”£ę Ŗ式会ē¤¾ Antenna array
CN109494485B (en) * 2018-09-30 2021-01-19 安徽四创ē”µå­č‚”ä»½ęœ‰é™å…¬åø Broadband baffle circular polarizer
CN109616766B (en) * 2018-10-25 2021-02-26 ē‘žå£°ē§‘ꊀ(ę–°åŠ å”)ęœ‰é™å…¬åø Antenna system and communication terminal
NL2022062B1 (en) * 2018-11-23 2020-06-05 Ampleon Netherlands Bv Rf power amplifier pallet
DE102018220967B4 (en) * 2018-12-04 2020-06-18 Fraunhofer-Gesellschaft zur Fƶrderung der angewandten Forschung e.V. DEVICE WITH A RADIO RECOGNITION ARRANGEMENT AND METHOD FOR PROVIDING THE SAME
CN109473771B (en) * 2018-12-25 2023-12-15 å¹æäøœäŗ¤é€ščŒäøšęŠ€ęœÆ学院 Planar omni-directional dipole duplex antenna
CN109860978B (en) * 2019-01-25 2020-10-16 äøœé˜³åø‚å·ę³½ęˆ·å¤–ē”Øå“ęœ‰é™å…¬åø Antenna for receiving television signal
US11258176B2 (en) * 2019-04-12 2022-02-22 Kymeta Corporation Non-circular center-fed antenna and method for using the same
CN110085993A (en) * 2019-05-29 2019-08-02 äøŠęµ·äŗ¬ęµŽé€šäæ”ꊀęœÆęœ‰é™å…¬åø The high circular polarisation purity X-wave band autenna front in broadband
CN110364799A (en) * 2019-07-15 2019-10-22 äŗ‘南大学 Double ridge integral substrate gap waveguides
WO2021034270A1 (en) * 2019-08-16 2021-02-25 National University Of Singapore A linear-to-circular polarizer, feeding network, antenna and antenna assembly
US11437732B2 (en) * 2019-09-17 2022-09-06 Raytheon Company Modular and stackable antenna array
WO2021101424A1 (en) * 2019-11-22 2021-05-27 Saab Ab Inverted antenna elements
CN111129727B (en) * 2019-12-09 2022-07-26 ē‘žå£°ē§‘ꊀ(ę–°åŠ å”)ęœ‰é™å…¬åø Antenna system and electronic device
FR3105884B1 (en) 2019-12-26 2021-12-03 Thales Sa Circular polarization dual band Ka satellite antenna horn
CN112186347B (en) * 2020-09-22 2023-01-31 北äŗ¬å­å…†äæ”ęÆꊀęœÆęœ‰é™å…¬åø Strip line feed horn antenna applied to millimeter wave security inspection imaging
GB2600413A (en) * 2020-10-27 2022-05-04 Draexlmaier Lisa Gmbh Horn antenna element
US11527838B2 (en) * 2020-12-31 2022-12-13 Universal Microwave Technology, Inc. Dual polarized array waveguide antenna
US11417964B2 (en) * 2020-12-31 2022-08-16 Universal Microwave Technology, Inc. Single polarized array waveguide antenna
CN113206379B (en) * 2021-04-06 2022-07-05 ęµ™ę±Ÿå¤§å­¦ Multilayer suspension strip line antenna feed structure
US20220393359A1 (en) * 2021-06-02 2022-12-08 The Boeing Company Compact Low-Profile Aperture Antenna with Integrated Diplexer
CN113341409A (en) * 2021-06-02 2021-09-03 äø­å›½äŗŗę°‘č§£ę”¾å†›é™†å†›å·„ē؋大学 Phased array radar detection system
CN113540806B (en) * 2021-07-21 2023-06-06 äø­å›½ē”µå­ē§‘ęŠ€é›†å›¢å…¬åøē¬¬äø‰åå…«ē ”ē©¶ę‰€ Integrated terahertz corrugated horn antenna array based on 3D printing and manufacturing method thereof
CN113794058A (en) * 2021-09-16 2021-12-14 äøŠęµ·čˆŖå¤©ęµ‹ęŽ§é€šäæ”ē ”ē©¶ę‰€ Coupling and separator
US11784418B2 (en) * 2021-10-12 2023-10-10 Qualcomm Incorporated Multi-directional dual-polarized antenna system
CN114024129B (en) * 2021-10-12 2023-04-07 äø­å›½ē”µå­ē§‘ęŠ€é›†å›¢å…¬åøē¬¬äŗŒåä¹ē ”ē©¶ę‰€ Balanced type microstrip series-feed array antenna
CN113964536B (en) * 2021-10-27 2023-08-22 äø­å›½ē”µå­ē§‘ęŠ€é›†å›¢å…¬åøē¬¬äø‰åå…«ē ”ē©¶ę‰€ Circularly polarized two-dimensional wide-angle phase-scanning antenna unit and phased array antenna array
CN113904128B (en) * 2021-11-16 2023-04-14 äø­å›½ē”µå­ē§‘ęŠ€é›†å›¢å…¬åøē¬¬äŗŒåä¹ē ”ē©¶ę‰€ Millimeter wave frequency band rectangular horn antenna substructure and N-element antenna array
CN114498040B (en) * 2022-01-19 2023-03-24 č„æ安ē”µå­ē§‘ęŠ€å¤§å­¦ Wave beam reconfigurable H-plane horn antenna based on double-ridge gap waveguide
CN115036679B (en) * 2022-07-14 2023-10-20 č„æ安čˆŖ天天ē»˜ę•°ę®ęŠ€ęœÆęœ‰é™å…¬åø Flat-panel antenna that many subarrays were assembled
CN116759816B (en) * 2023-01-13 2023-10-27 安徽大学 Dual-frequency dual-polarized antenna based on substrate integrated waveguide
CN117335169B (en) * 2023-09-07 2024-04-19 č‹å·žę¬£å¤©ē››ē§‘ęŠ€ęœ‰é™å…¬åø Dual-frequency dual-circular polarization transmission array antenna and method for 5G millimeter wave system
CN117293520B (en) * 2023-09-14 2024-03-22 北äŗ¬č„æ宝ē”µå­ęŠ€ęœÆęœ‰é™č“£ä»»å…¬åø Dielectric-filled horn antenna and communication system

Citations (1)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100072693A (en) * 2008-12-22 2010-07-01 ķ•œźµ­ģ „ģžķ†µģ‹ ģ—°źµ¬ģ› Antenna embodied with function of mode transformation

Family Cites Families (43)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
US4274097A (en) * 1975-03-25 1981-06-16 The United States Of America As Represented By The Secretary Of The Navy Embedded dielectric rod antenna
US4161731A (en) * 1977-10-31 1979-07-17 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Thickness measurement system
US4626865A (en) 1982-11-08 1986-12-02 U.S. Philips Corporation Antenna element for orthogonally-polarized high frequency signals
FR2582865B1 (en) * 1985-06-04 1987-07-31 Labo Electronique Physique MICROWAVE UNIT MODULES AND MICROWAVE ANTENNA COMPRISING SUCH MODULES
FR2592233B1 (en) 1985-12-20 1988-02-12 Radiotechnique Compelec PLANE ANTENNA HYPERFREQUENCES RECEIVING SIMULTANEOUSLY TWO POLARIZATIONS.
US5086304A (en) * 1986-08-13 1992-02-04 Integrated Visual, Inc. Flat phased array antenna
US4811028A (en) * 1987-01-20 1989-03-07 Avco Corporation Quadridge antenna for space vehicle
US5258768A (en) 1990-07-26 1993-11-02 Space Systems/Loral, Inc. Dual band frequency reuse antenna
GB2247990A (en) 1990-08-09 1992-03-18 British Satellite Broadcasting Antennas and method of manufacturing thereof
US5905457A (en) * 1990-10-11 1999-05-18 Rashid; Charles Vehicle radar safety apparatus
US5258758A (en) 1991-01-31 1993-11-02 Crystal Semiconductor Corporation DAC shutdown for low power supply condition
US5214394A (en) 1991-04-15 1993-05-25 Rockwell International Corporation High efficiency bi-directional spatial power combiner amplifier
JPH0567912A (en) 1991-04-24 1993-03-19 Matsushita Electric Works Ltd Flat antenna
CA2063914C (en) 1991-06-12 2002-07-16 George S. Cohen Multiple beam antenna and beamforming network
JP2945839B2 (en) * 1994-09-12 1999-09-06 ę¾äø‹é›»å™Øē”£ę„­ę Ŗ式会ē¤¾ Circular-linear polarization converter and its manufacturing method
US5767810A (en) * 1995-04-24 1998-06-16 Ntt Mobile Communications Network Inc. Microstrip antenna device
US6297774B1 (en) * 1997-03-12 2001-10-02 Hsin- Hsien Chung Low cost high performance portable phased array antenna system for satellite communication
US6028562A (en) * 1997-07-31 2000-02-22 Ems Technologies, Inc. Dual polarized slotted array antenna
SE513586C2 (en) * 1998-05-12 2000-10-02 Ericsson Telefon Ab L M Method of producing an antenna structure and antenna structure prepared by said method
US6201508B1 (en) * 1999-12-13 2001-03-13 Space Systems/Loral, Inc. Injection-molded phased array antenna system
US6271799B1 (en) 2000-02-15 2001-08-07 Harris Corporation Antenna horn and associated methods
US7057572B2 (en) 2002-11-02 2006-06-06 Electronics And Telecommunications Research Institute Horn antenna system having a strip line feeding structure
US7187342B2 (en) 2003-12-23 2007-03-06 The Boeing Company Antenna apparatus and method
DE602004015514D1 (en) 2004-08-18 2008-09-11 Ericsson Telefon Ab L M WAVEGUIDE SLOT ANTENNA
JP4029217B2 (en) * 2005-01-20 2008-01-09 ę Ŗ式会ē¤¾ę‘ē”°č£½ä½œę‰€ Waveguide horn array antenna and radar apparatus
US7287987B2 (en) * 2005-05-31 2007-10-30 The Boeing Company Electrical connector apparatus and method
IL174549A (en) * 2005-10-16 2010-12-30 Starling Advanced Comm Ltd Dual polarization planar array antenna and cell elements therefor
US7135848B1 (en) * 2005-12-12 2006-11-14 Xytrans, Inc. Highly integrated radiometer sensor cell
CN101479887A (en) * 2006-05-24 2009-07-08 韦夫ē­å¾·å°”å…¬åø Integrated waveguide antenna and array
US7884768B2 (en) * 2006-11-08 2011-02-08 The Boeing Company Compact, dual-beam phased array antenna architecture
WO2008069369A1 (en) * 2006-12-08 2008-06-12 Idoit Co., Ltd. Horn array type antenna for dual linear polarization
WO2008069358A1 (en) * 2006-12-08 2008-06-12 Idoit Co., Ltd. Horn array type antenna for dual linear polarization
EP2006956B1 (en) * 2007-06-22 2017-12-13 The Boeing Company System and method for a radio frequency (RF) transition design for a phased array antenna system utilizing a beam forming network
CN101083359B (en) * 2007-07-10 2012-05-09 äø­å›½ē”µå­ē§‘ęŠ€é›†å›¢å…¬åøē¬¬äŗ”十四ē ”ē©¶ę‰€ Process for manufacturing high gain dual-linear polarization or dual-circle polarization waveguide array antennas
WO2009031794A1 (en) 2007-09-03 2009-03-12 Idoit Co., Ltd. Horn array type antenna for dual linear polarization
WO2009037716A2 (en) 2007-09-21 2009-03-26 Indian Space Research Organisation High-gain wideband planar microstrip antenna for space borne application
CN201327867Y (en) * 2008-12-03 2009-10-14 äø­å›½čˆŖ天ē§‘ęŠ€é›†å›¢å…¬åøē¬¬äŗ”ē ”ē©¶é™¢ē¬¬äŗ”ć€‡å››ē ”ē©¶ę‰€ Broadband orthomode coupler
WO2010124867A1 (en) 2009-04-30 2010-11-04 Qest Quantenelektronische Systeme Gmbh Broadband antenna system for satellite communication
US8487823B2 (en) * 2009-11-12 2013-07-16 Raytheon Company Switchable microwave fluidic polarizer
CN102110890B (en) * 2011-02-11 2013-10-30 äø­å›½ē§‘学院光ē”µęŠ€ęœÆē ”ē©¶ę‰€ High-gain horn antenna based on inhomogeneous medium
US9112279B2 (en) 2011-02-25 2015-08-18 Honeywell International Inc. Aperture mode filter
CN102394374B (en) * 2011-06-29 2013-08-28 č„æ安ē©ŗé—“ę— ēŗæē”µęŠ€ęœÆē ”ē©¶ę‰€ Double frequency feed source
CN202772259U (en) * 2012-09-27 2013-03-06 č‹å·žåšęµ·åˆ›äøšå¾®ē³»ē»Ÿęœ‰é™å…¬åø Millimeter wave radiation structure

Patent Citations (1)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100072693A (en) * 2008-12-22 2010-07-01 ķ•œźµ­ģ „ģžķ†µģ‹ ģ—°źµ¬ģ› Antenna embodied with function of mode transformation

Also Published As

Publication number Publication date
US9660352B2 (en) 2017-05-23
ES2856068T3 (en) 2021-09-27
WO2014005691A1 (en) 2014-01-09
CN104428950B (en) 2017-04-12
US20150188236A1 (en) 2015-07-02
US9716321B2 (en) 2017-07-25
US20150162668A1 (en) 2015-06-11
ES2763866T3 (en) 2020-06-01
EP2870660A1 (en) 2015-05-13
EP2955788A1 (en) 2015-12-16
US20150188238A1 (en) 2015-07-02
EP2870660B1 (en) 2021-01-06
US10211543B2 (en) 2019-02-19
WO2014005693A1 (en) 2014-01-09
CN104428949B (en) 2017-05-24
EP2870659A1 (en) 2015-05-13
EP2870658A1 (en) 2015-05-13
CN104428949A (en) 2015-03-18
CN104428948A (en) 2015-03-18
WO2014005699A1 (en) 2014-01-09
CN104428950A (en) 2015-03-18
CN104428948B (en) 2017-07-11

Similar Documents

Publication Publication Date Title
EP2870658B1 (en) Antenna system for broadband satellite communication in the ghz frequency range, comprising horn antennas with geometrical constrictions
DE102017103161B4 (en) Antenna device and antenna array
EP2425490B1 (en) Broadband antenna system for satellite communication
DE69821884T2 (en) Multifrequency stripline antenna and device with such an antenna
DE60315654T2 (en) Compact multiband antenna
EP0965152B1 (en) Resonant antenna
EP2991159B1 (en) Feed network for antenna systems
DE102014112825A1 (en) Steghorn radiator with additional groove
DE10226111A1 (en) Circularly-polarized wave antenna device for wireless device mounted in motor vehicle, has auxiliary electrode provided along width direction of main electrode provided on base surface
EP2381531B1 (en) Phased array antenna
DE60112335T2 (en) PHASE-CONTROLLED GROUP ANTENNA WITH VOLTAGE-CONTROLLED PHASE SLIDER
DE10150086B4 (en) Group antenna with a regular array of breakthroughs
DE102009034429B4 (en) Flachantenne
DE102010014864B4 (en) Waveguide connection for an antenna system and antenna system
DE102004050598A1 (en) Micro strip line antenna for use in automobile industry for transmitting and receiving e.g. circularly polarized satellite radio signal, has resonant unit enclosing recesses whose form deviates from rectangular form
EP4150708B1 (en) Antenna arrangement, transceiver arrangement, communication system, actuator device and method of operating an antenna arrangement
DE102011121138B4 (en) Broadband antenna system for satellite communication
DE102012013129A1 (en) Broadband-antenna system for communication between mobile carriers and satellites for aeronautical applications, has radiators designed such that centers of beam elements lie at distance smaller than wavelength of transmission frequency

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150109

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20181120

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H01Q 13/02 20060101AFI20190627BHEP

Ipc: H01Q 21/00 20060101ALI20190627BHEP

Ipc: H01Q 19/08 20060101ALI20190627BHEP

Ipc: H01Q 21/06 20060101ALI20190627BHEP

INTG Intention to grant announced

Effective date: 20190731

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013013804

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1194716

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191115

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191023

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200124

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200123

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200123

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2763866

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20200601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013013804

Country of ref document: DE

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200223

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

26N No opposition filed

Effective date: 20200724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200702

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200702

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1194716

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230612

Year of fee payment: 11

Ref country code: FR

Payment date: 20230620

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230613

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230601

Year of fee payment: 11

Ref country code: ES

Payment date: 20230809

Year of fee payment: 11

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20231017

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230731

Year of fee payment: 11