EP2869842A1 - Immunogenic compositions and uses thereof - Google Patents
Immunogenic compositions and uses thereofInfo
- Publication number
- EP2869842A1 EP2869842A1 EP13732536.1A EP13732536A EP2869842A1 EP 2869842 A1 EP2869842 A1 EP 2869842A1 EP 13732536 A EP13732536 A EP 13732536A EP 2869842 A1 EP2869842 A1 EP 2869842A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- rna
- epitope
- polypeptide
- hiv
- antigen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 266
- 230000002163 immunogen Effects 0.000 title claims abstract description 60
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 247
- 102000004196 processed proteins & peptides Human genes 0.000 claims abstract description 236
- 229920001184 polypeptide Polymers 0.000 claims abstract description 228
- 241000725303 Human immunodeficiency virus Species 0.000 claims abstract description 122
- 230000037452 priming Effects 0.000 claims abstract description 61
- 230000028993 immune response Effects 0.000 claims abstract description 44
- 230000001939 inductive effect Effects 0.000 claims abstract description 14
- 108091007433 antigens Proteins 0.000 claims description 228
- 102000036639 antigens Human genes 0.000 claims description 228
- 239000000427 antigen Substances 0.000 claims description 220
- 239000002502 liposome Substances 0.000 claims description 112
- 238000000034 method Methods 0.000 claims description 88
- 239000002671 adjuvant Substances 0.000 claims description 78
- -1 cationic lipid Chemical class 0.000 claims description 55
- YYGNTYWPHWGJRM-AAJYLUCBSA-N squalene Chemical group CC(C)=CCC\C(C)=C\CC\C(C)=C\CC\C=C(/C)CC\C=C(/C)CCC=C(C)C YYGNTYWPHWGJRM-AAJYLUCBSA-N 0.000 claims description 48
- 125000002091 cationic group Chemical group 0.000 claims description 38
- 241000710929 Alphavirus Species 0.000 claims description 36
- 239000011859 microparticle Substances 0.000 claims description 31
- 125000003729 nucleotide group Chemical group 0.000 claims description 28
- 239000007764 o/w emulsion Substances 0.000 claims description 22
- 239000008194 pharmaceutical composition Substances 0.000 claims description 20
- 244000052769 pathogen Species 0.000 claims description 17
- 230000001717 pathogenic effect Effects 0.000 claims description 17
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 13
- 239000012528 membrane Substances 0.000 claims description 12
- 230000004927 fusion Effects 0.000 claims description 11
- 239000000277 virosome Substances 0.000 claims description 11
- 239000004005 microsphere Substances 0.000 claims description 9
- 239000003937 drug carrier Substances 0.000 claims description 8
- 230000003362 replicative effect Effects 0.000 claims description 8
- 239000007908 nanoemulsion Substances 0.000 claims description 7
- 239000003981 vehicle Substances 0.000 claims description 5
- 239000002077 nanosphere Substances 0.000 claims 6
- 239000007762 w/o emulsion Substances 0.000 claims 6
- 230000004936 stimulating effect Effects 0.000 claims 2
- 230000000890 antigenic effect Effects 0.000 abstract description 8
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 424
- 108090000623 proteins and genes Proteins 0.000 description 181
- 102000004169 proteins and genes Human genes 0.000 description 159
- 235000018102 proteins Nutrition 0.000 description 156
- 210000004027 cell Anatomy 0.000 description 94
- 229960005486 vaccine Drugs 0.000 description 86
- 238000009472 formulation Methods 0.000 description 68
- 150000002632 lipids Chemical class 0.000 description 62
- 239000000839 emulsion Substances 0.000 description 56
- 108020004414 DNA Proteins 0.000 description 49
- 239000002245 particle Substances 0.000 description 45
- 230000004044 response Effects 0.000 description 45
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 42
- 238000004519 manufacturing process Methods 0.000 description 37
- 241001465754 Metazoa Species 0.000 description 32
- 239000013598 vector Substances 0.000 description 32
- 230000014509 gene expression Effects 0.000 description 30
- 239000000872 buffer Substances 0.000 description 28
- 230000003053 immunization Effects 0.000 description 27
- 239000000243 solution Substances 0.000 description 26
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 25
- 239000003921 oil Substances 0.000 description 25
- 235000019198 oils Nutrition 0.000 description 25
- 229910019142 PO4 Inorganic materials 0.000 description 24
- 150000007523 nucleic acids Chemical class 0.000 description 24
- 235000021317 phosphate Nutrition 0.000 description 24
- 241000283973 Oryctolagus cuniculus Species 0.000 description 23
- 229940022005 RNA vaccine Drugs 0.000 description 23
- PRAKJMSDJKAYCZ-UHFFFAOYSA-N dodecahydrosqualene Natural products CC(C)CCCC(C)CCCC(C)CCCCC(C)CCCC(C)CCCC(C)C PRAKJMSDJKAYCZ-UHFFFAOYSA-N 0.000 description 23
- 238000002649 immunization Methods 0.000 description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 23
- 241000713772 Human immunodeficiency virus 1 Species 0.000 description 22
- 102000039446 nucleic acids Human genes 0.000 description 22
- 108020004707 nucleic acids Proteins 0.000 description 22
- 230000005867 T cell response Effects 0.000 description 21
- YYGNTYWPHWGJRM-UHFFFAOYSA-N (6E,10E,14E,18E)-2,6,10,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene Chemical compound CC(C)=CCCC(C)=CCCC(C)=CCCC=C(C)CCC=C(C)CCC=C(C)C YYGNTYWPHWGJRM-UHFFFAOYSA-N 0.000 description 20
- 210000001744 T-lymphocyte Anatomy 0.000 description 20
- 230000027455 binding Effects 0.000 description 20
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 20
- 230000000694 effects Effects 0.000 description 20
- TUHBEKDERLKLEC-UHFFFAOYSA-N squalene Natural products CC(=CCCC(=CCCC(=CCCC=C(/C)CCC=C(/C)CC=C(C)C)C)C)C TUHBEKDERLKLEC-UHFFFAOYSA-N 0.000 description 20
- 241000699670 Mus sp. Species 0.000 description 19
- BHEOSNUKNHRBNM-UHFFFAOYSA-N Tetramethylsqualene Natural products CC(=C)C(C)CCC(=C)C(C)CCC(C)=CCCC=C(C)CCC(C)C(=C)CCC(C)C(C)=C BHEOSNUKNHRBNM-UHFFFAOYSA-N 0.000 description 19
- 239000010452 phosphate Substances 0.000 description 19
- 229940031439 squalene Drugs 0.000 description 19
- 101000941029 Homo sapiens Endoplasmic reticulum junction formation protein lunapark Proteins 0.000 description 18
- 101000991410 Homo sapiens Nucleolar and spindle-associated protein 1 Proteins 0.000 description 18
- 102100030991 Nucleolar and spindle-associated protein 1 Human genes 0.000 description 18
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 18
- 235000002639 sodium chloride Nutrition 0.000 description 18
- 238000011725 BALB/c mouse Methods 0.000 description 17
- 239000000047 product Substances 0.000 description 17
- 238000002255 vaccination Methods 0.000 description 17
- 241000700605 Viruses Species 0.000 description 16
- 210000003719 b-lymphocyte Anatomy 0.000 description 16
- 239000007979 citrate buffer Substances 0.000 description 16
- 102000004127 Cytokines Human genes 0.000 description 15
- 108090000695 Cytokines Proteins 0.000 description 15
- 102100036011 T-cell surface glycoprotein CD4 Human genes 0.000 description 15
- 229910052757 nitrogen Inorganic materials 0.000 description 15
- 239000004094 surface-active agent Substances 0.000 description 15
- 230000003612 virological effect Effects 0.000 description 15
- 238000003556 assay Methods 0.000 description 14
- 208000015181 infectious disease Diseases 0.000 description 14
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 13
- 235000001014 amino acid Nutrition 0.000 description 13
- 229930182490 saponin Natural products 0.000 description 13
- 150000007949 saponins Chemical class 0.000 description 13
- 235000017709 saponins Nutrition 0.000 description 13
- 150000001413 amino acids Chemical group 0.000 description 12
- 235000012000 cholesterol Nutrition 0.000 description 12
- 239000003814 drug Substances 0.000 description 12
- 239000002953 phosphate buffered saline Substances 0.000 description 12
- 229920001223 polyethylene glycol Polymers 0.000 description 12
- 229920000642 polymer Polymers 0.000 description 12
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 12
- 229920000053 polysorbate 80 Polymers 0.000 description 12
- 239000011550 stock solution Substances 0.000 description 12
- 241000710959 Venezuelan equine encephalitis virus Species 0.000 description 11
- 125000000129 anionic group Chemical group 0.000 description 11
- 239000000499 gel Substances 0.000 description 11
- 229920002113 octoxynol Polymers 0.000 description 11
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 11
- 229920000136 polysorbate Polymers 0.000 description 11
- 230000010076 replication Effects 0.000 description 11
- 239000004812 Fluorinated ethylene propylene Substances 0.000 description 10
- 102100034349 Integrase Human genes 0.000 description 10
- 241000710960 Sindbis virus Species 0.000 description 10
- 238000000338 in vitro Methods 0.000 description 10
- JMUHBNWAORSSBD-WKYWBUFDSA-N mifamurtide Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@@H](OC(=O)CCCCCCCCCCCCCCC)COP(O)(=O)OCCNC(=O)[C@H](C)NC(=O)CC[C@H](C(N)=O)NC(=O)[C@H](C)NC(=O)[C@@H](C)O[C@H]1[C@H](O)[C@@H](CO)OC(O)[C@@H]1NC(C)=O JMUHBNWAORSSBD-WKYWBUFDSA-N 0.000 description 10
- 229960005225 mifamurtide Drugs 0.000 description 10
- 239000002773 nucleotide Substances 0.000 description 10
- 229920009441 perflouroethylene propylene Polymers 0.000 description 10
- 238000003756 stirring Methods 0.000 description 10
- 108091034117 Oligonucleotide Proteins 0.000 description 9
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 9
- 102000006382 Ribonucleases Human genes 0.000 description 9
- 108010083644 Ribonucleases Proteins 0.000 description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 101800001690 Transmembrane protein gp41 Proteins 0.000 description 9
- 108010067390 Viral Proteins Proteins 0.000 description 9
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 9
- 238000009295 crossflow filtration Methods 0.000 description 9
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 9
- 108010078428 env Gene Products Proteins 0.000 description 9
- 239000011521 glass Substances 0.000 description 9
- PEDCQBHIVMGVHV-UHFFFAOYSA-N glycerol Substances OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 9
- 230000003308 immunostimulating effect Effects 0.000 description 9
- 238000001727 in vivo Methods 0.000 description 9
- 239000007924 injection Substances 0.000 description 9
- 238000002347 injection Methods 0.000 description 9
- 238000006386 neutralization reaction Methods 0.000 description 9
- 230000003472 neutralizing effect Effects 0.000 description 9
- 239000001397 quillaja saponaria molina bark Substances 0.000 description 9
- 150000003839 salts Chemical class 0.000 description 9
- 230000003248 secreting effect Effects 0.000 description 9
- 101710091045 Envelope protein Proteins 0.000 description 8
- 241000238631 Hexapoda Species 0.000 description 8
- 102100034353 Integrase Human genes 0.000 description 8
- 102000000743 Interleukin-5 Human genes 0.000 description 8
- 108010002616 Interleukin-5 Proteins 0.000 description 8
- 101710188315 Protein X Proteins 0.000 description 8
- 230000002411 adverse Effects 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 8
- 201000010099 disease Diseases 0.000 description 8
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 8
- 210000004962 mammalian cell Anatomy 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 230000004048 modification Effects 0.000 description 8
- 238000012986 modification Methods 0.000 description 8
- 150000003904 phospholipids Chemical class 0.000 description 8
- 238000000746 purification Methods 0.000 description 8
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 7
- PRXRUNOAOLTIEF-ADSICKODSA-N Sorbitan trioleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@@H](OC(=O)CCCCCCC\C=C/CCCCCCCC)[C@H]1OC[C@H](O)[C@H]1OC(=O)CCCCCCC\C=C/CCCCCCCC PRXRUNOAOLTIEF-ADSICKODSA-N 0.000 description 7
- ISXSJGHXHUZXNF-LXZPIJOJSA-N [(3s,8s,9s,10r,13r,14s,17r)-10,13-dimethyl-17-[(2r)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1h-cyclopenta[a]phenanthren-3-yl] n-[2-(dimethylamino)ethyl]carbamate;hydrochloride Chemical compound Cl.C1C=C2C[C@@H](OC(=O)NCCN(C)C)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 ISXSJGHXHUZXNF-LXZPIJOJSA-N 0.000 description 7
- 229910052782 aluminium Inorganic materials 0.000 description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 7
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 7
- 238000009826 distribution Methods 0.000 description 7
- 230000036541 health Effects 0.000 description 7
- 230000002458 infectious effect Effects 0.000 description 7
- 108700021021 mRNA Vaccine Proteins 0.000 description 7
- 108010026228 mRNA guanylyltransferase Proteins 0.000 description 7
- 239000002777 nucleoside Substances 0.000 description 7
- 239000000244 polyoxyethylene sorbitan monooleate Substances 0.000 description 7
- 239000000523 sample Substances 0.000 description 7
- 239000011780 sodium chloride Substances 0.000 description 7
- 238000013518 transcription Methods 0.000 description 7
- 230000035897 transcription Effects 0.000 description 7
- 238000013519 translation Methods 0.000 description 7
- 238000011282 treatment Methods 0.000 description 7
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 6
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 6
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 6
- 238000002965 ELISA Methods 0.000 description 6
- 238000011510 Elispot assay Methods 0.000 description 6
- 102000004388 Interleukin-4 Human genes 0.000 description 6
- 108090000978 Interleukin-4 Proteins 0.000 description 6
- 108010028921 Lipopeptides Proteins 0.000 description 6
- 241000282560 Macaca mulatta Species 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 241000710961 Semliki Forest virus Species 0.000 description 6
- 230000024932 T cell mediated immunity Effects 0.000 description 6
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 6
- 229940037003 alum Drugs 0.000 description 6
- 125000000539 amino acid group Chemical group 0.000 description 6
- 230000005875 antibody response Effects 0.000 description 6
- 230000001580 bacterial effect Effects 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- 238000013461 design Methods 0.000 description 6
- 239000000975 dye Substances 0.000 description 6
- 238000005538 encapsulation Methods 0.000 description 6
- 239000002158 endotoxin Substances 0.000 description 6
- 230000002708 enhancing effect Effects 0.000 description 6
- 238000005755 formation reaction Methods 0.000 description 6
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical class O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 6
- 239000012510 hollow fiber Substances 0.000 description 6
- 230000005847 immunogenicity Effects 0.000 description 6
- 229910052500 inorganic mineral Inorganic materials 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 235000010755 mineral Nutrition 0.000 description 6
- 239000011707 mineral Substances 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 229940035032 monophosphoryl lipid a Drugs 0.000 description 6
- 231100000252 nontoxic Toxicity 0.000 description 6
- 230000003000 nontoxic effect Effects 0.000 description 6
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 6
- 108091033319 polynucleotide Proteins 0.000 description 6
- 102000040430 polynucleotide Human genes 0.000 description 6
- 239000002157 polynucleotide Substances 0.000 description 6
- 239000001294 propane Substances 0.000 description 6
- 210000002966 serum Anatomy 0.000 description 6
- 239000012224 working solution Substances 0.000 description 6
- DRHZYJAUECRAJM-DWSYSWFDSA-N (2s,3s,4s,5r,6r)-6-[[(3s,4s,4ar,6ar,6bs,8r,8ar,12as,14ar,14br)-8a-[(2s,3r,4s,5r,6r)-3-[(2s,3r,4s,5r,6s)-5-[(2s,3r,4s,5r)-4-[(2s,3r,4r)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy-3,5-dihydroxyoxan-2-yl]oxy-3,4-dihydroxy-6-methyloxan-2-yl]oxy-5-[(3s,5s, Chemical compound O([C@H]1[C@H](O)[C@H](O[C@H]([C@@H]1O[C@H]1[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O1)O)O[C@H]1CC[C@]2(C)[C@H]3CC=C4[C@@H]5CC(C)(C)CC[C@@]5([C@@H](C[C@@]4(C)[C@]3(C)CC[C@H]2[C@@]1(C=O)C)O)C(=O)O[C@@H]1O[C@H](C)[C@@H]([C@@H]([C@H]1O[C@H]1[C@@H]([C@H](O)[C@@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@](O)(CO)CO3)O)[C@H](O)CO2)O)[C@H](C)O1)O)O)OC(=O)C[C@@H](O)C[C@H](OC(=O)C[C@@H](O)C[C@@H]([C@@H](C)CC)O[C@H]1[C@@H]([C@@H](O)[C@H](CO)O1)O)[C@@H](C)CC)C(O)=O)[C@@H]1OC[C@@H](O)[C@H](O)[C@H]1O DRHZYJAUECRAJM-DWSYSWFDSA-N 0.000 description 5
- 108010041986 DNA Vaccines Proteins 0.000 description 5
- 241000588724 Escherichia coli Species 0.000 description 5
- NYHBQMYGNKIUIF-UUOKFMHZSA-N Guanosine Natural products C1=NC=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O NYHBQMYGNKIUIF-UUOKFMHZSA-N 0.000 description 5
- 208000031886 HIV Infections Diseases 0.000 description 5
- 108010002350 Interleukin-2 Proteins 0.000 description 5
- 108700026244 Open Reading Frames Proteins 0.000 description 5
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 5
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 5
- 101710172711 Structural protein Proteins 0.000 description 5
- 108091027544 Subgenomic mRNA Proteins 0.000 description 5
- 229920004890 Triton X-100 Polymers 0.000 description 5
- 239000004480 active ingredient Substances 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 5
- 238000011260 co-administration Methods 0.000 description 5
- GVJHHUAWPYXKBD-UHFFFAOYSA-N d-alpha-tocopherol Natural products OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 5
- 238000012217 deletion Methods 0.000 description 5
- 230000037430 deletion Effects 0.000 description 5
- 229940079593 drug Drugs 0.000 description 5
- GZQKNULLWNGMCW-PWQABINMSA-N lipid A (E. coli) Chemical class O1[C@H](CO)[C@@H](OP(O)(O)=O)[C@H](OC(=O)C[C@@H](CCCCCCCCCCC)OC(=O)CCCCCCCCCCCCC)[C@@H](NC(=O)C[C@@H](CCCCCCCCCCC)OC(=O)CCCCCCCCCCC)[C@@H]1OC[C@@H]1[C@@H](O)[C@H](OC(=O)C[C@H](O)CCCCCCCCCCC)[C@@H](NC(=O)C[C@H](O)CCCCCCCCCCC)[C@@H](OP(O)(O)=O)O1 GZQKNULLWNGMCW-PWQABINMSA-N 0.000 description 5
- 125000001446 muramyl group Chemical group N[C@@H](C=O)[C@@H](O[C@@H](C(=O)*)C)[C@H](O)[C@H](O)CO 0.000 description 5
- WTJKGGKOPKCXLL-RRHRGVEJSA-N phosphatidylcholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC WTJKGGKOPKCXLL-RRHRGVEJSA-N 0.000 description 5
- 239000013612 plasmid Substances 0.000 description 5
- 229920006395 saturated elastomer Polymers 0.000 description 5
- 238000006467 substitution reaction Methods 0.000 description 5
- 210000001519 tissue Anatomy 0.000 description 5
- 239000011732 tocopherol Substances 0.000 description 5
- 239000003053 toxin Substances 0.000 description 5
- 231100000765 toxin Toxicity 0.000 description 5
- 108700012359 toxins Proteins 0.000 description 5
- 241000701447 unidentified baculovirus Species 0.000 description 5
- 235000015112 vegetable and seed oil Nutrition 0.000 description 5
- 210000002845 virion Anatomy 0.000 description 5
- PORPENFLTBBHSG-MGBGTMOVSA-N 1,2-dihexadecanoyl-sn-glycerol-3-phosphate Chemical group CCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(O)=O)OC(=O)CCCCCCCCCCCCCCC PORPENFLTBBHSG-MGBGTMOVSA-N 0.000 description 4
- 208000030507 AIDS Diseases 0.000 description 4
- 229920000936 Agarose Polymers 0.000 description 4
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- MIKUYHXYGGJMLM-GIMIYPNGSA-N Crotonoside Natural products C1=NC2=C(N)NC(=O)N=C2N1[C@H]1O[C@@H](CO)[C@H](O)[C@@H]1O MIKUYHXYGGJMLM-GIMIYPNGSA-N 0.000 description 4
- 229940021995 DNA vaccine Drugs 0.000 description 4
- 241000287828 Gallus gallus Species 0.000 description 4
- 108010010803 Gelatin Proteins 0.000 description 4
- 241000282553 Macaca Species 0.000 description 4
- 108060004795 Methyltransferase Proteins 0.000 description 4
- 108091028043 Nucleic acid sequence Proteins 0.000 description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 4
- 239000002202 Polyethylene glycol Substances 0.000 description 4
- 241000288906 Primates Species 0.000 description 4
- 241001112090 Pseudovirus Species 0.000 description 4
- 101500027983 Rattus norvegicus Octadecaneuropeptide Proteins 0.000 description 4
- 241000710942 Ross River virus Species 0.000 description 4
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 4
- 239000004147 Sorbitan trioleate Substances 0.000 description 4
- 239000013504 Triton X-100 Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N acetic acid Substances CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- 239000008346 aqueous phase Substances 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 4
- 238000013270 controlled release Methods 0.000 description 4
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 4
- 230000029087 digestion Effects 0.000 description 4
- 238000004520 electroporation Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 239000013604 expression vector Substances 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 239000008273 gelatin Substances 0.000 description 4
- 229920000159 gelatin Polymers 0.000 description 4
- 235000019322 gelatine Nutrition 0.000 description 4
- 235000011852 gelatine desserts Nutrition 0.000 description 4
- 238000011065 in-situ storage Methods 0.000 description 4
- 210000003734 kidney Anatomy 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 4
- NFQBIAXADRDUGK-KWXKLSQISA-N n,n-dimethyl-2,3-bis[(9z,12z)-octadeca-9,12-dienoxy]propan-1-amine Chemical compound CCCCC\C=C/C\C=C/CCCCCCCCOCC(CN(C)C)OCCCCCCCC\C=C/C\C=C/CCCCC NFQBIAXADRDUGK-KWXKLSQISA-N 0.000 description 4
- 231100000989 no adverse effect Toxicity 0.000 description 4
- 150000003833 nucleoside derivatives Chemical class 0.000 description 4
- 125000003835 nucleoside group Chemical group 0.000 description 4
- 229940066429 octoxynol Drugs 0.000 description 4
- 229940046166 oligodeoxynucleotide Drugs 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 229920000056 polyoxyethylene ether Polymers 0.000 description 4
- 229940068968 polysorbate 80 Drugs 0.000 description 4
- 230000003389 potentiating effect Effects 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 102000005962 receptors Human genes 0.000 description 4
- 108020003175 receptors Proteins 0.000 description 4
- 230000028327 secretion Effects 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 235000019337 sorbitan trioleate Nutrition 0.000 description 4
- 229960000391 sorbitan trioleate Drugs 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- 230000009870 specific binding Effects 0.000 description 4
- 208000024891 symptom Diseases 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 4
- 229930003799 tocopherol Natural products 0.000 description 4
- GVJHHUAWPYXKBD-IEOSBIPESA-N α-tocopherol Chemical compound OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-IEOSBIPESA-N 0.000 description 4
- PZNPLUBHRSSFHT-RRHRGVEJSA-N 1-hexadecanoyl-2-octadecanoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCCCC(=O)O[C@@H](COP([O-])(=O)OCC[N+](C)(C)C)COC(=O)CCCCCCCCCCCCCCC PZNPLUBHRSSFHT-RRHRGVEJSA-N 0.000 description 3
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical compound CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 description 3
- GJTBSTBJLVYKAU-XVFCMESISA-N 2-thiouridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=S)NC(=O)C=C1 GJTBSTBJLVYKAU-XVFCMESISA-N 0.000 description 3
- 241000271566 Aves Species 0.000 description 3
- 241000283690 Bos taurus Species 0.000 description 3
- 108010041397 CD4 Antigens Proteins 0.000 description 3
- 108090000565 Capsid Proteins Proteins 0.000 description 3
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 3
- 101710094648 Coat protein Proteins 0.000 description 3
- 241000699800 Cricetinae Species 0.000 description 3
- NYHBQMYGNKIUIF-UHFFFAOYSA-N D-guanosine Natural products C1=2NC(N)=NC(=O)C=2N=CN1C1OC(CO)C(O)C1O NYHBQMYGNKIUIF-UHFFFAOYSA-N 0.000 description 3
- 235000001815 DL-alpha-tocopherol Nutrition 0.000 description 3
- 239000011627 DL-alpha-tocopherol Substances 0.000 description 3
- 206010066919 Epidemic polyarthritis Diseases 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 208000037357 HIV infectious disease Diseases 0.000 description 3
- 102100037850 Interferon gamma Human genes 0.000 description 3
- 108010074328 Interferon-gamma Proteins 0.000 description 3
- 229920002884 Laureth 4 Polymers 0.000 description 3
- 240000007472 Leucaena leucocephala Species 0.000 description 3
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 3
- 241000124008 Mammalia Species 0.000 description 3
- 108010076039 Polyproteins Proteins 0.000 description 3
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 3
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 3
- 229930182558 Sterol Natural products 0.000 description 3
- 229930006000 Sucrose Natural products 0.000 description 3
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 3
- 102000002689 Toll-like receptor Human genes 0.000 description 3
- 108020000411 Toll-like receptor Proteins 0.000 description 3
- 239000007984 Tris EDTA buffer Substances 0.000 description 3
- 239000007983 Tris buffer Substances 0.000 description 3
- VQQVWGVXDIPORV-UHFFFAOYSA-N Tryptanthrine Chemical class C1=CC=C2C(=O)N3C4=CC=CC=C4C(=O)C3=NC2=C1 VQQVWGVXDIPORV-UHFFFAOYSA-N 0.000 description 3
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 3
- 208000002687 Venezuelan Equine Encephalomyelitis Diseases 0.000 description 3
- 125000002252 acyl group Chemical group 0.000 description 3
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine group Chemical group [C@@H]1([C@H](O)[C@H](O)[C@@H](CO)O1)N1C=NC=2C(N)=NC=NC12 OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 3
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 3
- 150000003863 ammonium salts Chemical class 0.000 description 3
- BJVCSICIEDHBNI-UHFFFAOYSA-N benzo[b][1,8]naphthyridine Chemical class N1=CC=CC2=CC3=CC=CC=C3N=C21 BJVCSICIEDHBNI-UHFFFAOYSA-N 0.000 description 3
- MVCRZALXJBDOKF-JPZHCBQBSA-N beta-hydroxywybutosine 5'-monophosphate Chemical compound C1=NC=2C(=O)N3C(CC(O)[C@H](NC(=O)OC)C(=O)OC)=C(C)N=C3N(C)C=2N1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@H]1O MVCRZALXJBDOKF-JPZHCBQBSA-N 0.000 description 3
- 239000000227 bioadhesive Substances 0.000 description 3
- 229920002988 biodegradable polymer Polymers 0.000 description 3
- 239000004621 biodegradable polymer Substances 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 230000037396 body weight Effects 0.000 description 3
- YMKDRGPMQRFJGP-UHFFFAOYSA-M cetylpyridinium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCC[N+]1=CC=CC=C1 YMKDRGPMQRFJGP-UHFFFAOYSA-M 0.000 description 3
- 229960001927 cetylpyridinium chloride Drugs 0.000 description 3
- 238000007385 chemical modification Methods 0.000 description 3
- 238000004587 chromatography analysis Methods 0.000 description 3
- 238000003776 cleavage reaction Methods 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical class NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 3
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 239000003599 detergent Substances 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- 238000010790 dilution Methods 0.000 description 3
- 239000012895 dilution Substances 0.000 description 3
- 238000002296 dynamic light scattering Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000003114 enzyme-linked immunosorbent spot assay Methods 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 3
- 239000012467 final product Substances 0.000 description 3
- 239000012634 fragment Substances 0.000 description 3
- 229940029575 guanosine Drugs 0.000 description 3
- 210000002443 helper t lymphocyte Anatomy 0.000 description 3
- 239000008240 homogeneous mixture Substances 0.000 description 3
- 208000033519 human immunodeficiency virus infectious disease Diseases 0.000 description 3
- 210000000987 immune system Anatomy 0.000 description 3
- 239000002955 immunomodulating agent Substances 0.000 description 3
- 229940121354 immunomodulator Drugs 0.000 description 3
- 230000004957 immunoregulator effect Effects 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 238000007918 intramuscular administration Methods 0.000 description 3
- 238000001990 intravenous administration Methods 0.000 description 3
- 229940062711 laureth-9 Drugs 0.000 description 3
- 229920006008 lipopolysaccharide Polymers 0.000 description 3
- 210000004698 lymphocyte Anatomy 0.000 description 3
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 3
- 230000003232 mucoadhesive effect Effects 0.000 description 3
- 230000035772 mutation Effects 0.000 description 3
- 239000002105 nanoparticle Substances 0.000 description 3
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 3
- 239000008363 phosphate buffer Substances 0.000 description 3
- ONJQDTZCDSESIW-UHFFFAOYSA-N polidocanol Chemical compound CCCCCCCCCCCCOCCOCCOCCOCCOCCOCCOCCOCCOCCO ONJQDTZCDSESIW-UHFFFAOYSA-N 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 239000003755 preservative agent Substances 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 210000003314 quadriceps muscle Anatomy 0.000 description 3
- 238000004007 reversed phase HPLC Methods 0.000 description 3
- 125000002652 ribonucleotide group Chemical group 0.000 description 3
- 230000007017 scission Effects 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 235000003702 sterols Nutrition 0.000 description 3
- 230000000638 stimulation Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000005720 sucrose Substances 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 239000003826 tablet Substances 0.000 description 3
- 230000008685 targeting Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- 150000003584 thiosemicarbazones Chemical class 0.000 description 3
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 3
- 241001430294 unidentified retrovirus Species 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical class OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 2
- OPCHFPHZPIURNA-MFERNQICSA-N (2s)-2,5-bis(3-aminopropylamino)-n-[2-(dioctadecylamino)acetyl]pentanamide Chemical compound CCCCCCCCCCCCCCCCCCN(CC(=O)NC(=O)[C@H](CCCNCCCN)NCCCN)CCCCCCCCCCCCCCCCCC OPCHFPHZPIURNA-MFERNQICSA-N 0.000 description 2
- CITHEXJVPOWHKC-UUWRZZSWSA-N 1,2-di-O-myristoyl-sn-glycero-3-phosphocholine Chemical group CCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCC CITHEXJVPOWHKC-UUWRZZSWSA-N 0.000 description 2
- RKDVKSZUMVYZHH-UHFFFAOYSA-N 1,4-dioxane-2,5-dione Chemical compound O=C1COC(=O)CO1 RKDVKSZUMVYZHH-UHFFFAOYSA-N 0.000 description 2
- HXVKEKIORVUWDR-FDDDBJFASA-N 1-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-(methylaminomethyl)-2-sulfanylidenepyrimidin-4-one Chemical compound S=C1NC(=O)C(CNC)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 HXVKEKIORVUWDR-FDDDBJFASA-N 0.000 description 2
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 2
- HNLXNOZHXNSSPN-UHFFFAOYSA-N 2-[2-[2-[2-[2-[2-[2-[4-(2,4,4-trimethylpentan-2-yl)phenoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethanol Chemical compound CC(C)(C)CC(C)(C)C1=CC=C(OCCOCCOCCOCCOCCOCCOCCO)C=C1 HNLXNOZHXNSSPN-UHFFFAOYSA-N 0.000 description 2
- 125000001731 2-cyanoethyl group Chemical group [H]C([H])(*)C([H])([H])C#N 0.000 description 2
- ASJSAQIRZKANQN-CRCLSJGQSA-N 2-deoxy-D-ribose Chemical compound OC[C@@H](O)[C@@H](O)CC=O ASJSAQIRZKANQN-CRCLSJGQSA-N 0.000 description 2
- VZQXUWKZDSEQRR-SDBHATRESA-N 2-methylthio-N(6)-(Delta(2)-isopentenyl)adenosine Chemical compound C12=NC(SC)=NC(NCC=C(C)C)=C2N=CN1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O VZQXUWKZDSEQRR-SDBHATRESA-N 0.000 description 2
- OVONXEQGWXGFJD-UHFFFAOYSA-N 4-sulfanylidene-1h-pyrimidin-2-one Chemical compound SC=1C=CNC(=O)N=1 OVONXEQGWXGFJD-UHFFFAOYSA-N 0.000 description 2
- OIVLITBTBDPEFK-UHFFFAOYSA-N 5,6-dihydrouracil Chemical compound O=C1CCNC(=O)N1 OIVLITBTBDPEFK-UHFFFAOYSA-N 0.000 description 2
- VSCNRXVDHRNJOA-PNHWDRBUSA-N 5-(carboxymethylaminomethyl)uridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(CNCC(O)=O)=C1 VSCNRXVDHRNJOA-PNHWDRBUSA-N 0.000 description 2
- ZAYHVCMSTBRABG-UHFFFAOYSA-N 5-Methylcytidine Natural products O=C1N=C(N)C(C)=CN1C1C(O)C(O)C(CO)O1 ZAYHVCMSTBRABG-UHFFFAOYSA-N 0.000 description 2
- VKLFQTYNHLDMDP-PNHWDRBUSA-N 5-carboxymethylaminomethyl-2-thiouridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=S)NC(=O)C(CNCC(O)=O)=C1 VKLFQTYNHLDMDP-PNHWDRBUSA-N 0.000 description 2
- QXDXBKZJFLRLCM-UAKXSSHOSA-N 5-hydroxyuridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(O)=C1 QXDXBKZJFLRLCM-UAKXSSHOSA-N 0.000 description 2
- HLZXTFWTDIBXDF-PNHWDRBUSA-N 5-methoxycarbonylmethyl-2-thiouridine Chemical compound S=C1NC(=O)C(CC(=O)OC)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 HLZXTFWTDIBXDF-PNHWDRBUSA-N 0.000 description 2
- YIZYCHKPHCPKHZ-PNHWDRBUSA-N 5-methoxycarbonylmethyluridine Chemical compound O=C1NC(=O)C(CC(=O)OC)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 YIZYCHKPHCPKHZ-PNHWDRBUSA-N 0.000 description 2
- SNNBPMAXGYBMHM-JXOAFFINSA-N 5-methyl-2-thiouridine Chemical compound S=C1NC(=O)C(C)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 SNNBPMAXGYBMHM-JXOAFFINSA-N 0.000 description 2
- ZAYHVCMSTBRABG-JXOAFFINSA-N 5-methylcytidine Chemical compound O=C1N=C(N)C(C)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 ZAYHVCMSTBRABG-JXOAFFINSA-N 0.000 description 2
- PNWOYKVCNDZOLS-UHFFFAOYSA-N 6-amino-5-chloro-1h-pyrimidin-2-one Chemical compound NC=1NC(=O)N=CC=1Cl PNWOYKVCNDZOLS-UHFFFAOYSA-N 0.000 description 2
- CLGFIVUFZRGQRP-UHFFFAOYSA-N 7,8-dihydro-8-oxoguanine Chemical class O=C1NC(N)=NC2=C1NC(=O)N2 CLGFIVUFZRGQRP-UHFFFAOYSA-N 0.000 description 2
- OGHAROSJZRTIOK-KQYNXXCUSA-O 7-methylguanosine Chemical compound C1=2N=C(N)NC(=O)C=2[N+](C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OGHAROSJZRTIOK-KQYNXXCUSA-O 0.000 description 2
- RGKBRPAAQSHTED-UHFFFAOYSA-N 8-oxoadenine Chemical compound NC1=NC=NC2=C1NC(=O)N2 RGKBRPAAQSHTED-UHFFFAOYSA-N 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 2
- 108010088751 Albumins Proteins 0.000 description 2
- 102000009027 Albumins Human genes 0.000 description 2
- 241000272525 Anas platyrhynchos Species 0.000 description 2
- 101710145634 Antigen 1 Proteins 0.000 description 2
- 241000416162 Astragalus gummifer Species 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 2
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 2
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 2
- 102100035875 C-C chemokine receptor type 5 Human genes 0.000 description 2
- 101710149870 C-C chemokine receptor type 5 Proteins 0.000 description 2
- 108010075254 C-Peptide Proteins 0.000 description 2
- 229910014585 C2-Ce Inorganic materials 0.000 description 2
- 210000001266 CD8-positive T-lymphocyte Anatomy 0.000 description 2
- 101710132601 Capsid protein Proteins 0.000 description 2
- 102100023321 Ceruloplasmin Human genes 0.000 description 2
- 229920001661 Chitosan Polymers 0.000 description 2
- 108091026890 Coding region Proteins 0.000 description 2
- 108700010070 Codon Usage Proteins 0.000 description 2
- 208000035473 Communicable disease Diseases 0.000 description 2
- 241000699802 Cricetulus griseus Species 0.000 description 2
- 241000710945 Eastern equine encephalitis virus Species 0.000 description 2
- 206010014611 Encephalitis venezuelan equine Diseases 0.000 description 2
- 101710121417 Envelope glycoprotein Proteins 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 2
- 108090000288 Glycoproteins Proteins 0.000 description 2
- 241000724709 Hepatitis delta virus Species 0.000 description 2
- 101001105486 Homo sapiens Proteasome subunit alpha type-7 Proteins 0.000 description 2
- 241000713340 Human immunodeficiency virus 2 Species 0.000 description 2
- UGQMRVRMYYASKQ-KQYNXXCUSA-N Inosine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(O)=C2N=C1 UGQMRVRMYYASKQ-KQYNXXCUSA-N 0.000 description 2
- 229930010555 Inosine Natural products 0.000 description 2
- 108010050904 Interferons Proteins 0.000 description 2
- 102000014150 Interferons Human genes 0.000 description 2
- 108090001005 Interleukin-6 Proteins 0.000 description 2
- 102000004889 Interleukin-6 Human genes 0.000 description 2
- 108020004684 Internal Ribosome Entry Sites Proteins 0.000 description 2
- 239000004472 Lysine Substances 0.000 description 2
- 102000018697 Membrane Proteins Human genes 0.000 description 2
- 108010052285 Membrane Proteins Proteins 0.000 description 2
- 241000699666 Mus <mouse, genus> Species 0.000 description 2
- VQAYFKKCNSOZKM-IOSLPCCCSA-N N(6)-methyladenosine Chemical compound C1=NC=2C(NC)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O VQAYFKKCNSOZKM-IOSLPCCCSA-N 0.000 description 2
- 108700020354 N-acetylmuramyl-threonyl-isoglutamine Proteins 0.000 description 2
- VQAYFKKCNSOZKM-UHFFFAOYSA-N NSC 29409 Natural products C1=NC=2C(NC)=NC=NC=2N1C1OC(CO)C(O)C1O VQAYFKKCNSOZKM-UHFFFAOYSA-N 0.000 description 2
- 108010067902 Peptide Library Proteins 0.000 description 2
- 108010013639 Peptidoglycan Proteins 0.000 description 2
- 229920012266 Poly(ether sulfone) PES Polymers 0.000 description 2
- 229920002732 Polyanhydride Polymers 0.000 description 2
- 239000004695 Polyether sulfone Substances 0.000 description 2
- 229920001710 Polyorthoester Polymers 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 2
- 102100021201 Proteasome subunit alpha type-7 Human genes 0.000 description 2
- KDCGOANMDULRCW-UHFFFAOYSA-N Purine Natural products N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 2
- 230000006819 RNA synthesis Effects 0.000 description 2
- 108700008625 Reporter Genes Proteins 0.000 description 2
- 108091028664 Ribonucleotide Proteins 0.000 description 2
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 2
- 241000219287 Saponaria Species 0.000 description 2
- 241000580858 Simian-Human immunodeficiency virus Species 0.000 description 2
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 229920001615 Tragacanth Polymers 0.000 description 2
- 241000255993 Trichoplusia ni Species 0.000 description 2
- 102100040247 Tumor necrosis factor Human genes 0.000 description 2
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 2
- 201000009145 Venezuelan equine encephalitis Diseases 0.000 description 2
- YXNIEZJFCGTDKV-UHFFFAOYSA-N X-Nucleosid Natural products O=C1N(CCC(N)C(O)=O)C(=O)C=CN1C1C(O)C(O)C(CO)O1 YXNIEZJFCGTDKV-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 230000000240 adjuvant effect Effects 0.000 description 2
- 239000000443 aerosol Substances 0.000 description 2
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 230000000692 anti-sense effect Effects 0.000 description 2
- 230000006907 apoptotic process Effects 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 2
- ALSPKRWQCLSJLV-UHFFFAOYSA-N azanium;acetic acid;acetate Chemical compound [NH4+].CC(O)=O.CC([O-])=O ALSPKRWQCLSJLV-UHFFFAOYSA-N 0.000 description 2
- 229960000686 benzalkonium chloride Drugs 0.000 description 2
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical compound [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 description 2
- 239000006172 buffering agent Substances 0.000 description 2
- 210000000234 capsid Anatomy 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000036755 cellular response Effects 0.000 description 2
- 235000013339 cereals Nutrition 0.000 description 2
- WOWHHFRSBJGXCM-UHFFFAOYSA-M cetyltrimethylammonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCC[N+](C)(C)C WOWHHFRSBJGXCM-UHFFFAOYSA-M 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 150000001841 cholesterols Chemical class 0.000 description 2
- 229960001231 choline Drugs 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 239000000084 colloidal system Substances 0.000 description 2
- 239000003636 conditioned culture medium Substances 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000000502 dialysis Methods 0.000 description 2
- PSLWZOIUBRXAQW-UHFFFAOYSA-M dimethyl(dioctadecyl)azanium;bromide Chemical compound [Br-].CCCCCCCCCCCCCCCCCC[N+](C)(C)CCCCCCCCCCCCCCCCCC PSLWZOIUBRXAQW-UHFFFAOYSA-M 0.000 description 2
- 230000009429 distress Effects 0.000 description 2
- 239000003623 enhancer Substances 0.000 description 2
- 229940088598 enzyme Drugs 0.000 description 2
- 229940013317 fish oils Drugs 0.000 description 2
- 239000000796 flavoring agent Substances 0.000 description 2
- 238000005243 fluidization Methods 0.000 description 2
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 2
- 229920001002 functional polymer Polymers 0.000 description 2
- 150000004676 glycans Chemical class 0.000 description 2
- 235000011187 glycerol Nutrition 0.000 description 2
- 229930182470 glycoside Natural products 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 2
- 230000005745 host immune response Effects 0.000 description 2
- 210000005260 human cell Anatomy 0.000 description 2
- 230000028996 humoral immune response Effects 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- FDGQSTZJBFJUBT-UHFFFAOYSA-N hypoxanthine Chemical compound O=C1NC=NC2=C1NC=N2 FDGQSTZJBFJUBT-UHFFFAOYSA-N 0.000 description 2
- 230000002519 immonomodulatory effect Effects 0.000 description 2
- 230000036039 immunity Effects 0.000 description 2
- 239000003022 immunostimulating agent Substances 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 206010022000 influenza Diseases 0.000 description 2
- 229960003786 inosine Drugs 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- PHTQWCKDNZKARW-UHFFFAOYSA-N isoamylol Chemical compound CC(C)CCO PHTQWCKDNZKARW-UHFFFAOYSA-N 0.000 description 2
- JJTUDXZGHPGLLC-UHFFFAOYSA-N lactide Chemical compound CC1OC(=O)C(C)OC1=O JJTUDXZGHPGLLC-UHFFFAOYSA-N 0.000 description 2
- 235000010445 lecithin Nutrition 0.000 description 2
- 239000000787 lecithin Substances 0.000 description 2
- 229940067606 lecithin Drugs 0.000 description 2
- 230000021633 leukocyte mediated immunity Effects 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 238000004020 luminiscence type Methods 0.000 description 2
- 229920002521 macromolecule Polymers 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 108020004999 messenger RNA Proteins 0.000 description 2
- 230000000813 microbial effect Effects 0.000 description 2
- 239000003094 microcapsule Substances 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 230000000869 mutational effect Effects 0.000 description 2
- JXTPJDDICSTXJX-UHFFFAOYSA-N n-Triacontane Natural products CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC JXTPJDDICSTXJX-UHFFFAOYSA-N 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- 239000002736 nonionic surfactant Substances 0.000 description 2
- 235000019488 nut oil Nutrition 0.000 description 2
- 229920002114 octoxynol-9 Polymers 0.000 description 2
- 238000006384 oligomerization reaction Methods 0.000 description 2
- 239000004006 olive oil Substances 0.000 description 2
- 235000008390 olive oil Nutrition 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 210000001672 ovary Anatomy 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- UNEIHNMKASENIG-UHFFFAOYSA-N para-chlorophenylpiperazine Chemical compound C1=CC(Cl)=CC=C1N1CCNCC1 UNEIHNMKASENIG-UHFFFAOYSA-N 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- 150000008104 phosphatidylethanolamines Chemical class 0.000 description 2
- 230000004962 physiological condition Effects 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920001610 polycaprolactone Polymers 0.000 description 2
- 229920006393 polyether sulfone Polymers 0.000 description 2
- 210000004896 polypeptide structure Anatomy 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 230000002516 postimmunization Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000035755 proliferation Effects 0.000 description 2
- 230000000069 prophylactic effect Effects 0.000 description 2
- 150000003212 purines Chemical class 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000002336 ribonucleotide Substances 0.000 description 2
- DWRXFEITVBNRMK-JXOAFFINSA-N ribothymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 DWRXFEITVBNRMK-JXOAFFINSA-N 0.000 description 2
- RHFUOMFWUGWKKO-UHFFFAOYSA-N s2C Natural products S=C1N=C(N)C=CN1C1C(O)C(O)C(CO)O1 RHFUOMFWUGWKKO-UHFFFAOYSA-N 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000010686 shark liver oil Substances 0.000 description 2
- 108010076805 snowdrop lectin Proteins 0.000 description 2
- 239000001632 sodium acetate Substances 0.000 description 2
- 235000017281 sodium acetate Nutrition 0.000 description 2
- 159000000000 sodium salts Chemical class 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 229940032094 squalane Drugs 0.000 description 2
- 238000004659 sterilization and disinfection Methods 0.000 description 2
- 150000003432 sterols Chemical class 0.000 description 2
- 239000007929 subcutaneous injection Substances 0.000 description 2
- 238000010254 subcutaneous injection Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000008362 succinate buffer Substances 0.000 description 2
- 239000000829 suppository Substances 0.000 description 2
- 239000002511 suppository base Substances 0.000 description 2
- 238000010189 synthetic method Methods 0.000 description 2
- 150000003505 terpenes Chemical class 0.000 description 2
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical compound [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 description 2
- WYWHKKSPHMUBEB-UHFFFAOYSA-N tioguanine Chemical class N1C(N)=NC(=S)C2=C1N=CN2 WYWHKKSPHMUBEB-UHFFFAOYSA-N 0.000 description 2
- 238000004448 titration Methods 0.000 description 2
- 229960001295 tocopherol Drugs 0.000 description 2
- 235000010384 tocopherol Nutrition 0.000 description 2
- 125000002640 tocopherol group Chemical class 0.000 description 2
- 235000019149 tocopherols Nutrition 0.000 description 2
- 235000010487 tragacanth Nutrition 0.000 description 2
- 239000000196 tragacanth Substances 0.000 description 2
- 229940116362 tragacanth Drugs 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- 230000014616 translation Effects 0.000 description 2
- 150000003626 triacylglycerols Chemical class 0.000 description 2
- 241000712461 unidentified influenza virus Species 0.000 description 2
- 241001515965 unidentified phage Species 0.000 description 2
- 239000002691 unilamellar liposome Substances 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- 238000003260 vortexing Methods 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 1
- PHFMCMDFWSZKGD-IOSLPCCCSA-N (2r,3s,4r,5r)-2-(hydroxymethyl)-5-[6-(methylamino)-2-methylsulfanylpurin-9-yl]oxolane-3,4-diol Chemical compound C1=NC=2C(NC)=NC(SC)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O PHFMCMDFWSZKGD-IOSLPCCCSA-N 0.000 description 1
- OFBLZCXWVROESG-PKPIPKONSA-N (2s)-1,2,3-trihydroxyheptan-4-one Chemical compound CCCC(=O)C(O)[C@@H](O)CO OFBLZCXWVROESG-PKPIPKONSA-N 0.000 description 1
- MYUOTPIQBPUQQU-CKTDUXNWSA-N (2s,3r)-2-amino-n-[[9-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-2-methylsulfanylpurin-6-yl]carbamoyl]-3-hydroxybutanamide Chemical compound C12=NC(SC)=NC(NC(=O)NC(=O)[C@@H](N)[C@@H](C)O)=C2N=CN1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O MYUOTPIQBPUQQU-CKTDUXNWSA-N 0.000 description 1
- GPTUGCGYEMEAOC-IBZYUGMLSA-N (2s,3r)-2-amino-n-[[9-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]purin-6-yl]-methylcarbamoyl]-3-hydroxybutanamide Chemical compound C1=NC=2C(N(C)C(=O)NC(=O)[C@@H](N)[C@H](O)C)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O GPTUGCGYEMEAOC-IBZYUGMLSA-N 0.000 description 1
- JZSSTKLEXRQFEA-HEIFUQTGSA-N (2s,3r,4s,5r)-2-(6-aminopurin-9-yl)-3,4-dihydroxy-5-(hydroxymethyl)oxolane-2-carboxamide Chemical compound C1=NC2=C(N)N=CN=C2N1[C@]1(C(=O)N)O[C@H](CO)[C@@H](O)[C@H]1O JZSSTKLEXRQFEA-HEIFUQTGSA-N 0.000 description 1
- ASWBNKHCZGQVJV-UHFFFAOYSA-N (3-hexadecanoyloxy-2-hydroxypropyl) 2-(trimethylazaniumyl)ethyl phosphate Chemical compound CCCCCCCCCCCCCCCC(=O)OCC(O)COP([O-])(=O)OCC[N+](C)(C)C ASWBNKHCZGQVJV-UHFFFAOYSA-N 0.000 description 1
- KHWUKFBQNNLWIV-KPNWGBFJSA-N (3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-[(2R)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol hydrochloride Chemical compound Cl.C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 KHWUKFBQNNLWIV-KPNWGBFJSA-N 0.000 description 1
- YHQZWWDVLJPRIF-JLHRHDQISA-N (4R)-4-[[(2S,3R)-2-[acetyl-[(3R,4R,5S,6R)-3-amino-4-[(1R)-1-carboxyethoxy]-5-hydroxy-6-(hydroxymethyl)oxan-2-yl]amino]-3-hydroxybutanoyl]amino]-5-amino-5-oxopentanoic acid Chemical compound C(C)(=O)N([C@@H]([C@H](O)C)C(=O)N[C@H](CCC(=O)O)C(N)=O)C1[C@H](N)[C@@H](O[C@@H](C(=O)O)C)[C@H](O)[C@H](O1)CO YHQZWWDVLJPRIF-JLHRHDQISA-N 0.000 description 1
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 1
- LVNGJLRDBYCPGB-LDLOPFEMSA-N (R)-1,2-distearoylphosphatidylethanolamine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[NH3+])OC(=O)CCCCCCCCCCCCCCCCC LVNGJLRDBYCPGB-LDLOPFEMSA-N 0.000 description 1
- UKAUYVFTDYCKQA-UHFFFAOYSA-N -2-Amino-4-hydroxybutanoic acid Natural products OC(=O)C(N)CCO UKAUYVFTDYCKQA-UHFFFAOYSA-N 0.000 description 1
- KILNVBDSWZSGLL-KXQOOQHDSA-N 1,2-dihexadecanoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCCC KILNVBDSWZSGLL-KXQOOQHDSA-N 0.000 description 1
- KLFKZIQAIPDJCW-GPOMZPHUSA-N 1,2-dihexadecanoyl-sn-glycero-3-phosphoserine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(=O)OC[C@H](N)C(O)=O)OC(=O)CCCCCCCCCCCCCCC KLFKZIQAIPDJCW-GPOMZPHUSA-N 0.000 description 1
- YFWHNAWEOZTIPI-DIPNUNPCSA-N 1,2-dioctadecanoyl-sn-glycerol-3-phosphate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(O)=O)OC(=O)CCCCCCCCCCCCCCCCC YFWHNAWEOZTIPI-DIPNUNPCSA-N 0.000 description 1
- SNKAWJBJQDLSFF-NVKMUCNASA-N 1,2-dioleoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCC\C=C/CCCCCCCC SNKAWJBJQDLSFF-NVKMUCNASA-N 0.000 description 1
- NRJAVPSFFCBXDT-HUESYALOSA-N 1,2-distearoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCCCCC NRJAVPSFFCBXDT-HUESYALOSA-N 0.000 description 1
- XIJAZGMFHRTBFY-FDDDBJFASA-N 1-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-2-$l^{1}-selanyl-5-(methylaminomethyl)pyrimidin-4-one Chemical compound [Se]C1=NC(=O)C(CNC)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 XIJAZGMFHRTBFY-FDDDBJFASA-N 0.000 description 1
- UTQUILVPBZEHTK-ZOQUXTDFSA-N 1-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-3-methylpyrimidine-2,4-dione Chemical compound O=C1N(C)C(=O)C=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 UTQUILVPBZEHTK-ZOQUXTDFSA-N 0.000 description 1
- BTFXIEGOSDSOGN-KWCDMSRLSA-N 1-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-methyl-1,3-diazinane-2,4-dione Chemical compound O=C1NC(=O)C(C)CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 BTFXIEGOSDSOGN-KWCDMSRLSA-N 0.000 description 1
- QAQSNXHKHKONNS-UHFFFAOYSA-N 1-ethyl-2-hydroxy-4-methyl-6-oxopyridine-3-carboxamide Chemical compound CCN1C(O)=C(C(N)=O)C(C)=CC1=O QAQSNXHKHKONNS-UHFFFAOYSA-N 0.000 description 1
- GFYLSDSUCHVORB-IOSLPCCCSA-N 1-methyladenosine Chemical compound C1=NC=2C(=N)N(C)C=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O GFYLSDSUCHVORB-IOSLPCCCSA-N 0.000 description 1
- UTAIYTHAJQNQDW-KQYNXXCUSA-N 1-methylguanosine Chemical compound C1=NC=2C(=O)N(C)C(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O UTAIYTHAJQNQDW-KQYNXXCUSA-N 0.000 description 1
- WJNGQIYEQLPJMN-IOSLPCCCSA-N 1-methylinosine Chemical compound C1=NC=2C(=O)N(C)C=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O WJNGQIYEQLPJMN-IOSLPCCCSA-N 0.000 description 1
- RFVFQQWKPSOBED-PSXMRANNSA-N 1-myristoyl-2-palmitoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)O[C@@H](COP([O-])(=O)OCC[N+](C)(C)C)COC(=O)CCCCCCCCCCCCC RFVFQQWKPSOBED-PSXMRANNSA-N 0.000 description 1
- TYAQXZHDAGZOEO-KXQOOQHDSA-N 1-myristoyl-2-stearoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCCCC(=O)O[C@@H](COP([O-])(=O)OCC[N+](C)(C)C)COC(=O)CCCCCCCCCCCCC TYAQXZHDAGZOEO-KXQOOQHDSA-N 0.000 description 1
- PAZGBAOHGQRCBP-DDDNOICHSA-N 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(=O)OCC(O)CO)OC(=O)CCCCCCC\C=C/CCCCCCCC PAZGBAOHGQRCBP-DDDNOICHSA-N 0.000 description 1
- MZWGYEJOZNRLQE-KXQOOQHDSA-N 1-stearoyl-2-myristoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCC MZWGYEJOZNRLQE-KXQOOQHDSA-N 0.000 description 1
- ATHVAWFAEPLPPQ-VRDBWYNSSA-N 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCC\C=C/CCCCCCCC ATHVAWFAEPLPPQ-VRDBWYNSSA-N 0.000 description 1
- 101800001779 2'-O-methyltransferase Proteins 0.000 description 1
- TXLHNFOLHRXMAU-UHFFFAOYSA-N 2-(4-benzylphenoxy)-n,n-diethylethanamine;hydron;chloride Chemical compound Cl.C1=CC(OCCN(CC)CC)=CC=C1CC1=CC=CC=C1 TXLHNFOLHRXMAU-UHFFFAOYSA-N 0.000 description 1
- IQZWKGWOBPJWMX-UHFFFAOYSA-N 2-Methyladenosine Natural products C12=NC(C)=NC(N)=C2N=CN1C1OC(CO)C(O)C1O IQZWKGWOBPJWMX-UHFFFAOYSA-N 0.000 description 1
- KRQUFUKTQHISJB-YYADALCUSA-N 2-[(E)-N-[2-(4-chlorophenoxy)propoxy]-C-propylcarbonimidoyl]-3-hydroxy-5-(thian-3-yl)cyclohex-2-en-1-one Chemical compound CCC\C(=N/OCC(C)OC1=CC=C(Cl)C=C1)C1=C(O)CC(CC1=O)C1CCCSC1 KRQUFUKTQHISJB-YYADALCUSA-N 0.000 description 1
- FKMHSNTVILORFA-UHFFFAOYSA-N 2-[2-(2-dodecoxyethoxy)ethoxy]ethanol Chemical compound CCCCCCCCCCCCOCCOCCOCCO FKMHSNTVILORFA-UHFFFAOYSA-N 0.000 description 1
- SOEYIPCQNRSIAV-IOSLPCCCSA-N 2-amino-5-(aminomethyl)-7-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-1h-pyrrolo[2,3-d]pyrimidin-4-one Chemical compound C1=2NC(N)=NC(=O)C=2C(CN)=CN1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O SOEYIPCQNRSIAV-IOSLPCCCSA-N 0.000 description 1
- BIRQNXWAXWLATA-IOSLPCCCSA-N 2-amino-7-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-4-oxo-1h-pyrrolo[2,3-d]pyrimidine-5-carbonitrile Chemical compound C1=C(C#N)C=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O BIRQNXWAXWLATA-IOSLPCCCSA-N 0.000 description 1
- PFCLMNDDPTZJHQ-XLPZGREQSA-N 2-amino-7-[(2r,4s,5r)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-1h-pyrrolo[2,3-d]pyrimidin-4-one Chemical compound C1=CC=2C(=O)NC(N)=NC=2N1[C@H]1C[C@H](O)[C@@H](CO)O1 PFCLMNDDPTZJHQ-XLPZGREQSA-N 0.000 description 1
- QNIZHKITBISILC-RPKMEZRRSA-N 2-amino-9-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)-2-methyloxolan-2-yl]-3h-purin-6-one Chemical compound C1=NC(C(NC(N)=N2)=O)=C2N1[C@]1(C)O[C@H](CO)[C@@H](O)[C@H]1O QNIZHKITBISILC-RPKMEZRRSA-N 0.000 description 1
- PBFLIOAJBULBHI-JJNLEZRASA-N 2-amino-n-[[9-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]purin-6-yl]carbamoyl]acetamide Chemical compound C1=NC=2C(NC(=O)NC(=O)CN)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O PBFLIOAJBULBHI-JJNLEZRASA-N 0.000 description 1
- MWBWWFOAEOYUST-UHFFFAOYSA-N 2-aminopurine Chemical class NC1=NC=C2N=CNC2=N1 MWBWWFOAEOYUST-UHFFFAOYSA-N 0.000 description 1
- XLPHMKQBBCKEFO-UHFFFAOYSA-N 2-azaniumylethyl 2,3-bis(3,7,11,15-tetramethylhexadecanoyloxy)propyl phosphate Chemical compound CC(C)CCCC(C)CCCC(C)CCCC(C)CC(=O)OCC(COP(O)(=O)OCCN)OC(=O)CC(C)CCCC(C)CCCC(C)CCCC(C)C XLPHMKQBBCKEFO-UHFFFAOYSA-N 0.000 description 1
- MPNXSZJPSVBLHP-UHFFFAOYSA-N 2-chloro-n-phenylpyridine-3-carboxamide Chemical compound ClC1=NC=CC=C1C(=O)NC1=CC=CC=C1 MPNXSZJPSVBLHP-UHFFFAOYSA-N 0.000 description 1
- KMEMIMRPZGDOMG-UHFFFAOYSA-N 2-cyanoethoxyphosphonamidous acid Chemical compound NP(O)OCCC#N KMEMIMRPZGDOMG-UHFFFAOYSA-N 0.000 description 1
- VWSLLSXLURJCDF-UHFFFAOYSA-N 2-methyl-4,5-dihydro-1h-imidazole Chemical compound CC1=NCCN1 VWSLLSXLURJCDF-UHFFFAOYSA-N 0.000 description 1
- IQZWKGWOBPJWMX-IOSLPCCCSA-N 2-methyladenosine Chemical compound C12=NC(C)=NC(N)=C2N=CN1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O IQZWKGWOBPJWMX-IOSLPCCCSA-N 0.000 description 1
- QEWSGVMSLPHELX-UHFFFAOYSA-N 2-methylthio-N6-(cis-hydroxyisopentenyl) adenosine Chemical compound C12=NC(SC)=NC(NCC=C(C)CO)=C2N=CN1C1OC(CO)C(O)C1O QEWSGVMSLPHELX-UHFFFAOYSA-N 0.000 description 1
- QCDWFXQBSFUVSP-UHFFFAOYSA-N 2-phenoxyethanol Chemical compound OCCOC1=CC=CC=C1 QCDWFXQBSFUVSP-UHFFFAOYSA-N 0.000 description 1
- RHFUOMFWUGWKKO-XVFCMESISA-N 2-thiocytidine Chemical compound S=C1N=C(N)C=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 RHFUOMFWUGWKKO-XVFCMESISA-N 0.000 description 1
- GIIGHSIIKVOWKZ-UHFFFAOYSA-N 2h-triazolo[4,5-d]pyrimidine Chemical class N1=CN=CC2=NNN=C21 GIIGHSIIKVOWKZ-UHFFFAOYSA-N 0.000 description 1
- 108020005345 3' Untranslated Regions Proteins 0.000 description 1
- YXNIEZJFCGTDKV-JANFQQFMSA-N 3-(3-amino-3-carboxypropyl)uridine Chemical compound O=C1N(CCC(N)C(O)=O)C(=O)C=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 YXNIEZJFCGTDKV-JANFQQFMSA-N 0.000 description 1
- RDPUKVRQKWBSPK-UHFFFAOYSA-N 3-Methylcytidine Natural products O=C1N(C)C(=N)C=CN1C1C(O)C(O)C(CO)O1 RDPUKVRQKWBSPK-UHFFFAOYSA-N 0.000 description 1
- UTQUILVPBZEHTK-UHFFFAOYSA-N 3-Methyluridine Natural products O=C1N(C)C(=O)C=CN1C1C(O)C(O)C(CO)O1 UTQUILVPBZEHTK-UHFFFAOYSA-N 0.000 description 1
- BINGDNLMMYSZFR-QYVSTXNMSA-N 3-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-6,7-dimethyl-5h-imidazo[1,2-a]purin-9-one Chemical compound C1=NC=2C(=O)N3C(C)=C(C)N=C3NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O BINGDNLMMYSZFR-QYVSTXNMSA-N 0.000 description 1
- RDPUKVRQKWBSPK-ZOQUXTDFSA-N 3-methylcytidine Chemical compound O=C1N(C)C(=N)C=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 RDPUKVRQKWBSPK-ZOQUXTDFSA-N 0.000 description 1
- RHKWIGHJGOEUSM-UHFFFAOYSA-N 3h-imidazo[4,5-h]quinoline Chemical class C1=CN=C2C(N=CN3)=C3C=CC2=C1 RHKWIGHJGOEUSM-UHFFFAOYSA-N 0.000 description 1
- CYDQOEWLBCCFJZ-UHFFFAOYSA-N 4-(4-fluorophenyl)oxane-4-carboxylic acid Chemical compound C=1C=C(F)C=CC=1C1(C(=O)O)CCOCC1 CYDQOEWLBCCFJZ-UHFFFAOYSA-N 0.000 description 1
- ZLOIGESWDJYCTF-UHFFFAOYSA-N 4-Thiouridine Natural products OC1C(O)C(CO)OC1N1C(=O)NC(=S)C=C1 ZLOIGESWDJYCTF-UHFFFAOYSA-N 0.000 description 1
- ZLOIGESWDJYCTF-XVFCMESISA-N 4-thiouridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=S)C=C1 ZLOIGESWDJYCTF-XVFCMESISA-N 0.000 description 1
- JJTUDXZGHPGLLC-IMJSIDKUSA-N 4511-42-6 Chemical compound C[C@@H]1OC(=O)[C@H](C)OC1=O JJTUDXZGHPGLLC-IMJSIDKUSA-N 0.000 description 1
- UVGCZRPOXXYZKH-QADQDURISA-N 5-(carboxyhydroxymethyl)uridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(C(O)C(O)=O)=C1 UVGCZRPOXXYZKH-QADQDURISA-N 0.000 description 1
- FAWQJBLSWXIJLA-VPCXQMTMSA-N 5-(carboxymethyl)uridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(CC(O)=O)=C1 FAWQJBLSWXIJLA-VPCXQMTMSA-N 0.000 description 1
- NFEXJLMYXXIWPI-JXOAFFINSA-N 5-Hydroxymethylcytidine Chemical compound C1=C(CO)C(N)=NC(=O)N1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 NFEXJLMYXXIWPI-JXOAFFINSA-N 0.000 description 1
- ZYEWPVTXYBLWRT-UHFFFAOYSA-N 5-Uridinacetamid Natural products O=C1NC(=O)C(CC(=O)N)=CN1C1C(O)C(O)C(CO)O1 ZYEWPVTXYBLWRT-UHFFFAOYSA-N 0.000 description 1
- BISHACNKZIBDFM-UHFFFAOYSA-N 5-amino-1h-pyrimidine-2,4-dione Chemical compound NC1=CNC(=O)NC1=O BISHACNKZIBDFM-UHFFFAOYSA-N 0.000 description 1
- LOEDKMLIGFMQKR-JXOAFFINSA-N 5-aminomethyl-2-thiouridine Chemical compound S=C1NC(=O)C(CN)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 LOEDKMLIGFMQKR-JXOAFFINSA-N 0.000 description 1
- LQLQRFGHAALLLE-UHFFFAOYSA-N 5-bromouracil Chemical compound BrC1=CNC(=O)NC1=O LQLQRFGHAALLLE-UHFFFAOYSA-N 0.000 description 1
- ZYEWPVTXYBLWRT-VPCXQMTMSA-N 5-carbamoylmethyluridine Chemical compound O=C1NC(=O)C(CC(=O)N)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 ZYEWPVTXYBLWRT-VPCXQMTMSA-N 0.000 description 1
- ZFTBZKVVGZNMJR-UHFFFAOYSA-N 5-chlorouracil Chemical compound ClC1=CNC(=O)NC1=O ZFTBZKVVGZNMJR-UHFFFAOYSA-N 0.000 description 1
- JDBGXEHEIRGOBU-UHFFFAOYSA-N 5-hydroxymethyluracil Chemical compound OCC1=CNC(=O)NC1=O JDBGXEHEIRGOBU-UHFFFAOYSA-N 0.000 description 1
- ZXIATBNUWJBBGT-JXOAFFINSA-N 5-methoxyuridine Chemical compound O=C1NC(=O)C(OC)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 ZXIATBNUWJBBGT-JXOAFFINSA-N 0.000 description 1
- HXVKEKIORVUWDR-UHFFFAOYSA-N 5-methylaminomethyl-2-thiouridine Natural products S=C1NC(=O)C(CNC)=CN1C1C(O)C(O)C(CO)O1 HXVKEKIORVUWDR-UHFFFAOYSA-N 0.000 description 1
- ZXQHKBUIXRFZBV-FDDDBJFASA-N 5-methylaminomethyluridine Chemical compound O=C1NC(=O)C(CNC)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 ZXQHKBUIXRFZBV-FDDDBJFASA-N 0.000 description 1
- LRSASMSXMSNRBT-UHFFFAOYSA-N 5-methylcytosine Chemical compound CC1=CNC(=O)N=C1N LRSASMSXMSNRBT-UHFFFAOYSA-N 0.000 description 1
- USVMJSALORZVDV-UHFFFAOYSA-N 6-(gamma,gamma-dimethylallylamino)purine riboside Natural products C1=NC=2C(NCC=C(C)C)=NC=NC=2N1C1OC(CO)C(O)C1O USVMJSALORZVDV-UHFFFAOYSA-N 0.000 description 1
- QFVKLKDEXOWFSL-UHFFFAOYSA-N 6-amino-5-bromo-1h-pyrimidin-2-one Chemical compound NC=1NC(=O)N=CC=1Br QFVKLKDEXOWFSL-UHFFFAOYSA-N 0.000 description 1
- NLLCDONDZDHLCI-UHFFFAOYSA-N 6-amino-5-hydroxy-1h-pyrimidin-2-one Chemical compound NC=1NC(=O)N=CC=1O NLLCDONDZDHLCI-UHFFFAOYSA-N 0.000 description 1
- XZIIFPSPUDAGJM-UHFFFAOYSA-N 6-chloro-2-n,2-n-diethylpyrimidine-2,4-diamine Chemical compound CCN(CC)C1=NC(N)=CC(Cl)=N1 XZIIFPSPUDAGJM-UHFFFAOYSA-N 0.000 description 1
- RYYIULNRIVUMTQ-UHFFFAOYSA-N 6-chloroguanine Chemical class NC1=NC(Cl)=C2N=CNC2=N1 RYYIULNRIVUMTQ-UHFFFAOYSA-N 0.000 description 1
- LOSIULRWFAEMFL-UHFFFAOYSA-N 7-deazaguanine Chemical compound O=C1NC(N)=NC2=C1CC=N2 LOSIULRWFAEMFL-UHFFFAOYSA-N 0.000 description 1
- LPXQRXLUHJKZIE-UHFFFAOYSA-N 8-azaguanine Chemical compound NC1=NC(O)=C2NN=NC2=N1 LPXQRXLUHJKZIE-UHFFFAOYSA-N 0.000 description 1
- 229960005508 8-azaguanine Drugs 0.000 description 1
- MSSXOMSJDRHRMC-UHFFFAOYSA-N 9H-purine-2,6-diamine Chemical class NC1=NC(N)=C2NC=NC2=N1 MSSXOMSJDRHRMC-UHFFFAOYSA-N 0.000 description 1
- 208000035657 Abasia Diseases 0.000 description 1
- 229930024421 Adenine Natural products 0.000 description 1
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 1
- 241000256118 Aedes aegypti Species 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 241000272517 Anseriformes Species 0.000 description 1
- 108700042778 Antimicrobial Peptides Proteins 0.000 description 1
- 102000044503 Antimicrobial Peptides Human genes 0.000 description 1
- 102100037435 Antiviral innate immune response receptor RIG-I Human genes 0.000 description 1
- 101710127675 Antiviral innate immune response receptor RIG-I Proteins 0.000 description 1
- 101001073212 Arabidopsis thaliana Peroxidase 33 Proteins 0.000 description 1
- PEMQXWCOMFJRLS-UHFFFAOYSA-N Archaeosine Natural products C1=2NC(N)=NC(=O)C=2C(C(=N)N)=CN1C1OC(CO)C(O)C1O PEMQXWCOMFJRLS-UHFFFAOYSA-N 0.000 description 1
- IYMAXBFPHPZYIK-BQBZGAKWSA-N Arg-Gly-Asp Chemical compound NC(N)=NCCC[C@H](N)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(O)=O IYMAXBFPHPZYIK-BQBZGAKWSA-N 0.000 description 1
- 241001203868 Autographa californica Species 0.000 description 1
- 235000007319 Avena orientalis Nutrition 0.000 description 1
- 244000075850 Avena orientalis Species 0.000 description 1
- 108091008875 B cell receptors Proteins 0.000 description 1
- 244000063299 Bacillus subtilis Species 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- 241000608319 Bebaru virus Species 0.000 description 1
- 241000255789 Bombyx mori Species 0.000 description 1
- FERIUCNNQQJTOY-UHFFFAOYSA-M Butyrate Chemical compound CCCC([O-])=O FERIUCNNQQJTOY-UHFFFAOYSA-M 0.000 description 1
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical class CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 1
- 101710117545 C protein Proteins 0.000 description 1
- 102100021943 C-C motif chemokine 2 Human genes 0.000 description 1
- 101710155857 C-C motif chemokine 2 Proteins 0.000 description 1
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 1
- QOFRNSMLZCPQKL-KTIIIUPTSA-N CCN(CC)CC.CCCCCCCCCCCCCC(=O)O[C@H](CCCCCCCCCCC)CC(=O)NCCO[C@@H]1O[C@H](CO)[C@@H](OP(O)(O)=O)[C@H](OC(=O)C[C@@H](CCCCCCCCCCC)OC(=O)CCCCCCCCCCCCC)[C@H]1NC(=O)C[C@@H](CCCCCCCCCCC)OC(=O)CCCCCCCCCCCCC Chemical compound CCN(CC)CC.CCCCCCCCCCCCCC(=O)O[C@H](CCCCCCCCCCC)CC(=O)NCCO[C@@H]1O[C@H](CO)[C@@H](OP(O)(O)=O)[C@H](OC(=O)C[C@@H](CCCCCCCCCCC)OC(=O)CCCCCCCCCCCCC)[C@H]1NC(=O)C[C@@H](CCCCCCCCCCC)OC(=O)CCCCCCCCCCCCC QOFRNSMLZCPQKL-KTIIIUPTSA-N 0.000 description 1
- 210000004366 CD4-positive T-lymphocyte Anatomy 0.000 description 1
- QCMYYKRYFNMIEC-UHFFFAOYSA-N COP(O)=O Chemical class COP(O)=O QCMYYKRYFNMIEC-UHFFFAOYSA-N 0.000 description 1
- 241000232908 Cabassous Species 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 241000222122 Candida albicans Species 0.000 description 1
- 241000222128 Candida maltosa Species 0.000 description 1
- 241000282465 Canis Species 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 102000053642 Catalytic RNA Human genes 0.000 description 1
- 108090000994 Catalytic RNA Proteins 0.000 description 1
- 102000000844 Cell Surface Receptors Human genes 0.000 description 1
- 108010001857 Cell Surface Receptors Proteins 0.000 description 1
- CXRFDZFCGOPDTD-UHFFFAOYSA-M Cetrimide Chemical compound [Br-].CCCCCCCCCCCCCC[N+](C)(C)C CXRFDZFCGOPDTD-UHFFFAOYSA-M 0.000 description 1
- 102000009410 Chemokine receptor Human genes 0.000 description 1
- 108050000299 Chemokine receptor Proteins 0.000 description 1
- 102000019034 Chemokines Human genes 0.000 description 1
- 108010012236 Chemokines Proteins 0.000 description 1
- 241001502567 Chikungunya virus Species 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 206010008631 Cholera Diseases 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- 108010060123 Conjugate Vaccines Proteins 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 241000711573 Coronaviridae Species 0.000 description 1
- 229920002785 Croscarmellose sodium Polymers 0.000 description 1
- MIKUYHXYGGJMLM-UUOKFMHZSA-N Crotonoside Chemical compound C1=NC2=C(N)NC(=O)N=C2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O MIKUYHXYGGJMLM-UUOKFMHZSA-N 0.000 description 1
- 108010069514 Cyclic Peptides Proteins 0.000 description 1
- 102000001189 Cyclic Peptides Human genes 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 description 1
- 229940032024 DPT vaccine Drugs 0.000 description 1
- 102000016911 Deoxyribonucleases Human genes 0.000 description 1
- 108010053770 Deoxyribonucleases Proteins 0.000 description 1
- 239000004338 Dichlorodifluoromethane Substances 0.000 description 1
- 241000255601 Drosophila melanogaster Species 0.000 description 1
- 229920005682 EO-PO block copolymer Polymers 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 241000305071 Enterobacterales Species 0.000 description 1
- 101710146739 Enterotoxin Proteins 0.000 description 1
- 241000283073 Equus caballus Species 0.000 description 1
- 244000140063 Eragrostis abyssinica Species 0.000 description 1
- 235000014966 Eragrostis abyssinica Nutrition 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 241000710831 Flavivirus Species 0.000 description 1
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 1
- 241000710198 Foot-and-mouth disease virus Species 0.000 description 1
- 241000608297 Getah virus Species 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 108010068370 Glutens Proteins 0.000 description 1
- JZNWSCPGTDBMEW-UHFFFAOYSA-N Glycerophosphorylethanolamin Natural products NCCOP(O)(=O)OCC(O)CO JZNWSCPGTDBMEW-UHFFFAOYSA-N 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 102100021181 Golgi phosphoprotein 3 Human genes 0.000 description 1
- 102100034221 Growth-regulated alpha protein Human genes 0.000 description 1
- 241000088620 HIV-1 circulating recombinant forms Species 0.000 description 1
- 241000606768 Haemophilus influenzae Species 0.000 description 1
- 241000711557 Hepacivirus Species 0.000 description 1
- 241000700721 Hepatitis B virus Species 0.000 description 1
- 229940124872 Hepatitis B virus vaccine Drugs 0.000 description 1
- 241000724675 Hepatitis E virus Species 0.000 description 1
- 208000037262 Hepatitis delta Diseases 0.000 description 1
- 108091080980 Hepatitis delta virus ribozyme Proteins 0.000 description 1
- 102100036284 Hepcidin Human genes 0.000 description 1
- 101001069921 Homo sapiens Growth-regulated alpha protein Proteins 0.000 description 1
- 101001021253 Homo sapiens Hepcidin Proteins 0.000 description 1
- 101001064302 Homo sapiens Lipase member I Proteins 0.000 description 1
- 101001123325 Homo sapiens Peroxisome proliferator-activated receptor gamma coactivator 1-beta Proteins 0.000 description 1
- 101000831567 Homo sapiens Toll-like receptor 2 Proteins 0.000 description 1
- 241001135569 Human adenovirus 5 Species 0.000 description 1
- 241000701806 Human papillomavirus Species 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical class [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- UGQMRVRMYYASKQ-UHFFFAOYSA-N Hypoxanthine nucleoside Natural products OC1C(O)C(CO)OC1N1C(NC=NC2=O)=C2N=C1 UGQMRVRMYYASKQ-UHFFFAOYSA-N 0.000 description 1
- 108060003951 Immunoglobulin Proteins 0.000 description 1
- 108010002352 Interleukin-1 Proteins 0.000 description 1
- 102000013462 Interleukin-12 Human genes 0.000 description 1
- 108010065805 Interleukin-12 Proteins 0.000 description 1
- 102000003816 Interleukin-13 Human genes 0.000 description 1
- 108090000176 Interleukin-13 Proteins 0.000 description 1
- 108010002586 Interleukin-7 Proteins 0.000 description 1
- 102000000704 Interleukin-7 Human genes 0.000 description 1
- 102000015696 Interleukins Human genes 0.000 description 1
- 108010063738 Interleukins Proteins 0.000 description 1
- 244000285963 Kluyveromyces fragilis Species 0.000 description 1
- 235000014663 Kluyveromyces fragilis Nutrition 0.000 description 1
- 241001138401 Kluyveromyces lactis Species 0.000 description 1
- 241000235058 Komagataella pastoris Species 0.000 description 1
- 238000012313 Kruskal-Wallis test Methods 0.000 description 1
- UKAUYVFTDYCKQA-VKHMYHEASA-N L-homoserine Chemical compound OC(=O)[C@@H](N)CCO UKAUYVFTDYCKQA-VKHMYHEASA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- QEFRNWWLZKMPFJ-ZXPFJRLXSA-N L-methionine (R)-S-oxide Chemical compound C[S@@](=O)CC[C@H]([NH3+])C([O-])=O QEFRNWWLZKMPFJ-ZXPFJRLXSA-N 0.000 description 1
- QEFRNWWLZKMPFJ-UHFFFAOYSA-N L-methionine sulphoxide Natural products CS(=O)CCC(N)C(O)=O QEFRNWWLZKMPFJ-UHFFFAOYSA-N 0.000 description 1
- LRQKBLKVPFOOQJ-YFKPBYRVSA-N L-norleucine Chemical compound CCCC[C@H]([NH3+])C([O-])=O LRQKBLKVPFOOQJ-YFKPBYRVSA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 102100030659 Lipase member I Human genes 0.000 description 1
- 108010046938 Macrophage Colony-Stimulating Factor Proteins 0.000 description 1
- 102000007651 Macrophage Colony-Stimulating Factor Human genes 0.000 description 1
- 101710125418 Major capsid protein Proteins 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 241000608292 Mayaro virus Species 0.000 description 1
- 241000712079 Measles morbillivirus Species 0.000 description 1
- QWZLBLDNRUUYQI-UHFFFAOYSA-M Methylbenzethonium chloride Chemical compound [Cl-].CC1=CC(C(C)(C)CC(C)(C)C)=CC=C1OCCOCC[N+](C)(C)CC1=CC=CC=C1 QWZLBLDNRUUYQI-UHFFFAOYSA-M 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- 241001092142 Molina Species 0.000 description 1
- 241000868135 Mucambo virus Species 0.000 description 1
- 102000016943 Muramidase Human genes 0.000 description 1
- 108010014251 Muramidase Proteins 0.000 description 1
- 241000714177 Murine leukemia virus Species 0.000 description 1
- IYYIBFCJILKPCO-WOUKDFQISA-O N(2),N(2),N(7)-trimethylguanosine Chemical compound C1=2NC(N(C)C)=NC(=O)C=2N(C)C=[N+]1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O IYYIBFCJILKPCO-WOUKDFQISA-O 0.000 description 1
- RSPURTUNRHNVGF-IOSLPCCCSA-N N(2),N(2)-dimethylguanosine Chemical compound C1=NC=2C(=O)NC(N(C)C)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O RSPURTUNRHNVGF-IOSLPCCCSA-N 0.000 description 1
- ZBYRSRLCXTUFLJ-IOSLPCCCSA-O N(2),N(7)-dimethylguanosine Chemical compound CNC=1NC(C=2[N+](=CN([C@H]3[C@H](O)[C@H](O)[C@@H](CO)O3)C=2N=1)C)=O ZBYRSRLCXTUFLJ-IOSLPCCCSA-O 0.000 description 1
- SLEHROROQDYRAW-KQYNXXCUSA-N N(2)-methylguanosine Chemical compound C1=NC=2C(=O)NC(NC)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O SLEHROROQDYRAW-KQYNXXCUSA-N 0.000 description 1
- NIDVTARKFBZMOT-PEBGCTIMSA-N N(4)-acetylcytidine Chemical compound O=C1N=C(NC(=O)C)C=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 NIDVTARKFBZMOT-PEBGCTIMSA-N 0.000 description 1
- WVGPGNPCZPYCLK-WOUKDFQISA-N N(6),N(6)-dimethyladenosine Chemical compound C1=NC=2C(N(C)C)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O WVGPGNPCZPYCLK-WOUKDFQISA-N 0.000 description 1
- USVMJSALORZVDV-SDBHATRESA-N N(6)-(Delta(2)-isopentenyl)adenosine Chemical compound C1=NC=2C(NCC=C(C)C)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O USVMJSALORZVDV-SDBHATRESA-N 0.000 description 1
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 1
- WVGPGNPCZPYCLK-UHFFFAOYSA-N N-Dimethyladenosine Natural products C1=NC=2C(N(C)C)=NC=NC=2N1C1OC(CO)C(O)C1O WVGPGNPCZPYCLK-UHFFFAOYSA-N 0.000 description 1
- UNUYMBPXEFMLNW-DWVDDHQFSA-N N-[(9-beta-D-ribofuranosylpurin-6-yl)carbamoyl]threonine Chemical compound C1=NC=2C(NC(=O)N[C@@H]([C@H](O)C)C(O)=O)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O UNUYMBPXEFMLNW-DWVDDHQFSA-N 0.000 description 1
- SLLVJTURCPWLTP-UHFFFAOYSA-N N-[9-[3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]purin-6-yl]acetamide Chemical compound C1=NC=2C(NC(=O)C)=NC=NC=2N1C1OC(CO)C(O)C1O SLLVJTURCPWLTP-UHFFFAOYSA-N 0.000 description 1
- MNLRQHMNZILYPY-MDMHTWEWSA-N N-acetyl-alpha-D-muramic acid Chemical compound OC(=O)[C@@H](C)O[C@H]1[C@H](O)[C@@H](CO)O[C@H](O)[C@@H]1NC(C)=O MNLRQHMNZILYPY-MDMHTWEWSA-N 0.000 description 1
- SXZWBNWTCVLZJN-NMIJJABPSA-N N-tricosanoylsphing-4-enine-1-phosphocholine Chemical compound CCCCCCCCCCCCCCCCCCCCCCC(=O)N[C@@H](COP([O-])(=O)OCC[N+](C)(C)C)[C@H](O)\C=C\CCCCCCCCCCCCC SXZWBNWTCVLZJN-NMIJJABPSA-N 0.000 description 1
- LZCNWAXLJWBRJE-ZOQUXTDFSA-N N4-Methylcytidine Chemical compound O=C1N=C(NC)C=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 LZCNWAXLJWBRJE-ZOQUXTDFSA-N 0.000 description 1
- GOSWTRUMMSCNCW-UHFFFAOYSA-N N6-(cis-hydroxyisopentenyl)adenosine Chemical compound C1=NC=2C(NCC=C(CO)C)=NC=NC=2N1C1OC(CO)C(O)C1O GOSWTRUMMSCNCW-UHFFFAOYSA-N 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 241000714209 Norwalk virus Species 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 101710141454 Nucleoprotein Proteins 0.000 description 1
- VZQXUWKZDSEQRR-UHFFFAOYSA-N Nucleosid Natural products C12=NC(SC)=NC(NCC=C(C)C)=C2N=CN1C1OC(CO)C(O)C1O VZQXUWKZDSEQRR-UHFFFAOYSA-N 0.000 description 1
- JXNORPPTKDEAIZ-QOCRDCMYSA-N O-4''-alpha-D-mannosylqueuosine Chemical compound NC(N1)=NC(N([C@@H]([C@@H]2O)O[C@H](CO)[C@H]2O)C=C2CN[C@H]([C@H]3O)C=C[C@@H]3O[C@H]([C@H]([C@H]3O)O)O[C@H](CO)[C@H]3O)=C2C1=O JXNORPPTKDEAIZ-QOCRDCMYSA-N 0.000 description 1
- 241000207836 Olea <angiosperm> Species 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 108020002230 Pancreatic Ribonuclease Proteins 0.000 description 1
- 102000005891 Pancreatic ribonuclease Human genes 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 108010033276 Peptide Fragments Proteins 0.000 description 1
- 102000007079 Peptide Fragments Human genes 0.000 description 1
- 102100028961 Peroxisome proliferator-activated receptor gamma coactivator 1-beta Human genes 0.000 description 1
- 241000009328 Perro Species 0.000 description 1
- 201000005702 Pertussis Diseases 0.000 description 1
- 241000710778 Pestivirus Species 0.000 description 1
- 244000046052 Phaseolus vulgaris Species 0.000 description 1
- 235000010627 Phaseolus vulgaris Nutrition 0.000 description 1
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 1
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 1
- 241000235648 Pichia Species 0.000 description 1
- ZYFVNVRFVHJEIU-UHFFFAOYSA-N PicoGreen Chemical compound CN(C)CCCN(CCCN(C)C)C1=CC(=CC2=[N+](C3=CC=CC=C3S2)C)C2=CC=CC=C2N1C1=CC=CC=C1 ZYFVNVRFVHJEIU-UHFFFAOYSA-N 0.000 description 1
- 241000709664 Picornaviridae Species 0.000 description 1
- 241000868134 Pixuna virus Species 0.000 description 1
- 108091036407 Polyadenylation Proteins 0.000 description 1
- 229920002565 Polyethylene Glycol 400 Polymers 0.000 description 1
- 108010040201 Polymyxins Proteins 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 101710083689 Probable capsid protein Proteins 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- 108010076504 Protein Sorting Signals Proteins 0.000 description 1
- 229930185560 Pseudouridine Natural products 0.000 description 1
- PTJWIQPHWPFNBW-UHFFFAOYSA-N Pseudouridine C Natural products OC1C(O)C(CO)OC1C1=CNC(=O)NC1=O PTJWIQPHWPFNBW-UHFFFAOYSA-N 0.000 description 1
- 208000009341 RNA Virus Infections Diseases 0.000 description 1
- 108010065868 RNA polymerase SP6 Proteins 0.000 description 1
- 239000013614 RNA sample Substances 0.000 description 1
- 101800001758 RNA-directed RNA polymerase nsP4 Proteins 0.000 description 1
- 101001000212 Rattus norvegicus Decorin Proteins 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 241000725643 Respiratory syncytial virus Species 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 241000702670 Rotavirus Species 0.000 description 1
- 241000710801 Rubivirus Species 0.000 description 1
- 101100269369 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) AGE1 gene Proteins 0.000 description 1
- 235000019485 Safflower oil Nutrition 0.000 description 1
- 241000235347 Schizosaccharomyces pombe Species 0.000 description 1
- 241000209056 Secale Species 0.000 description 1
- 235000007238 Secale cereale Nutrition 0.000 description 1
- 241000872198 Serjania polyphylla Species 0.000 description 1
- 244000000231 Sesamum indicum Species 0.000 description 1
- 235000003434 Sesamum indicum Nutrition 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 241000713311 Simian immunodeficiency virus Species 0.000 description 1
- 244000044822 Simmondsia californica Species 0.000 description 1
- 235000004433 Simmondsia californica Nutrition 0.000 description 1
- 101500008203 Sindbis virus Capsid protein Proteins 0.000 description 1
- 240000002493 Smilax officinalis Species 0.000 description 1
- 235000008981 Smilax officinalis Nutrition 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 241000256251 Spodoptera frugiperda Species 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 241000194017 Streptococcus Species 0.000 description 1
- 108091008874 T cell receptors Proteins 0.000 description 1
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 1
- 101710137500 T7 RNA polymerase Proteins 0.000 description 1
- 108700012920 TNF Proteins 0.000 description 1
- WPMWEFXCIYCJSA-UHFFFAOYSA-N Tetraethylene glycol monododecyl ether Chemical compound CCCCCCCCCCCCOCCOCCOCCOCCO WPMWEFXCIYCJSA-UHFFFAOYSA-N 0.000 description 1
- 241000223892 Tetrahymena Species 0.000 description 1
- 241000248384 Tetrahymena thermophila Species 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical class OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 1
- 241000710924 Togaviridae Species 0.000 description 1
- 102000008235 Toll-Like Receptor 9 Human genes 0.000 description 1
- 108010060818 Toll-Like Receptor 9 Proteins 0.000 description 1
- 102100024333 Toll-like receptor 2 Human genes 0.000 description 1
- 108030003004 Triphosphatases Proteins 0.000 description 1
- 235000019714 Triticale Nutrition 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 244000098338 Triticum aestivum Species 0.000 description 1
- 206010046865 Vaccinia virus infection Diseases 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- 108700005077 Viral Genes Proteins 0.000 description 1
- 108700022715 Viral Proteases Proteins 0.000 description 1
- 108700002693 Viral Replicase Complex Proteins Proteins 0.000 description 1
- 108010087302 Viral Structural Proteins Proteins 0.000 description 1
- 230000010530 Virus Neutralization Effects 0.000 description 1
- 208000005466 Western Equine Encephalomyelitis Diseases 0.000 description 1
- 201000005806 Western equine encephalitis Diseases 0.000 description 1
- JCZSFCLRSONYLH-UHFFFAOYSA-N Wyosine Natural products N=1C(C)=CN(C(C=2N=C3)=O)C=1N(C)C=2N3C1OC(CO)C(O)C1O JCZSFCLRSONYLH-UHFFFAOYSA-N 0.000 description 1
- 241000235015 Yarrowia lipolytica Species 0.000 description 1
- ZBNRGEMZNWHCGA-PDKVEDEMSA-N [(2r)-2-[(2r,3r,4s)-3,4-bis[[(z)-octadec-9-enoyl]oxy]oxolan-2-yl]-2-hydroxyethyl] (z)-octadec-9-enoate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](OC(=O)CCCCCCC\C=C/CCCCCCCC)[C@H]1OC(=O)CCCCCCC\C=C/CCCCCCCC ZBNRGEMZNWHCGA-PDKVEDEMSA-N 0.000 description 1
- TVGUROHJABCRTB-MHJQXXNXSA-N [(2r,3s,4r,5s)-5-[(2r,3r,4r,5r)-2-(2-amino-6-oxo-3h-purin-9-yl)-4-hydroxy-5-(hydroxymethyl)oxolan-3-yl]oxy-3,4-dihydroxyoxolan-2-yl]methyl dihydrogen phosphate Chemical compound O([C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C=NC=2C(=O)N=C(NC=21)N)[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@H]1O TVGUROHJABCRTB-MHJQXXNXSA-N 0.000 description 1
- UZQJVUCHXGYFLQ-AYDHOLPZSA-N [(2s,3r,4s,5r,6r)-4-[(2s,3r,4s,5r,6r)-4-[(2r,3r,4s,5r,6r)-4-[(2s,3r,4s,5r,6r)-3,5-dihydroxy-6-(hydroxymethyl)-4-[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3,5-dihydroxy-6-(hy Chemical compound O([C@H]1[C@H](O)[C@@H](CO)O[C@H]([C@@H]1O)O[C@H]1[C@H](O)[C@@H](CO)O[C@H]([C@@H]1O)O[C@H]1CC[C@]2(C)[C@H]3CC=C4[C@@]([C@@]3(CC[C@H]2[C@@]1(C=O)C)C)(C)CC(O)[C@]1(CCC(CC14)(C)C)C(=O)O[C@H]1[C@@H]([C@@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O[C@H]4[C@@H]([C@@H](O[C@H]5[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O5)O)[C@H](O)[C@@H](CO)O4)O)[C@H](O)[C@@H](CO)O3)O)[C@H](O)[C@@H](CO)O2)O)[C@H](O)[C@@H](CO)O1)O)[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O UZQJVUCHXGYFLQ-AYDHOLPZSA-N 0.000 description 1
- QWXOJIDBSHLIFI-UHFFFAOYSA-N [3-(1-chloro-3'-methoxyspiro[adamantane-4,4'-dioxetane]-3'-yl)phenyl] dihydrogen phosphate Chemical compound O1OC2(C3CC4CC2CC(Cl)(C4)C3)C1(OC)C1=CC=CC(OP(O)(O)=O)=C1 QWXOJIDBSHLIFI-UHFFFAOYSA-N 0.000 description 1
- PQIHYNWPAJABTB-QCNRFFRDSA-N [O-]S(CCNC[S+]=C(N1)N([C@@H]([C@@H]2O)O[C@H](CO)[C@H]2O)C=CC1=O)(=O)=O Chemical compound [O-]S(CCNC[S+]=C(N1)N([C@@H]([C@@H]2O)O[C@H](CO)[C@H]2O)C=CC1=O)(=O)=O PQIHYNWPAJABTB-QCNRFFRDSA-N 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 238000005903 acid hydrolysis reaction Methods 0.000 description 1
- 230000010933 acylation Effects 0.000 description 1
- 238000005917 acylation reaction Methods 0.000 description 1
- 230000033289 adaptive immune response Effects 0.000 description 1
- 229960000643 adenine Drugs 0.000 description 1
- 229960005305 adenosine Drugs 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 238000000246 agarose gel electrophoresis Methods 0.000 description 1
- 239000000556 agonist Substances 0.000 description 1
- 150000005215 alkyl ethers Chemical class 0.000 description 1
- 125000005211 alkyl trimethyl ammonium group Chemical group 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- 239000013566 allergen Substances 0.000 description 1
- 229910021502 aluminium hydroxide Inorganic materials 0.000 description 1
- 229940047712 aluminum hydroxyphosphate Drugs 0.000 description 1
- 229940103272 aluminum potassium sulfate Drugs 0.000 description 1
- 150000001412 amines Chemical group 0.000 description 1
- 150000003862 amino acid derivatives Chemical class 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 238000005349 anion exchange Methods 0.000 description 1
- 230000030741 antigen processing and presentation Effects 0.000 description 1
- 210000000612 antigen-presenting cell Anatomy 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 239000012062 aqueous buffer Substances 0.000 description 1
- 239000008365 aqueous carrier Substances 0.000 description 1
- PEMQXWCOMFJRLS-RPKMEZRRSA-N archaeosine Chemical compound C1=2NC(N)=NC(=O)C=2C(C(=N)N)=CN1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O PEMQXWCOMFJRLS-RPKMEZRRSA-N 0.000 description 1
- 108010072041 arginyl-glycyl-aspartic acid Proteins 0.000 description 1
- XKNKHVGWJDPIRJ-UHFFFAOYSA-N arsanilic acid Chemical class NC1=CC=C([As](O)(O)=O)C=C1 XKNKHVGWJDPIRJ-UHFFFAOYSA-N 0.000 description 1
- 239000012131 assay buffer Substances 0.000 description 1
- 244000052616 bacterial pathogen Species 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- UREZNYTWGJKWBI-UHFFFAOYSA-M benzethonium chloride Chemical compound [Cl-].C1=CC(C(C)(C)CC(C)(C)C)=CC=C1OCCOCC[N+](C)(C)CC1=CC=CC=C1 UREZNYTWGJKWBI-UHFFFAOYSA-M 0.000 description 1
- 229960001950 benzethonium chloride Drugs 0.000 description 1
- JBIROUFYLSSYDX-UHFFFAOYSA-M benzododecinium chloride Chemical compound [Cl-].CCCCCCCCCCCC[N+](C)(C)CC1=CC=CC=C1 JBIROUFYLSSYDX-UHFFFAOYSA-M 0.000 description 1
- SMTUJUHULKBTBS-UHFFFAOYSA-N benzyl(trimethyl)azanium;methanolate Chemical compound [O-]C.C[N+](C)(C)CC1=CC=CC=C1 SMTUJUHULKBTBS-UHFFFAOYSA-N 0.000 description 1
- WGDUUQDYDIIBKT-UHFFFAOYSA-N beta-Pseudouridine Natural products OC1OC(CN2C=CC(=O)NC2=O)C(O)C1O WGDUUQDYDIIBKT-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 229920001222 biopolymer Polymers 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 229940031416 bivalent vaccine Drugs 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 239000000337 buffer salt Substances 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 235000011148 calcium chloride Nutrition 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 229940095731 candida albicans Drugs 0.000 description 1
- 150000004657 carbamic acid derivatives Chemical class 0.000 description 1
- 230000021235 carbamoylation Effects 0.000 description 1
- 150000001720 carbohydrates Chemical group 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 230000004700 cellular uptake Effects 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 239000004464 cereal grain Substances 0.000 description 1
- 210000003756 cervix mucus Anatomy 0.000 description 1
- SXPWTBGAZSPLHA-UHFFFAOYSA-M cetalkonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCC[N+](C)(C)CC1=CC=CC=C1 SXPWTBGAZSPLHA-UHFFFAOYSA-M 0.000 description 1
- 229960000228 cetalkonium chloride Drugs 0.000 description 1
- 229940115457 cetyldimethylethylammonium bromide Drugs 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 1
- 150000003841 chloride salts Chemical class 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000004186 co-expression Effects 0.000 description 1
- 239000003240 coconut oil Substances 0.000 description 1
- 235000019864 coconut oil Nutrition 0.000 description 1
- 235000012716 cod liver oil Nutrition 0.000 description 1
- 239000003026 cod liver oil Substances 0.000 description 1
- 229940075614 colloidal silicon dioxide Drugs 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 230000000536 complexating effect Effects 0.000 description 1
- 238000010668 complexation reaction Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 229940031670 conjugate vaccine Drugs 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000002285 corn oil Substances 0.000 description 1
- 235000005687 corn oil Nutrition 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 208000014446 corneal intraepithelial dyskeratosis-palmoplantar hyperkeratosis-laryngeal dyskeratosis syndrome Diseases 0.000 description 1
- 229940099112 cornstarch Drugs 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 239000002385 cottonseed oil Substances 0.000 description 1
- 229960001681 croscarmellose sodium Drugs 0.000 description 1
- 235000010947 crosslinked sodium carboxy methyl cellulose Nutrition 0.000 description 1
- 239000012531 culture fluid Substances 0.000 description 1
- 229940104302 cytosine Drugs 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 208000033921 delayed sleep phase type circadian rhythm sleep disease Diseases 0.000 description 1
- 238000003936 denaturing gel electrophoresis Methods 0.000 description 1
- 210000004443 dendritic cell Anatomy 0.000 description 1
- PXBRQCKWGAHEHS-UHFFFAOYSA-N dichlorodifluoromethane Chemical compound FC(F)(Cl)Cl PXBRQCKWGAHEHS-UHFFFAOYSA-N 0.000 description 1
- 235000019404 dichlorodifluoromethane Nutrition 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- ZPTBLXKRQACLCR-XVFCMESISA-N dihydrouridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)CC1 ZPTBLXKRQACLCR-XVFCMESISA-N 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 239000013024 dilution buffer Substances 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- OGQYPPBGSLZBEG-UHFFFAOYSA-N dimethyl(dioctadecyl)azanium Chemical compound CCCCCCCCCCCCCCCCCC[N+](C)(C)CCCCCCCCCCCCCCCCCC OGQYPPBGSLZBEG-UHFFFAOYSA-N 0.000 description 1
- GZWGEAAWWHKLDR-JDVCJPALSA-M dimethyl-bis[(z)-octadec-9-enoyl]azanium;chloride Chemical compound [Cl-].CCCCCCCC\C=C/CCCCCCCC(=O)[N+](C)(C)C(=O)CCCCCCC\C=C/CCCCCCCC GZWGEAAWWHKLDR-JDVCJPALSA-M 0.000 description 1
- BPHQZTVXXXJVHI-UHFFFAOYSA-N dimyristoyl phosphatidylglycerol Chemical compound CCCCCCCCCCCCCC(=O)OCC(COP(O)(=O)OCC(O)CO)OC(=O)CCCCCCCCCCCCC BPHQZTVXXXJVHI-UHFFFAOYSA-N 0.000 description 1
- MWRBNPKJOOWZPW-CLFAGFIQSA-N dioleoyl phosphatidylethanolamine Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(COP(O)(=O)OCCN)OC(=O)CCCCCCC\C=C/CCCCCCCC MWRBNPKJOOWZPW-CLFAGFIQSA-N 0.000 description 1
- BIABMEZBCHDPBV-UHFFFAOYSA-N dipalmitoyl phosphatidylglycerol Chemical compound CCCCCCCCCCCCCCCC(=O)OCC(COP(O)(=O)OCC(O)CO)OC(=O)CCCCCCCCCCCCCCC BIABMEZBCHDPBV-UHFFFAOYSA-N 0.000 description 1
- 229960005097 diphtheria vaccines Drugs 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 229940042396 direct acting antivirals thiosemicarbazones Drugs 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- FVJZSBGHRPJMMA-UHFFFAOYSA-N distearoyl phosphatidylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(COP(O)(=O)OCC(O)CO)OC(=O)CCCCCCCCCCCCCCCCC FVJZSBGHRPJMMA-UHFFFAOYSA-N 0.000 description 1
- NAGJZTKCGNOGPW-UHFFFAOYSA-N dithiophosphoric acid Chemical class OP(O)(S)=S NAGJZTKCGNOGPW-UHFFFAOYSA-N 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- QBHFVMDLPTZDOI-UHFFFAOYSA-N dodecylphosphocholine Chemical compound CCCCCCCCCCCCOP([O-])(=O)OCC[N+](C)(C)C QBHFVMDLPTZDOI-UHFFFAOYSA-N 0.000 description 1
- XJWSAJYUBXQQDR-UHFFFAOYSA-M dodecyltrimethylammonium bromide Chemical compound [Br-].CCCCCCCCCCCC[N+](C)(C)C XJWSAJYUBXQQDR-UHFFFAOYSA-M 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 241001493065 dsRNA viruses Species 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 210000001671 embryonic stem cell Anatomy 0.000 description 1
- 210000002472 endoplasmic reticulum Anatomy 0.000 description 1
- 239000000147 enterotoxin Substances 0.000 description 1
- 231100000655 enterotoxin Toxicity 0.000 description 1
- 230000007071 enzymatic hydrolysis Effects 0.000 description 1
- 238000006047 enzymatic hydrolysis reaction Methods 0.000 description 1
- RRCFLRBBBFZLSB-XIFYLAFSSA-N epoxyqueuosine Chemical compound C1=C(CN[C@@H]2[C@H]([C@@H](O)[C@@H]3O[C@@H]32)O)C=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O RRCFLRBBBFZLSB-XIFYLAFSSA-N 0.000 description 1
- 238000011067 equilibration Methods 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- VUFOSBDICLTFMS-UHFFFAOYSA-M ethyl-hexadecyl-dimethylazanium;bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)CC VUFOSBDICLTFMS-UHFFFAOYSA-M 0.000 description 1
- 125000000816 ethylene group Chemical group [H]C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 235000019197 fats Nutrition 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000002195 fatty ethers Chemical class 0.000 description 1
- 230000002550 fecal effect Effects 0.000 description 1
- 230000001605 fetal effect Effects 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 238000000684 flow cytometry Methods 0.000 description 1
- XRECTZIEBJDKEO-UHFFFAOYSA-N flucytosine Chemical compound NC1=NC(=O)NC=C1F XRECTZIEBJDKEO-UHFFFAOYSA-N 0.000 description 1
- 229960004413 flucytosine Drugs 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 229960002949 fluorouracil Drugs 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 244000053095 fungal pathogen Species 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 210000004602 germ cell Anatomy 0.000 description 1
- 229910001679 gibbsite Inorganic materials 0.000 description 1
- 235000021312 gluten Nutrition 0.000 description 1
- 230000013595 glycosylation Effects 0.000 description 1
- 238000006206 glycosylation reaction Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 108010064833 guanylyltransferase Proteins 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 1
- 208000029570 hepatitis D virus infection Diseases 0.000 description 1
- KLHSDMQFUVANEB-MELZOAELSA-L hexadecyl-[(2r,3r)-4-[hexadecyl(dimethyl)azaniumyl]-2,3-dimethoxybutyl]-dimethylazanium;dibromide Chemical compound [Br-].[Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C[C@@H](OC)[C@H](OC)C[N+](C)(C)CCCCCCCCCCCCCCCC KLHSDMQFUVANEB-MELZOAELSA-L 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 230000004727 humoral immunity Effects 0.000 description 1
- 230000008348 humoral response Effects 0.000 description 1
- 229920002674 hyaluronan Polymers 0.000 description 1
- 229960003160 hyaluronic acid Drugs 0.000 description 1
- 239000001257 hydrogen Chemical class 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- HOPZBJPSUKPLDT-UHFFFAOYSA-N imidazo[4,5-h]quinolin-2-one Chemical class C1=CN=C2C3=NC(=O)N=C3C=CC2=C1 HOPZBJPSUKPLDT-UHFFFAOYSA-N 0.000 description 1
- 229960002751 imiquimod Drugs 0.000 description 1
- DOUYETYNHWVLEO-UHFFFAOYSA-N imiquimod Chemical compound C1=CC=CC2=C3N(CC(C)C)C=NC3=C(N)N=C21 DOUYETYNHWVLEO-UHFFFAOYSA-N 0.000 description 1
- 238000003119 immunoblot Methods 0.000 description 1
- 102000018358 immunoglobulin Human genes 0.000 description 1
- 239000000568 immunological adjuvant Substances 0.000 description 1
- 230000002434 immunopotentiative effect Effects 0.000 description 1
- 229940029583 inactivated polio vaccine Drugs 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 229960003971 influenza vaccine Drugs 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000015788 innate immune response Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 102000006495 integrins Human genes 0.000 description 1
- 108010044426 integrins Proteins 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229940079322 interferon Drugs 0.000 description 1
- 229940047124 interferons Drugs 0.000 description 1
- 229940047122 interleukins Drugs 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 238000001361 intraarterial administration Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 239000007928 intraperitoneal injection Substances 0.000 description 1
- 229940065638 intron a Drugs 0.000 description 1
- 230000026045 iodination Effects 0.000 description 1
- 238000006192 iodination reaction Methods 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 229940119170 jojoba wax Drugs 0.000 description 1
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 1
- 229930027917 kanamycin Natural products 0.000 description 1
- 229960000318 kanamycin Drugs 0.000 description 1
- 229930182823 kanamycin A Natural products 0.000 description 1
- 210000003292 kidney cell Anatomy 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 238000001638 lipofection Methods 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- 210000005265 lung cell Anatomy 0.000 description 1
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 239000004325 lysozyme Substances 0.000 description 1
- 229960000274 lysozyme Drugs 0.000 description 1
- 235000010335 lysozyme Nutrition 0.000 description 1
- 230000002101 lytic effect Effects 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- HLZXTFWTDIBXDF-UHFFFAOYSA-N mcm5sU Natural products COC(=O)Cc1cn(C2OC(CO)C(O)C2O)c(=S)[nH]c1=O HLZXTFWTDIBXDF-UHFFFAOYSA-N 0.000 description 1
- 229940041323 measles vaccine Drugs 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- GWKIZNPISGBQGY-GNLDREGESA-N methyl (2S)-4-[4,6-dimethyl-9-oxo-3-[(2R,3R,4S,5R)-2,3,4-trihydroxy-5-(hydroxymethyl)oxolan-2-yl]imidazo[1,2-a]purin-7-yl]-2-(methoxycarbonylamino)butanoate Chemical class O[C@@]1([C@H](O)[C@H](O)[C@@H](CO)O1)N1C=NC=2C(=O)N3C(CC[C@@H](C(=O)OC)NC(=O)OC)=C(C)N=C3N(C)C21 GWKIZNPISGBQGY-GNLDREGESA-N 0.000 description 1
- XOTXNXXJZCFUOA-UGKPPGOTSA-N methyl 2-[1-[(2r,3r,4r,5r)-4-hydroxy-5-(hydroxymethyl)-3-methoxyoxolan-2-yl]-2,4-dioxopyrimidin-5-yl]acetate Chemical compound CO[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(CC(=O)OC)=C1 XOTXNXXJZCFUOA-UGKPPGOTSA-N 0.000 description 1
- JNVLKTZUCGRYNN-LQGIRWEJSA-N methyl 2-[1-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-2,4-dioxopyrimidin-5-yl]-2-hydroxyacetate Chemical compound O=C1NC(=O)C(C(O)C(=O)OC)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 JNVLKTZUCGRYNN-LQGIRWEJSA-N 0.000 description 1
- WCNMEQDMUYVWMJ-UHFFFAOYSA-N methyl 4-[3-[3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-4,6-dimethyl-9-oxoimidazo[1,2-a]purin-7-yl]-3-hydroperoxy-2-(methoxycarbonylamino)butanoate Chemical compound C1=NC=2C(=O)N3C(CC(C(NC(=O)OC)C(=O)OC)OO)=C(C)N=C3N(C)C=2N1C1OC(CO)C(O)C1O WCNMEQDMUYVWMJ-UHFFFAOYSA-N 0.000 description 1
- WZRYXYRWFAPPBJ-PNHWDRBUSA-N methyl uridin-5-yloxyacetate Chemical compound O=C1NC(=O)C(OCC(=O)OC)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 WZRYXYRWFAPPBJ-PNHWDRBUSA-N 0.000 description 1
- 229960002285 methylbenzethonium chloride Drugs 0.000 description 1
- YACKEPLHDIMKIO-UHFFFAOYSA-N methylphosphonic acid Chemical compound CP(O)(O)=O YACKEPLHDIMKIO-UHFFFAOYSA-N 0.000 description 1
- LSDPWZHWYPCBBB-UHFFFAOYSA-O methylsulfide anion Chemical compound [SH2+]C LSDPWZHWYPCBBB-UHFFFAOYSA-O 0.000 description 1
- 238000002493 microarray Methods 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 101150084874 mimG gene Proteins 0.000 description 1
- 238000007479 molecular analysis Methods 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 150000004712 monophosphates Chemical class 0.000 description 1
- DNIAPMSPPWPWGF-UHFFFAOYSA-N monopropylene glycol Natural products CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 1
- 125000004573 morpholin-4-yl group Chemical group N1(CCOCC1)* 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000010172 mouse model Methods 0.000 description 1
- 230000016379 mucosal immune response Effects 0.000 description 1
- 210000003097 mucus Anatomy 0.000 description 1
- 229940031348 multivalent vaccine Drugs 0.000 description 1
- 229940095293 mumps vaccine Drugs 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- KHGRPHJXYWLEFQ-HKTUAWPASA-N n,n-dimethyl-2,3-bis[(9z,12z,15z)-octadeca-9,12,15-trienoxy]propan-1-amine Chemical compound CC\C=C/C\C=C/C\C=C/CCCCCCCCOCC(CN(C)C)OCCCCCCCC\C=C/C\C=C/C\C=C/CC KHGRPHJXYWLEFQ-HKTUAWPASA-N 0.000 description 1
- GLGLUQVVDHRLQK-WRBBJXAJSA-N n,n-dimethyl-2,3-bis[(z)-octadec-9-enoxy]propan-1-amine Chemical compound CCCCCCCC\C=C/CCCCCCCCOCC(CN(C)C)OCCCCCCCC\C=C/CCCCCCCC GLGLUQVVDHRLQK-WRBBJXAJSA-N 0.000 description 1
- DDBRXOJCLVGHLX-UHFFFAOYSA-N n,n-dimethylmethanamine;propane Chemical compound CCC.CN(C)C DDBRXOJCLVGHLX-UHFFFAOYSA-N 0.000 description 1
- ZUHZZVMEUAUWHY-UHFFFAOYSA-N n,n-dimethylpropan-1-amine Chemical compound CCCN(C)C ZUHZZVMEUAUWHY-UHFFFAOYSA-N 0.000 description 1
- IUSOXUFUXZORBF-UHFFFAOYSA-N n,n-dioctyloctan-1-amine;hydrochloride Chemical compound [Cl-].CCCCCCCC[NH+](CCCCCCCC)CCCCCCCC IUSOXUFUXZORBF-UHFFFAOYSA-N 0.000 description 1
- 229940022007 naked DNA vaccine Drugs 0.000 description 1
- 239000002539 nanocarrier Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 150000002829 nitrogen Chemical class 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000001668 nucleic acid synthesis Methods 0.000 description 1
- 239000010466 nut oil Substances 0.000 description 1
- 235000014571 nuts Nutrition 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 229940098514 octoxynol-9 Drugs 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229960005030 other vaccine in atc Drugs 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000004091 panning Methods 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 235000010603 pastilles Nutrition 0.000 description 1
- 239000013610 patient sample Substances 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000002688 persistence Effects 0.000 description 1
- 229940066827 pertussis vaccine Drugs 0.000 description 1
- 229960005323 phenoxyethanol Drugs 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 150000008105 phosphatidylcholines Chemical class 0.000 description 1
- 229940067605 phosphatidylethanolamines Drugs 0.000 description 1
- 150000008106 phosphatidylserines Chemical class 0.000 description 1
- PTMHPRAIXMAOOB-UHFFFAOYSA-L phosphoramidate Chemical compound NP([O-])([O-])=O PTMHPRAIXMAOOB-UHFFFAOYSA-L 0.000 description 1
- 238000013081 phylogenetic analysis Methods 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 229920000729 poly(L-lysine) polymer Polymers 0.000 description 1
- 229920001606 poly(lactic acid-co-glycolic acid) Polymers 0.000 description 1
- 239000002745 poly(ortho ester) Substances 0.000 description 1
- 229920002463 poly(p-dioxanone) polymer Polymers 0.000 description 1
- 229920002627 poly(phosphazenes) Polymers 0.000 description 1
- 229920002946 poly[2-(methacryloxy)ethyl phosphorylcholine] polymer Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 230000008488 polyadenylation Effects 0.000 description 1
- 239000004632 polycaprolactone Substances 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920002721 polycyanoacrylate Polymers 0.000 description 1
- 239000000622 polydioxanone Substances 0.000 description 1
- 229920006149 polyester-amide block copolymer Polymers 0.000 description 1
- 229940051841 polyoxyethylene ether Drugs 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 239000003910 polypeptide antibiotic agent Substances 0.000 description 1
- 229940068977 polysorbate 20 Drugs 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- GRLPQNLYRHEGIJ-UHFFFAOYSA-J potassium aluminium sulfate Chemical compound [Al+3].[K+].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O GRLPQNLYRHEGIJ-UHFFFAOYSA-J 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 229940116317 potato starch Drugs 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000000770 proinflammatory effect Effects 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 235000013772 propylene glycol Nutrition 0.000 description 1
- 125000006239 protecting group Chemical group 0.000 description 1
- 235000004252 protein component Nutrition 0.000 description 1
- 239000012460 protein solution Substances 0.000 description 1
- 244000079416 protozoan pathogen Species 0.000 description 1
- PTJWIQPHWPFNBW-GBNDHIKLSA-N pseudouridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1C1=CNC(=O)NC1=O PTJWIQPHWPFNBW-GBNDHIKLSA-N 0.000 description 1
- PSHHQIGKVLIVBD-UHFFFAOYSA-N purine-2,4-diamine Chemical class C1=NC(N)=NC2(N)N=CN=C21 PSHHQIGKVLIVBD-UHFFFAOYSA-N 0.000 description 1
- 230000001698 pyrogenic effect Effects 0.000 description 1
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 1
- QQXQGKSPIMGUIZ-AEZJAUAXSA-N queuosine Chemical compound C1=2C(=O)NC(N)=NC=2N([C@H]2[C@@H]([C@H](O)[C@@H](CO)O2)O)C=C1CN[C@H]1C=C[C@H](O)[C@@H]1O QQXQGKSPIMGUIZ-AEZJAUAXSA-N 0.000 description 1
- 239000011535 reaction buffer Substances 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 230000010837 receptor-mediated endocytosis Effects 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 239000002342 ribonucleoside Substances 0.000 description 1
- 150000003290 ribose derivatives Chemical class 0.000 description 1
- 108020004418 ribosomal RNA Proteins 0.000 description 1
- 125000000548 ribosyl group Chemical group C1([C@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 1
- 108091092562 ribozyme Proteins 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 229960003131 rubella vaccine Drugs 0.000 description 1
- 239000012146 running buffer Substances 0.000 description 1
- 239000003813 safflower oil Substances 0.000 description 1
- 235000005713 safflower oil Nutrition 0.000 description 1
- 238000007127 saponification reaction Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 229940069764 shark liver oil Drugs 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 238000003998 size exclusion chromatography high performance liquid chromatography Methods 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 239000001540 sodium lactate Substances 0.000 description 1
- 235000011088 sodium lactate Nutrition 0.000 description 1
- 229940005581 sodium lactate Drugs 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- ALPWRKFXEOAUDR-GKEJWYBXSA-M sodium;[(2r)-2,3-di(octadecanoyloxy)propyl] hydrogen phosphate Chemical compound [Na+].CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)([O-])=O)OC(=O)CCCCCCCCCCCCCCCCC ALPWRKFXEOAUDR-GKEJWYBXSA-M 0.000 description 1
- 229940035044 sorbitan monolaurate Drugs 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 235000010356 sorbitol Nutrition 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 229940084106 spermaceti Drugs 0.000 description 1
- 239000012177 spermaceti Substances 0.000 description 1
- 210000004989 spleen cell Anatomy 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 229940031626 subunit vaccine Drugs 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 235000020238 sunflower seed Nutrition 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 229960002766 tetanus vaccines Drugs 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- RTKIYNMVFMVABJ-UHFFFAOYSA-L thimerosal Chemical compound [Na+].CC[Hg]SC1=CC=CC=C1C([O-])=O RTKIYNMVFMVABJ-UHFFFAOYSA-L 0.000 description 1
- 238000004809 thin layer chromatography Methods 0.000 description 1
- 229960004906 thiomersal Drugs 0.000 description 1
- 229940113082 thymine Drugs 0.000 description 1
- 229960003087 tioguanine Drugs 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000010474 transient expression Effects 0.000 description 1
- 238000003146 transient transfection Methods 0.000 description 1
- 125000005208 trialkylammonium group Chemical group 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical class [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- KMVDECFGXJKYHV-UHFFFAOYSA-L trimethyl-[10-(trimethylazaniumyl)decyl]azanium;dichloride Chemical compound [Cl-].[Cl-].C[N+](C)(C)CCCCCCCCCC[N+](C)(C)C KMVDECFGXJKYHV-UHFFFAOYSA-L 0.000 description 1
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 1
- 239000001226 triphosphate Substances 0.000 description 1
- 235000011178 triphosphate Nutrition 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 102000003390 tumor necrosis factor Human genes 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 238000000825 ultraviolet detection Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 229940035893 uracil Drugs 0.000 description 1
- RVCNQQGZJWVLIP-VPCXQMTMSA-N uridin-5-yloxyacetic acid Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(OCC(O)=O)=C1 RVCNQQGZJWVLIP-VPCXQMTMSA-N 0.000 description 1
- YIZYCHKPHCPKHZ-UHFFFAOYSA-N uridine-5-acetic acid methyl ester Natural products COC(=O)Cc1cn(C2OC(CO)C(O)C2O)c(=O)[nH]c1=O YIZYCHKPHCPKHZ-UHFFFAOYSA-N 0.000 description 1
- 208000007089 vaccinia Diseases 0.000 description 1
- 108010027510 vaccinia virus capping enzyme Proteins 0.000 description 1
- 229940021648 varicella vaccine Drugs 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 210000003501 vero cell Anatomy 0.000 description 1
- 230000007502 viral entry Effects 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- 244000052613 viral pathogen Species 0.000 description 1
- 229960004854 viral vaccine Drugs 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 239000010698 whale oil Substances 0.000 description 1
- QAOHCFGKCWTBGC-QHOAOGIMSA-N wybutosine Chemical compound C1=NC=2C(=O)N3C(CC[C@H](NC(=O)OC)C(=O)OC)=C(C)N=C3N(C)C=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O QAOHCFGKCWTBGC-QHOAOGIMSA-N 0.000 description 1
- QAOHCFGKCWTBGC-UHFFFAOYSA-N wybutosine Natural products C1=NC=2C(=O)N3C(CCC(NC(=O)OC)C(=O)OC)=C(C)N=C3N(C)C=2N1C1OC(CO)C(O)C1O QAOHCFGKCWTBGC-UHFFFAOYSA-N 0.000 description 1
- JCZSFCLRSONYLH-QYVSTXNMSA-N wyosin Chemical compound N=1C(C)=CN(C(C=2N=C3)=O)C=1N(C)C=2N3[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O JCZSFCLRSONYLH-QYVSTXNMSA-N 0.000 description 1
- 241000228158 x Triticosecale Species 0.000 description 1
- 210000005253 yeast cell Anatomy 0.000 description 1
- 239000002888 zwitterionic surfactant Substances 0.000 description 1
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
- A61K39/21—Retroviridae, e.g. equine infectious anemia virus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
- A61P31/18—Antivirals for RNA viruses for HIV
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/04—Immunostimulants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/51—Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
- A61K2039/53—DNA (RNA) vaccination
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/545—Medicinal preparations containing antigens or antibodies characterised by the dose, timing or administration schedule
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/555—Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
- A61K2039/55505—Inorganic adjuvants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/555—Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
- A61K2039/55511—Organic adjuvants
- A61K2039/55555—Liposomes; Vesicles, e.g. nanoparticles; Spheres, e.g. nanospheres; Polymers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/555—Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
- A61K2039/55511—Organic adjuvants
- A61K2039/55566—Emulsions, e.g. Freund's adjuvant, MF59
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2740/00—Reverse transcribing RNA viruses
- C12N2740/00011—Details
- C12N2740/10011—Retroviridae
- C12N2740/16011—Human Immunodeficiency Virus, HIV
- C12N2740/16111—Human Immunodeficiency Virus, HIV concerning HIV env
- C12N2740/16134—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2770/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
- C12N2770/00011—Details
- C12N2770/36011—Togaviridae
- C12N2770/36111—Alphavirus, e.g. Sindbis virus, VEE, EEE, WEE, Semliki
- C12N2770/36141—Use of virus, viral particle or viral elements as a vector
- C12N2770/36143—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
Definitions
- HHSN266200500007C awarded by the National Institutes of Health. The government has certain rights in the invention.
- the human immunodeficiency virus (HIV-1, also referred to as HTLV-III, LAV or HTLV-III/LAV) is the etiological agent of the acquired immune deficiency syndrome (AIDS) and related disorders (see, e.g., Barre-Sinoussi et al. (1983) Science 220:868-871; Gallo et al. (1984) Science 224:500-503; Levy et al. (1984) Science 225:840-842; Siegal et al. (1981) N. Engl. J. Med. 305: 1439-1444).
- AIDS acquired immune deficiency syndrome
- HIV-1 a collective term referring to several strains isolated in Europe or America
- HIV-2 a strain endemic in many West African countries.
- HIV-1 is classified by phylogenetic analysis into three groups, group M (major), group O (outlier) and a variant of HIV-1, designated group N, that has been identified with its epicenter in Cameroon (Simon et al. (1998) Nat. Med. 4: 1032-1037). All three HIV-1 groups cause AIDS.
- AIDS patients usually have a long asymptomatic period followed by the progressive degeneration of the immune system and the central nervous system.
- Replication of the virus is highly regulated, and both latent and lytic infection of the CD4 positive helper subset of T-lymphocytes occur in tissue culture (Zagury et al. (1986) Science 231 :850-853).
- Molecular studies of HIV-1 show that it encodes a number of genes (Ratner et al. (1985) Nature 313:277-284; Sanchez-Pescador et al. (1985) Science 227:484-492), including three structural genes— gag, pol and env— that are common to all retroviruses.
- Nucleotide sequences from viral genomes of other retroviruses, particularly HIV-2 and simian immunodeficiency viruses, SIV also contain these structural genes (Guyader et al. (1987) Nature 326:662- 669).
- the envelope protein of HIV- 1, HTV-2 and SIV is a glycoprotein of about 160 kd (gpl60).
- gpl60 During virus infection of the host cell, gpl60 is cleaved by host cell proteases to form gpl20 and the integral membrane protein, gp41.
- the gp41 portion is anchored in the membrane bilayer of virion, while the gpl20 segment protrudes into the surrounding environment.
- gpl20 and gp41 are more covalently associated and free gpl20 can be released from the surface of virions and infected cells.
- CD4 upon binding to its receptor, CD4, the Env polypeptide undergoes a significant structural
- Vaccines for immunizing patients against HIV infection have been under development for two decades, but with limited success. Many approaches to immunization have focused on the HIV envelope glycoprotein, although there has also been interest in other antigens such as tat or gag.
- compositions that can elicit an immunological response (e.g., neutralizing and/or protective antibodies) in a subject against various HIV strains and subtypes, for example when administered as a vaccine or immunogenic compostion.
- an immunological response e.g., neutralizing and/or protective antibodies
- This invention generally relates to immunogenic compositions that comprise an HIV RNA component and an HIV polypeptide component.
- Immunogenic compositions that deliver antigenic epitopes in two different forms - a first epitope from HIV, in RNA-coded form; and a second epitope from HIV, in polypeptide form - can enhance the immune response to HIV, as compared to immunization with RNA alone, or polypeptide alone.
- the first epitope and the second epitope are the same epitope.
- the invention also relates to a kit comprising an HIV RNA-based priming composition and an HIV polypeptide-based boosting composition for sequential administration.
- the kit is suitable for, for example, a "RNA prime, protein boost" immunization regimen to generate an immune response to HIV.
- the invention also relates to methods for treating or preventing HIV infection, methods for inducing an immune response (e.g., a humoral response such as a neutralizing antibody response and/or a cellular immune response), and methods of vaccinating a subject, by co-delivery of an HIV RNA molecule and an HIV polypeptide molecule (co-administration).
- an immune response e.g., a humoral response such as a neutralizing antibody response and/or a cellular immune response
- methods of vaccinating a subject by co-delivery of an HIV RNA molecule and an HIV polypeptide molecule (co-administration).
- the invention also relates to methods for treating or preventing an HIV, methods for inducing an immune response, or methods of vaccinating a subject, by sequential administration of an HIV RNA molecule and an HIV polypeptide molecule (prime-boost).
- Figure 1 shows the immunization schedule for administering the HIV gpl60/gpl40 formulations of Example VI to BALB/c mice.
- PRE refers to a time point before a protein boost was administered
- POST refers to a time point after a protein boost was administered.
- Figure 2 summarizes the adverse effects of the HIV gpl60/gpl40 formulations of Example I on the BALB/c mice. Co-delivery of RNA replicon and its encoded protein antigen showed no adverse effect.
- Figure 3 A shows the HIV gpl40-specific IgG antibody titers at various time points in the BALB/c mice that were administered with the HIV
- FIG. 3B compares the anti-gpl40 IgG titers in the same 5 mice before and after a boost (10 ⁇ g protein/MF59, see Table 1-1) was administered. After a protein boost was administered, the IgG titers of the 1 ⁇ g RNA/Liposome primed group did not differ significantly from that of 15 ⁇ g
- DNA/Liposome primed group VRP (le7) primed group, or protein primed group.
- Figures 4A-4C show the IgGl :IgG2a profiles of the immunized BALB/c mice. RNA/Liposome formulations induced a balanced IgGl:IgG2a subtype profile, similar to that of VRP. Figure 4A shows the IgGl and IgG2a titers in the
- FIG. 4B shows IgGl :IgG2a ratios in the BALB/c mice administered with the HIV gpl60/gpl40 formulations of Example I (see, Table 1-1).
- Figure 4C shows the IgGl and IgG2a titers and IgGl :IgG2a ratios in the naked RNA primed group after the protein/MF59 boost (IgG titers were not detectable before the protein/MF59 boost).
- Figure 5 compares the immunogenicity of Clade C (DU422.1) gpl60 antigen and Clade B (SF162) gpl60 antigen, both delivered as liposome formulated RNA. Post-boost Thl and Th2 type IgG responses showed a balanced profile for both Clade B and Clade C antigens.
- Figures 6A-6B show the T-cell responses induced by the HIV gpl60/gpl40 formulations of Example I.
- Figure 6A shows the CD4+ T-cell responses, as measured by the percentage of cytokine-secreting cells.
- Figure 6B shows the CD8+ T- cell responses, as measured by the percentage of cytokine-secreting cells.
- Figure 7 shows the gpl40-specific IgA antibody titers in vaginal washes of the BALB/c mice administered with the HIV gpl60/gpl40 formulations of Example I.
- Figure 8 shows the immunization schedule for administering various HIV gpl40 formulations of Example II to BALB/c mice.
- Figure 10 shows the HIV gpl40-specific IgG antibody titers in the BALB/c mice that were administered with the HIV gpl40 formulations of Example II (pre-boost). Combining RNA replicon with gpl40 protein induced a stronger immune response as compared to that of RNA replicon alone.
- Figure 11 shows the anti-g l40 IgG titers after a boost (10 ⁇ g protein/MF59) was administered.
- Figures 12A and 12B show the IgGl :IgG2a profiles of the BALB/c mice that were administered with the HIV gpl40 formulations of Example I.
- RNA/Liposome and RNA/Liposome/Protein formulations induced a balanced
- FIG. 12A shows the IgGl and IgG2a titers in the BALB/c mice administered with the HIV gpl40 formulations of Example II.
- Figure 12B shows IgGl :IgG2a ratios in the BALB/c mice administered with the HIVgpl40 formulations of Example II.
- Figure 12C shows the IgGl and IgG2a titers in the naked RNA primed group after the protein/MF59 boost (IgG titers were not detectable before the protein/MF59 boost).
- Figure 13 shows the gpl40-specific IgA antibody titers in vaginal washes of the BALB/c mice administered with the HIV gpl40 formulations of Example II.
- Figure 14 shows the anti-Env IgG binding antibody titers in rabbits following RNA vaccination.
- Five rabbits per group were immunized intramuscularly with the respective vaccines at 0 and 4 weeks followed by two boosters with an MF59- adjuvanted-o-gpl40 (TVl .C) (Env/MF59) vaccine at 12 and 24 weeks.
- the nucleic acid and VRP vaccines encoded the o-gpl40 protein of TV1.C.
- Anti-Env binding antibody titers to TV1.C o-gpl40 was determined using an ELISA. Sera were titrated from a dilution of 1 :400 (dotted line). Geometric mean titers with SEM are shown.
- Figure 15 shows antibodies that neutralize MW965 Env pseudovirus are induced upon RNA vaccination.
- Sera from the 2wp2, 2wp3, and 2wp4 time-points were assayed for neutralization using an U87 CD4 CCR5 neutralization assay with the MW965 Env pseudovirus.
- Each symbol is the titer obtained for a rabbit with the horizontal bar showing the geometric mean titer.
- Numbers above the graph show the number of responders (titers at or above the serum titration start of 1 : 160; dotted line)/5 rabbits.
- Statistical analysis was carried out using a Kruskal-Wallis test with Dunns post test.
- Figures 16A-B are graphs showing the total (A) and anti-Env (B) Ig titers in rabbit vaginal washes. Samples were titrated starting at 1 :25 (total Ig; A) or neat (anti-Env Ig; B) on ELISA plates using an anti-rabbit Ig capture antibody (A) or coated Env protein (B). Cut-off at 2 for the Env-specific Ig graph (B) at bottom is arbitrary. Greater than 90% of pre-immune washes yield a titer between neat and 2 and therefore this was chosen as the cut-off titer.
- pre-immune washes 1-2 rabbits depending on group
- high non-specific titers >2. Rabbits that these were harvested from were removed from the analysis for all time-points. Horizontal bar for each group shows the geometric mean titer.
- Figures 17A-D show the anti-Env IgG binding antibody titers in rhesus macaques following RNA vaccination.
- Six macaques per group were immunized intramuscularly with the respective vaccines at 0, 4, and 12 weeks (solid black triangles on x-axis) followed by two boosters with an MF59-adjuvanted-o-gpl40 (TV1.C) (Env/MF59) vaccine at 24 and 36 weeks (open triangles on x-axis).
- the nucleic acid and VRP vaccines encoded the o-gpl40 protein of TVl .C.
- Anti-Env binding antibody titers to TVl .C o-gpl40 was determined using an ELISA.
- Sera were titrated from a dilution of 1 :25. Each symbol denotes the titer from one macaque and numbers above each graph denotes the number of responders (titers above l :25)/6 macaques.
- FIG. 18 shows anti-Env T-cell responses in rhesus macaques following RNA vaccination.
- PBMCs from each of the immunized macaques from the respective groups were re-stimulated with either a pool of the consensus Clade C gpl20 peptide library (first column) or a pool of the consensus Clade C gp41 peptide library (middle column) or TVl .C protein in an ELISPOT assay.
- Graphs show the T-cell response over time expressed as the number of IFNy spot forming cells (SFC)/10 6 PBMC for each individual macque/group. Arrows below the graphs show immunizations.
- SFC IFNy spot forming cells
- Figure 19 shows the vector used to transcribe H351 [T7G-VCR- CHIM2.12-SF162gpl60mod] RNA, the annotated sequence of the vector and the insert.
- Figure 20 shows the vector used to transcribe H350 [T7G-VCR- CHIM2.12-Du422.1 gpl60mod] RNA, the annotated sequence of the vector and the insert.
- Figure 21 shows the vector used to transcribe H354 [T7(-G) -TVlc8.2 gpl40mod UNC] RNA, the annotated sequence of the vector and the insert.
- Figure 22 shows the vector used to transcribe H412 [pCMV-KM2 SF162 TPA-gpl60mod UNC] RNA, the annotated sequence of the vector and the insert; and the vector used to transcribe H425 [pCMV-KM2 TVlc8.2 TPA g l40mod UNC] RNA, the annotated sequence of the vector and the insert.
- Figure 23 is a graph showing the Env-specific binding IgG titers of rabbits following RNA, RNA and protein, or protein only vaccination.
- animals For concurrent vaccination of the HIV-SAM/CMF34 and MF59- or alum-adjuvanted Env vaccine, animals either received the vaccines separated approximately by 3cms in the same quadriceps muscle (same side, 2sites) or each vaccine was immunized in the quadriceps muscle of a leg (opp.
- FIG. 24A show vaccine induced antigen-specific T-cell responses in time.
- IFNy (FIG. 24A), IL2 (FIG. 24B) and IL4 (FIG. 24C) secretion by PBMC of all individual animals per group towards gpl20 Consensus (Cons) C peptide pool (pp), gp41 Cons C pp, or recombinant TV 1 gpl40 were measured by ELISpot assay.
- Figure 25 shows neutralization (IC 50 ) of sera taken at two weeks post 4th (wk 26) and two weeks post 5th (wk 38) immunization.
- Sera were evaluated against a clade C Tier 2 (SHIV1157ipd3N4) Pseudovirus, a Tier 1 (SHIV1157ipEL-p) PV, a Tier 1 HIV-l/TVl PV and against a Tier 1 Clade B PV (SHIV SF162P4).
- Figure 26 shows neutralization (IC 50 ) of sera taken at two weeks post 5th (wk 38) immunization. Sera were evaluated against a clade C Tier 1 (MW965.26) in TZM-bl cells and Tier 2 viruses (TV1.21.LucR.T2A.ecto and
- RNA molecules are self-adjuvanting.
- RNA molecules formulated in liposomes
- cytokines including IFN-a, IP- 10 (CXCL-10), IL-6, KC (CXCL1), IL-5, IL-13, MCP-1 , and ⁇ - ⁇
- the cytokines can enhance the host immune response to the protein antigen that was encoded by the RNA molecule.
- Vaccination strategies that combine an HIV RNA molecule and an HIV polypeptide molecule (e.g. , administering an immunogenic composition that has an RNA component and a protein component; or sequential administration regimens such as "RNA prime, protein boost") provide several benefits.
- the polypeptide molecule can enhance total antibody titers in the host, while the RNA molecule can enhance the production of antibodies that recognize an antigen in its native structure.
- the combination can induce an antibody response with an enhanced ratio of functional antibodies (e.g., neutralizing antibodies) to total antibodies.
- RNA molecules promote type 1 T helper responses (Thl , IFN- ⁇ 111 , IL-4 lG ), whereas protein molecules promote type 2 T helper responses.
- RNAs molecule may be delivered to cells using delivery systems such as liposomes or oil-in-water emulsions. Liposomes and oil-in-water emulsions are also known to have adjuvant activities. Thus, the adjuvant activity of the RNA together with adjuvant activity of the delivery system can act synergistically to enhance the immune response to an antigen.
- multivalency may be achieved by combining a polypeptide antigen with an RNA that encodes a different antigen from the same pathogen.
- the invention relates to immunogenic compositions that comprise an HIV RNA component and an HIV polypeptide component.
- Immunogenic compositions that deliver antigenic epitopes in two different forms - a first epitope from HIV, in RNA-coded form; and a second epitope from HIV, in polypeptide form - can enhance the immune response to HIV.
- the first epitope and the second epitope are the same epitope (i.e. , the first antigen, in RNA-coded form, and the second antigen, in polypeptide form, share at least one common epitope).
- the RNA component of the immunogenic composition can encode a protein that is substantially the same as the polypeptide component of the immunogenic composition (e.g. , the amino acid sequence encoded by the RNA molecule and the polypeptide component of the immunogenic composition share at least about 90% sequence identity across the length of the shorter antigen).
- the two antigens have the same epitope, such as the same immunodominant epitope(s).
- the inventors have evaluated the efficacies of immunogenic compositions that comprise (i) a self-replicating RNA molecule that encodes an HIV antigen, and (ii) HIV antigen in polypeptide form.
- the immunogenic compositions described herein can be formulated as a vaccine to induce or enhance the host immune response to HIV infection. Also provided herein are methods of using the immunogenic compositions of the invention to induce or enhance an immune response in a subject in need thereof.
- the invention in another aspect, relates to a kit comprising: (i) a priming composition comprising a self-replicating RNA molecule that encodes an HIV polypeptide antigen that comprises a first epitope, and (ii) a boosting composition comprising an HIV polypeptide antigen that comprises a second epitope; wherein said first epitope and second epitope are the same epitope (i.e., the first antigen, in RNA-coded form, and the second antigen, in polypeptide form, share at least one common epitope).
- the kit may be used for sequential administration of the priming and the boosting compositions.
- the invention relates to a method for treating or preventing an infectious disease, a method for inducing an immune response in a subject, or a method of vaccinating a subject, comprising: (i) administering to a subject in need thereof at least once a therapeutically effective amount of a priming composition comprising a self-replicating RNA molecule that encodes an HIV polypeptide antigen that comprises a first epitope, and (ii) subsequently administering to the subject at least once a therapeutically effective amount of a boosting composition comprising a polypeptide antigen that comprises a second epitope; wherein said first epitope and second epitope are the same epitope (i.e. , the first antigen, in RNA-coded form, and the second antigen, in polypeptide form, share at least one common epitope).
- RNA prime, protein boost vaccination strategies As described herein, the inventors have evaluated RNA prime, protein boost vaccination strategies. These studies demonstrate several benefits of the RNA prime, protein boost strategy, as compared to a protein prime, protein boost strategy, including, for example, increased antibody titers, a more balanced IgGi :IgG 2a subtype profile, induction of T H 1 type, CD4+ T cell-mediated immune response that was similar to that of viral particles, and reduced production of non- neutralizing antibodies.
- the RNA molecule in the priming composition encodes an HIV protein that is substantially the same as the polypeptide molecule in the boosting composition (e.g. , the amino acid sequence encoded by the RNA molecule in the priming composition and the polypeptide in the boosting composition share at least about 90% sequence identity across the length of the shorter antigen).
- the two antigens have the same epitope, such as the same immunodominant epitope(s).
- the priming and boosting compositions described herein can be formulated as a vaccine to induce or enhance the immune response to a pathogen. Also provided herein are methods of using the priming and boosting compositions of the invention to induce or enhance an immune response in a subject in need thereof.
- the invention also relates to immunogenic compositions, pharmaceutical compositions, or kits as described herein for use in therapy, and to the use of immunogenic compositions, pharmaceutical compositions, or kits as described herein for the manufacture of a medicament for inducing, enhancing or generating an immune response.
- immunogenic compositions, pharmaceutical compositions, or kits as described herein for use in therapy and to the use of immunogenic compositions, pharmaceutical compositions, or kits as described herein for the manufacture of a medicament for inducing, enhancing or generating an immune response.
- the invention provides an immunogenic composition comprising an HIV RNA component and an HIV polypeptide component.
- the immunogenic composition comprises: (i) a self-replicating RNA molecule that encodes a first polypeptide antigen comprising a first epitope (the RNA component); and (ii) a second polypeptide antigen comprising a second epitope (the polypeptide component); wherein said first epitope and second epitope are epitopes from HIV.
- the first epitope and second epitope can be the same epitope, or different epitopes if desired.
- the first epitope and second epitope can be from the same polypeptide of HIV, or different polypeptides of HIV.
- the first epitope and second epitope can also be epitopes which are highly conserved between different strains or subspecies of the pathogen, such as those epitopes with limited or no mutational variations.
- the first polypeptide antigen and the second polypeptide antigen are derived from the same protein from HIV.
- the RNA molecule may encode a first polypeptide antigen comprising a full-length protein from HIV, or an antigenic portion thereof, optionally fused with a heterologous sequence that may facilitate the expression, production, purification or detection of the viral protein encoded by the RNA.
- the second polypeptide antigen may be a recombinant protein comprising the full-length protein, or an antigenic portion thereof, optionally fused with a heterologous sequence (e.g., His-tag) that may facilitate the expression, production, purification or detection of the second polypeptide antigen or a truncated form (e.g., gpl40 is a truncated form of gpl60).
- a heterologous sequence e.g., His-tag
- the first polypeptide antigen, the second polypeptide antigen, or both may comprise a mutation variant of a protein from HIV (e.g., a viral protein having amino acid substitution(s), addition(s), or deletion(s)).
- the amino acid sequence identity between the first polypeptide antigen and the second polypeptide antigen is at least about 40%, least about 50%), least about 60%>, least about 65%, least about 70%, at least about 75%, at least about 80%), at least about 85%», at least about 90%», at least about 95%», at least about 96%», at least about 97%», at least about 98%», or at least about 99%».
- the first polypeptide antigen and the second polypeptide antigen are the same antigen.
- the first polypeptide antigen and the second polypeptide antigen share at least 1, at least 2, at least 3, at least 4, or at least 5 common B-cell or T-cell epitopes. In certain embodiments, the first polypeptide antigen and the second polypeptide antigen have at least one common immunodominant epitope. In certain embodiments, the first polypeptide antigen and the second polypeptide antigen have the same immunodominant epitope(s), or the same primary immunodominant epitope.
- the first polypeptide antigen is a soluble or membrane anchored polypeptide
- the second polypeptide antigen is a soluble polypeptide.
- the wild type viral protein is a transmembrane surface protein
- the RNA molecule may comprise the full-length coding sequence to produce the first (membrane-anchored) antigen, while the transmembrane region of the viral protein may be deleted to produce the second polypeptide antigen (which is soluble).
- the first antigen or the second antigen is a fusion polypeptide further comprising a third epitope.
- the third epitope may be from a pathogen other than HIV, or from a different HIV antigen.
- Antigens suitable for inclusion in the immunogenic compositions described herein may be derived from any pathogen (e.g., a bacterial pathogen, a viral pathogen, a fungal pathogen, a protozoan pathogen, or a multi-cellular parasitic pathogen), allergen or tumor.
- pathogen e.g., a bacterial pathogen, a viral pathogen, a fungal pathogen, a protozoan pathogen, or a multi-cellular parasitic pathogen
- the first and second antigens are derived from HIV-1 , including any HIV-1 strain, such as HIV-1CM235, HIV-1US4, HIV-1SFI62, HIV- ⁇ , HIV-1 M J4, HIV-1 subtype (or clade), such as A, B, C, D, F, G, H, J. K, and O, and HIV-1 circulating recombinant forms (CRFs), including, A/B, A/E, A/G, A/G/I, etc.
- HIV-1 circulating recombinant forms including, A/B, A/E, A/G, A/G/I, etc.
- the first and second antigens are N and N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl
- the first and second antigens are HIV Env polypeptides, such as gpl60, gpl40 or gpl20.
- the Env polypeptides can be monomers or oligomers, for example a gpl20 monomer, or homo- or hetero-oligomers of gpl40 and gpl60.
- the HIV antigen suitable for inclusion in the immunogenic compositions described herein is derived from HIV (e.g., HIV-1) Env protein (including, e.g., gpl20, gpl40, and gpl60).
- HIV e.g., HIV-1
- Env protein including, e.g., gpl20, gpl40, and gpl60.
- the nucleic acid sequences encoding, and the amino acid seqeunces of, Env proteins from many HIV isolates are well known in the art.
- the amino acid sequences of Env protein (gpl60 precursors) from HIV-1 Bru, HIV-1 MN, HIV-1 ELI, HIV-1 RF, HIV-1 SF2C and HIV-1 SC are disclosed as SEQ ID NOS; 1-6 in U.S. Patent No. 6,284,248.
- Env is synthesized first as a gpl60 polyprotein precursor in the endoplasmic reticulum, which is cleaved to form gpl20 and gp41, or truncated to form gpl40.
- gpl20 corresponds to the N-terminal end of the gpl60 without the oligomerization domain or transmembrane domain
- gpl40 corresponds to the N- terminal end of the gpl60 without the transmembrane domain, but retains the
- the gpl60 polyprotein precursor is cleaved, at a major cleavage site and/or minor cleavage site, to form gpl20. If desired one or both cleavage sites can be mutated to prevent processing of gpl60 into gp 120.
- suitable mutations are well known in the art and are described, for example, in U.S. Patent No. 6,284,248, and U.S. Patent Application Publication No. 2010/0316698.
- An exemplary gpl40 sequence is set forth as SEQ ID NO: [ ].
- An exemplary gpl20 sequence is set forth as SEQ ID NO: [ ].
- An exemplary gpl60 sequence is set forth as SEQ ID NO: [ ].
- the invention may use an HIV Env antigen comprising SEQ ID NOs: , , or , or comprising an amino acid sequence that is at least 75% identical to SEQ ID NOs: _, _, or _, ⁇ e.g., at least 80%, at least 85%, at least 90%, at least 95%, at least 97%, at least 98%, at least 99%, or 100% identical to SEQ ID NOs: _, _, or _).
- AX456011 nucleotide seq (SEQ ID NO: ):
- AEGTDRIIELVQRICRAILNIPRRIRQGFEAALL* g l40 nucleotide sequence (SEQ ID NO: ): atggatgcaatgaagagagggctctgctgtgtgctgctgtgtggagcagtcttcgtttcgcccaacaccgaggacctgtgggtgaccgt gtactacggcgtgcccgtgtggcgcgacgccaagaccaccctgttctgcgccagcgacgccaaggcctacgagaccgaggtgcacaac gtgtgggccacccacgcctgcgcaccgaccccaacccccaggagatcgtgctgggcaacgtgaccgagaacttcaacatgtggaa gaacgacatggccgaccagatg
- the Env antigen can a soluble protein, formed, for example, by deletion of the transmembrane region of gpl60. This transmembrane region is located in the zone corresponding to the gp41 , from the amino acid residue at approximately position 659 to the amino acid residue at approximately position 680. Optionally, another hydrophobic region, from the amino acid residue at approximately position 487 to the amino acid residue at approximately position 514, could also be deleted.
- At least three domains in gpl60 contain sequences that are hypervariable from one gp 160 to another. These three domains are commonly referred to as the Vi, V 2 and V3 domains (or loops).
- the first two domains, Vi and V 2 are located between the cysteine residue at approximately position 96 and the cysteine residue at approximately position 171
- the third domain, V3 is located from the cysteine residue at approximately position 271 to the cysteine residue at approximately position 306.
- the Env antigen may contain modifications, such as deletion of variable regions Vi and/or V 2 in gpl60, gpl40, or gpl20.
- the HIV antigen may also be a fusion polypeptide.
- the antigen may comprise a first domain and a second domain, wherein (i) the first domain comprises an HIV Env polypeptide (e.g. gpl60, gpl40, gpl20, or an antigenic fragment thereof), and (ii) the second domain comprises another viral protein (e.g., another HIV antigen such as, gag, vif, vpr, tat, rev, vpu, nef, or an antigenic fragment thereof).
- HIV Env polypeptide e.g. gpl60, gpl40, gpl20, or an antigenic fragment thereof
- another viral protein e.g., another HIV antigen such as, gag, vif, vpr, tat, rev, vpu, nef, or an antigenic fragment thereof.
- the immunogenic composition described herein comprises an RNA component and a polypeptide component.
- the RNA is a self-replicating RNA.
- the composition can contain more than one RNA molecule encoding an antigen, e.g., two, three, five, ten or more RNA molecules.
- one RNA molecule may also encode more than one antigen, e.g., a bicistronic, or tricistronic RNA molecule that encodes different or identical antigens.
- the sequence of the RNA molecule may be codon optimized or deoptimized for expression in a desired host, such as a human cell.
- the sequence of the RNA molecule may be modified if desired, for example to increase the efficacy of expression or replication of the RNA, or to provide additional stability or resistance to degradation.
- the RNA sequence can be modified with respect to its codon usage, for example, to increase translation efficacy and half-life of the RNA.
- a poly A tail e.g., of about 30 adenosine residues or more
- the 5' end of the RNA may be capped with a modified ribonucleotide with the structure m7G (5') ppp (5') N (cap 0 structure) or a derivative thereof, which can be incorporated during RNA synthesis or can be enzymatically engineered after RNA transcription (e.g., by using Vaccinia Virus Capping Enzyme (VCE) consisting of mRNA triphosphatase, guanylyl- transferase and guanine-7-methytransferase, which catalyzes the construction of N7-monomethylated cap 0 structures).
- VCE Vaccinia Virus Capping Enzyme
- Cap 0 structure plays an important role in maintaining the stability and translational efficacy of the RNA molecule.
- the 5' cap of the RNA molecule may be further modified by a 2 '-O-Methyltransferase which results in the generation of a cap 1 structure (m7Gppp [m2 '- ⁇ ] N), which may further increase translation efficacy.
- the RNA molecule can comprise one or more modified nucleotides in addition to any 5' cap structure.
- modified nucleoside modifications found on mammalian RNA. See, e.g., Limbach et ah, Nucleic Acids Research, 22(12):2183-2196 (1994).
- the preparation of nucleotides and modified nucleotides and nucleosides are well-known in the art, e.g.
- Modified nucleobases which can be incorporated into modified nucleosides and nucleotides and be present in the RNA molecules include: m5C (5- methylcytidine), m5U (5-methyluridine), m6A (N6-methyladenosine), s2U (2- thiouridine), Um (2'-0-methyluridine), mlA (1-methyladenosine); m2A (2- methyladenosine); Am (2-1-O-methyladenosine); ms2m6A (2-methylthio-N6- methyladenosine); i6A (N6-isopentenyladenosine); ms2i6A (2-methylthio- N6isopentenyladenosine); io6A (N6-(cis-hydroxyisopentenyl)adenosine); ms2io6A (2- methylthio-N6-(cis-hydroxyisopentenyl)a
- ms2hn6A (2-methylthio-N6-hydroxynorvalyl carbamoyladenosine); Ar(p) (2'-0- ribosyladenosine (phosphate)); I (inosine); mil (1-methylinosine); m'lm (l,2'-0- dimethylinosine); m3C (3-methylcytidine); Cm (2T-0-methylcytidine); s2C (2- thiocytidine); ac4C (N4-acetylcytidine); £5C (5-fonnylcytidine); m5Cm (5,2-0- dimethylcytidine); ac4Cm (N4acetyl2TOmethylcytidine); k2C (lysidine); mlG (1- methylguanosine); m2G (N2-methylguanosine); m7G (7-methylguanosine); Gm (2'-0- methylguanosine); m22
- mnm5se2U (5-methylaminomethyl-2-selenouridine); ncm5U (5-carbamoylmethyl uridine); ncm5Um (5-carbamoylmethyl-2'-0-methyluridine); cmnm5U (5- carboxymethylaminomethyluridine); cnmm5Um (5-carboxymethy 1 aminomethyl-2-L- Omethyluridine); cmnm5s2U (5-carboxymethylaminomethyl-2-thiouridine); m62A (N6,N6-dimethyladenosine); Tm (2'-0-methylinosine); m4C (N4-methylcytidine); m4Cm (N4,2-0-dimethylcytidine); hm5C (5-hydroxymethylcytidine); m3U (3-methyluridine); cm5U (5-carboxymethyluridine); m6Am (N6,T-0-dimethyladenosine); rn
- the RNA molecule can contain phosphoramidate, phosphorothioate, and/or methylphosphonate linkages.
- the RNA molecule does not include modified nucleotides, e.g., does not include modified nucleobases, and all of the nucleotides in the RNA molecule are conventional standard ribonucleotides A, U, G and C, with the exception of an optional 5' cap that may include, for example, 7-methylguanosine.
- the RNA may include a 5' cap comprising a 7'-methylguanosine, and the first 1, 2 or 3 5' ribonucleotides may be methylated at the 2' position of the ribose.
- the immunogenic composition contains a self- replicating RNA molecule.
- the self-replicating RNA molecule is derived from or based on an alphavirus.
- Self-replicating RNA molecules are well known in the art and can be produced by using replication elements derived from, e.g., alphaviruses, and substituting the structural viral proteins with a nucleotide sequence encoding a protein of interest.
- Cells transfected with self-replicating RNA briefly produce of antigen before undergoing apoptotic death. This death is a likely result of requisite double-stranded (ds) RNA intermediates, which also have been shown to super-activate Dendritic Cells.
- ds double-stranded
- the enhanced immunogenicity of self-replicating RNA may be a result of the production of pro-inflammatory dsRNA, which mimics an RNA- virus infection of host cells.
- the cell's machinery is used by self-replicating RNA molecules to generate an exponential increase of encoded gene products, such as proteins or antigens, which can accumulate in the cells or be secreted from the cells.
- RNA molecules Overexpression of proteins or antigens by self-replicating RNA molecules takes advantage of the immunostimulatory adjuvant effects, including stimulation of toll- like receptors (TLR) 3, 7 and 8 and non TLR pathways (e.g, RIG-1 , MD-5) by the products of RNA replication and amplification, and translation which induces apoptosis of the transfected cell.
- TLR toll- like receptors
- RIG-1 non TLR pathways
- the self-replicating RNA generally contains at least one or more genes selected from the group consisting of viral replicases, viral proteases, viral helicases and other nonstructural viral proteins, and also comprise 5'- and 3 '-end tractive replication sequences, and if desired, a heterologous sequence that encodes a desired amino acid sequence (e.g., an antigen of interest).
- a subgenomic promoter that directs expression of the heterologous sequence can be included in the self-replicating RNA.
- the heterologous sequence e.g., an antigen of interest
- the self-replicating RNA molecule is not encapsulated in a virus-like particle.
- Self-replicating RNA molecules of the invention can be designed so that the self-replicating RNA molecule cannot induce production of infectious viral particles. This can be achieved, for example, by omitting one or more viral genes encoding structural proteins that are necessary for the production of viral particles in the self-replicating RNA.
- the self-replicating RNA molecule is based on an alpha virus, such as Sinebis virus (SIN), Semliki forest virus and Venezuelan equine encephalitis virus (VEE), one or more genes encoding viral structural proteins, such as capsid and/or envelope glycoproteins, can be omitted.
- an alpha virus such as Sinebis virus (SIN), Semliki forest virus and Venezuelan equine encephalitis virus (VEE)
- Sindbis virus SIN
- Semliki forest virus Semliki forest virus
- VEE Venezuelan equine encephalitis virus
- self-replicating RNA molecules of the invention can also be designed to induce production of infectious viral particles that are attenuated or virulent, or to produce viral particles that are capable of a single round of subsequent infection.
- RNA molecules When delivered to a vertebrate cell, a self-replicating RNA molecule can lead to the production of multiple daughter RNAs by transcription from itself (or from an antisense copy of itself).
- the self-replicating RNA can be directly translated after delivery to a cell, and this translation provides a RNA-dependent RNA polymerase which then produces transcripts from the delivered RNA.
- the delivered RNA leads to the production of multiple daughter RNAs.
- These transcripts are antisense relative to the delivered RNA and may be translated themselves to provide in situ expression of a gene product, or may be transcribed to provide further transcripts with the same sense as the delivered RNA which are translated to provide in situ expression of the gene product.
- Alphaviruses comprise a set of genetically, structurally, and serologically related arthropod-borne viruses of the Togaviridae family. Twenty-six known viruses and virus subtypes have been classified within the alphavirus genus, including, Sindbis virus, Semliki Forest virus, Ross River virus, and Venezuelan equine encephalitis virus.
- the self-replicating RNA of the invention may incorporate a RNA replicase derived from semliki forest virus (SFV) , Sindbis virus (SIN), Venezuelan equine encephalitis virus (VEE), Ross-River virus (RRV), or other viruses belonging to the alphavirus family.
- SFV semliki forest virus
- SI Sindbis virus
- VEE Venezuelan equine encephalitis virus
- RRV Ross-River virus
- An alphavirus-based "replicon" expression vector can be used in the invention.
- Replicon vectors may be utilized in several formats, including DNA, RNA, and recombinant replicon particles.
- Such replicon vectors have been derived from alphaviruses that include, for example, Sindbis virus (Xiong et al. (1989) Science 243: 1188-1191; Dubensky et al., (1996) J. Virol. 70:508-519; Hariharan et al. (1998) J. Virol. 72:950-958; Polo et al. (1999) PNAS 96:4598-4603), Semliki Forest virus
- Alphavirus-derived replicons are generally quite similar in overall characteristics (e.g., structure, replication), individual alphaviruses may exhibit some particular property (e.g., receptor binding, interferon sensitivity, and disease profile) that is unique. Therefore, chimeric alphavirus replicons made from divergent virus families may also be useful.
- Alphavirus-based replicons are (+)-stranded replicons that can be translated after delivery to a cell to give of a replicase (or rep licase- transcriptase).
- the replicase is translated as a polyprotein which auto-cleaves to provide a replication complex which creates genomic (-)-strand copies of the +-strand delivered RNA.
- These (-)-strand transcripts can themselves be transcribed to give further copies of the
- Suitable alphavirus replicons can use a replicase from a Sindbis virus, a semliki forest virus, an eastern equine encephalitis virus, a Venezuelan equine encephalitis virus, etc.
- a preferred self-replicating RNA molecule thus encodes (i) a RNA-dependent RNA polymerase which can transcribe RNA from the self-replicating RNA molecule and (ii) a polypeptide antigen.
- the polymerase can be an alphavirus replicase e.g. comprising alphavirus protein nsP4.
- an alphavirus based self- replicating RNA molecule of the invention does not encode alphavirus structural proteins.
- the self-replicating RNA can lead to the production of genomic RNA copies of itself in a cell, but not to the production of RNA-containing alphavirus virions.
- the inability to produce these virions means that, unlike a wild-type alphavirus, the self-replicating RNA molecule cannot perpetuate itself in infectious form.
- alphavirus structural proteins which are necessary for perpetuation in wild-type viruses are absent from self-replicating RNAs of the invention and their place is taken by gene(s) encoding the desired gene product, such that the subgenomic transcript encodes the desired gene product rather than the structural alphavirus virion proteins.
- a self-replicating RNA molecule useful with the invention may have two open reading frames.
- the first (5') open reading frame encodes a replicase; the second (3') open reading frame encodes a polypeptide antigen.
- the RNA may have additional (downstream) open reading frames e.g. that encode another desired gene product.
- a self-replicating RNA molecule can have a 5' sequence which is compatible with the encoded replicase.
- the self-replicating RNA molecule is derived from or based on a virus other than an alphavirus, preferably, a positive-stranded RNA virus, and more preferably a picornavirus, flavivirus, rubivirus, pestivirus, hepacivirus, calicivirus, or coronavirus.
- a virus other than an alphavirus preferably, a positive-stranded RNA virus, and more preferably a picornavirus, flavivirus, rubivirus, pestivirus, hepacivirus, calicivirus, or coronavirus.
- Suitable wild-type alphavirus sequences are well-known and are available from sequence depositories, such as the American Type Culture Collection, Rockville, Md.
- alphaviruses include Aura (ATCC VR-368), Bebaru virus (ATCC VR-600, ATCC VR-1240), Cabassou (ATCC VR-922), Chikungunya virus (ATCC VR-64, ATCC VR-1241), Eastern equine encephalomyelitis virus (ATCC VR-65, ATCC VR-1242), Fort Morgan (ATCC VR-924), Getah virus (ATCC VR-369, ATCC VR-1243), Kyzylagach (ATCC VR-927), Mayaro (ATCC VR- 66), Mayaro virus (ATCC VR-1277), Middleburg (ATCC VR-370), Mucambo virus (ATCC VR-580, ATCC VR-1244), Ndumu (ATCC VR-371), Pixuna virus (ATCC VR- 372, ATCC VR-1245), Ross River virus (ATCC VR-373, ATCC VR-1246), Semliki Forest (ATCC VR-67, ATCC VR-1247), Sindbis virus (ATCC VR-68, ATCC VR
- the self-replicating RNA molecules of the invention are larger than other types of RNA ⁇ e.g. mRNA).
- the self-replicating RNA molecules of the invention contain at least about 4kb.
- the self-replicating RNA can contain at least about 5kb, at least about 6kb, at least about 7kb, at least about 8kb, at least about 9kb, at least about lOkb, at least about 1 lkb, at least about 12kb or more than 12kb.
- the self-replicating RNA is about 4kb to about 12kb, about 5kb to about 12kb, about 6kb to about 12kb, about 7kb to about 12kb, about 8kb to about 12kb, about 9kb to about 12kb, about lOkb to about 12kb, about 1 lkb to about 12kb, about 5kb to about 1 lkb, about 5kb to about lOkb, about 5kb to about 9kb, about 5kb to about 8kb, about 5kb to about 7kb, about 5kb to about 6kb, about 6kb to about 12kb, about 6kb to about 1 lkb, about 6kb to about lOkb, about 6kb to about 9kb, about 6kb to about 8kb, about 6kb to about 7kb, about 7kb to about 1 lkb, about 6kb to about lOkb, about 6kb to about 9kb
- the self-replicating RNA molecules of the invention may comprise one or more modified nucleotides (e.g. , pseudouridine, N6-methyladenosine, 5- methylcytidine, 5-methyluridine).
- modified nucleotides e.g. , pseudouridine, N6-methyladenosine, 5- methylcytidine, 5-methyluridine.
- the self-replicating RNA molecule may encode a single polypeptide antigen or, optionally, two or more of polypeptide antigens linked together in a way that each of the sequences retains its identity (e.g. , linked in series) when expressed as an amino acid sequence.
- the polypeptides generated from the self-replicating RNA may then be produced as a fusion polypeptide or engineered in such a manner to result in separate polypeptide or peptide sequences.
- the self-replicating RNA of the invention may encode one or more polypeptide antigens that contain a range of epitopes.
- epitopes capable of eliciting either a helper T-cell response or a cytotoxic T-cell response or both.
- the self-replicating RNA molecules described herein may be engineered to express multiple nucleotide sequences, from two or more open reading frames, thereby allowing co-expression of proteins, such as two or more antigens together with cytokines or other immunomodulators, which can enhance the generation of an immune response.
- proteins such as two or more antigens together with cytokines or other immunomodulators, which can enhance the generation of an immune response.
- Such a self-replicating RNA molecule might be particularly useful, for example, in the production of various gene products (e.g. , proteins) at the same time, for example, as a bivalent or multivalent vaccine.
- the self-replicating RNA molecules of the invention can be prepared using any suitable method.
- suitable methods are known in the art for producing RNA molecules that contain modified nucleotides.
- a self-replicating RNA molecule that contains modified nucleotides can be prepared by transcribing (e.g., in vitro transcription) a DNA that encodes the self-replicating RNA molecule using a suitable DNA-dependent RNA polymerase, such as T7 phage RNA polymerase, SP6 phage RNA polymerase, T3 phage RNA polymerase, and the like, or mutants of these polymerases which allow efficient incorporation of modified nucleotides into RNA molecules.
- the transcription reaction will contain nucleotides and modified nucleotides, and other components that support the activity of the selected polymerase, such as a suitable buffer, and suitable salts.
- nucleotide analogs into a self-replicating RNA may be engineered, for example, to alter the stability of such RNA molecules, to increase resistance against RNases, to establish replication after introduction into appropriate host cells ("infectivity" of the RNA), and/or to induce or reduce innate and adaptive immune responses.
- Suitable synthetic methods can be used alone, or in combination with one or more other methods (e.g., recombinant DNA or RNA technology), to produce a self-replicating RNA molecule of the invention.
- Suitable methods for de novo synthesis are well-known in the art and can be adapted for particular applications. Exemplary methods include, for example, chemical synthesis using suitable protecting groups such as CEM (Masuda et ah, (2007) Nucleic Acids Symposium Series 57:3-4), the ⁇ -cyanoethyl phosphoramidite method (Beaucage S L et ah (1981) Tetrahedron Lett 22: 1859);
- DNA shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic polynucleotides are examples of known techniques that can be used to design and engineer polynucleotide sequences.
- Site-directed mutagenesis can be used to alter nucleic acids and the encoded proteins, for example, to insert new restriction sites, alter glycosylation patterns, change codon preference, produce splice variants, introduce mutations and the like.
- Suitable methods for transcription, translation and expression of nucleic acid sequences are known and conventional in the art. (See generally, Current Protocols in Molecular Biology, Vol. 2, Ed. Ausubel, et ah, Greene Publish. Assoc. & Wiley Interscience, Ch.
- a self-replicating RNA can be digested to monophosphates (e.g., using nuclease PI) and dephosphorylated (e.g., using a suitable phosphatase such as CIAP), and the resulting nucleosides analyzed by reversed phase HPLC (e.g., usings a YMC Pack ODS- AQ column (5 micron, 4.6 X 250 mm) and eluted using a gradient, 30% B (0-5 min) to 100 % B (5 - 13 min) and at 100 % B (13-40) min, flow Rate (0.7 ml/min), UV detection (wavelength: 260 nm), column temperature (30°C). Buffer A (20mM acetic acid - ammonium acetate pH 3.5), buffer B (20mM acetic acid - ammonium
- the self-replicating RNA molecules of the invention may include one or more modified nucleotides so that the self-replicating RNA molecule will have less immunomodulatory activity upon introduction or entry into a host cell (e.g. , a human cell) in comparison to the corresponding self-replicating RNA molecule that does not contain modified nucleotides.
- a host cell e.g. , a human cell
- the self-replicating RNA molecules can be screened or analyzed to confirm their therapeutic and prophylactic properties using various in vitro or in vivo testing methods that are known to those of skill in the art.
- vaccines comprising self-replicating RNA molecule can be tested for their effect on induction of proliferation or effector function of the particular lymphocyte type of interest, e.g. , B cells, T cells, T cell lines, and T cell clones.
- spleen cells from immunized mice can be isolated and the capacity of cytotoxic T lymphocytes to lyse autologous target cells that contain a self replicating RNA molecule that encodes a polypeptide antigen.
- T helper cell differentiation can be analyzed by measuring proliferation or production of TH1 (IL-2 and IFN- ⁇ ) and /or TH2 (IL-4 and IL-5) cytokines by ELISA or directly in CD4+ T cells by cytoplasmic cytokine staining and flow cytometry.
- TH1 IL-2 and IFN- ⁇
- TH2 IL-4 and IL-5
- Self-replicating RNA molecules that encode a polypeptide antigen can also be tested for ability to induce humoral immune responses, as evidenced, for example, by induction of B cell production of antibodies specific for an antigen of interest.
- These assays can be conducted using, for example, peripheral B lymphocytes from immunized individuals. Such assay methods are known to those of skill in the art.
- RNA molecules of the invention can involve detecting expression of the encoded antigen by the target cells.
- FACS can be used to detect antigen expression on the cell surface or intracellularly. Another advantage of FACS selection is that one can sort for different levels of expression; sometimes-lower expression may be desired.
- Other suitable method for identifying cells which express a particular antigen involve panning using monoclonal antibodies on a plate or capture using magnetic beads coated with monoclonal antibodies.
- the self-replicating RNA of the invention may be delivered by a variety of methods, such as naked RNA delivery or in combination with lipids, polymers or other compounds that facilitate entry into the cells.
- the RNA molecules of the present invention can be introduced into target cells or subjects using any suitable technique, e.g., by direct injection, microinjection, electroporation, lipofection, biolystics, and the like.
- the immunogenic composition described herein comprises a polypeptide component and an RNA component.
- the polypeptide component encompasses multi-chain polypeptide structures, such as a polypeptide complex (e.g., a complex formed by two or more proteins), or a large polypeptide structure, such as VLP.
- Suitable antigens that can be used as the polypeptide component (the "second polypeptide antigen") of the immunogenic composition include proteins and peptides derived from HIV.
- the composition can contain more than one polypeptide antigen.
- the polypeptide may also be a fusion polypeptide comprising two or more epitopes from two different proteins of HIV.
- the polypeptide antigen may include additional sequences, such as a sequence to facilitate expression, production, purification or detection (e.g., a poly-His sequence).
- the polypeptide antigen will usually be isolated or purified. Thus, it will not be associated with molecules with which it is normally, if applicable, found in nature.
- Polypeptides will usually be prepared by expression in a recombinant host system. Generally, they are produced by expression of recombinant constructs that encode the ecto-domains in suitable recombinant host cells, although any suitable methods can be used.
- Suitable recombinant host cells include, for example, insect cells (e.g., Aedes aegypti, Autographa californica, Bombyx mori, Drosophila melanogaster, Spodoptera frugiperda, and Trichoplusia ni), mammalian cells (e.g., human, non-human primate, horse, cow, sheep, dog, cat, and rodent ⁇ e.g., hamster), avian cells (e.g., chicken, duck, and geese), bacteria (e.g., E.
- insect cells e.g., Aedes aegypti, Autographa californica, Bombyx mori, Drosophila melanogaster, Spodoptera frugiperda, and Trichoplusia ni
- mammalian cells e.g., human, non-human primate, horse, cow, sheep, dog, cat, and rodent ⁇ e.g.,
- yeast cells e.g., Saccharomyces cerevisiae, Candida albicans, Candida maltosa, Hansenual polymorpha, Kluyveromyces fragilis, Kluyveromyces lactis, Pichia guillerimondii, Pichia pastoris, Schizosaccharomyces pombe and Yarrowia lipolytica
- Tetrahymena cells ⁇ e.g., Tetrahymena thermophila
- Many suitable insect cells and mammalian cells are well-known in the art.
- Suitable insect cells include, for example, Sf9 cells, Sf21 cells, Tn5 cells, Schneider S2 cells, and High Five cells (a clonal isolate derived from the parental Trichoplusia ni BTI-TN-5B 1-4 cell line (Invitrogen)).
- Suitable mammalian cells include, for example, Chinese hamster ovary (CHO) cells, human embryonic kidney cells (HEK293 cells, typically transformed by sheared adenovirus type 5 DNA), NIH-3T3 cells, 293-T cells, Vero cells, HeLa cells, PERC.6 cells (ECACC deposit number 96022940), Hep G2 cells, MRC-5 (ATCC CCL-171), WI-38 (ATCC CCL-75), fetal rhesus lung cells (ATCC CL-160), Madin-Darby bovine kidney
- CHO Chinese hamster ovary
- HEK293 cells human embryonic kidney cells
- NIH-3T3 cells 293-T cells
- Vero cells Vero cells
- HeLa cells HeLa cells
- PERC.6 cells ECACC deposit number 96022940
- Hep G2 cells MRC-5 (ATCC CCL-171)
- WI-38 ATCC CCL-75
- MDBK Madin-Darby canine kidney
- MDCK Madin-Darby canine kidney
- NBL2 MDCK
- ATCC CCL34 ATCC CCL34
- MDCK 33016 DSM ACC 2219
- BHK baby hamster kidney
- Suitable avian cells include, for example, chicken embryonic stem cells (e.g., EBx® cells), chicken embryonic fibroblasts, chicken embryonic germ cells, duck cells (e.g., AGE1.CR and AGEl .CR.pIX cell lines
- Suitable insect cell expression systems such as baculovirus systems, are known to those of skill in the art and described in, e.g., Summers and Smith, Texas Agricultural Experiment Station Bulletin No. 1555 (1987). Materials and methods for baculovirus/insect cell expression systems are commercially available in kit form from, inter alia, Invitrogen, San Diego CA. Avian cell expression systems are also known to those of skill in the art and described in, e.g., U.S. Patent Nos. 5,340,740; 5,656,479; 5,830,510; 6,114,168; and 6,500,668; European Patent No. EP 0787180B; European Patent Application No.
- bacterial and mammalian cell expression systems are also known in the art and described in, e.g., Yeast Genetic Engineering (Barr et ah, eds., 1989) Butterworths, London.
- Recombinant constructs encoding a polypeptide can be prepared in suitable vectors using conventional methods.
- a number of suitable vectors for expression of recombinant proteins in insect or mammalian cells are well-known and conventional in the art.
- Suitable vectors can contain a number of components, including, but not limited to one or more of the following: an origin of replication; a selectable marker gene; one or more expression control elements, such as a transcriptional control element (e.g., a promoter, an enhancer, a terminator), and/or one or more translation signals; and a signal sequence or leader sequence for targeting to the secretory pathway in a selected host cell (e.g., of mammalian origin or from a heterologous mammalian or non-mammalian species).
- a transcriptional control element e.g., a promoter, an enhancer, a terminator
- a signal sequence or leader sequence for targeting to the secretory pathway in a selected host cell (e.g.,
- baculovirus expression vector such as pFastBac (Invitrogen)
- pFastBac Invitrogen
- the baculovirus particles are amplified and used to infect insect cells to express recombinant protein.
- a vector that will drive expression of the construct in the desired mammalian host cell e.g., Chinese hamster ovary cells
- Polypeptides can be purified using any suitable methods. For example, methods for purifying polypeptides by immunoaffinity chromatography are known in the art. Ruiz-Arguello et ah, J. Gen. Virol, 55:3677-3687 (2004). Suitable methods for purifying desired proteins including precipitation and various types of chromatography, such as hydrophobic interaction, ion exchange, affinity, chelating and size exclusion are well-known in the art. Suitable purification schemes can be created using two or more of these or other suitable methods. If desired, the polypeptides can include a "tag" that facilitates purification, such as an epitope tag or a HIS tag. Such tagged polypeptides can conveniently be purified, for example from conditioned media, by chelating chromatography or affinity chromatography.
- RNA DELIVERY SYSTEMS [00111]
- additional components such as lipids, polymers or other compounds may be optionally included in the immunogenic composition as described herein to facilitate the entry of RNA into target cells.
- RNA can be delivered as naked RNA (e.g. merely as an aqueous solution of RNA), to enhance entry into cells and also subsequent intercellular effects, the RNA molecule is preferably administered in combination with a delivery system, such as a particulate or emulsion delivery system.
- a delivery system such as a particulate or emulsion delivery system.
- the RNA molecule may be introduced into cells by way of receptor-mediated endocytosis. See e.g., U.S. Pat. No. 6,090,619; Wu and Wu, J. Biol. Chem., 263: 14621 (1988); and Curiel et al, Proc. Natl. Acad. Sci. USA, 88:8850 (1991).
- U.S. Pat. No. 6,090,619 Wu and Wu, J. Biol. Chem., 263: 14621 (1988); and Curiel et al, Proc. Natl. Acad. Sci. USA, 88:8850 (1991).
- 6,083,741 discloses introducing an exogenous nucleic acid into mammalian cells by associating the nucleic acid to a polycation moiety (e.g., poly-L- lysine having 3-100 lysine residues), which is itself coupled to an integrin receptor- binding moiety (e.g., a cyclic peptide having the sequence Arg-Gly-Asp).
- a polycation moiety e.g., poly-L- lysine having 3-100 lysine residues
- an integrin receptor- binding moiety e.g., a cyclic peptide having the sequence Arg-Gly-Asp
- RNA molecule of the present invention can be delivered into cells via amphiphiles. See e.g., U.S. Pat. No. 6,071,890.
- a nucleic acid molecule may form a complex with the cationic amphiphile. Mammalian cells contacted with the complex can readily take it up.
- Three particularly useful delivery systems are (i) liposomes (ii) non-toxic and biodegradable polymer microparticles (iii) cationic submicron oil-in-water emulsions.
- RNA-containing aqueous core can have an anionic, cationic or zwitterionic hydrophilic head group. Formation of liposomes from anionic phospholipids dates back to the 1960s, and cationic liposome- forming lipids have been studied since the 1990s. Some phospholipids are anionic whereas other are zwitterionic.
- Suitable classes of phospholipid include, but are not limited to, phosphatidylethanolamines, phosphatidylcholines, phosphatidylserines, and phosphatidylglycerols, and some useful phospholipids are listed in Table 2.
- Useful cationic lipids include, but are not limited to, dioleoyl trimethylammonium propane (DOTAP), l,2-distearyloxy-N,N-dimethyl-3-aminopropane (DSDMA), 1 ,2-dioleyloxy- N,Ndimethyl-3-aminopropane (DODMA), 1 ,2-dilinoleyloxy-N,N-dimethyl-3- aminopropane (DLinDMA), 1 ,2-dilinolenyloxy-N,N-dimethyl-3-aminopropane (DLenDMA).
- DOTAP dioleoyl trimethylammonium propane
- DMDMA l,2-distearyloxy-N,N-dimethyl-3-aminopropane
- DODMA 1 ,2-dioleyloxy- N,Ndimethyl-3-aminopropane
- DLinDMA 1-dilinoleyloxy-N
- Zwitterionic lipids include, but are not limited to, acyl zwitterionic lipids and ether zwitterionic lipids.
- Examples of useful zwitterionic lipids are DPPC, DOPC and dodecylphosphocholine.
- the lipids can be saturated or unsaturated.
- Liposomes can be formed from a single lipid or from a mixture of lipids.
- a mixture may comprise (i) a mixture of anionic lipids (ii) a mixture of cationic lipids (iii) a mixture of zwitterionic lipids (iv) a mixture of anionic lipids and cationic lipids (v) a mixture of anionic lipids and zwitterionic lipids (vi) a mixture of zwitterionic lipids and cationic lipids or (vii) a mixture of anionic lipids, cationic lipids and zwitterionic lipids.
- a mixture may comprise both saturated and unsaturated lipids.
- a mixture may comprise DSPC (zwitterionic, saturated), DlinDMA (cationic, unsaturated), and/or DMPG (anionic, saturated).
- DSPC zwitterionic, saturated
- DlinDMA cationic, unsaturated
- DMPG anionic, saturated
- the hydrophilic portion of a lipid can be PEGylated ⁇ i.e. modified by covalent attachment of a polyethylene glycol). This modification can increase stability and prevent non-specific adsorption of the liposomes.
- lipids can be conjugated to PEG using techniques such as those disclosed in Heyes et al. (2005) J Controlled Release 107:276-87 ' .
- a mixture of DSPC, DlinDMA, PEG-DMPG and cholesterol is used in the examples.
- a separate aspect of the invention is a liposome comprising DSPC, DlinDMA, PEG-DMG and cholesterol.
- This liposome preferably encapsulates RNA, such as a self-replicating RNA e.g. encoding an immunogen.
- Liposomes are usually divided into three groups: multilamellar vesicles (MLV); small unilamellar vesicles (SUV); and large unilamellar vesicles (LUV).
- MLVs have multiple bilayers in each vesicle, forming several separate aqueous compartments.
- SUVs and LUVs have a single bilayer encapsulating an aqueous core; SUVs typically have a diameter ⁇ 50nm, and LUVs have a diameter >50nm.
- Liposomes useful with the invention are ideally LUVs with a diameter in the range of 50-220nm.
- compositions comprising a population of LUVs with different diameters: (i) at least 80% by number should have diameters in the range of 20-220nm, (ii) the average diameter (Zav, by intensity) of the population is ideally in the range of 40-200nm, and/or (iii) the diameters should have a polydispersity index ⁇ 0.2.
- RNA is preferably encapsulated within the liposomes, and so the liposome forms a outer layer around an aqueous RNA-containing core.
- the liposomes can include some external RNA (e.g. on the surface of the liposomes), but at least half of the RNA (and ideally all of it) is encapsulated.
- RNA molecules can form microparticles to encapsulate or adsorb RNA.
- the use of a substantially non-toxic polymer means that a recipient can safely receive the particles, and the use of a biodegradable polymer means that the particles can be metabolised after delivery to avoid long-term persistence.
- Useful polymers are also sterilisable, to assist in preparing pharmaceutical grade formulations.
- Suitable non-toxic and biodegradable polymers include, but are not limited to, poly(a-hydroxy acids), polyhydroxy butyric acids, polylactones (including polycaprolactones), polydioxanones, polyvalerolactone, polyorthoesters, polyanhydrides, polycyanoacrylates, tyrosine-derived polycarbonates, polyvinyl-pyrrolidinones or polyester-amides, and combinations thereof.
- the microparticles are formed from poly(a- hydroxy acids), such as a poly(lactides) (“PLA”), copolymers of lactide and glycolide such as a poly(D,L-lactide-co-glycolide) (“PLG”), and copolymers of D,L-lactide and caprolactone.
- PLG polymers include those having a lactide/glycolide molar ratio ranging, for example, from 20:80 to 80:20 e.g. 25:75, 40:60, 45:55, 55:45, 60:40, 75:25.
- Useful PLG polymers include those having a molecular weight between, for example, 5,000-200,000 Da e.g. between 10,000-100,000, 20,000-70,000, 40,000-50,000 Da.
- the microparticles ideally have a diameter in the range of 0.02 ⁇ to 8 ⁇ .
- a composition comprising a population of microparticles with different diameters at least 80% by number should have diameters in the range of 0.03-7 ⁇ .
- a microparticle may include a cationic surfactant and/or lipid e.g.
- Microparticles of the invention can have a zeta potential of between 40-100 mV.
- RNA can be adsorbed to the microparticles, and adsorption is facilitated by including cationic materials ⁇ e.g. cationic lipids) in the microparticle.
- Oil-in-water emulsions are known for adjuvanting influenza vaccines e.g. the MF59TM adjuvant in the FLUADTM product, and the AS03 adjuvant in the PREPANDRIXTM product.
- RNA delivery according to the present invention can utilise an oil-in-water emulsion, provided that the emulsion includes one or more cationic molecules.
- a cationic lipid can be included in the emulsion to provide a positive droplet surface to which negatively-charged RNA can attach.
- the emulsion comprises one or more oils.
- Suitable oil(s) include those from, for example, an animal (such as fish) or a vegetable source.
- the oil is ideally biodegradable (metabolisable) and biocompatible.
- Sources for vegetable oils include nuts, seeds and grains. Peanut oil, soybean oil, coconut oil, and olive oil, the most commonly available, exemplify the nut oils.
- Jojoba oil can be used e.g. obtained from the jojoba bean.
- Seed oils include safflower oil, cottonseed oil, sunflower seed oil, sesame seed oil and the like.
- corn oil is the most readily available, but the oil of other cereal grains such as wheat, oats, rye, rice, teff, triticale and the like may also be used.
- 6-10 carbon fatty acid esters of glycerol and 1,2-propanediol, while not occurring naturally in seed oils, may be prepared by hydrolysis, separation and esterification of the appropriate materials starting from the nut and seed oils. Fats and oils from mammalian milk are metabolizable and so may be used. The procedures for separation, purification, saponification and other means necessary for obtaining pure oils from animal sources are well known in the art. [00132] Most fish contain metabolizable oils which may be readily recovered.
- cod liver oil For example, cod liver oil, shark liver oils, and whale oil such as spermaceti exemplify several of the fish oils which may be used herein.
- a number of branched chain oils are synthesized biochemically in 5-carbon isoprene units and are generally referred to as terpenoids.
- Squalene can also be obtained from yeast or other suitable microbes. In some embodiments, Squalene is preferably obtained from non-animal sources, such as from olives, olive oil or yeast. Squalane, the saturated analog to squalene, can also be used.
- Fish oils, including squalene and squalane are readily available from commercial sources or may be obtained by methods known in the art.
- Other useful oils are the tocopherols, particularly in combination with squalene.
- the oil phase of an emulsion includes a tocopherol
- any of the ⁇ , ⁇ , ⁇ , ⁇ , ⁇ or ⁇ tocopherols can be used, but a-tocopherols are preferred.
- D-a-tocopherol and DL-a-tocopherol can both be used.
- a preferred a-tocopherol is DL-a-tocopherol.
- An oil combination comprising squalene and a tocopherol (e.g. DL-a-tocopherol) can be used.
- the oil in the emulsion may comprise a combination of oils e.g.
- the aqueous component of the emulsion can be plain water (e.g. w.f.i.) or can include further components e.g. solutes. For instance, it may include salts to form a buffer e.g. citrate or phosphate salts, such as sodium salts.
- Typical buffers include: a phosphate buffer; a Tris buffer; a borate buffer; a succinate buffer; a histidine buffer; or a citrate buffer.
- a buffered aqueous phase is preferred, and buffers will typically be included in the 5-20mM range.
- the emulsion also includes a cationic lipid.
- this lipid is a surfactant so that it can facilitate formation and stabilisation of the emulsion.
- Useful cationic lipids generally contains a nitrogen atom that is positively charged under physiological conditions e.g. as a tertiary or quaternary amine. This nitrogen can be in the hydrophilic head group of an amphiphilic surfactant.
- Useful cationic lipids include, but are not limited to: l ,2-dioleoyloxy-3-(trimethylammonio)propane (DOTAP), 3'-[N-(N',N'- Dimethylaminoethane)-carbamoyl]Cholesterol (DC Cholesterol), dimethyldioctadecyl- ammonium (DDA e.g. the bromide), l,2-Dimyristoyl-3-Trimethyl-AmmoniumPropane (DMTAP), dipalmitoyl(C16:0)trimethyl ammonium propane (DPTAP),
- DOTAP l ,2-dioleoyloxy-3-(trimethylammonio)propane
- DC Cholesterol dimethyldioctadecyl- ammonium
- DMTAP dipalmitoyl(C16:0)trimethyl ammonium propane
- DPTAP dipalmitoyl(C16
- DSTAP distearoyltrimethylammonium propane
- DODAC N,N-dioleoyl-N,N-dimethylammonium chloride
- DOEPC 1,2- dioleoyl-3-dimethylammonium-propane
- DODAP 1,2- dioleoyl-3-dimethylammonium-propane
- DLDMA 1,2-dilinoleyloxy-3- dimethylaminopropane
- Other useful cationic lipids are: benzalkonium chloride (BAK), benzethonium chloride, cetramide (which contains
- dedecyltrimethylammonium bromide and hexadecyltrimethyl ammonium bromide cetylpyridinium chloride (CPC), cetyl trimethylammonium chloride (CTAC), primary amines, secondary amines, tertiary amines, including but not limited to ⁇ , ⁇ ', ⁇ '- polyoxyethylene (10)-N-tallow-l,3 -diaminopropane, other quaternary amine salts, including but not limited to dodecyltrimethylammonium bromide, hexadecyltrimethyl- ammonium bromide, mixed alkyl-trimethyl-ammonium bromide,
- benzyldimethyldodecylammonium chloride benzyldimethylhexadecyl-ammonium chloride, benzyltrimethylammonium methoxide, cetyldimethylethylammonium bromide, dimethyldioctadecyl ammonium bromide (DDAB), methylbenzethonium chloride, decamethonium chloride, methyl mixed trialkyl ammonium chloride, methyl
- trioctylammonium chloride N,N-dimethyl-N-[2 (2-methyl-4-(l,l,3,3tetramethylbutyl)- phenoxy]-ethoxy)ethyl]-benzenemetha-naminium chloride (DEBDA)
- cetylpyridinium bromide and cetylpyridinium chloride N-alkylpiperidinium salts, dicationic bolaform electrolytes (Ci 2 Me 6 ; C12BU 6 ), dialkylglycetylphosphorylcholine, lysolecithin, L-a
- lipopolyamines including but not limited to dioctadecylamidoglycylspermine (DOGS), dipalmitoyl phosphatidylethanol-amidospermine (DPPES), lipopoly-L (or D)-lysine (LPLL, LPDL), poly (L (or D)-lysine conjugated to N- glutarylphosphatidylethanolamine, didodecyl glutamate ester with pendant amino group (Ci 2 GluPhC n N + ), ditetradecyl glutamate ester with pendant amino group (Ci 4 GluC n N + ), cationic derivatives of cholesterol, including but not limited to cholesteryl-3 ⁇ - oxysuccinamidoethylenetrimethylammonium salt, cholesteryl-3 ⁇ - oxysuccinamidoethylene dimethylamine, cholesteryl-3 ⁇ - carboxyamidoethylenetrimethylammonium salt, cholesteryl-3 ⁇ - carboxyamido
- the cationic lipid is preferably biodegradable (metabolisable) and biocompatible.
- an emulsion can include a non-ionic surfactant and/or a zwitterionic surfactant.
- surfactants include, but are not limited to: the polyoxyethylene sorbitan esters surfactants (commonly referred to as the Tweens), especially polysorbate 20 and polysorbate 80; copolymers of ethylene oxide (EO), propylene oxide (PO), and/or butylene oxide (BO), sold under the DOWFAXTM tradename, such as linear EO/PO block copolymers; octoxynols, which can vary in the number of repeating ethoxy (oxy- 1 ,2-ethanediyl) groups, with octoxynol-9 (Triton X-100, or t-octylphenoxypolyethoxyethanol) being of particular interest;
- octylphenoxy polyethoxyethanol
- IGEPAL CA-630/NP-40 phospholipids such as phosphatidylcholine (lecithin); polyoxyethylene fatty ethers derived from lauryl, cetyl, stearyl and oleyl alcohols (known as Brij surfactants), such as triethyleneglycol monolauryl ether (Brij 30); polyoxyethylene-9-lauryl ether; and sorbitan esters
- Spans such as sorbitan trioleate (Span 85) and sorbitan monolaurate.
- Preferred surfactants for including in the emulsion are polysorbate 80 (Tween 80; polyoxyethylene sorbitan monooleate), Span 85 (sorbitan trioleate), lecithin and Triton X-100.
- Mixtures of these surfactants can be included in the emulsion e.g. Tween 80/Span 85 mixtures, or Tween 80/Triton-X100 mixtures.
- a combination of a polyoxyethylene sorbitan ester such as polyoxyethylene sorbitan monooleate (Tween 80) and an octoxynol such as t-octylphenoxy-polyethoxyethanol (Triton X-100) is also suitable.
- Another useful combination comprises laureth 9 plus a polyoxyethylene sorbitan ester and/or an octoxynol.
- Useful mixtures can comprise a surfactant with a HLB value in the range of 10-20 (e.g.
- polysorbate 80 with a HLB of 15.0
- a surfactant with a HLB value in the range of 1-10 (e.g. sorbitan trioleate, with a HLB of 1.8).
- Preferred amounts of oil (% by volume) in the final emulsion are between 2-20% e.g. 5-15%, 6-14%, 7-13%, 8-12%.
- a squalene content of about 4-6% or about 9-11 ) is particularly useful.
- Preferred amounts of surfactants (% by weight) in the final emulsion are between 0.001 ) and 8%).
- polyoxyethylene sorbitan esters such as polysorbate 80
- sorbitan esters such as polysorbate 80
- sorbitan esters such as sorbitan trioleate
- octyl- or nonylphenoxy polyoxyethanols such as Triton X-100
- 0.001 to 0.1%) in particular 0.005 to 0.02%>
- polyoxyethylene ethers such as laureth 9) 0.1 to 8%, preferably 0.1 to 10% and in particular 0.1 to 1% or about 0.5%.
- the most effective emulsions have a droplet size in the submicron range.
- the droplet sizes will be in the range 50-750nm.
- the average droplet size is less than 250nm e.g. less than 200nm, less than 150nm.
- the average droplet size is usefully in the range of 80-180nm.
- at least 80%) (by number) of the emulsion's oil droplets are less than 250 nm in diameter, and preferably at least 90%.
- Apparatuses for determining the average droplet size in an emulsion, and the size distribution are commercially available. These these typically use the techniques of dynamic light scattering and/or single-particle optical sensing e.g. the AccusizerTM and NicompTM series of instruments available from Particle Sizing Systems (Santa Barbara, USA), or the ZetasizerTM instruments from Malvern Instruments (UK), or the Particle Size Distribution Analyzer instruments from Horiba (Kyoto, Japan).
- the distribution of droplet sizes has only one maximum i.e. there is a single population of droplets distributed around an average (mode), rather than having two maxima.
- Preferred emulsions have a polydispersity of ⁇ 0.4 e.g. 0.3, 0.2, or less.
- Suitable emulsions with submicron droplets and a narrow size distribution can be obtained by the use of micro fluidisation. This technique reduces average oil droplet size by propelling streams of input components through geometrically fixed channels at high pressure and high velocity. These streams contact channel walls, chamber walls and each other. The results shear, impact and cavitation forces cause a reduction in droplet size. Repeated steps of micro fluidisation can be performed until an emulsion with a desired droplet size average and distribution are achieved.
- thermal methods can be used to cause phase inversion. These methods can also provide a submicron emulsion with a tight particle size distribution.
- Preferred emulsions can be filter sterilised i.e. their droplets can pass through a 220nm filter. As well as providing a sterilisation, this procedure also removes any large droplets in the emulsion.
- the cationic lipid in the emulsion is DOTAP.
- the cationic oil-in-water emulsion may comprise from about 0.5 mg/ml to about 25 mg/ml DOTAP.
- the cationic oil-in-water emulsion may comprise DOTAP at from about 0.5 mg/ml to about 25 mg/ml, from about 0.6 mg/ml to about 25 mg/ml, from about 0.7 mg/ml to about 25 mg/ml, from about 0.8 mg/ml to about 25 mg/ml, from about 0.9 mg/ml to about 25 mg/ml, from about 1.0 mg/ml to about 25 mg/ml, from about 1.1 mg/ml to about 25 mg/ml, from about 1.2 mg/ml to about 25 mg/ml, from about 1.3 mg/ml to about 25 mg/ml, from about 1.4 mg/ml to about 25 mg/ml, from about 1.5 mg/ml to about 25 mg/m
- the cationic oil-in-water emulsion comprises from about 0.8 mg/ml to about 1.6 mg/ml DOTAP, such as 0.8 mg/ml, 1.2 mg/ml, 1.4 mg/ml or 1.6 mg/ml.
- the cationic lipid is DC Cholesterol.
- the cationic oil-in-water emulsion may comprise DC Cholesterol at from about 0.1 mg/ml to about 5 mg/ml DC Cholesterol.
- the cationic oil-in-water emulsion may comprise DC Cholesterol from about 0.1 mg/ml to about 5 mg/ml, from about 0.2 mg/ml to about 5 mg/ml, from about 0.3 mg/ml to about 5 mg/ml, from about 0.4 mg/ml to about 5 mg/ml, from about 0.5 mg/ml to about 5 mg/ml, from about 0.62 mg/ml to about 5 mg/ml, from about 1 mg/ml to about 5 mg/ml, from about 1.5 mg/ml to about 5 mg/ml, from about 2 mg/ml to about 5 mg/ml, from about 2.46 mg/ml to about 5 mg/ml, from about 3 mg/ml to about 5 mg/ml, from about 3.5 mg/ml to about 5 mg/ml, from about 4 mg/ml to about 5 mg/ml, from about 4.5 mg/ml to about 5 mg/ml, from about 0.1 mg/ml to about 4.92 mg
- the cationic lipid is DDA.
- the cationic oil- in-water emulsion may comprise from about 0.1 mg/ml to about 5 mg/ml DDA.
- the cationic oil-in-water emulsion may comprise DDA at from about 0.1 mg/ml to about 5 mg/ml, from about 0.1 mg/ml to about 4.5 mg/ml, from about 0.1 mg/ml to about 4 mg/ml, from about 0.1 mg/ml to about 3.5 mg/ml, from about 0.1 mg/ml to about 3 mg/ml, from about 0.1 mg/ml to about 2.5 mg/ml, from about 0.1 mg/ml to about 2 mg/ml, from about 0.1 mg/ml to about 1.5 mg/ml, from about 0.1 mg/ml to about 1.45 mg/ml, from about 0.2 mg/ml to about 5 mg/ml, from about 0.3 mg/ml to about 5 mg/ml, from about
- the cationic oil-in-water emulsion may comprise DDA at about 20 mg/ml, about 21 mg/ml, about 21.5 mg/ml, about 21.6 mg/ml, about 25 mg/ml.
- the cationic oil-in-water emulsion comprises from about 0.73 mg/ml to about 1.45 mg/ml DDA, such as 1.45 mg/ml.
- RNA molecules of the invention can also be delivered to cells ex vivo, such as cells explanted from an individual patient (e.g., lymphocytes, bone marrow aspirates, tissue biopsy) or universal donor hematopoietic stem cells, followed by reimplantation of the cells into a patient, usually after selection for cells which have been transfected with the RNA molecule.
- cells ex vivo such as cells explanted from an individual patient (e.g., lymphocytes, bone marrow aspirates, tissue biopsy) or universal donor hematopoietic stem cells, followed by reimplantation of the cells into a patient, usually after selection for cells which have been transfected with the RNA molecule.
- the appropriate amount of cells to deliver to a patient will vary with patient conditions, and desired effect, which can be determined by a skilled artisan. See e.g., U.S. Pat. Nos. 6,054,288; 6,048,524; and 6,048,729.
- the cells used are autologous, i
- the immunogenic compositions provided herein include or optionally include one or more immunoregulatory agents such as adjuvants.
- immunoregulatory agents such as adjuvants.
- exemplary adjuvants include, but are not limited to, a TH1 adjuvant and/or a TH2 adjuvant, further discussed below.
- the adjuvants used in the immunogenic compositions provide herein include, but are not limited to:
- PCPP Polyphosphazene
- Immunostimulatory polynucleotide such as RNA or DNA; e.g., CpG-containing oligonucleotides
- Mineral containing compositions suitable for use as adjuvants include mineral salts, such as aluminum salts and calcium salts.
- the immunogenic composition may include mineral salts such as hydroxides (e.g., oxyhydroxides), phosphates (e.g., hydroxyphosphates, orthophosphates), sulfates, etc. (see, e.g., VACCINE DESIGN: THE SUBUNIT AND ADJUVANT APPROACH (Powell, M.F. and Newman, MJ. eds.) (New York: Plenum Press) 1995, Chapters 8 and 9), or mixtures of different mineral compounds (e.g.
- the mineral containing compositions may also be formulated as a particle of metal salt (WO
- Aluminum salts may be included in vaccines of the invention such that the dose of Al 3+ is between 0.2 and 1.0 mg per dose.
- the aluminum based adjuvant is alum (aluminum potassium sulfate (A1K(S0 4 ) 2 ), or an alum derivative, such as that formed in- situ by mixing an antigen in phosphate buffer with alum, followed by titration and precipitation with a base such as ammonium hydroxide or sodium hydroxide.
- Aluminum-based adjuvant suitable for use in vaccine formulations is aluminum hydroxide adjuvant (Al(OH) 3 ) or crystalline aluminum oxyhydroxide (AIOOH), which is an excellent adsorbant, having a surface area of approximately 500m 2 /g.
- the aluminum based adjuvant can be aluminum phosphate adjuvant (A1P0 4 ) or aluminum hydroxyphosphate, which contains phosphate groups in place of some or all of the hydroxyl groups of aluminum hydroxide adjuvant.
- Preferred aluminum phosphate adjuvants provided herein are amorphous and soluble in acidic, basic and neutral media.
- the adjuvant comprises both aluminum phosphate and aluminum hydroxide.
- the adjuvant has a greater amount of aluminum phosphate than aluminum hydroxide, such as a ratio of 2: 1, 3: 1, 4: 1, 5: 1, 6: 1, 7: 1, 8: 1, 9: 1 or greater than 9: 1, by weight aluminum phosphate to aluminum hydroxide.
- aluminum salts in the vaccine are present at 0.4 to 1.0 mg per vaccine dose, or 0.4 to 0.8 mg per vaccine dose, or 0.5 to 0.7 mg per vaccine dose, or about 0.6 mg per vaccine dose.
- the preferred aluminum-based adjuvant(s), or ratio of multiple aluminum-based adjuvants, such as aluminum phosphate to aluminum hydroxide is selected by optimization of electrostatic attraction between molecules such that the antigen carries an opposite charge as the adjuvant at the desired pH.
- pretreatment of aluminum hydroxide with phosphate lowers its isoelectric point, making it a preferred adjuvant for more basic antigens.
- Oil-emulsion compositions and formulations suitable for use as adjuvants include squalene-water emulsions, such as MF59 (5% Squalene, 0.5% Tween 80, and 0.5% Span 85, formulated into submicron particles using a microfluidizer). See WO 90/14837. See also, Podda (2001) VACCINE 19: 2673-2680; Frey et al. (2003) Vaccine 21 :4234-4237. MF59 is used as the adjuvant in the FLU ADTM influenza virus trivalent subunit vaccine.
- MF59 5% Squalene, 0.5% Tween 80, and 0.5% Span 85
- Particularly preferred oil-emulsion adjuvants for use in the compositions are submicron oil-in-water emulsions.
- Preferred submicron oil-in-water emulsions for use herein are squalene/water emulsions optionally containing varying amounts of MTP-PE, such as a submicron oil-in-water emulsion containing 4-5%) w/v squalene, 0.25-1.0%) w/v Tween 80TM (polyoxyethylenesorbitan monooleate), and/or 0.25-1.0%) Span 85TM (sorbitan trioleate), and, optionally, N-acetylmuramyl-L-alanyl-D- isogluatminyl-L-alanine-2-(l'-2'- dipalmitoyl-SM-glycero-3 - huydroxyphosphophoryloxy)-ethylamine (MTP-PE), for example, the submicron oil-in
- MF59 contains 4-5% w/v Squalene (e.g. 4.3%), 0.25- 0.5% w/v Tween 80TM, and 0.5% w/v Span 85TM and optionally contains various amounts of MTP-PE, formulated into submicron particles using a micro fluidizer such as Model 11 OY micro fluidizer
- MTP-PE may be present in an amount of about 0-500 ⁇ g/dose, more preferably 0-250 ⁇ g/dose and most preferably, 0-100 ⁇ g/dose.
- MF59-0 refers to the above submicron oil-in-water emulsion lacking MTP-PE
- MF59-MTP denotes a formulation that contains MTP- PE.
- MF59-100 contains 100 ⁇ g MTP-PE per dose, and so on.
- MF69 another submicron oil-in-water emulsion for use herein, contains 4.3% w/v squalene, 0.25% w/v Tween 80TM, and 0.75% w/v Span 85TM and optionally MTP-PE.
- MF75 also known as SAF, containing 10% squalene, 0.4% Tween 80TM, 5% pluronic -blocked polymer L121, and thr-MDP, also
- MF75-MTP denotes an MF75 formulation that includes MTP, such as from 100-400 ⁇ g MTP-PE per dose.
- CFA Complete Freund's adjuvant
- IF A incomplete Freund's adjuvant
- Saponins are a heterologous group of sterol glycosides and triterpenoid glycosides that are found in the bark, leaves, stems, roots and even flowers of a wide range of plant species. Saponins isolated from the bark of the Quillaia saponaria Molina tree have been widely studied as adjuvants. Saponins can also be commercially obtained from Smilax ornata (sarsaprilla), Gypsophilla paniculata (brides veil), and Saponaria officianalis (soap root). Saponin adjuvant formulations include purified formulations, such as QS21, as well as lipid formulations, such as ISCOMs. Saponin adjuvant formulations include STIMULON ® adjuvant (Antigenics, Inc., Lexington, MA).
- Saponin compositions have been purified using High Performance Thin Layer Chromatography (HP-TLC) and Reversed Phase High Performance Liquid Chromatography (RP-HPLC). Specific purified fractions using these techniques have been identified, including QS7, QS 17, QS 18, QS21, QH-A, QH-B and QH-C.
- the saponin is QS21.
- a method of production of QS21 is disclosed in U.S. Patent No. 5,057,540.
- Saponin formulations may also comprise a sterol, such as cholesterol (see WO 96/33739).
- Saponin formulations may include sterols, cholesterols and lipid formulations. Combinations of saponins and cholesterols can be used to form unique particles called Immunostimulating Complexes (ISCOMs). ISCOMs typically also include a phospholipid such as phosphatidylethanolamine or phosphatidylcholine. Any known saponin can be used in ISCOMs. Preferably, the ISCOM includes one or more of Quil A, QHA and QHC. ISCOMs are further described in EP 0 109 942, WO 96/11711 and WO 96/33739. Optionally, the ISCOMS may be devoid of (an) additional
- Virosomes and Virus Like Particles generally contain one or more proteins from a virus optionally combined or formulated with a phospholipid. They are generally non-pathogenic, non-replicating and generally do not contain any of the native viral genome. The viral proteins may be recombinantly produced or isolated from whole viruses.
- viral proteins suitable for use in virosomes or VLPs include proteins derived from influenza virus (such as HA or NA), Hepatitis B virus (such as core or capsid proteins), Hepatitis E virus, measles virus, Sindbis virus, Rotavirus, Foot-and- Mouth Disease virus, Retrovirus, Norwalk virus, human Papilloma virus, HIV, RNA- phages, Q -phage (such as coat proteins), GA-phage, fr-phage, AP205 phage, and Ty (such as retrotransposon Ty protein pi).
- influenza virus such as HA or NA
- Hepatitis B virus such as core or capsid proteins
- Hepatitis E virus measles virus
- Sindbis virus Rotavirus
- Foot-and- Mouth Disease virus Retrovirus
- Norwalk virus Norwalk virus
- human Papilloma virus HIV
- RNA- phages Q -phage (such as coat proteins)
- Virosomes are discussed further in, for example, Gluck et al. (2002) VACCINE 20:B10-B16.
- Immunopotentiating reconstituted influenza virosomes (IRIV) are used as the subunit antigen delivery system in the intranasal trivalent LNFLEXALTM product (Mischler and Metcalfe (2002) VACCINE 20 Suppl 5:B17-B23) and the LNFLUVAC PLUSTM product.
- Bacterial or microbial derivatives suitable for use as adjuvants include, but are not limited to:
- Non-toxic derivatives of enterobacterial lipopolysaccharide include Monophosphoryl lipid A (MPL) and 3-O-deacylated MPL (3dMPL).
- MPL Monophosphoryl lipid A
- 3dMPL 3-O-deacylated MPL
- 3dMPL is a mixture of 3 De-O-acylated monophosphoryl lipid A with 4, 5 or 6 acylated chains.
- a preferred "small particle” form of 3 De-O-acylated monophosphoryl lipid A is disclosed in EP 0 689 454.
- Such "small particles" of 3dMPL are small enough to be sterile filtered through a 0.22 micron membrane (see EP 0 689 454).
- LPS derivatives include monophosphoryl lipid A mimics, such as aminoalkyl glucosaminide phosphate derivatives, e.g., RC-529. See Johnson et al. (1999) Bioorg. Med. Chem. Lett. 9:2273-2278.
- Lipid A derivatives include derivatives of lipid A from Escherichia coli such as OM- 174.
- OM- 174 is described for example in Meraldi et al. (2003) Vaccine 21 :2485-2491; and Pajak et al. (2003) Vaccine 21 :836- 842.
- Another exemplary adjuvant is the synthetic phospholipid dimer, E6020 (Eisai Co. Ltd., Tokyo, Japan), which mimics the physicochemical and biological properties of many of the natural lipid A's derived from Gram- negative bacteria.
- Immunostimulatory oligonucleotides or polymeric molecules suitable for use as adjuvants in the invention include nucleotide sequences containing a CpG motif (a sequence containing an unmethylated cytosine followed by guanosine and linked by a phosphate bond). Bacterial double stranded RNA or oligonucleotides containing palindromic or poly(dG) sequences have also been shown to be immunostimulatory.
- the CpG 's can include nucleotide modifications/analogs such as phosphorothioate modifications and can be double- stranded or single-stranded.
- the guanosine may be replaced with an analog such as 2'-deoxy-7- deazaguanosine.
- an analog such as 2'-deoxy-7- deazaguanosine.
- the CpG sequence may be directed to TLR9, such as the motif GTCGTT or TTCGTT. See Kandimalla et al. (2003) Biochem. Soc. Trans. 31 (part 3):654-658.
- the CpG sequence may be specific for inducing a Thl immune response, such as a CpG-A ODN, or it may be more specific for inducing a B cell response, such a CpG-B ODN.
- CpG-A and CpG-B ODNs are discussed in Blackwell et al. (2003) J.
- the CpG is a CpG-A ODN.
- the CpG oligonucleotide is constructed so that the 5' end is accessible for receptor recognition.
- two CpG oligonucleotide sequences may be attached at their 3' ends to form "immunomers". See, for example, Kandimalla et al. (2003) BBRC 306:948-953; Kandimalla et al. (2003) Biochem. Soc. Trans. 3 l(part 3):664-658' Bhagat et al. (2003) BBRC 300:853-861; and WO03/035836.
- Immunostimulatory oligonucleotides and polymeric molecules also include alternative polymer backbone structures such as, but not limited to, polyvinyl backbones (Pitha et al. (1970) Biochem. Biophys. Acta 204(l):39-48; Pitha et al. (1970) Biopolymers 9(8):965-977), and morpholino backbones (U.S. Patent No. 5,142,047; U.S. Patent No. 5,185,444). A variety of other charged and uncharged polynucleotide analogs are known in the art.
- Adjuvant IC31 Intercell AG, Vienna, Austria, is a synthetic formulation that contains an antimicrobial peptide, KLK, and an immunostimulatory oligonucleotide, ODNIa.
- the two component solution may be simply mixed with antigens (e.g., particles in accordance with the invention with an associated antigen), with no conjugation required.
- ADP-ribosylating toxins and detoxified derivatives thereof Bacterial ADP- ribosylating toxins and detoxified derivatives thereof may be used as adjuvants in the invention.
- the protein is derived from E. coli (i.e., E. coli heat labile enterotoxin "LT"), cholera ("CT"), or pertussis ("PT").
- E. coli heat labile enterotoxin
- CT cholera
- PT pertussis
- the use of detoxified ADP- ribosylating toxins as mucosal adjuvants is described in WO 95/17211 and as parenteral adjuvants in WO 98/42375.
- the adjuvant is a detoxified LT mutant such as LT-K63, LT-R72, and LTR192G.
- LT-K63 LT-K63
- LT-R72 detoxified LT mutant
- LTR192G LTR192G.
- ADP-ribosylating toxins and detoxified derivatives thereof, particularly LT-K63 and LT-R72, as adjuvants can be found in the following references: Beignon et al. (2002) Infect. Immun. 70(6):3012-3019; Pizza et al. (2001) Vaccine 19:2534-2541; Pizza et al. (2000) J. Med. Microbiol. 290(4-5):455- 461; Scharton-Kersten et al. (2000) Infect. Immun. 68(9):5306-5313' Ryan et al. (1999) Infect. Immun. 67(12):6270-6280; Partidos et al. (1999) Immunol. Lett. 67
- Bioadhesives and mucoadhesives may also be used as adjuvants.
- Suitable bioadhesives include esterified hyaluronic acid microspheres (Singh et al. (2001) J. Cont. Release 70:267-276) or mucoadhesives such as cross-linked derivatives of polyacrylic acid, polyvinyl alcohol, polyvinyl pyrollidone, polysaccharides and carboxymethylcellulose. Chitosan and derivatives thereof may also be used as adjuvants in the invention (see WO 99/27960).
- liposome formulations suitable for use as adjuvants are described in U.S. Patent No. 6,090,406; U.S. Patent No. 5,916,588; and EP Patent Publication No. EP 0 626 169.
- Adjuvants suitable for use in the invention include polyoxyethylene ethers and polyoxyethylene esters (see, e.g., WO 99/52549). Such formulations further include polyoxyethylene sorbitan ester surfactants in combination with an octoxynol (WO 01/21207) as well as polyoxyethylene alkyl ethers or ester surfactants in combination with at least one additional non-ionic surfactant such as an octoxynol (WO 01/21152).
- Preferred polyoxyethylene ethers are selected from the following group:
- polyoxyethylene-9-lauryl ether laureth 9
- polyoxyethylene-9-steoryl ether polyoxyethylene-9-steoryl ether
- PCPP formulations suitable for use as adjuvants are described, for example, in Andrianov et al. (1998) Biomaterials 19(1-3): 109-115; and Payne et al. (1998) Adv. Drug Del. Rev. 31(3): 185-196.
- muramyl peptides suitable for use as adjuvants include N-acetyl- muramyl-L-threonyl-D-isoglutamine (thr-MDP), N-acetyl-normuramyl- 1 - alanyl-d- isoglutamine (nor-MDP), and N-acetylmuramyl-l-alanyl-d-isoglutaminyl-1- alanine-2-(l'- 2'-dipalmitoyl-sn-glycero-3-hydroxyphosphoryloxy)-ethylamine MTP-PE).
- thr-MDP N-acetyl- muramyl-L-threonyl-D-isoglutamine
- nor-MDP N-acetyl-normuramyl- 1 - alanyl-d- isoglutamine
- imidazoquinoline compounds suitable for use as adjuvants include Imiquimod and its analogues, which are described further in Stanley (2002) Clin. Exp. Dermatol. 27(7):571-577; Jones (2003) Curr. Opin. Investig. Drugs 4(2):214-218; and U.S. Patent Nos. 4,689,338; 5,389,640; 5,268,376; 4,929,624;
- thiosemicarbazone compounds suitable for use as adjuvants, as well as methods of formulating, manufacturing, and screening for such compounds, include those described in WO 04/60308.
- the thiosemicarbazones are particularly effective in the stimulation of human peripheral blood mononuclear cells for the production of cytokines, such as TNF-a.
- tryptanthrin compounds suitable for use as adjuvants include those described in WO 04/64759.
- the tryptanthrin compounds are particularly effective in the stimulation of human peripheral blood mononuclear cells for the production of cytokines, such as TNF-a.
- examples of benzonaphthyridine compounds suitable for use as adjuvants include:
- benzonaphthyridine compounds suitable for use as adjuvants include those described in WO 2009/111337.
- Lipopeptides suitable for use as adjuvants are described above.
- Other exemplary lipopeptides include, e.g., LP 40, which is an agonist of TLR2. See, e.g., Akdis, et al, EUR. J. IMMUNOLOGY, 33: 2717-26 (2003).
- Murein lipopeptides are lipopeptides derived from E. coli. See, Hantke, et al., Eur. J. Biochem., 34: 284-296 (1973).
- Murein lipopeptides comprise a peptide linked to N-acetyl muramic acid, and are thus related to Muramyl peptides, which are described in Baschang, et al., Tetrahedron, 45(20): 6331-6360 (1989).
- the human immunomodulators suitable for use as adjuvants include, but are not limited to, cytokines, such as, by way of example only, interleukins (IL-1 , IL- 2, IL-4, IL-5, IL-6, IL-7, IL-12), interferons (such as, by way of example only, interferon- ⁇ ), macrophage colony stimulating factor, and tumor necrosis factor.
- cytokines such as, by way of example only, interleukins (IL-1 , IL- 2, IL-4, IL-5, IL-6, IL-7, IL-12
- interferons such as, by way of example only, interferon- ⁇
- macrophage colony stimulating factor such as, by way of example only, macrophage colony stimulating factor, and tumor necrosis factor.
- Microparticles suitable for use as adjuvants include, but are not limited to, microparticles formed from materials that are biodegradable and non-toxic (e.g. a poly(.alpha.-hydroxy acid), a polyhydroxybutyric acid, a polyorthoester, a polyanhydride, a polycaprolactone, etc.), with poly(lactide-co-glycolide).
- such microparticles are treated to have a negatively-charged surface (e.g. with SDS) or a positively-charged surface (e.g. with a cationic detergent, such as CTAB).
- microparticles suitable for use as adjuvants have a particle diameter of about 100 nm to about 150 ⁇ in diameter. In certain embodiments, the particle diameter is about 200 nm to about 30 ⁇ , and in other embodiments the particle diameter is about 500 nm to 10 ⁇ .
- KITS KITS
- kits wherein an RNA molecule encoding a first polypeptide antigen (the RNA component); and a second polypeptide antigen (the polypeptide component), are in separate containers.
- the kit can contain a first container comprising a composition comprising an RNA molecule encoding a first polypeptide antigen, and a second container comprising a composition comprising a second polypeptide antigen.
- the polypeptide or the RNA molecule can be in liquid form or can be in solid form (e.g., lyophilized).
- kits described may be used for co-delivery of the RNA component and the polypeptide component of the immunogenic compositions described herein (e.g., the RNA component and the polypeptide component are mixed prior to administration for simultaneous delivery, e.g., mixed within about 72 hours, about 48 hours, about 24 hours, about 12 hours, about 10 hours, about 9 hours, about 8 hours, about 7 hours, about 6 hours, about 5 hours, about 4 hours, about 3 hours, about 2 hours, about 1 hour, about 45 minutes, about 30 minutes, about 15 minutes, about 10 minutes, or about 5 minutes prior to administration).
- the RNA component and the polypeptide component are mixed prior to administration for simultaneous delivery, e.g., mixed within about 72 hours, about 48 hours, about 24 hours, about 12 hours, about 10 hours, about 9 hours, about 8 hours, about 7 hours, about 6 hours, about 5 hours, about 4 hours, about 3 hours, about 2 hours, about 1 hour, about 45 minutes, about 30 minutes, about 15 minutes, about 10 minutes, or about 5 minutes prior to administration).
- the invention provides a kit comprising: (i) a priming composition comprising a self-replicating RNA molecule that encodes a first polypeptide antigen that comprises a first epitope; and (ii) a boosting composition comprising a second polypeptide antigen that comprises a second epitope; wherein said first epitope and second epitope are the same epitope.
- the kits are suitable for sequential administration of the RNA and the polypeptide, such as a "RNA prime, protein boost" immunization regimen to generate an immune response to a pathogen.
- RNA-coded antigen the first polypeptide antigen
- polypeptide antigen the second polypeptide antigen
- Suitable antigens that can be used as the RNA-coded antigen (the first polypeptide antigen) for the priming composition, or the polypeptide antigen (the second polypeptide antigen) for the boosting composition include proteins and peptides derived from HIV.
- the RNA molecule of the priming composition can be delivered as naked RNA (e.g. merely as an aqueous solution of RNA).
- the priming composition may optionally comprise a delivery system (such as a particulate or emulsion delivery system), so that the RNA molecule is administered in combination with the delivery system.
- the delivery system may be in the same container as the RNA molecule (e.g., pre- formulated), or in a different container from the RNA (e.g., the RNA and the delivery system are separately packaged, and may be combined, e.g., within about 72 hours, about 48 hours, about 24 hours, about 12 hours, about 10 hours, about 9 hours, about 8 hours, about 7 hours, about 6 hours, about 5 hours, about 4 hours, about 3 hours, about 2 hours, about 1 hour, about 45 minutes, about 30 minutes, about 15 minutes, about 10 minutes, or about 5 minutes prior to administration).
- the priming composition, the boosting composition, or both may optionally include one or more immunoregulatory agents such as adjuvants, as described herein.
- the immunoregulatory agent may be in the same container as the priming or boosting composition, or in a separate contained that can be combined with the priming or boosting composition prior to administration.
- the priming composition comprising the RNA molecule or the boosting composition comprising the polypeptide can be in liquid form or can be in solid form (e.g., lyophilized).
- Suitable containers include, for example, bottles, vials, syringes, and test tubes.
- Containers can be formed from a variety of materials, including glass or plastic.
- a container may have a sterile access port (for example, the container may be an intravenous solution bag or a vial having a stopper pierceable by a hypodermic injection needle).
- the kit can further comprise a third container comprising a pharmaceutically-acceptable buffer, such as phosphate-buffered saline, Ringer's solution, or dextrose solution. It can also contain other materials useful to the end-user, including other pharmaceutically acceptable formulating solutions such as buffers, diluents, filters, needles, and syringes or other delivery device.
- a pharmaceutically-acceptable buffer such as phosphate-buffered saline, Ringer's solution, or dextrose solution. It can also contain other materials useful to the end-user, including other pharmaceutically acceptable formulating solutions such as buffers, diluents, filters, needles, and syringes or other delivery device.
- the kit may further include a fourth container comprising an adjuvant (such as an aluminum containing adjuvant or MF59).
- the kit can also comprise a package insert containing written instructions for methods of inducing immunity or for treating infections.
- the package insert can be an unapproved draft package insert or can be a package insert approved by the Food and Drug Administration (FDA) or other regulatory body.
- FDA Food and Drug Administration
- the invention also provides a delivery device pre-filled with the immunogenic compositions, the priming compositions, or the boosting compositions described above.
- the invention relates to pharmaceutical compositions comprising an RNA component and a polypeptide component.
- the pharmaceutical composition comprises: (i) a self-replicating RNA molecule that encodes a first polypeptide antigen comprising a first epitope (the RNA component); and (ii) a second polypeptide antigen comprising a second epitope (the polypeptide component); wherein said first epitope and second epitope are epitopes from HIV; and (iii) a pharmaceutically acceptable carrier and/or a pharmaceutically acceptable vehicle.
- the invention in another aspect, relates to a kit comprising: (i) a priming composition comprising a self-replicating RNA molecule that encodes a first polypeptide antigen that comprises a first epitope; and (ii) a boosting composition comprising a second polypeptide antigen that comprises a second epitope; wherein said first epitope and second epitope are the same epitope; and wherein the priming composition, the boosting composition, or both, comprise(s) a pharmaceutically acceptable carrier and/or a pharmaceutically acceptable vehicle.
- compositions typically include a pharmaceutically acceptable carrier and/or a suitable delivery system as described herein (such as liposomes, nanoemulsions, PLG micro- and nanoparticles, lipoplexes, chitosan micro- and nanoparticles and other polyplexes for RNA delivery). If desired other pharmaceutically acceptable carrier and/or a suitable delivery system as described herein (such as liposomes, nanoemulsions, PLG micro- and nanoparticles, lipoplexes, chitosan micro- and nanoparticles and other polyplexes for RNA delivery). If desired other suitable delivery system as described herein (such as liposomes, nanoemulsions, PLG micro- and nanoparticles, lipoplexes, chitosan micro- and nanoparticles and other polyplexes for RNA delivery). If desired other pharmaceutically acceptable carrier and/or a suitable delivery system as described herein (such as liposomes, nanoemulsions, PLG micro- and nanoparticles, lip
- compositions can be included, such as excipients and adjuvants. These pharmaceutical compositions can be used as vaccines.
- Pharmaceutically acceptable carriers are determined in part by the particular composition being administered, as well as by the particular method used to administer the composition. Accordingly, there is a wide variety of suitable formulations of pharmaceutical compositions of the present invention. A variety of aqueous carriers can be used. Suitable pharmaceutically acceptable carriers for use in the pharmaceutical compositions include plain water (e.g. w.f.i.) or a buffer e.g. a phosphate buffer, a Tris buffer, a borate buffer, a succinate buffer, a histidine buffer, or a citrate buffer. Buffer salts will typically be included in the 5-20mM range.
- compositions are preferably sterile, and may be sterilized by conventional sterilization techniques.
- compositions may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions such as pH adjusting and buffering agents, and tonicity adjusting agents and the like, for example, sodium acetate, sodium chloride, potassium chloride, calcium chloride, sodium lactate and the like.
- the pharmaceutical compositions of the invention may have a pH between 5.0 and 9.5, e.g. between 6.0 and 8.0.
- Pharmaceutical compositions of the invention may include sodium salts (e.g. sodium chloride) to give tonicity.
- a concentration of 10+2 mg/ml NaCl is typical e.g. about 9 mg/ml.
- compositions of the invention may have an osmolarity of between 200 mOsm/kg and 400 mOsm/kg, e.g. between 240-360 mOsm/kg, or between 290-310 mOsm/kg.
- compositions of the invention may include one or more preservatives, such as thiomersal or 2-phenoxyethanol.
- preservatives such as thiomersal or 2-phenoxyethanol.
- Mercury- free compositions are preferred, and preservative- free vaccines can be prepared.
- compositions of the invention are preferably non-pyrogenic e.g. containing ⁇ 1 EU (endotoxin unit, a standard measure) per dose, and preferably ⁇ 0.1 EU per dose.
- Pharmaceutical compositions of the invention are preferably gluten free.
- the concentrations of the polypeptide molecule and/or the RNA molecule in the pharmaceutical compositions can vary, and will be selected based on fluid volumes, viscosities, body weight and other considerations in accordance with the particular mode of administration selected and the intended recipient's needs.
- the pharmaceutical compositions are formulated to provide an effective amount of RNA + polypeptide (either administered simultaneously, or administered sequentially, such as RNA prime, protein boost), such as an amount (either in a single dose or as part of a series) that is effective for treatment or prevention. This amount varies depending upon the health and physical condition of the individual to be treated, age, the taxonomic group of individual to be treated (e.g.
- RNA content of compositions will generally be expressed in terms of the amount of RNA per dose.
- a preferred dose has ⁇ 200 ⁇ g, ⁇ 100 ⁇ g, ⁇ 50 ⁇ g, or ⁇ 10 ⁇ g RNA, and expression can be seen at much lower levels e.g. ⁇ ⁇ g/dose, ⁇ lOOng/dose, ⁇ lOng/dose, ⁇ lng/dose, etc.
- the amount of polypeptide in each dose will generally comprise from about 0.1 to about 100 ⁇ g of polypeptide, with from about 5 to about 50 ⁇ g being preferred and from about 5 to about 25 ⁇ g/dose being alternatively preferred.
- the amount of adjuvant if any, will be an amount that will induce an immunomodulating response without significant adverse side effect. An optional amount for a particular vaccine can be ascertained by standard studies involving observation of a vaccine's antibody titers and their virus neutralization capabilities.
- the amount of adjuvant will be from about 1 to about 100 ⁇ g/dose, with from about 5 to about 50 ⁇ g/dose being preferred, and from about 20 to about 50 ⁇ g/dose being alternatively preferred.
- Formulations suitable for parenteral administration include aqueous and non-aqueous, isotonic sterile injection solutions, which can contain antioxidants, buffers, bacteriostats, and solutes that render the formulation isotonic with the blood of the intended recipient, and aqueous and non-aqueous sterile suspensions that can include suspending agents, solubilizers, thickening agents, stabilizers, and preservatives.
- the formulations can be presented in unit-dose or multi-dose sealed containers, such as ampoules and vials.
- Injection solutions and suspensions can be prepared from sterile powders, granules, and tablets. Cells transduced by the RNA molecules can also be administered intravenously or parenterally.
- Formulations suitable for oral administration can consist of (a) liquid solutions, such as an effective amount of the packaged nucleic acid suspended in diluents, such as water, saline or PEG 400; (b) capsules, sachets or tablets, each containing a predetermined amount of the active ingredient, as liquids, solids, granules or gelatin; (c) suspensions in an appropriate liquid; and (d) suitable emulsions.
- liquid solutions such as an effective amount of the packaged nucleic acid suspended in diluents, such as water, saline or PEG 400
- capsules, sachets or tablets each containing a predetermined amount of the active ingredient, as liquids, solids, granules or gelatin
- suspensions in an appropriate liquid such as water, saline or PEG 400
- Tablet forms can include one or more of lactose, sucrose, mannitol, sorbitol, calcium phosphates, corn starch, potato starch, tragacanth, microcrystalline cellulose, acacia, gelatin, colloidal silicon dioxide, croscarmellose sodium, talc, magnesium stearate, stearic acid, and other excipients, colorants, fillers, binders, diluents, buffering agents, moistening agents, preservatives, flavoring agents, dyes, disintegrating agents, and pharmaceutically compatible carriers.
- Lozenge forms can comprise the active ingredient in a flavor, usually sucrose and acacia or tragacanth, as well as pastilles comprising the active ingredient in an inert base, such as gelatin and glycerin or sucrose and acacia emulsions, gels, and the like containing, in addition to the active ingredient, carriers known in the art.
- an inert base such as gelatin and glycerin or sucrose and acacia emulsions, gels, and the like containing, in addition to the active ingredient, carriers known in the art.
- Protection of polypeptide and RNA molecules can typically be accomplished either by complexing the RNA molecule or the polypeptide molecule with a composition to render the RNA/polypeptide resistant to acidic and enzymatic hydrolysis, or by packaging the RNA molecule or the polypeptide molecule in an appropriately resistant carrier such as a liposome.
- Means of protecting nucleic acids (such as RNA molecules) and polypeptides from digestion are well known in the art.
- the pharmaceutical compositions can be encapsulated, e.g., in liposomes, or in a formulation that provides for slow release of the active ingredient.
- the RNA molecule may be formulated as liposomes, then administered as a priming composition.
- liposome-formulated RNA may be mixed with the polypeptide molecule to produce the RNA + polypeptide immunogenic composition of the invention.
- the RNA molecule and the polypeptide molecule can be co- encapsulated in liposomes.
- compositions described herein can be made into aerosol formulations (e.g., they can be "nebulized") to be administered via inhalation. Aerosol formulations can be placed into pressurized acceptable propellants, such as
- Suitable suppository formulations may contain the RNA, the polypeptide, or the polypeptide and RNA combination as described herein, and a suppository base.
- Suitable suppository bases include natural or synthetic triglycerides or paraffin hydrocarbons. It is also possible to use gelatin rectal capsules filled with the polypeptide and RNA molecules as described herein, and a suitable base, for example, liquid triglycerides, polyethylene glycols, and paraffin hydrocarbons.
- the invention provides a method for inducing, generating or enhancing an immune response in a subject in need thereof, such as a human, comprising administering an effective amount of an immunogenic composition comprising an RNA component and a polypeptide component.
- the composition comprises: (i) a self-replicating RNA molecule that encodes a first polypeptide antigen comprising a first epitope (the RNA component); and (ii) a polypeptide antigen comprising a second epitope (the polypeptide component); wherein said first epitope and second epitope are epitopes from HIV.
- the immune response is preferably protective and preferably involves antibodies and/or cell-mediated immunity. The method may be used to induce a primary immune response and/or to boost an immune response.
- the immunogenic compositions disclosed herein may be used in the manufacture of a medicament for inducing, generating, or enhancing an immune response in a subject in need thereof, such as a human.
- the invention provides a method for treating or preventing an infectious disease in a subject (such as a human) in need thereof, comprising administering an effective amount of an immunogenic composition comprising an RNA component and a polypeptide component.
- the composition comprises: (i) a self-replicating RNA molecule that encodes a first polypeptide antigen comprising a first epitope(the RNA component); and (ii) a polypeptide antigen comprising a second epitope (the polypeptide component); wherein said first epitope and second epitope are epitopes from HIV.
- compositions disclosed herein may be used in the manufacture of a medicament for treating or preventing HIV in a subject in need thereof, such as a human.
- the invention provides a method for vaccinating a subject, such as a human, or immunizing a subject against HIV, comprising administering to a subject in need thereof an effective amount of an immunogenic composition comprising an RNA component and a polypeptide component.
- the composition comprises: (i) a self-replicating RNA molecule that encodes a first polypeptide antigen comprising a first epitope (the RNA component); and (ii) a polypeptide antigen comprising a second epitope (the polypeptide component); wherein said first epitope and second epitope are epitopes from HIV.
- the compositions disclosed herein may be used in the manufacture of a medicament for vaccinating a subject in need thereof, such as a human.
- RNA molecule and the polypeptide molecule are coadministered, it may still be desirable to package the polypeptide molecule and RNA molecule separately.
- the two components may be combined, e.g., within about 72 hours, about 48 hours, about 24 hours, about 12 hours, about 10 hours, about 9 hours, about 8 hours, about 7 hours, about 6 hours, about 5 hours, about 4 hours, about 3 hours, about 2 hours, about 1 hour, about 45 minutes, about 30 minutes, about 15 minutes, about 10 minutes, or about 5 minutes prior to administration.
- the polypeptide molecule and RNA molecule can be combined at a patient's bedside.
- One aspect of the invention relates to the "prime and boost" immunization regimes in which the immune response induced by a priming composition is boosted by a boosting composition.
- a boosting composition comprising substantially the same antigen in the same form (e.g., protein prime, protein boost; RNA prime, RNA boost; etc.), substantially the same antigen in a different form (e.g., RNA prime, protein boost; in which the RNA and the protein are directed to the same target antigen), or a different antigen in the same or a different form (e.g., RNA prime targeting antigen 1, protein boost targeting antigen 2, wherein antigen 1 and antigen 2 are different but share a common epitope), may be administered to boost the immune response in the primed host.
- an antigen e.g., a polypeptide antigen, an RNA-coded antigen, an attenuated pathogen, or a combination thereof
- a boosting composition comprising substantially the same antigen in the same form (e.
- the invention provides a method for inducing, generating or enhancing an immune response in a subject in need thereof, such as a human, comprising: (i) administering to a subject in need thereof at least once a therapeutically effective amount of a priming composition comprising a self-replicating RNA molecule that encodes a first polypeptide antigen that comprises a first epitope; and (ii) subsequently administering the subject at least once a therapeutically effective amount of a boosting composition comprising a second polypeptide antigen that comprises a second epitope; wherein said first epitope and second epitope are the same epitope.
- the immune response is preferably protective and preferably involves antibodies and/or cell- mediated immunity.
- the priming and boosting compositions disclosed herein may be used in the manufacture of a medicament for inducing, generating, or enhancing an immune response in a subject in need thereof, such as a human.
- the invention provides a method for treating or preventing HIV in a subject in need thereof, such as a human, comprising: (i)
- a priming composition comprising a self-replicating RNA molecule that encodes a first polypeptide antigen that comprises a first epitope
- a boosting composition comprising a second polypeptide antigen that comprises a second epitope
- the priming and boosting compositions disclosed herein may be used in the manufacture of a medicament for treating or preventing HIV in a subject in need thereof, such as a human.
- the invention provides a method for vaccinating a subject, such as a human, or immunizing a subject, such as a human, against HIV, comprising: (i) administering to a subject in need thereof at least once a therapeutically effective amount of a priming composition comprising a self-replicating RNA molecule that encodes a first polypeptide antigen that comprises a first epitope; and (ii)
- a boosting composition comprising a second polypeptide antigen that comprises a second epitope; wherein said first epitope and second epitope are the same epitope.
- the priming and boosting compositions disclosed herein may be used in the manufacture of a medicament for vaccinating a subject in need thereof, such as a human.
- the priming composition and the boosting composition may be substantially the same (e.g., RNA + protein prime, RNA + protein boost), or may be different (e.g., RNA + protein prime, protein boost).
- the antigens (either in polypeptide form or in RNA-coded form) to be included in the priming and boosting compositions need not be identical, but should share at least one common epitope (e.g., the priming composition comprising an RNA molecule that encodes a first polypeptide antigen that comprises a first epitope; the boosting composition comprising a second polypeptide antigen that comprises a second epitope; wherein said first epitope and second epitope are the same epitope).
- RNA prime, protein boost immunization strategy. Following priming (at least once) with an RNA molecule, a polypeptide molecule is subsequently administered to boost the immune response in the primed host.
- Another embodiment of the invention uses an "RNA+protein prime, protein boost" strategy. Following priming (at least once) with an immunogenic composition comprising an RNA molecule and a polypeptide molecule, a polypeptide molecule is subsequently administered to boost the immune response in the primed host.
- the subject may be primed and/or boosted more than once.
- the immunization strategy can be prime, prime, boost; or prime, boost, boost.
- the priming composition is administered as least twice, at least 3 times, at least 4 times, or at least 5 times.
- the boost composition is administered as least twice, at least 3 times, at least 4 times, or at least 5 times.
- Administration of the boosting composition is generally weeks or months after administration of the priming composition, such as about 1 week, about 2 weeks, about 3 weeks, about 4 weeks, about 8 weeks, about 12 weeks, about 16 weeks, about 20 weeks, about 24 weeks, about 28 weeks, about 32 weeks, about 36 weeks, about 40 weeks, about 44 weeks, about 48 weeks, about 52 weeks, about 1 month, about 2 months, about 3 months, about 4 months, about 5 months, about 6 months, about 7 months, about 8 months, about 9 months, about 10 months, about 11 months, about 12 months, about 18 months, about 2 years, about 3 years, about 4 years, about 5 years, about 6 years, about 7 years, about 8 years, about 9 years, or about 10 years after the priming composition is administered.
- One way of checking efficacy of therapeutic treatment involves monitoring pathogen infection after administration of the compositions or vaccines disclosed herein.
- One way of checking efficacy of prophylactic treatment involves monitoring immune responses, systemically (such as monitoring the level of IgGl and IgG2a production) and/or mucosally (such as monitoring the level of IgA production), against the antigen.
- antigen-specific serum antibody responses are determined post-immunization but pre-challenge whereas antigen-specific mucosal antibody responses are determined post-immunization and post-challenge.
- nucleic acid molecule e.g., the RNA
- the nucleic acid molecule encodes a protein antigen
- Another way of assessing the immunogenicity of the compositions or vaccines disclosed herein where the nucleic acid molecule (e.g., the RNA) encodes a protein antigen is to express the protein antigen recombinantly for screening patient sera or mucosal secretions by immunoblot and/or microarrays. A positive reaction between the protein and the patient sample indicates that the patient has mounted an immune response to the protein in question. This method may also be used to identify immunodominant antigens and/or epitopes within protein antigens.
- compositions can also be determined in vivo by challenging appropriate animal models of the pathogen of interest infection.
- Dosage can be by a single dose schedule or a multiple dose schedule. Multiple doses may be used in a primary immunization schedule and/or in a booster immunization schedule. In a multiple dose schedule the various doses may be given by the same or different routes, e.g., a parenteral prime and mucosal boost, a mucosal prime and parenteral boost, etc. Multiple doses will typically be administered at least 1 week apart ⁇ e.g., about 2 weeks, about 3 weeks, about 4 weeks, about 6 weeks, about 8 weeks, about 10 weeks, about 12 weeks, about 16 weeks, etc.).
- compositions disclosed herein may be used to treat both children and adults.
- a human subject may be less than 1 year old, 1-5 years old, 5-15 years old, 15-55 years old, or at least 55 years old.
- Preferred routes of administration include, but are not limited to, intramuscular, intraperitoneal, intradermal, subcutaneous, intravenous, intraarterial, and intraoccular injection. Oral and transdermal administration, as well as administration by inhalation or suppository is also contemplated. Particularly preferred routes of administration include intramuscular, intradermal and subcutaneous injection. According to some embodiments of the present invention, the composition is administered to a host animal using a needleless injection device, which are well-known and widely available.
- a vaccine that targets a particular target cell type (e.g., an antigen presenting cell or an antigen processing cell).
- a particular target cell type e.g., an antigen presenting cell or an antigen processing cell.
- Catheters or like devices may be used to deliver the composition of the invention, as polypeptide + naked RNA, polypeptide + RNA formulated with a delivery system (e.g., RNA encapsulated in liposomes), RNA only, or polypeptide only into a target organ or tissue.
- a delivery system e.g., RNA encapsulated in liposomes
- RNA only e.g., RNA only
- polypeptide only e.g., RNA only into a target organ or tissue.
- Suitable catheters are disclosed in, e.g., U.S. Pat. Nos.
- RNA molecules of the invention can also be introduced directly into a tissue, such as muscle. See, e.g., U.S. Pat. No. 5,580,859.
- Other methods such as "biolistic” or particle-mediated transformation (see, e.g., Sanford et ah, U.S. Pat. No. 4,945,050; U.S. Pat. No. 5,036,006) are also suitable for introduction of RNA into cells of a mammal. These methods are useful not only for in vivo introduction of RNA into a mammal, but also for ex vivo modification of cells for reintroduction into a mammal.
- the present invention includes the use of suitable delivery systems, such as liposomes, polymer microparticles or submicron emulsion microparticles with encapsulated or adsorbed RNA, or RNA + polypeptide, to deliver the RNA, or RNA + polypeptide, to elicit an immune response.
- suitable delivery systems such as liposomes, polymer microparticles or submicron emulsion microparticles with encapsulated or adsorbed RNA, or RNA + polypeptide, to deliver the RNA, or RNA + polypeptide, to elicit an immune response.
- the invention includes liposomes, microparticles, submicron emulsions, or combinations thereof, with adsorbed and/or encapsulated RNA, or RNA + polypeptide,.
- compositions disclosed herein that include one or more antigens, or are used in conjunction with one or more antigens may be administered to patients at substantially the same time as (e.g., during the same medical consultation or visit to a healthcare professional or vaccination centre) other vaccines, e.g., at substantially the same time as a measles vaccine, a mumps vaccine, a rubella vaccine, a MMR vaccine, a varicella vaccine, a MMRV vaccine, a diphtheria vaccine, a tetanus vaccine, a pertussis vaccine, a DTP vaccine, a conjugated H.
- other vaccines e.g., at substantially the same time as a measles vaccine, a mumps vaccine, a rubella vaccine, a MMR vaccine, a varicella vaccine, a MMRV vaccine, a diphtheria vaccine, a tetanus vaccine, a pertussis vaccine, a DTP vaccine, a conjugated H.
- influenzae type b vaccine an inactivated poliovirus vaccine, a hepatitis B virus vaccine, a meningococcal conjugate vaccine (such as a tetravalent A C W135 Y vaccine), a respiratory syncytial virus vaccine, etc.
- an "antigen” refers to a molecule containing one or more epitopes (either linear, conformational or both), that elicits an immunological response.
- An “epitope” is a portion of an antigen that is recognized by the immune system (e.g., by an antibody, an immunoglobulin receptor, a B cell receptor, or a T cell receptor).
- An epitope can be linear or conformational. Commonly, an epitope is a polypeptide or polysaccharide in a naturally occurring antigen. In artificial antigens it can be a low molecular weight substance such as an arsanilic acid derivative.
- T-cells and B-cells recognize antigens in different ways.
- T-cells recognize peptide fragments of proteins that are embedded in class-II or class-I MHC molecules at the surface of cells
- B-cells recognize surface features of an unprocessed antigen, via immunoglobulin-like cell surface receptors.
- the difference in antigen recognition mechanisms of T-cells and B-cells are reflected in the different natures of their epitopes.
- B-cells recognize surface features of an antigen or a pathogen
- T-cell epitopes (which comprise peptides of about 8-12 amino acids in length) can be "internal" as well as "surface” when viewed in the context of the three- dimensional structure of the antigen.
- a B-cell epitope is preferably exposed on the surface of the antigen or pathogen, and can be linear or conformational, whereas a T-cell epitope is typically linear but is not required to be available or on the surface of the antigen.
- a B-cell epitope will include at least about 5 amino acids but can be as small as 3-4 amino acids.
- a T-cell epitope, such as a CTL epitope will typically include at least about 7-9 amino acids, and a helper T-cell epitope will typically include at least about 12-20 amino acids.
- fusion polypeptide refers to a single polypeptide in which the amino acid sequence is derived from at least two different naturally occurring proteins or polypeptide chains.
- naked refers to nucleic acids that are substantially free of other macromolecules, such as lipids, polymers, and proteins.
- a "naked” nucleic acid such as a self-replicating RNA, is not formulated with other macromolecules to improve cellular uptake. Accordingly, a naked nucleic acid is not encapsulated in, absorbed on, or bound to a liposome, a microparticle or nanoparticle, a cationic emulsion, and the like.
- nucleotide analog or “modified nucleotide” refers to a nucleotide that contains one or more chemical modifications (e.g., substitutions) in or on the nitrogenous base of the nucleoside (e.g., cytosine (C), thymine (T) or uracil (U), adenine (A) or guanine (G)).
- a nucleotide analog can contain further chemical modifications in or on the sugar moiety of the nucleoside (e.g., ribose, deoxyribose, modified ribose, modified deoxyribose, six-membered sugar analog, or open-chain sugar analog), or the phosphate.
- two epitopes are from the same pathogen when the two epitopes are from the same pathogen species, but not necessarily from the same strain, serotype, clade, etc. Therefore, the two epitopes can be from two different subspecies, strains, or serotypes of the same pathogen (e.g., one epitope from HIV-1 Clade B, the other epitope from HIV-1 Clade C; etc.).
- polypeptide antigen refers to a polypeptide comprising one or more epitopes (either linear, conformational or both), that elicits an immunological response.
- Polypeptide antigens include, for example, a naturally- occurring protein, a mutational variant of a naturally-occurring protein (e.g., a protein that has amino acid substitution(s), addition(s), or deletion(s)), a truncated form of a naturally- occurring protein (e.g., an intracellular domain or extracellular domain of a membrane- anchored protein), as well as a fusion protein (a protein that is derived from at least two different naturally occurring proteins or polypeptide chains).
- polypeptide antigens also encompass polypeptides that comprise one or more amino acid
- amino acid derivatives include, e.g., chemical modifications of amino acids such as alkylation, acylation, carbamylation, iodination, etc.
- Amino acid analogues include, e.g., compounds that have the same basic chemical structure as a naturally occurring amino acid, such as homoserine, norleucine, methionine sulfoxide, methionine methyl sulfonium.
- Polypeptide antigens also encompass polypeptides that are modified post-translationally (such as acetylated, phosphorylated, or glycosylated polypeptides). Therefore, an epitope of a polypeptide antigen is not limited to a peptide.
- an epitope of a glycosylated polypeptide may be a saccharide group that is attached to the polypeptide chain.
- Two protein antigens are "substantially the same” if the amino acid sequence identify between the two antigens is at least about 90%, at least about 95%, at least about 96%>, at least about 97%, at least about 98%, or at least about 99%, across the length of the shorter antigen.
- treat include alleviating, abating or ameliorating disease or condition symptoms, preventing additional symptoms, ameliorating or preventing the underlying metabolic causes of symptoms, inhibiting the disease or condition, e.g. , arresting the development of the disease or condition, relieving the disease or condition, causing regression of the disease or condition, relieving a condition caused by the disease or condition, or stopping the symptoms of the disease or condition.
- treatment include, but are not limited to, prophylactic and/or therapeutic treatments
- VRP viral replicon particle
- virus-like particle refers to a structure formed by viral coat proteins (e.g., a capsid) and optionally an evelope, but having no genetic material.
- a VLP resembles a viral particle.
- Plasmid DNA encoding alphavirus replicons (see sequences, vA317, vA17, vA336, vA160, vA322, vA311, vA306, vA142, vA526, vA527, vA318, vA140, vA318, vA372, vA368, vA369) served as a template for synthesis of RNA in vitro.
- Replicons contain the genetic elements required for RNA replication but lack those encoding gene products necessary for particle assembly; the structural genes of the alphavirus genome are replaced by sequences encoding a heterologous protein.
- the positive-stranded RNA is translated to produce four non-structural proteins, which together replicate the genomic RNA and transcribe abundant subgenomic mRNAs encoding the heterologous gene product. Due to the lack of expression of the alphavirus structural proteins, replicons are incapable of inducing the generation of infectious particles.
- a bacteriophage (T7 or SP6) promoter upstream of the alphavirus cDNA facilitates the synthesis of the replicon RNA in vitro and the hepatitis delta virus (HDV) ribozyme immediately downstream of the poly(A)-tail generates the correct 3 '-end through its self-cleaving activity.
- T7 or SP6 promoter upstream of the alphavirus cDNA facilitates the synthesis of the replicon RNA in vitro and the hepatitis delta virus (HDV) ribozyme immediately downstream of the poly(A)-tail generates the correct 3 '-end through its self-cleaving activity.
- HDV hepatitis delta virus
- run-off transcripts were synthesized in vitro using T7 or SP6 bacteriophage derived DNA-dependent RNA polymerase.
- RNA samples Post- transcriptionally capped RNA was precipitated with LiCl and reconstituted in nuclease- free water. The concentration of the RNA samples was determined by measuring the optical density at 260 nm. Integrity of the in vitro transcripts was confirmed by denaturing agarose gel electrophoresis.
- LNP Formulation [00267] l,2-dilinoleyloxy-N,N-dimethyl-3-aminopropane (DlinDMA) was synthesized using a previously published procedure [Heyes, J., Palmer, L., Bremner, K., MacLachlan, I. Cationic lipid saturation influences intracellular delivery of encapsulated nucleic acids. Journal of Controlled Release, 107: 276-287 (2005)]. 1, 2-Diastearoyl-s «- glycero-3-phosphocholine (DSPC) was purchased from Genzyme. Cholesterol was obtained from Sigma- Aldrich (St. Lois, MO).
- DOTAP l,2-dioleoyl-3-trimethylammonium-propane
- DC-chol 3B-[N- (N',N'-dimethylaminoethane)-carbamoyl]cholesterol hydrochloride
- LNPs were formulated using three methods:
- Fresh lipid stock solutions in ethanol were prepared. 37 mg of DlinDMA, 11.8 mg of DSPC, 27.8 mg of Cholesterol and 8.07 mg of PEG DMG 2000 were weighed and dissolved in 7.55 mL of ethanol. The freshly prepared lipid stock solution was gently rocked at 37 °C for about 15 min to form a homogenous mixture. Then, 120.9 ⁇ ⁇ of the stock was added to 1.879 mL ethanol to make a working lipid stock solution of 2 mL. This amount of lipids was used to form LNPs with 40 ⁇ g RNA at a 8: 1 N:P (Nitrogen to Phosphate) ratio.
- RNA The protonatable nitrogen on DlinDMA (the cationic lipid) and phosphates on the RNA are used for this calculation.
- Each ⁇ g of self- replicating RNA molecule was assumed to contain 3 nmoles of anionic phosphate, each ⁇ g of DlinDMA was assumed to contains 1.6 nmoles of cationic nitrogen.
- a 2 mL working solution of RNA was also prepared from a stock solution of - ⁇ g ⁇ L in 100 mM citrate buffer (pH 6) (Teknova). Three 20 mL glass vials (with stir bars) were rinsed with RNase Away solution (Molecular BioProducts) and washed with plenty of MilliQ water before use to decontaminate the vials of RNAses.
- RNA working solution was used for the RNA working solution and the others for collecting the lipid and RNA mixes (as described later).
- the working lipid and RNA solutions were heated at 37 °C for 10 min before being loaded into 3cc luer-lok syringes (BD Medical). 2 mL of citrate buffer (pH 6) was loaded in another 3 cc syringe.
- Syringes containing RNA and the lipids were connected to a T mixer (PEEKTM 500 ⁇ ID junction) using FEP tubing([fluorinated ethylene-propylene] 2mm ID x 3mm OD, Idex Health Science, Oak Harbor, WA). The outlet from the T mixer was also FEP tubing (2mm ID x 3mm).
- the third syringe containing the citrate buffer was connected to a separate piece of tubing (2mm ID x 3mm OD). All syringes were then driven at a flow rate of 7 mL/min using a syringe pump (from kdScientific, model no. KDS-220). The tube outlets were positioned to collect the mixtures in a 20 mL glass vial (while stirring).
- pKas referred to herein are measured in water at standard temperature and pressure. Also, unless otherwise indicated, all references to pKa are references to pKa measured using the following technique. 2mM solution of lipid in ethanol are prepared by weighing the lipid and then dissolving in ethanol. 0.3mM solution of fluorescent probe TNS in ethanokmethanol 9: 1 is prepared by first making 3mM solution of TNS in methanol and then diluting to 0.3mM with ethanol.
- An aqueous buffer containing sodium phosphate, sodium citrate, sodium acetate and sodium chloride, at the concentrations 20mM, 25mM, 20mM and 150 mM, respectively, is prepared.
- the buffer is split into eight parts and the pH adjusted either with 12N HC1 or 6N NaOH to 4.44-4.52, 5.27, 6.15-6.21, 6.57, 7.10-7.20, 7.72-7.80, 8.27-8.33 and 10.47-11.12. 400uL of 2mM lipid solution and 800uL of 0.3mM TNS solution are mixed.
- the background fluorescence value of an empty well on the 96 well plate is subtracted from each probe/lipid/buffer mixture.
- the fluorescence intensity values are then normalized to the value at lowest pH.
- the normalized fluorescence intensity vs. pH chart is then plotted in the Microsoft Excel software. The eight points are connected with a smooth line.
- Fresh lipid stock solutions in ethanol were prepared. 37 mg of DlinDMA, 11.8 mg of DSPC, 27.8 mg of Cholesterol and 8.07 mg of PEG DMG 2000 were weighed and dissolved in 7.55 mL of ethanol. The freshly prepared lipid stock solution was gently rocked at 37 °C for about 15 min to form a homogenous mixture. Then, 226.7 ⁇ ⁇ of the stock was added to 1.773 mL ethanol to make a working lipid stock solution of 2 mL. This amount of lipids was used to form LNPs with 75 ⁇ g RNA at a 8: 1 N:P (Nitrogen to Phosphate) ratio.
- RNA The protonatable nitrogen on DlinDMA (the cationic lipid) and phosphates on the RNA are used for this calculation.
- Each ⁇ g of self- replicating RNA molecule was assumed to contain 3 nmoles of anionic phosphate, each ⁇ g of DlinDMA was assumed to contains 1.6 nmoles of cationic nitrogen.
- a 2 mL working solution of RNA was also prepared from a stock solution of - in 100 mM citrate buffer (pH 6) (Teknova). Three 20 mL glass vials (with stir bars) were rinsed with RNase Away solution (Molecular BioProducts) and washed with plenty of MilliQ water before use to decontaminate the vials of RNAses.
- RNA working solution was used for the RNA working solution and the others for collecting the lipid and RNA mixes (as described later).
- the working lipid and RNA solutions were heated at 37 °C for 10 min before being loaded into 3cc luer-lok syringes (BD Medical). 2 mL of citrate buffer (pH 6) was loaded in another 3 cc syringe.
- Syringes containing RNA and the lipids were connected to a T mixer (PEEKTM 500 ⁇ ID junction) using FEP tubing([fluorinated ethylene-propylene] 2mm ID x 3mm OD, Idex Health Science, Oak Harbor, WA). The outlet from the T mixer was also FEP tubing (2mm ID x 3mm).
- the third syringe containing the citrate buffer was connected to a separate piece of tubing (2mm ID x 3mm OD). All syringes were then driven at a flow rate of 7 mL/min using a syringe pump (from kdScientific, model no. KDS-220). The tube outlets were positioned to collect the mixtures in a 20 mL glass vial (while stirring). The stir bar was taken out and the ethanol/aqueous solution was allowed to equilibrate to room temperature for 1 h.
- TFF system and hollow fiber filtration membranes were purchased from Spectrum Labs and were used according to the manufacturer's guidelines.
- Polyethersulfone (PES) hollow fiber filtration membranes (part number P-Cl-lOOE-100-OlN) with a 100 kD pore size cutoff and 20 cm 2 surface area were used.
- PES Polyethersulfone
- IX PBS IX PBS
- Fresh lipid stock solutions in ethanol were prepared. 37 mg of DlinDMA, 1 1.8 mg of DSPC, 27.8 mg of Cholesterol and 8.07 mg of PEG DMG 2000 were weighed and dissolved in 7.55 mL of ethanol. The freshly prepared lipid stock solution was gently rocked at 37 °C for about 15 min to form a homogenous mixture. Then, 226.7 iL of the stock was added to 1.773 mL ethanol to make a working lipid stock solution of 2 mL. This amount of lipids was used to form LNPs with 75 ⁇ g RNA at a 8: 1 N:P (Nitrogen to Phosphate) ratio.
- RNA The protonatable nitrogen on DlinDMA (the cationic lipid) and phosphates on the RNA are used for this calculation.
- Each ⁇ g of self- replicating RNA molecule was assumed to contain 3 nmoles of anionic phosphate, each ⁇ g of DlinDMA was assumed to contains 1.6 nmoles of cationic nitrogen.
- a 2 mL working solution of RNA was also prepared from a stock solution of - ⁇ g ⁇ L in 100 mM citrate buffer (pH 6) (Teknova). Three 20 mL glass vials (with stir bars) were rinsed with RNase Away solution (Molecular BioProducts) and washed with plenty of MilliQ water before use to decontaminate the vials of RNAses.
- RNA working solution was used for the RNA working solution and the others for collecting the lipid and RNA mixes (as described later).
- the working lipid and RNA solutions were heated at 37 °C for 10 min before being loaded into 3cc luer-lok syringes (BD Medical). 2 mL of citrate buffer (pH 6) was loaded in another 3 cc syringe.
- Syringes containing RNA and the lipids were connected to a T mixer (PEEKTM 500 ⁇ ID junction) using FEP tubing([fluorinated ethylene-propylene] 2mm ID x 3mm OD, Idex Health Science, Oak Harbor, WA). The outlet from the T mixer was also FEP tubing (2mm ID x 3mm).
- the third syringe containing the citrate buffer was connected to a separate piece of tubing (2mm ID x 3mm OD). All syringes were then driven at a flow rate of 7 mL/min using a syringe pump (from kdScientific, model no. KDS-220). The tube outlets were positioned to collect the mixtures in a 20 mL glass vial (while stirring). The stir bar was taken out and the ethano 1/aqueous solution was allowed to equilibrate to room temperature for 1 h.
- Polyethersulfone (PES) hollow fiber filtration membranes (part number P-C 1-100E- 100- 01N) with a 100 kD pore size cutoff and 20 cm 2 surface area were used.
- PES Polyethersulfone
- IX PBS IX PBS
- CNEs were prepared similar to charged MF59 as previously described (Ott et al., Journal of Controlled Release, volume 79, pages 1-5, 2002), with one major modification for CMF34.
- DOTAP was dissolved in the squalene directly, and no organic solvent was used. It was discovered that inclusion of a solvent in emulsions that contained greater than 1.6 mg/ml DOTAP produced a foamy feedstock that could not be microfluidized to produce an emulsion. Heating squalene to 37°C allowed DOTAP to be directly dissolved in squalene, and then the oil phase could be successfully dispersed in the aqueous phase ⁇ e.g., by homogenization) to produce an emulsion.
- the number of nitrogens in solution was calculated from the cationic lipid concentration, DOTAP for example has 1 nitrogen that can be protonated per molecule.
- the RNA concentration was used to calculate the amount of phosphate in solution using an estimate of 3 nmols of phosphate per microgram of RNA.
- the N/P ratio can be modified.
- RNA was complexed to the CNEs in a range of nitrogen / phosphate ratios (N/P). Calculation of the N/P ratio was done by calculating the number of moles of protonatable nitrogens in the emulsion per milliliter. To calculate the number of phosphates, a constant of 3 nmols of phosphate per microgram of RNA was used. N/P ratio was calculated using the formula:
- A is the concentration (mg/ml) of cationic lipid
- B is the amount of RNA (Dg)
- C is the molecular weight of the cationic lipid
- D is the volume of the emulsion to be complexed (ml)
- E is the number of protonizable nitrogen atoms in the cationic lipid.
- the constant 3 is the number of nmoles of phosphate per Dg of RNA.
- the appropriate ratio of the emulsion was added to the RNA.
- the RNA was diluted to the appropriate concentration and added directly into an equal volume of emulsion while vortexing lightly. The solution was allowed to sit at room temperature for approximately 2 hours. Once complexed the resulting solution was diluted to the appropriate concentration and used within 1 hour.
- Particle size was measured using a Zetasizer Nano ZS (Malvern Instruments, Worcestershire, UK) according to the manufacturer's instructions. Particle sizes are reported as the Z average with the polydispersity index (pdi). Liposomes were diluted in IX PBS before measurement.
- RNA and RNA concentration were determined by Quant-iT RiboGreen RNA reagent kit (Invitrogen). Manufacturer's instructions were followed in the assay. The ribosomal RNA standard provided in the kit was used to generate a standard curve. LNPs were diluted ten fold or one hundred fold in IX TE buffer (from kit), before addition of the dye. Separately, LNPs were diluted ten or 100 fold in IX TE buffer containing 0.5% Triton X (Sigma- Aldrich), before addition of the dye.
- Triton X was used to disrupt the LNPs, providing a fluorescence reading corresponding to the total RNA amount and the sample without Triton X provided fluorescence corresponding to the unencapsulated RNA.
- RNAse protection of the encapsulated RNA was performed to evaluate the integrity of the RNA after the formulation process and to assess the RNAse protection of the encapsulated RNA.
- the gel was cast as follows: 0.4g of agarose (Bio-Rad, Hercules, CA) was added to 36 ml of DEPC treated water and heated in a microwave until dissolved and then cooled until warm. 4 ml of lOx denaturing gel buffer (Ambion, Austin, TX), was then added to the agarose solution. The gel was poured and was allowed to set for at least 30 minutes at room temperature. The gel was then placed in a gel tank, and lx Northernmax running buffer (Ambion, Austin, TX) was added to cover the gel by a few millimeters.
- RNase digestion was achieved by incubation with 3.8mAU of RNase A per microgram of RNA (Ambion, Hercules, and CA) for 30 minutes at room temperature.
- RNase was inactivated with Protenase K (Novagen, Darmstadt, Germany) by incubating the sample at 55°C for 10 minutes.
- Post RNase inactivation a 1 : 1 v/v mixture of sample to 25:24: 1 v/v/v, phenol: chloroform: isoamyl alcohol was added to extract the RNA from the lipids into the aqueous phase. Samples were mixed by vortexing for a few seconds and then placed on a centrifuge for 15 minutes at 12k RPM. The aqueous phase (containing the RNA) was removed and used to analyze the RNA. Prior to loading (400 ng RNA per well) all the samples were incubated with
- SEAP Secreted alkaline phosphatase
- RNA replicon encoding for SEAP was administered with and without formulation to mice via intramuscularly injection.
- Groups of 5 female BALB/c mice aged 8-10 weeks and weighing about 20g were immunized with liposomes encapsulating RNA encoding for SEAP. Naked RNA was administered in RNase free IX PBS.
- VRPs viral replicon particles
- a ⁇ dose was administered to each mouse (50 ⁇ 1 per site) in the quadriceps muscle. Blood samples were taken 1, 3, and 6 days post injection. Serum was separated from the blood immediately after collection, and stored at -30°C until use.
- a chemiluminescent SEAP assay Phospha-Light System (Applied Biosystems, Bedford, MA) was used to analyze the serum.
- Mouse sera were diluted 1 :4 in IX Phospha-Light dilution buffer.
- Samples were placed in a water bath sealed with aluminum sealing foil and heat inactivated for 30 minutes at 65 °C. After cooling on ice for 3 minutes, and equilibrating to room temperature, 50 ⁇ ⁇ of Phospha-Light assay buffer was added to the wells and the samples were left at room temperature for 5 minutes.
- reaction buffer containing 1 :20 CSPD® (chemiluminescent alkaline phosphate substrate) substrate 50 ⁇ ⁇ of reaction buffer containing 1 :20 CSPD® (chemiluminescent alkaline phosphate substrate) substrate was added, and the luminescence was measured after 20 minutes of incubation at room temperature. Luminescence was measured on a Berthold Centro LB 960 luminometer (Oak Ridge, TN) with a 1 second integration per well. The activity of SEAP in each sample was measured in duplicate and the mean of these two measurements taken.
- VRP Viral replicon particles
- VRPs viral replicon particles
- the antigen (or reporter gene) replicons consisted of alphavirus chimeric replicons (VCR) derived from the genome of Venezuelan equine encephalitis virus (VEEV) engineered to contain the 3' terminal sequences (3' UTR) of Sindbis virus and a Sindbis virus packaging signal (PS) (see Fig. 2 of Perri et al).
- VCR alphavirus chimeric replicons
- VEEV Venezuelan equine encephalitis virus
- PS Sindbis virus packaging signal
- EXAMPLE I HIV ENVELOP PROTEINS STUDY 1 - GP160/GP140 (RNA PRIME, PROTEIN BOOST)
- HIV envelop proteins gpl60 and gpl40 from HIV-1 Clade B (SF162), and from Clade C (DU422.1) were used as antigens.
- a "RNA prime, protein boost" regimen was used to assess the effect of sequential administration of (i) an RNA molecule that encodes HIV gpl60, and (ii) a "cognate" polypeptide molecule, gpl40.
- gpl40 polypeptide corresponds to a truncated form of gp 160 where the transmembrane spanning domain of gp 160 has been deleted.
- the polypeptide antigen is a "cognate” antigen because it is a truncated form of and is substantially the same as the polypeptide encoded by the RNA molecule.
- RNA replicon expresses the gpl60 envelope protein from the Clade B SF162 strain.
- the vector used to transcribe the RNA, the annotated sequence of the vector and the insert are shown in Fig 19.
- RNA production and purification - DNA was first linearized using Pmel and purified by phenol: chloroform extraction. RNA was in vitro transcribed using Ambion's MEGAscript T7 kit and purified by LiCl precipitation. Uncapped RNA was then 5' capped using Cellscript's Scriptcap m 7 G Capping Enzyme System and purified by LiCl precipitation. RNA product was then visually confirmed by denaturing the RNA and running on an agarose gel.
- pCMV-KM2 gpl60.SF162 mod - this DNA vector expresses the gpl60 envelope protein from the Clade B SF162 strain. Gag and Env are cloned into the following eucaryotic expression vectors: pCMVKm2, for transient expression assays and DNA immunization studies, the pCMVKm2 vector is derived from pCMV6a (Chapman et al., Nuc. Acids Res.
- the pCMVKm2 vector differs from the pCMV-link vector only in that a polylinker site is inserted into pCMVKm2 to generate pCMV-link; pESN2dhfr and pCMVPLEdhfr, for expression in Chinese Hamster Ovary (CHO) cells (See US Patent 7,943,375). DNA production - plasmid DNA was used to transform Invitrogen Topten cells as per the protocol.
- Plasmid DNA was then purified from the culture using QIAGEN's EndoFree Plasmid Maxi Kit.
- VRP viral replicon particle
- VRP gpl40.dV2.SF162 - this VRP expresses the gpl40 envelope protein (variable loop 2 deleted) from the Clade B SF162 strain. See, e.g., Perri et al. (2003). J. Virol. 77(19): 10394- 10403 regarding production and characterization of V Ps.
- gpl40 protein from Clade B SF162 strain - gpl20 Env protein was expressed either from CHO stable cell lines or HEK293T transient transfections; in either case gpl20 was expressed as a secreted, soluble protein.
- the conditioned medium was concentrated lOx and purified following a 2-step protocol including a Galanthus Nivalis lectin agarose capture step followed by cleaning using a DEAE column:
- a Galanthus Nivalis lectin agarose (GNA) column was equilibrated with a buffer
- Gpl20 was captured on GNA column. After washing the column until A280 reading returns to baseline, the GNA column was connected in line with a DEAE column and a polymyxin column (to remove endotoxin) equilibrated with column buffer. Gpl20 was eluted with column buffer with the addition of 500 mM MMP. Only contaminating proteins, but not gpl20, bind to DEAE. Elution continues for about 7 column volumes or until A280 returns to baseline.
- Integrity of the protein was assessed by non reducing SDS-PAGE and SEC-HPLC.
- RNA or DNA Nucleic acids
- TFF Tangential Flow Filtration
- DLS Dynamic Light Scattering
- the nucleic acid encapsulation (in ⁇ g/ml) was the total amount of nucleic acid after Triton-X treatment (disrupted liposomes) subtracted by the amount of RNA measured from undisrupted liposomes.
- RNA prime, protein boost regimen induced a robust and balanced immune response.
- anti-gpl40 IgG antibody titers were measured to evaluate the immune response induced by the HIV gpl60/gpl40 formations described in Table 1-1.
- Figures 3A and 3B before the protein boost was administered, naked RNA induced no detectable IgG responses.
- RNA/Liposome formulations induced detectable IgG responses in 80-90% of the animals, and a dose-responsive effect was observed (compare the 1 ⁇ g dose versus 0.1 ⁇ g dose of RNA/Liposome in Figure 3A).
- IgG titers in different animals showed significant variations.
- the median IgG titers induced by RNA/Liposome formulation at 1 ⁇ g were comparable to that of
- DNA/Liposome formulation at 15 ⁇ g, and were much higher than that of 15 ⁇ g of DNA delivered by electroporation.
- a protein boost (10 ⁇ g protein/MF59, see Table 1-1) resulted in a 20- fold increase of IgG titers in the 1 ⁇ g RNA/Liposome primed mice ( Figure 3B).
- the "1 ⁇ g RNA/Liposome prime, protein boost” regimen induced HIV-1 Env (SF162) specific IgG titers that were comparable to that of the "DNA/Liposome prime (15 ⁇ g), protein boost” regimen; and were also comparable to that of the "VRP (le7) prime, protein boost,” or “protein prime, protein boost” regimens (less than a log lower) ( Figures 3A and 3B).
- RNA/Liposome prime 1 ⁇ g RNA/Liposome prime, protein boost regimen also achieved superior results as compared to 10 ⁇ g DNA/Liposome prime, protein boost regimen (data not shown).
- IgG titers from the "naked RNA primed" group were also boosted and were similar to that of the protein/MF59 primed group at 2wpl (see, Figure 3 A).
- FIG. 4A shows that RNA/Liposome formulations induced a balanced IgGl :IgG2a subtype profile, similar to that of VRP.
- the IgGl titers were significantly higher than IgG2a titers.
- IgG2a is considered as a surrogate of Thl response
- IgGl is considered as a surrogate of Th2 response.
- a balanced Thl :Th2 response is desirable.
- the median IgG2a/IgGl ratios in the RNA/Liposome primed group, DNA/Liposome primed group, and VRP primed group were higher than that of the DNA/electroporation primed group, or the protein/MF59 prime group ( Figure 4B).
- Figure 5 compares the immunogenicity of Clade C (DU422.1) gpl60 antigen and Clade B (SF162) gpl60 antigen, both delivered as liposome formulated RNA.
- Clade C (DU422.1) gpl60 antigen elicited a weaker IgG response before protein boost, as compared to Clade B (SF162) gpl60 antigen.
- Clade B (SF162) gpl60 antigen elicited a weaker IgG response before protein boost, as compared to Clade B (SF162) gpl60 antigen.
- the total IgG titers for the two antigens were comparable.
- the IgGl :IgG2a profiles were similarly balanced for both Clade B and Clade C gpl60 antigens.
- Figure 6A shows that RNA/Liposome prime induced functional CD4+ T-cell-mediated immune responses, which were effectively boosted by the protein boost.
- CD4+ T cell responses were characterized by the increased levels of cytokine-secreting cells.
- the protein boost was administered, the
- RNA/Liposome formulations (see Table 1-1) induced detectable SF162 specific CD4+ T cell responses.
- the levels of cytokine-secreting CD4+ T cells in the RNA/Liposome primed groups were lower than that of the DNA/Liposome or VRP primed groups, but comparable to that of the protein/MF59 primed group.
- RNA/Liposome primed groups at either 0.1 or 1 ⁇ g priming doses, which were boosted equally.
- Protein boosting of CD4+ T-cell responses was more effective with RNA/Liposome priming than that seen with 15 ⁇ g DNA/electroporation priming; equal or more effective than that seen with the highest dose of VRP priming; and similar or slightly lower than that seen with 15 ⁇ g DNA/Liposome priming.
- CD4+ T-cell responses in the naked RNA primed group were also boosted.
- IL-2-, IFNy-, and TNFa-secreting cells in the RNA/Liposome prime, protein boost groups were higher than that of the group that received 3 doses of protein/MF59.
- IL-5 secretion from the CD4+ T-cells in the RNA/Liposome prime, protein-boost group was lower than that of the group that received 3 doses of
- RNA priming initiated a THI response (IL-2 hlgh , TNFa high , IL-5 " ) that was sustained or elevated after a protein boost.
- THI response IL-2 hlgh , TNFa high , IL-5 "
- Similar cytokine profiles were seen in the DNA/Liposome or VRP primed groups. The cytokine profile was in contrast to a T H 2 type (IL-2 low , IFNy low , TNFa low , IL-5 + ) response that was seen in the protein prime, protein boost group.
- FIG. 6B shows that RNA/Liposome prime induced functional CD8+ T-cell response, which was not affected by the protein boost.
- CD8+ T cell-mediated immune responses were characterized by the increased levels of cytokine-secreting cells.
- RNA/Liposome formulations induced detectable SF162 specific CD8+ T cells responses.
- the CD8+ T cells responses were lower than that of DNA /Liposome or VRP formulations but comparable to that of 15 ⁇ g of electroporated DNA.
- the magnitude or quality of CD8+ T cell response in the RNA /Liposome primed groups was unaffected by the protein boost.
- DNA and VRP primed groups reduced frequency of CD8+ epitope specific T-cells (IFNy- and TNFa- secreting cells) after the boost was evident at 4wp2 time point.
- Figure 7 shows the titers of gpl40-specific IgA in vaginal washes of the mice administered the formulations shown in Table 1-1.
- priming the mice twice with the RNA/Liposome formulations induced detectable SF162 gpl40-specific IgA antibodies in vaginal secretions. Secretion of anti- gpl40 IgG antibody was not evident.
- Priming the mice twice with the VRP or protein/MF59 also induced SF162 gpl40-specific IgA antibodies, with a median IgA titer higher than that of the RNA/Liposome group.
- SF162 gpl40-specific IgA antibodies were not detectable in the DNA /Liposome primed (2x prime) group.
- HIV Clade C (TV1) envelop protein gpl40 was used as the antigen.
- An RNA molecule encoding HIV gpl40, and its encoded protein (gpl40) were combined and co-administered, and the immunogenic effect of this combination was assessed.
- RNA was produced and purified as described in Example I.
- DNA was produced as described in Example I.
- VRP viral replicon particle
- VRP gpl40.TVlc8.2 this VRP expresses the gpl40 envelope protein from the Clade C TVlc8.2 strain. See, e.g., Perri et al. (2003). J. Virol. 77(19): 10394- 10403 regarding production and characterization of VRPs.
- gpl40 protein from Clade C TVlc8.2 strain was produced as described for gpl40 from Clade B SF162 in Example I.
- RNA and its encoded protein induced a robust and balanced immune response.
- anti-gpl40 IgG antibody titers were measured to evaluate the immune response induced by the HIV gpl40 formations described in Table II- 1.
- RNA/Liposome liposome encapsulated RNA replicon
- VRP virus replicon particles
- IgG titers induced by 1 ⁇ g RNA/Liposome and 10 ⁇ g RNA/Liposome were superior to 1 ⁇ g DNA/Liposome and 10 ⁇ g DNA/Liposome, and were also superior to electroporated 10 ⁇ g DNA.
- RNA/Liposome/Protein induces an even stronger immune response as compared to RNA/Liposome.
- anti-gpl40 IgG titers induced by 1 ⁇ g As shown in Figure 10, anti-gpl40 IgG titers induced by 1 ⁇ g
- RNA/Liposome/Protein was significantly higher than that of 1 ⁇ g RNA/Liposome, and was also significantly higher than that of VRP. There was no significant difference in anti-gpl40 IgG titers between the 1 ⁇ g RNA/Liposome/Protein group and Protein/MF59 group.
- Figure 11 shows the anti-gpl40 IgG titers measured after a boost (10 ⁇ g protein/MF59, see Table II- 1) was administered.
- RNA/Liposome primed group did not differ significantly from that of 10 ⁇ g
- RNA/Liposome primed group 1 ⁇ g DNA/Liposome primed group, 10 ⁇ g
- FIGS. 12A and 12B show that RNA/Liposome and
- RNA/Liposome/Protein formulations induced a balanced IgGl :IgG2a subtype profile, similar to that of VRP.
- Naked RNA immunized groups in which titers were not detectable before the protein/MF59 boost, also showed a balanced IgGl :IgG2a profile after the protein boost ( Figure 12C).
- the IgGl titers were significantly higher than IgG2a titers.
- IgG2a is considered as a surrogate of Thl response
- IgGl is considered as a surrogate of Th2 response.
- a balanced Thl :Th2 response is desirable.
- Figure 13 shows the titers of gpl40-specific IgA in vaginal washes of the mice administered with gpl40 DNA or RNA vaccines. In this study, no
- Example III Potency of an HIV-SAMTM vaccine in a heterologous prime-boost vaccination regimen
- VRP alphavirus replicon particles
- SAMTM vaccine platform which is based on synthetic self- amplifying RNA that avoids limitations of cell culture production and employs synthetic non- viral vaccine delivery systems, was used.
- HIV-SAMTM vaccine primed response could be boosted robustly by a protein/MF59 vaccine and resulted in a balanced IgGl, IgG2a subclass response, similar to that seen with the VRP vaccine, but unlike the dominant IgGl response to protein/MF59 only vaccinations. Both Env-specific CD4 + and CD8 + T- cell responses were detectable after two HIV-SAMTM vaccinations.
- a TH1 type (IFNy + , IL-5 " ) profile was demonstrable for the HIV-SAMTM vaccine primed, protein boosted CD4 + T-cell response, similar to that seen with the DNA or VRP primed protein boosted responses, in contrast to a TH2 type (IFNy low , IL-5 + ) response seen with protein/MF59 vaccination.
- priming with the 25 or 50 ⁇ g of the formulated HIV-SAM vaccine induced robust and avid Env-binding IgG and HIV neutralizing antibodies that were superior to 500 ⁇ g of an unformulated DNA vaccine and comparable to VRP and protein/MF59 vaccines.
- protein/MF59 boostable Env-specific vaginal wash Ig was consistently demonstrable in both mice and rabbits immunized with the HIV- SAMTM vaccine.
- HIV-SAMTM vaccine is potent and versatile and offers a novel immune priming strategy.
- CNE-RNA vaccine induced neutralizing antibodies earlier than that induced by an LNP-RNA vaccine in rabbits.
- the neutralizing response seen with the CNE-RNA vaccine was also comparable to the VRP and MF59- adjuvanted-o-gpl40 vaccines (Fig. 15).
- a prime-boost vaccination regimen was used in a study of rhesus macaques whereby the primates were primed at 0, 4 and 12 weeks followed by boosting at 24, 36 and 54 weeks. Challenge can be effected using SHIVI 157ipd3N4.
- Vaccine induced antigen-specific T cell responses for IFNy, IL2 and IL4 responses were measured in time. IFNy, IL2, and IL4 secretion by PBMC of all individual animals per group towards gpl20 Consensus C peptide pool (pp), gp41 Cons C pp, or recombinant TV 1 gpl40 were measured by ELISpot assay (Figs. 24A-C). Strong responses were seen for RNA-CNE and RNA-LNP when IFN- ⁇ was measured (Fig. 24A). A scattered response was seen for IL-2 (Fig. 24B) and IL4 (Fig. 24C).
- IC50 Neutralization (IC50) assays were performed on sera taken at two weeks post 4th (wk 26) and two weeks post 5th (wk 38) immunization (Fig. 25). Sera were evaluated against a clade C Tier 2 (SHIV1 157ipd3N4) Pseudovirus, a Tier 1 (SHIV1157ipEL-p) PV, a Tier 1 HIV-l/TVl PV and against a Tier 1 Clade B PV (SHIV SF162P4). Large neutralization titers were seen in 2/6 RNA-LNP primed animals, 3/6 CNE-RNA primed animals and 4/6 protein/MF59 primed animals in sera evaluated against the Tier 1 (SHIV1157ipEL-p) at week 38.
- binding responses peaked at week 38 (post 2 nd boost). It was also shown that CNE-RNA primes elicited higher binding responses to both V1/V2 and envelope antigens. Further, after protein boosts (week 38 and week 56), LNP- RNA and CNE-RNA groups developed significantly higher binding antibodies against the o-gpl40 groups than the VRP and Env groups.
- Example VI HIV Prime-Boost v. Concurrent Administration of HIV-SAM gp i4o Vaccine/CMF34 and Env Protein (TV1 gpl40)
- a prime-boost vaccination regimen was used with the rabbits primed at 0 and 4 weeks and boosted at 12 and 24 weeks. Serum as well as vaginal wash and fecal pellet samples were collected at various time points. Env-specific binding IgG titers are shown in Figure 23. Antibody responses to HIV Env were comparable between prime boost and concurrent administration subjects. No significant difference was observed between rabbits receiving vaccine with no adjuvant, alum or MF59, in prime boost or concurrent administrations.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Virology (AREA)
- Immunology (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Microbiology (AREA)
- Mycology (AREA)
- Epidemiology (AREA)
- Organic Chemistry (AREA)
- Communicable Diseases (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Hematology (AREA)
- Oncology (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Molecular Biology (AREA)
- AIDS & HIV (AREA)
- Tropical Medicine & Parasitology (AREA)
- Peptides Or Proteins (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- Medicinal Preparation (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201261669010P | 2012-07-06 | 2012-07-06 | |
| US201261698971P | 2012-09-10 | 2012-09-10 | |
| PCT/EP2013/063749 WO2014005958A1 (en) | 2012-07-06 | 2013-06-29 | Immunogenic compositions and uses thereof |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP2869842A1 true EP2869842A1 (en) | 2015-05-13 |
Family
ID=48703552
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP13732536.1A Withdrawn EP2869842A1 (en) | 2012-07-06 | 2013-06-29 | Immunogenic compositions and uses thereof |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US20150140068A1 (enExample) |
| EP (1) | EP2869842A1 (enExample) |
| JP (1) | JP2015522580A (enExample) |
| CN (1) | CN104853770A (enExample) |
| WO (1) | WO2014005958A1 (enExample) |
Families Citing this family (40)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9710606B2 (en) | 2014-10-21 | 2017-07-18 | uBiome, Inc. | Method and system for microbiome-derived diagnostics and therapeutics for neurological health issues |
| US10366793B2 (en) | 2014-10-21 | 2019-07-30 | uBiome, Inc. | Method and system for characterizing microorganism-related conditions |
| US10311973B2 (en) | 2014-10-21 | 2019-06-04 | uBiome, Inc. | Method and system for microbiome-derived diagnostics and therapeutics for autoimmune system conditions |
| US10346592B2 (en) | 2014-10-21 | 2019-07-09 | uBiome, Inc. | Method and system for microbiome-derived diagnostics and therapeutics for neurological health issues |
| US10073952B2 (en) | 2014-10-21 | 2018-09-11 | uBiome, Inc. | Method and system for microbiome-derived diagnostics and therapeutics for autoimmune system conditions |
| US10777320B2 (en) | 2014-10-21 | 2020-09-15 | Psomagen, Inc. | Method and system for microbiome-derived diagnostics and therapeutics for mental health associated conditions |
| US10388407B2 (en) | 2014-10-21 | 2019-08-20 | uBiome, Inc. | Method and system for characterizing a headache-related condition |
| US9758839B2 (en) | 2014-10-21 | 2017-09-12 | uBiome, Inc. | Method and system for microbiome-derived diagnostics and therapeutics for conditions associated with microbiome functional features |
| US10325685B2 (en) | 2014-10-21 | 2019-06-18 | uBiome, Inc. | Method and system for characterizing diet-related conditions |
| US10265009B2 (en) | 2014-10-21 | 2019-04-23 | uBiome, Inc. | Method and system for microbiome-derived diagnostics and therapeutics for conditions associated with microbiome taxonomic features |
| US9760676B2 (en) | 2014-10-21 | 2017-09-12 | uBiome, Inc. | Method and system for microbiome-derived diagnostics and therapeutics for endocrine system conditions |
| US10381112B2 (en) | 2014-10-21 | 2019-08-13 | uBiome, Inc. | Method and system for characterizing allergy-related conditions associated with microorganisms |
| US10169541B2 (en) | 2014-10-21 | 2019-01-01 | uBiome, Inc. | Method and systems for characterizing skin related conditions |
| US10410749B2 (en) | 2014-10-21 | 2019-09-10 | uBiome, Inc. | Method and system for microbiome-derived characterization, diagnostics and therapeutics for cutaneous conditions |
| US10793907B2 (en) | 2014-10-21 | 2020-10-06 | Psomagen, Inc. | Method and system for microbiome-derived diagnostics and therapeutics for endocrine system conditions |
| US9754080B2 (en) | 2014-10-21 | 2017-09-05 | uBiome, Inc. | Method and system for microbiome-derived characterization, diagnostics and therapeutics for cardiovascular disease conditions |
| US11783914B2 (en) | 2014-10-21 | 2023-10-10 | Psomagen, Inc. | Method and system for panel characterizations |
| US10409955B2 (en) | 2014-10-21 | 2019-09-10 | uBiome, Inc. | Method and system for microbiome-derived diagnostics and therapeutics for locomotor system conditions |
| EP3209803A4 (en) | 2014-10-21 | 2018-06-13 | Ubiome, Inc. | Method and system for microbiome-derived diagnostics and therapeutics |
| US10789334B2 (en) | 2014-10-21 | 2020-09-29 | Psomagen, Inc. | Method and system for microbial pharmacogenomics |
| US10246753B2 (en) | 2015-04-13 | 2019-04-02 | uBiome, Inc. | Method and system for characterizing mouth-associated conditions |
| IL293135A (en) * | 2015-05-13 | 2022-07-01 | Agenus Inc | Composition comprising at least two different complexes of a purified stress protein bound to an antigenic peptide |
| DK3294326T3 (da) * | 2015-05-15 | 2021-05-31 | Curevac Ag | Prime-boost-regimer indbefattende indgivelse af mindst én mrna-konstruktion |
| WO2016196471A1 (en) | 2015-06-02 | 2016-12-08 | Cooper Human Systems Llc | Methods and compositions for treatment of hiv infection |
| PL3402802T3 (pl) | 2016-01-08 | 2023-06-05 | Geovax, Inc. | Kompozycje i sposoby generowania odpowiedzi immunologicznej względem antygenu powiązanego z guzem nowotworowym |
| AU2017221379A1 (en) | 2016-02-16 | 2018-08-16 | Geovax Inc. | Multivalent HIV vaccine boost compositions and methods of use |
| US12491261B2 (en) | 2016-10-26 | 2025-12-09 | Acuitas Therapeutics, Inc. | Lipid nanoparticle formulations |
| CA3062591A1 (en) | 2017-05-08 | 2018-11-15 | Gritstone Oncology, Inc. | Alphavirus neoantigen vectors |
| EP3668833A1 (en) | 2017-08-16 | 2020-06-24 | Acuitas Therapeutics, Inc. | Lipids for use in lipid nanoparticle formulations |
| US11311612B2 (en) | 2017-09-19 | 2022-04-26 | Geovax, Inc. | Compositions and methods for generating an immune response to treat or prevent malaria |
| JP2021505560A (ja) | 2017-12-04 | 2021-02-18 | インターベット インターナショナル ベー. フェー. | イヌライム病ワクチン |
| BR112020011044A2 (pt) * | 2017-12-04 | 2020-11-17 | Intervet International B.V. | vacinação com partículas de replicon e adjuvante de óleo |
| CN118976103A (zh) * | 2017-12-18 | 2024-11-19 | 英特维特国际股份有限公司 | 猪甲型流感病毒疫苗 |
| JP7653013B2 (ja) | 2018-01-04 | 2025-03-28 | アイコニック セラピューティクス リミテッド ライアビリティ カンパニー | 抗組織因子抗体、抗体薬物コンジュゲート、及び関連する方法 |
| CN109200295A (zh) * | 2018-10-08 | 2019-01-15 | 蚌埠医学院 | 一种用于治疗卵巢癌的药物组合物及其制备方法 |
| MX2021014525A (es) | 2019-05-30 | 2022-03-17 | Gritstone Bio Inc | Adenovirus modificados. |
| AU2021260750A1 (en) * | 2020-04-22 | 2022-11-24 | BioNTech SE | Coronavirus vaccine |
| MX2023000614A (es) | 2020-07-16 | 2023-02-13 | Acuitas Therapeutics Inc | Lipidos cationicos para usarse en nanoparticulas lipidicas. |
| CA3187258A1 (en) | 2020-08-06 | 2022-02-10 | Karin Jooss | Multiepitope vaccine cassettes |
| IL313486A (en) | 2021-12-16 | 2024-08-01 | Acuitas Therapeutics Inc | Lipids for use in lipid nanoparticle formulations |
Family Cites Families (82)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4186745A (en) | 1976-07-30 | 1980-02-05 | Kauzlarich James J | Porous catheters |
| US4500707A (en) | 1980-02-29 | 1985-02-19 | University Patents, Inc. | Nucleosides useful in the preparation of polynucleotides |
| US4458066A (en) | 1980-02-29 | 1984-07-03 | University Patents, Inc. | Process for preparing polynucleotides |
| US5132418A (en) | 1980-02-29 | 1992-07-21 | University Patents, Inc. | Process for preparing polynucleotides |
| US4668777A (en) | 1981-03-27 | 1987-05-26 | University Patents, Inc. | Phosphoramidite nucleoside compounds |
| US4973679A (en) | 1981-03-27 | 1990-11-27 | University Patents, Inc. | Process for oligonucleo tide synthesis using phosphormidite intermediates |
| US4373071A (en) | 1981-04-30 | 1983-02-08 | City Of Hope Research Institute | Solid-phase synthesis of polynucleotides |
| SE8205892D0 (sv) | 1982-10-18 | 1982-10-18 | Bror Morein | Immunogent membranproteinkomplex, sett for framstellning och anvendning derav som immunstimulerande medel och sasom vaccin |
| IL73534A (en) | 1983-11-18 | 1990-12-23 | Riker Laboratories Inc | 1h-imidazo(4,5-c)quinoline-4-amines,their preparation and pharmaceutical compositions containing certain such compounds |
| US6090406A (en) | 1984-04-12 | 2000-07-18 | The Liposome Company, Inc. | Potentiation of immune responses with liposomal adjuvants |
| US5916588A (en) | 1984-04-12 | 1999-06-29 | The Liposome Company, Inc. | Peptide-containing liposomes, immunogenic liposomes and methods of preparation and use |
| US5036006A (en) | 1984-11-13 | 1991-07-30 | Cornell Research Foundation, Inc. | Method for transporting substances into living cells and tissues and apparatus therefor |
| US4945050A (en) | 1984-11-13 | 1990-07-31 | Cornell Research Foundation, Inc. | Method for transporting substances into living cells and tissues and apparatus therefor |
| US5185444A (en) | 1985-03-15 | 1993-02-09 | Anti-Gene Deveopment Group | Uncharged morpolino-based polymers having phosphorous containing chiral intersubunit linkages |
| DE3687030T2 (de) | 1985-03-15 | 1993-03-11 | Eugene Stirchak | Stereoregulare polynukleotiden bindende polymere. |
| US5153319A (en) | 1986-03-31 | 1992-10-06 | University Patents, Inc. | Process for preparing polynucleotides |
| US6048729A (en) | 1987-05-01 | 2000-04-11 | Transkaryotic Therapies, Inc. | In vivo protein production and delivery system for gene therapy |
| US5057540A (en) | 1987-05-29 | 1991-10-15 | Cambridge Biotech Corporation | Saponin adjuvant |
| AU631377B2 (en) | 1988-08-25 | 1992-11-26 | Liposome Company, Inc., The | Affinity associated vaccine |
| US5238944A (en) | 1988-12-15 | 1993-08-24 | Riker Laboratories, Inc. | Topical formulations and transdermal delivery systems containing 1-isobutyl-1H-imidazo[4,5-c]quinolin-4-amine |
| US5262530A (en) | 1988-12-21 | 1993-11-16 | Applied Biosystems, Inc. | Automated system for polynucleotide synthesis and purification |
| US5047524A (en) | 1988-12-21 | 1991-09-10 | Applied Biosystems, Inc. | Automated system for polynucleotide synthesis and purification |
| US5703055A (en) | 1989-03-21 | 1997-12-30 | Wisconsin Alumni Research Foundation | Generation of antibodies through lipid mediated DNA delivery |
| US4929624A (en) | 1989-03-23 | 1990-05-29 | Minnesota Mining And Manufacturing Company | Olefinic 1H-imidazo(4,5-c)quinolin-4-amines |
| HU212924B (en) | 1989-05-25 | 1996-12-30 | Chiron Corp | Adjuvant formulation comprising a submicron oil droplet emulsion |
| US5674192A (en) | 1990-12-28 | 1997-10-07 | Boston Scientific Corporation | Drug delivery |
| US5389640A (en) | 1991-03-01 | 1995-02-14 | Minnesota Mining And Manufacturing Company | 1-substituted, 2-substituted 1H-imidazo[4,5-c]quinolin-4-amines |
| FR2676071B1 (fr) * | 1991-05-02 | 1994-11-18 | Transgene Sa | Nouveau variant gp160 non-clivable, soluble, de forme hybride. |
| US5268376A (en) | 1991-09-04 | 1993-12-07 | Minnesota Mining And Manufacturing Company | 1-substituted 1H-imidazo[4,5-c]quinolin-4-amines |
| NZ245015A (en) | 1991-11-05 | 1995-12-21 | Transkaryotic Therapies Inc | Delivery of human growth hormone through the administration of transfected cell lines encoding human growth hormone, which are physically protected from host immune response; the transfected cells and their production |
| US6054288A (en) | 1991-11-05 | 2000-04-25 | Transkaryotic Therapies, Inc. | In vivo protein production and delivery system for gene therapy |
| US5266575A (en) | 1991-11-06 | 1993-11-30 | Minnesota Mining And Manufacturing Company | 2-ethyl 1H-imidazo[4,5-ciquinolin-4-amines |
| US5340740A (en) | 1992-05-15 | 1994-08-23 | North Carolina State University | Method of producing an avian embryonic stem cell culture and the avian embryonic stem cell culture produced by the process |
| US5395937A (en) | 1993-01-29 | 1995-03-07 | Minnesota Mining And Manufacturing Company | Process for preparing quinoline amines |
| ES2162139T5 (es) | 1993-03-23 | 2008-05-16 | Smithkline Beecham Biologicals S.A. | Composiciones de vacuna que contienen monofosforil-lipido a 3-o-desacilado. |
| US5352784A (en) | 1993-07-15 | 1994-10-04 | Minnesota Mining And Manufacturing Company | Fused cycloalkylimidazopyridines |
| CA2167042A1 (en) | 1993-07-15 | 1995-01-26 | Kyle J. Lindstrom | Imidazo[4,5-c]pyridin-4-amines |
| US5397307A (en) | 1993-12-07 | 1995-03-14 | Schneider (Usa) Inc. | Drug delivery PTCA catheter and method for drug delivery |
| GB9326174D0 (en) | 1993-12-22 | 1994-02-23 | Biocine Sclavo | Mucosal adjuvant |
| JP3403233B2 (ja) | 1994-01-20 | 2003-05-06 | テルモ株式会社 | バルーンカテーテル |
| US6429199B1 (en) | 1994-07-15 | 2002-08-06 | University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules for activating dendritic cells |
| US6207646B1 (en) | 1994-07-15 | 2001-03-27 | University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules |
| US6239116B1 (en) | 1994-07-15 | 2001-05-29 | University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules |
| AUPM873294A0 (en) | 1994-10-12 | 1994-11-03 | Csl Limited | Saponin preparations and use thereof in iscoms |
| FR2726003B1 (fr) | 1994-10-21 | 2002-10-18 | Agronomique Inst Nat Rech | Milieu de culture de cellules embryonnaires totipotentes aviaires, procede de culture de ces cellules, et cellules embryonnaires totipotentes aviaires |
| US6083741A (en) | 1994-11-17 | 2000-07-04 | Imperial College Of Science Technology And Medicine | Internalisation of DNA, using conjugates of poly-l-lysine and an integrin receptor ligand |
| US6071890A (en) | 1994-12-09 | 2000-06-06 | Genzyme Corporation | Organ-specific targeting of cationic amphiphile/DNA complexes for gene therapy |
| US5482936A (en) | 1995-01-12 | 1996-01-09 | Minnesota Mining And Manufacturing Company | Imidazo[4,5-C]quinoline amines |
| UA56132C2 (uk) | 1995-04-25 | 2003-05-15 | Смітклайн Бічем Байолоджікалс С.А. | Композиція вакцини (варіанти), спосіб стабілізації qs21 відносно гідролізу (варіанти), спосіб приготування композиції вакцини |
| US5700642A (en) | 1995-05-22 | 1997-12-23 | Sri International | Oligonucleotide sizing using immobilized cleavable primers |
| EP1005368B1 (en) | 1997-03-10 | 2009-09-02 | Ottawa Hospital Research Institute | Use of nucleic acids containing unmethylated CpG dinucleotide in combination with alum as adjuvants |
| US6818222B1 (en) | 1997-03-21 | 2004-11-16 | Chiron Corporation | Detoxified mutants of bacterial ADP-ribosylating toxins as parenteral adjuvants |
| US6090619A (en) | 1997-09-08 | 2000-07-18 | University Of Florida | Materials and methods for intracellular delivery of biologically active molecules |
| WO1999016500A2 (en) | 1997-10-01 | 1999-04-08 | Medtronic Ave, Inc. | Drug delivery and gene therapy delivery system |
| GB9725084D0 (en) | 1997-11-28 | 1998-01-28 | Medeva Europ Ltd | Vaccine compositions |
| WO1999052549A1 (en) | 1998-04-09 | 1999-10-21 | Smithkline Beecham Biologicals S.A. | Adjuvant compositions |
| US6562798B1 (en) | 1998-06-05 | 2003-05-13 | Dynavax Technologies Corp. | Immunostimulatory oligonucleotides with modified bases and methods of use thereof |
| GB9817052D0 (en) | 1998-08-05 | 1998-09-30 | Smithkline Beecham Biolog | Vaccine |
| CZ301212B6 (cs) | 1998-10-16 | 2009-12-09 | Smithkline Beecham Biologicals S. A. | Vakcinacní prostredek |
| US7935805B1 (en) | 1998-12-31 | 2011-05-03 | Novartis Vaccines & Diagnostics, Inc | Polynucleotides encoding antigenic HIV Type C polypeptides, polypeptides and uses thereof |
| WO2000039304A2 (en) | 1998-12-31 | 2000-07-06 | Chiron Corporation | Polynucleotides encoding antigenic hiv type c polypeptides, polypeptides and uses thereof |
| CA2760534A1 (en) * | 1999-04-14 | 2000-10-19 | Novartis Vaccines And Diagnostics, Inc. | Compositions and methods for generating an immune response utilizing alphavirus-based vector systems |
| KR20020048942A (ko) | 1999-09-24 | 2002-06-24 | 장 스테판느 | 폴리옥시에틸렌 알킬 에테르 또는 에스테르 및 하나이상의 비이온성 계면활성제를 포함하는 애쥬번트 |
| JP2003509473A (ja) | 1999-09-24 | 2003-03-11 | スミスクライン ビーチャム バイオロジカルズ ソシエテ アノニム | ワクチン |
| AU3108001A (en) | 2000-01-20 | 2001-12-24 | Coley Pharmaceutical Group, Inc. | Immunostimulatory nucleic acids for inducing a th2 immune response |
| AU9475001A (en) | 2000-09-26 | 2002-04-08 | Hybridon Inc | Modulation of immunostimulatory activity of immunostimulatory oligonucleotide analogs by positional chemical changes |
| ATE320792T1 (de) * | 2000-09-28 | 2006-04-15 | Chiron Corp | Mikropartikel zur verabreichung von heterologen nukleinsäure |
| ATE447967T1 (de) | 2001-09-14 | 2009-11-15 | Cytos Biotechnology Ag | Verpackung von immunstimulierendem cpg in virusähnlichen partikeln: herstellungsverfahren und verwendung |
| EP1425040A2 (en) | 2001-09-14 | 2004-06-09 | Cytos Biotechnology AG | In vivo activation of antigen presenting cells for enhancement of immune responses induced by virus like particles |
| WO2003035836A2 (en) | 2001-10-24 | 2003-05-01 | Hybridon Inc. | Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5' ends |
| FR2832423B1 (fr) | 2001-11-22 | 2004-10-08 | Vivalis | Systeme d'expression de proteines exogenes dans un systeme aviaire |
| FR2836924B1 (fr) | 2002-03-08 | 2005-01-14 | Vivalis | Lignees de cellules aviaires utiles pour la production de substances d'interet |
| DK2311848T3 (da) | 2002-12-23 | 2013-10-14 | Vical Inc | Kodon-optimerede polynukleotidbaserede vacciner mod human cytomegalovirus-infektion |
| EP1587473A4 (en) | 2002-12-27 | 2008-08-13 | Novartis Vaccines & Diagnostic | THIOSEMICARBAZONE AS VIRUZIDES AND IMMUNOSTIMULATORS |
| ES2391770T3 (es) | 2003-01-21 | 2012-11-29 | Novartis Vaccines And Diagnostics, Inc. | Uso de compuestos de triptantrina para la potenciación inmune |
| EP1528101A1 (en) | 2003-11-03 | 2005-05-04 | ProBioGen AG | Immortalized avian cell lines for virus production |
| AU2005248361B2 (en) | 2004-05-18 | 2010-03-11 | Vical Incorporated | Influenza virus vaccine composition and methods of use |
| PL2268618T3 (pl) | 2008-03-03 | 2015-11-30 | Novartis Ag | Związki i kompozycje jako modulatory aktywności receptorów TLR |
| WO2009132206A1 (en) | 2008-04-25 | 2009-10-29 | Liquidia Technologies, Inc. | Compositions and methods for intracellular delivery and release of cargo |
| US20110300205A1 (en) | 2009-07-06 | 2011-12-08 | Novartis Ag | Self replicating rna molecules and uses thereof |
| ES2649896T3 (es) * | 2010-07-06 | 2018-01-16 | Glaxosmithkline Biologicals Sa | Emulsiones catiónicas de aceite en agua |
| EP2729168A2 (en) * | 2011-07-06 | 2014-05-14 | Novartis AG | Immunogenic compositions and uses thereof |
-
2013
- 2013-06-29 JP JP2015519154A patent/JP2015522580A/ja active Pending
- 2013-06-29 WO PCT/EP2013/063749 patent/WO2014005958A1/en not_active Ceased
- 2013-06-29 EP EP13732536.1A patent/EP2869842A1/en not_active Withdrawn
- 2013-06-29 US US14/410,728 patent/US20150140068A1/en not_active Abandoned
- 2013-06-29 CN CN201380046633.XA patent/CN104853770A/zh active Pending
Non-Patent Citations (1)
| Title |
|---|
| A. S. HIDMARK ET AL: "Humoral Responses against Coimmunized Protein Antigen but Not against Alphavirus-Encoded Antigens Require Alpha/Beta Interferon Signaling", JOURNAL OF VIROLOGY, vol. 80, no. 14, 15 July 2006 (2006-07-15), pages 7100 - 7110, XP055068342, ISSN: 0022-538X, DOI: 10.1128/JVI.02579-05 * |
Also Published As
| Publication number | Publication date |
|---|---|
| US20150140068A1 (en) | 2015-05-21 |
| CN104853770A (zh) | 2015-08-19 |
| JP2015522580A (ja) | 2015-08-06 |
| WO2014005958A1 (en) | 2014-01-09 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20150140068A1 (en) | Immunogenic compositions and uses thereof | |
| US11813323B2 (en) | RSV immunization regimen | |
| US20210290755A1 (en) | Immunogenic compositions and uses thereof | |
| EP2729165B1 (en) | Immunogenic combination compositions and uses thereof | |
| EP2453918B1 (en) | Rsv f protein compositions and methods for making same | |
| TR201903651T4 (tr) | Antijen uygulama platformları. | |
| HK40086859A (en) | Rsv immunization regimen | |
| HK40086431B (en) | Rsv immunization regimen | |
| HK40086431A (en) | Rsv immunization regimen |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 20150206 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| AX | Request for extension of the european patent |
Extension state: BA ME |
|
| DAX | Request for extension of the european patent (deleted) | ||
| 17Q | First examination report despatched |
Effective date: 20151210 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
| 18D | Application deemed to be withdrawn |
Effective date: 20161220 |