EP2866957B1 - Method and device for cooling surfaces in casting installations, rolling installations or other strip processing lines - Google Patents

Method and device for cooling surfaces in casting installations, rolling installations or other strip processing lines Download PDF

Info

Publication number
EP2866957B1
EP2866957B1 EP13732950.4A EP13732950A EP2866957B1 EP 2866957 B1 EP2866957 B1 EP 2866957B1 EP 13732950 A EP13732950 A EP 13732950A EP 2866957 B1 EP2866957 B1 EP 2866957B1
Authority
EP
European Patent Office
Prior art keywords
cooled
nozzle
outlet
cooling
roll
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13732950.4A
Other languages
German (de)
French (fr)
Other versions
EP2866957A1 (en
Inventor
Johannes Alken
Torsten Müller
Thomas Haschke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMS Group GmbH
Original Assignee
SMS Group GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SMS Group GmbH filed Critical SMS Group GmbH
Publication of EP2866957A1 publication Critical patent/EP2866957A1/en
Application granted granted Critical
Publication of EP2866957B1 publication Critical patent/EP2866957B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0233Spray nozzles, Nozzle headers; Spray systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/06Lubricating, cooling or heating rolls
    • B21B27/10Lubricating, cooling or heating rolls externally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0218Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes for strips, sheets, or plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/06Lubricating, cooling or heating rolls
    • B21B27/10Lubricating, cooling or heating rolls externally
    • B21B2027/103Lubricating, cooling or heating rolls externally cooling externally

Definitions

  • the present invention is directed to a method and a device for cooling surfaces in casting plants, rolling mills or other strip processing lines.
  • cooling medium is preferably applied to the surface of a cast or rolled stock, in particular a metal strip or sheet, or a roll.
  • the DE 41 16 019 A1 refers, for example, to a device for cooling a metal strip with liquid nozzles arranged on both sides, which are designed as full jet nozzles. Impinging jets are formed by these nozzles, with areas of shooting flow forming around the impact point of the individual impact jets. In this device, the beams hit the belt surface freely and without any guidance or confinement.
  • a disadvantage of such a device for example, the relatively high water consumption and despite the efforts made difficult to avoid formation of a vapor layer between the firing flow and the surface to be cooled.
  • the DE 27 51 013 A1 discloses a cooling device in which a spray containing water droplets is generated and directed onto a metal plate to be cooled.
  • the nozzles required for this purpose are designed as Venturi tubes, through which a targeted mixing of air and water is promoted.
  • the resulting multiphasedeffensfrom leads to a vapor layer formation, which significantly affects the cooling effect.
  • the JP 2005118838 A discloses a device for cooling by spray nozzles. By using the spray nozzles, a jet of liquid and gaseous components is formed. This also forms a vapor layer on the material to be cooled, which precludes effective cooling.
  • the JP S57 156 830 A discloses a rolled strip metal cooling apparatus having a nozzle and a plate-like guide extending from said nozzle parallel to the surface of the metal strip to be cooled.
  • the cooling water flowing out of the nozzle forms between the plate-like guide and the surface to be cooled a water film for cooling the metal strip.
  • the nozzle and the plate-like guide are fixedly mounted via a spray bar on a height-adjustable cross member, so that the distance between the nozzle and the surface of the metal strip to be cooled is adjustable by raising and lowering the cross member.
  • the object of the invention is to provide an improved method for cooling foundry material, rolling stock or rolls.
  • the object is preferably to overcome at least one of the above-mentioned disadvantages.
  • the required amount of coolant should preferably be reduced or the efficiency, effectiveness and / or flexibility of the cooling should be improved.
  • a nozzle which has an inlet with a first clear or inner cross section and an outlet opposite the surface to be cooled with a second clear or Inner cross-section includes, which is preferably larger than the first cross section.
  • a preferably single-phase volumetric flow of a cooling fluid is provided, which is supplied via the inlet of the nozzle and leaves the nozzle through the outlet. At least the nozzle outlet or the nozzle is stored at a variable (or freely adjustable) distance to the surface to be cooled.
  • the volume flow of the cooling fluid supplied to the inlet of the nozzle is also adjusted in such a way that the nozzle or the nozzle outlet adheres to the surface to be cooled in accordance with the Bernoulli principle (or the hydrodynamic paradox).
  • the nozzle is stored with a variable or freely adjustable distance to the surface to be cooled and the volume flow of the cooling fluid flowing through the nozzle is adjusted such that it automatically according to the Bernoulli principle (English: Bernoulli's principle) on the surface Suction, effective cooling of the surface is made possible.
  • the cooling fluid for example water, air or an emulsion of water and oil
  • a lower pressure negative pressure
  • a state is reached in which the nozzle on the surface to be cooled becomes saturated due to the pressure difference to the pressure in the vicinity of the nozzle.
  • the nozzle does not collide with the surface to be cooled, since the volume flow (permanent) is fed or tracked through the inlet of the nozzle.
  • a substantially constant distance between the Nozzle outlet and the surface to be cooled guaranteed. This distance is self-regulating or in other words, the distance adjusts itself.
  • variable or movable mounting of the nozzle at a distance from the surface may preferably be in a range between 0.1 mm and 5 mm, preferably between 0.5 mm and 2 mm.
  • Further advantages of the invention include high heat transfer coefficients between the surface to be cooled and the nozzle and an increase in efficiency over known systems.
  • the length of a cooling device can be reduced when cooling a tape in the direction of tape travel by the increased efficiency.
  • coolant can be applied directly to a required location, so that, on the one hand, individual areas of the surface to be cooled are specifically cooled and, on the other hand, losses of coolant for cooling are avoided.
  • On the surface vaporizing cooling medium is shielded by the nozzle of the actual cooling zone.
  • the cooling performance of the nozzle is largely independent of the stray cooling medium. If multiple nozzles are distributed across a roller or belt width, portions of the roller or belt may either be less cooled or remain completely uncooled by shutting off nozzles in those areas.
  • the distance of the outlet is (exclusively) variable in a direction substantially perpendicular to the surface to be cooled. This means that the distance is not limited to a fixed amount. The distance is adjustable by the volume flow.
  • the nozzle is at least partially slidably mounted by a guide.
  • a guide may comprise, for example, a sliding bearing, wherein the nozzle slidably in a sleeve the bearing is slidably mounted.
  • the storage can be made such that only a movement is possible in a direction perpendicular to the surface to be cooled. This ensures a force-free independent adjustment of the distance between the nozzle outlet and the surface to be cooled.
  • the nozzle is mounted resiliently and / or additionally provided with a damping device.
  • the nozzle is biased in a direction perpendicular to the surface direction.
  • the surface to be cooled is carried by one or more nozzles.
  • the prestressed mounting of the nozzles is particularly advantageous because, on the one hand, the surface to be cooled and, for example, rolled or cast material can be carried, but on the other hand, a self-adjusting distance between the surface to be cooled and the strip is made possible.
  • Such nozzles can be arranged both on the top of a metal strip or sheet and on its underside.
  • the nozzle is substantially parallel to the surface to be cooled, in particular oscillatable by an oscillating device.
  • the oscillation preferably has at least one component perpendicular to the strip running direction or parallel to the axial direction of a roll.
  • the oscillation takes place in a plane parallel to the surface to be cooled. In an arrangement with several nozzles, they can also oscillate in different directions and with different frequencies.
  • the nozzle has a guide region between the inlet and the outlet, in which the coolant is guided substantially in a direction perpendicular to the surface to be cooled and is laterally enclosed by this.
  • the volume flow is supplied to the outlet substantially perpendicular to its cross-section standing.
  • the cross section of the outlet of the nozzle increases in the direction of the surface to be cooled.
  • a widening or widening shape of the outlet in the direction of the surface to be cooled parts of the coolant flow can be deflected in a horizontal direction.
  • Such a shape can further enhance the effect of the suction.
  • said expansion is continuous and / or, for example, funnel-shaped or outwardly curved.
  • the second cross section is formed substantially rotationally symmetrical in a plane lying parallel to the surface to be cooled.
  • the cross section may be substantially circular.
  • the nozzle is non-rotationally symmetrical in a plane lying parallel to the surface to be cooled. It is preferably elongate, in particular elliptical.
  • an asymmetric cooling zone can be counteracted with moving cooling surfaces.
  • adjusting the volume flow comprises adjusting it Flow velocity and / or its pressure.
  • the exact values of such a pressure or volume flow depend on the particular geometry and size of the nozzle.
  • variable distance between the outlet and the surface to be cooled is kept greater than 0.1 mm and preferably greater than 0.5 mm by a limiting element (irrespective of the volumetric flow provided).
  • a limiting element irrespective of the volumetric flow provided.
  • a plurality of nozzles are arranged in a grid-like manner in a plane opposite the surface to be cooled.
  • a large area of the surface to be cooled can be covered.
  • a plurality of nozzles is arranged side by side opposite the surface to be cooled.
  • multiple nozzles may be arranged in a row, for example, more than four nozzles.
  • a plurality of nozzles may be arranged in a direction parallel to the roller axis. In general, several such rows can be provided.
  • such rows may extend transversely to the strip running direction.
  • several rows can be arranged one behind the other in the strip running direction. It is also possible that the rows are offset relative to one another transversely to the strip running direction, so that viewed in the direction of tape travel, lie in the interstices of two adjacent nozzles of a row, nozzles of an adjacent tape running direction series. It is also possible for individual nozzles or nozzle rows to oscillate in the same direction or at different levels, parallel to the cooling surface, in order to obtain the most uniform possible cooling result.
  • the outlet of the nozzle is arranged opposite the surface of a roll or arranged opposite the surface of a metal strip, in particular between two roll stands of a rolling train. Especially in such positions, the inventive method is of particular advantage.
  • the invention is directed to a cooling device for cooling a surface of a metal strip, a sheet or a roller for carrying out the method according to one of the preceding embodiments.
  • the device comprises at least one nozzle, comprising an inlet with a first cross section for directing a volume flow and an outlet opposite the surface to be cooled with a second cross section for directing the volumetric flow, which is greater than the first cross section, and wherein the cooling device further such is formed so that the distance of the outlet of the nozzle is perpendicular to the surface to be cooled between 0.1 mm and 10 mm, preferably between 0.5 mm and 5 mm or between 0.5 mm and 2 mm variable or freely adjustable.
  • the nozzle may be slidably guided by a guide.
  • the invention is directed to a rolling mill for rolling rolling, which comprises said cooling device.
  • the rolling device comprises at least one roller with a roll surface to be cooled on which the nozzle outlet is directed for cooling the roll surface.
  • the rolling device comprises at least two rolling stands for rolling a metal strip, wherein a cooling device according to the invention is arranged between the two rolling stands for cooling the surface of the metal strip located between the two rolling stands.
  • the nozzle is preferably used to locally, that is, at the location of the nozzle, specific structural processes in the body to be cooled (in particular the rolling stock) cause.
  • FIG. 1 2 shows a schematic cross section of an embodiment of a nozzle 2 which can be used for the method according to the invention.
  • the illustrated nozzle 2 comprises an inlet 3 and an outlet 5 arranged opposite the surface of a body or belt 1 to be cooled
  • Nozzle 2 preferably has an area for guiding 9 a volume flow V directed into the inlet 3 to the outlet 5.
  • the volume flow V is preferably perpendicular to the to be cooled Standing surface supplied to the outlet 5.
  • the inlet 3 preferably has a smaller clear diameter or cross section E than the outlet 5.
  • the outlet 5 has a larger clear diameter or cross section A than the inlet region 3 and / or the guide region 9.
  • the nozzle 2 or its outlet 5 widens in the direction of the surface to be cooled and is preferably in the guide region 9 mounted displaceably by a guide element 7 or mounted relative to the surface of the belt to be cooled 1 such that the distance d between the belt to be cooled 1 and the outlet 5 of the nozzle 2 is variable.
  • the nozzle 2 preferably slides in the guide 7. This movement preferably takes place in a direction S perpendicular to the surface to be cooled.
  • the nozzle 2 is particularly secured against tilting moments.
  • the nozzle outlet 5 is preferably flown through by the volume flow V of the cooling fluid.
  • Fluids may generally be liquids, in particular water or oil-water mixtures.
  • cooling by gases is also possible.
  • gases such as air or inert gases
  • a liquid is generally used as the coolant, since in this way higher heat transfer coefficients than in the case of gases can be realized.
  • only a single-phase cooling fluid should be used. If the volume flow V is adjusted accordingly, the nozzle 2 may become stuck to the surface to be cooled. This is done as already described above according to the Bernoulli principle or in other words according to the hydrodynamic paradox. The adjustment can be done by adjusting the pressure or the speed of the nozzle 2 supplied volume flow V.
  • a suction effect occurs when the volume flow V 'emerging from the outlet 5 between the outlet 5 and the surface 1 to be cooled has reached a sufficiently high relative speed, so that the pressure within the between the outlet 5 and the surface 1 to be cooled flowing volume flow V 'below the nozzle 2 surrounding pressure drops.
  • This pressure can correspond to the atmospheric pressure.
  • the volumetric flow V is kept constant when the suction effect has set, according to the Bernoulli principle there is a self-sustaining equilibrium of forces. If now the distance d between the surface to be cooled and the nozzle outlet 5 is changed, the nozzle automatically restores the distance in the equilibrium of forces.
  • Such variations in distance may be caused, for example, by an irregular surface to be cooled or, for example, by a deformed roll surface or inaccurate guidance of a metal strip 1. The same may apply to the cooling of rolls for irregular roll surfaces.
  • the nozzle 2 or the method according to the invention can be used on a strip top side, but also on a strip underside.
  • FIG. 2 shows a schematic cross section of an embodiment of a cooling device 10 for cooling a metal strip 1.
  • a cooling device 10 for cooling a metal strip 1.
  • the in the FIG. 2 illustrated device 10 has a Variety of nozzles 2, which are fed together by a cooling fluid container 14.
  • the cooling device 10 is arranged in each case on the upper side of the strip and on the underside of the strip for cooling the metal strip 1.
  • the individual nozzles 2 are arranged in the tape running direction B in successive rows. Each row preferably extends transversely to the tape running direction B.
  • These rows may be offset perpendicularly to the tape running direction B, so that viewed in the tape running direction B, a greater part of the width of the tape 1 is covered by the nozzles 2 than by one of the rows.
  • the nozzles 2 are similar as in the FIG. 1 shown in each case with a volume flow V fed via its inlet 3.
  • the container 14 can be correspondingly under pressure to press the cooling fluid into the inlets 3 of the nozzles 2.
  • the nozzles 2 are slidably guided perpendicularly to the surface to be cooled by guide elements 7 (for example slide bearings), so that the distance d between the nozzle outlet 5 and the surface to be cooled is variable. Nevertheless, the distance d, for example mechanically, may be limited.
  • the device 10 in particular the nozzles 2 and / or the guide elements 3, preferably stops 11, which limit the movement of the nozzles 2 in the direction of the surface to be cooled.
  • the nozzles 2 may be biased by elastic means and / or spring elements 13 substantially in the perpendicular to the surface to be cooled.
  • the cooling device 10 may comprise one or more oscillation devices (not shown), which is either designed to oscillate each individual nozzle 2 parallel to the surface to be cooled or to oscillate all the nozzles 2 of the device 10 together.
  • an oscillation of the entire container 14 together with the nozzle 2 mounted on this would be possible.
  • FIG. 3 shows a partially transparent plan view of an embodiment of a cooling device 10 '.
  • This device 10 ' essentially corresponds to that according to FIG. 2 However, six are in the tape direction B provided successively arranged nozzle rows.
  • the device according to FIG. 2 has only four such rows.
  • the nozzles 2 are supplied with cooling fluid by the fluid container 14 '.
  • the fluid emerges in the form of the volume flow V 'from the outlets 5 of the nozzles 2, so that a heat transfer between the belt 1 and the cooling fluid or the volume flow V' can take place.
  • the volumetric flow V ' leaves the outlet 5 of the nozzle preferably and generally in a direction substantially parallel to the surface to be cooled. If the nozzle outlet 5 has the illustrated rotationally symmetric or circular shape, then the volume flow V 'leaving the outlet moves substantially concentrically away from the nozzle 2.
  • a nozzle 2 according to the invention may have different shapes, such as slit-like or round shapes.
  • the nozzle 2 may extend at least over part of the width of the surface to be cooled, such as across the width of a roll or a metal strip.
  • the cross-section of the nozzles 2 or of the nozzle outlet 5 can likewise be adapted to an asymmetrical effective range which arises as a result of a movement of the surface to be cooled.
  • the clear diameter of the nozzle outlet may furthermore preferably be between 0.5 cm and 10 cm or preferably between 1 cm and 5 cm.
  • the distance between the outlet 5 of the nozzle 2 and the surface to be cooled may for example be between 0.1 mm and 5 mm, or preferably between 0.1 mm and 3 mm.
  • the distance between the outlet 5 of the nozzle 2 and the surface to be cooled for example, between 0.5 mm and 5 mm or preferably between 1 mm and 5 mm or even between 1 mm and 2 mm.
  • nozzles are arranged opposite the surface to be cooled, they may preferably have spacings between one another which correspond to 0.5 times to 5 times or preferably 1 to 2 times the clear diameter of the outlet 5.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Metal Rolling (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Continuous Casting (AREA)

Description

Gebiet der ErfindungField of the invention

Die vorliegende Erfindung ist auf ein Verfahren sowie eine Vorrichtung zur Kühlung von Oberflächen in Gießanlagen, Walzanlagen oder sonstigen Bandprozesslinien gerichtet. Dabei wird bevorzugt Kühlmedium auf die Oberfläche eines Gieß- oder Walzguts, insbesondere eines Metallbands bzw. Blechs, oder einer Walze aufgebracht.The present invention is directed to a method and a device for cooling surfaces in casting plants, rolling mills or other strip processing lines. In this case, cooling medium is preferably applied to the surface of a cast or rolled stock, in particular a metal strip or sheet, or a roll.

Stand der TechnikState of the art

Aus dem Stand der Technik ist eine Vielzahl von Verfahren zur Kühlung von Metallbändern oder Walzen bekannt.From the prior art, a variety of methods for cooling metal strips or rolls is known.

Die DE 41 16 019 A1 bezieht sich beispielsweise auf eine Vorrichtung zur Kühlung eines Metallbands mit beidseitig angeordneten Flüssigkeitsdüsen, welche als Vollstrahldüsen ausgebildet sind. Durch diese Düsen werden Prallstrahlen gebildet, wobei sich rings um den Auftreffpunkt der einzelnen Prallstrahlen Bereiche schießender Strömung ausbilden. Bei dieser Vorrichtung treffen die Strahlen frei und ohne jegliche Führung oder Eingrenzung auf die Bandoberfläche. Nachteilig an einer solchen Vorrichtung sind zum Beispiel der relativ hohe Wasserverbrauch sowie eine trotz der vorgenommenen Anstrengungen nur schwer vermeidbare Bildung einer Dampfschicht zwischen der schießenden Strömung und der zu kühlenden Oberfläche.The DE 41 16 019 A1 refers, for example, to a device for cooling a metal strip with liquid nozzles arranged on both sides, which are designed as full jet nozzles. Impinging jets are formed by these nozzles, with areas of shooting flow forming around the impact point of the individual impact jets. In this device, the beams hit the belt surface freely and without any guidance or confinement. A disadvantage of such a device, for example, the relatively high water consumption and despite the efforts made difficult to avoid formation of a vapor layer between the firing flow and the surface to be cooled.

Die DE 27 51 013 A1 offenbart eine Kühleinrichtung, bei der ein Wassertropfen enthaltender Sprühstrahl erzeugt und auf eine zu kühlende Metallplatte gerichtet wird. Die dazu erforderlichen Düsen sind als Venturi-Rohre ausgebildet, durch welche eine gezielte Vermischung von Luft und Wasser gefördert wird. Der daraus resultierende mehrphasige Kühlmittelsfrom führt zu einer Dampfschichtbildung, welche die Kühlwirkung erheblich beeinträchtigt.The DE 27 51 013 A1 discloses a cooling device in which a spray containing water droplets is generated and directed onto a metal plate to be cooled. The nozzles required for this purpose are designed as Venturi tubes, through which a targeted mixing of air and water is promoted. The resulting multiphase Kühlmittelsfrom leads to a vapor layer formation, which significantly affects the cooling effect.

Die JP 2005118838 A offenbart eine Vorrichtung zur Kühlung durch Spraydüsen. Durch Verwendung der Spraydüsen entsteht ein aus einer Flüssigkeit und gasförmigen Bestandteilen bestehender Strahl. Dadurch bildet sich ebenfalls eine Dampfschicht auf dem zu kühlenden Material, welche einer effektiven Kühlung entgegensteht.The JP 2005118838 A discloses a device for cooling by spray nozzles. By using the spray nozzles, a jet of liquid and gaseous components is formed. This also forms a vapor layer on the material to be cooled, which precludes effective cooling.

Die JP S57 156 830 A offenbart eine Vorrichtung zum Kühlen von gewalztem Metallband, welche eine Düse und eine sich von dieser Düse aus, parallel zu der zu kühlenden Oberfläche des Metallbands erstreckende plattenartige Führung aufweist. Das aus der Düse ausströmende Kühlwasser bildet zwischen der plattenartigen Führung und der zu kühlenden Oberfläche einen Wässefilm zur Kühlung des Metallbands. Die Düse und die plattenartige Führung sind fest über einen Spritzbalken an einem höhenverstellbaren Querträger montiert, sodass der Abstand zwischen der Düse und der zu kühlenden Metallbandoberfläche über ein Heben und Absenken des Querträgers einstellbar ist.The JP S57 156 830 A discloses a rolled strip metal cooling apparatus having a nozzle and a plate-like guide extending from said nozzle parallel to the surface of the metal strip to be cooled. The cooling water flowing out of the nozzle forms between the plate-like guide and the surface to be cooled a water film for cooling the metal strip. The nozzle and the plate-like guide are fixedly mounted via a spray bar on a height-adjustable cross member, so that the distance between the nozzle and the surface of the metal strip to be cooled is adjustable by raising and lowering the cross member.

Aufgabe der Erfindung ist es, ein verbessertes Verfahren zur Kühlung von Gießgut, Walzgut oder Walzen bereitzustellen. Bevorzugt besteht die Aufgabe darin, mindestens einen der oben genannten Nachteile zu überwinden. Insbesondere sollte bevorzugt die benötigte Kühlmittelmenge verringert bzw. die Effizienz, Effektivität und/oder Flexibilität der Kühlung verbessert werden.The object of the invention is to provide an improved method for cooling foundry material, rolling stock or rolls. The object is preferably to overcome at least one of the above-mentioned disadvantages. In particular, the required amount of coolant should preferably be reduced or the efficiency, effectiveness and / or flexibility of the cooling should be improved.

Offenbarung der ErfindungDisclosure of the invention

Die technische Aufgabe wird durch die Merkmale des unabhängigen Anspruchs 1 gelöst. Gemäß dem beanspruchten Verfahren zum Kühlen einer Oberfläche von Gießgut, Walzgut (insbesondere Metallband oder Blech) oder einer Walze wird eine Düse bereitgestellt, welche einen Einlass mit einem ersten lichten bzw. inneren Querschnitt und einen der zu kühlenden Oberfläche gegenüberliegenden Auslass mit einem zweiten lichten bzw. inneren Querschnitt umfasst, welcher vorzugsweise größer als der erste Querschnitt ist. Ferner wird ein vorzugsweise einphasiger Volumenstrom eines Kühlfluids bereitgestellt, welcher über den Einlass der Düse zugeführt wird und die Düse durch den Auslass verlässt. Zumindest der Düsenauslass oder die Düse wird mit variablem (bzw. frei einstellbaren) Abstand zu der zu kühlenden Oberfläche gelagert. Der Volumenstrom des dem Einlass der Düse zugeführten Kühlfluids wird zudem derart eingestellt, dass sich die Düse bzw. der Düsenauslass gemäß dem Bernoulli-Prinzip (bzw. dem hydrodynamischen Paradoxon) an der zu kühlenden Oberfläche (selbstständig) festsaugt.The technical problem is solved by the features of independent claim 1. According to the claimed method for cooling a surface of foundry material, rolling stock (in particular metal strip or sheet metal) or a roll, a nozzle is provided which has an inlet with a first clear or inner cross section and an outlet opposite the surface to be cooled with a second clear or Inner cross-section includes, which is preferably larger than the first cross section. Furthermore, a preferably single-phase volumetric flow of a cooling fluid is provided, which is supplied via the inlet of the nozzle and leaves the nozzle through the outlet. At least the nozzle outlet or the nozzle is stored at a variable (or freely adjustable) distance to the surface to be cooled. The volume flow of the cooling fluid supplied to the inlet of the nozzle is also adjusted in such a way that the nozzle or the nozzle outlet adheres to the surface to be cooled in accordance with the Bernoulli principle (or the hydrodynamic paradox).

Dadurch, dass die Düse mit variablem bzw. frei verstellbarem Abstand zu der zu kühlenden Oberfläche gelagert wird und der Volumenstrom des durch die Düse strömenden Kühlfluids derart eingestellt wird, dass diese sich gemäß dem Bernoulli-Prinzip (Englisch: Bernoulli's principle) selbsttätig an der Oberfläche festsaugt, wird eine effektive Kühlung der Oberfläche ermöglicht. Gemäß dem genannten Prinzip, entsteht beim Ausströmen des Kühlfluids (zum Beispiel Wasser, Luft oder eine Emulsion aus Wasser und Öl) aus dem Düsenauslass, ein relativ zu der Umgebung der Düse niedrigerer Druck (Unterdruck), welcher dazu führt, dass sich die Düse an der zu kühlenden Oberfläche festsaugt oder mit anderen Worten sich der Abstand zwischen dem Auslass und der Oberfläche eigenständig verringert. Dies kann zum Beispiel dadurch hervorgerufen werden, dass die Strömungsgeschwindigkeit des aus dem Auslass ausströmenden Fluids erhöht wird, wodurch sich gemäß dem Bernoulli-Prinzip der Druck der aus der Düse ausströmenden Flüssigkeit erniedrigt. Durch diese Druckerniedrigung im Bereich der Strömung zwischen der zu kühlenden Oberfläche und dem Düsenauslass wird ein Zustand erreicht, in dem sich die Düse an der zu kühlenden Oberfläche aufgrund des Druckunterschieds zum Druck in der Umgebung der Düse festsaugt. Die Düse kollidiert allerdings nicht mit der zu kühlenden Oberfläche, da der Volumenstrom (permanent) durch den Einlass der Düse zugeführt bzw. nachgeführt wird. Somit wird bei vorzugsweise konstantem Volumenstrom ein im Wesentlichen gleichbleibender Abstand zwischen dem Düsenauslass und der zu kühlenden Oberfläche gewährleistet. Dieser Abstand ist selbstregulierend oder anders ausgedrückt, der Abstand stellt sich selbst ein.Characterized in that the nozzle is stored with a variable or freely adjustable distance to the surface to be cooled and the volume flow of the cooling fluid flowing through the nozzle is adjusted such that it automatically according to the Bernoulli principle (English: Bernoulli's principle) on the surface Suction, effective cooling of the surface is made possible. According to the said principle, when the cooling fluid (for example water, air or an emulsion of water and oil) flows out of the nozzle outlet, a lower pressure (negative pressure) is created relative to the surroundings of the nozzle, which causes the nozzle to contact the vacuum to be cooled surface or in other words, the distance between the outlet and the surface is reduced independently. This can for example be caused by the fact that the flow rate of the fluid flowing out of the outlet is increased, whereby, according to the Bernoulli principle, the pressure of the liquid flowing out of the nozzle is lowered. As a result of this pressure reduction in the region of the flow between the surface to be cooled and the nozzle outlet, a state is reached in which the nozzle on the surface to be cooled becomes saturated due to the pressure difference to the pressure in the vicinity of the nozzle. However, the nozzle does not collide with the surface to be cooled, since the volume flow (permanent) is fed or tracked through the inlet of the nozzle. Thus, at a preferably constant volume flow, a substantially constant distance between the Nozzle outlet and the surface to be cooled guaranteed. This distance is self-regulating or in other words, the distance adjusts itself.

Die variable bzw. bewegliche Lagerung der Düse im Abstand zu der Oberfläche kann bevorzugt in einem Bereich zwischen 0,1 mm und 5 mm, vorzugsweise zwischen 0,5 mm und 2 mm liegen.The variable or movable mounting of the nozzle at a distance from the surface may preferably be in a range between 0.1 mm and 5 mm, preferably between 0.5 mm and 2 mm.

Weitere Vorteile der Erfindung umfassen hohe Wärmeübergangskoeffizienten zwischen der zu kühlenden Oberfläche und der Düse sowie eine Wirkungsgradsteigerung gegenüber bekannten Systemen. Zudem kann die Länge einer Kühleinrichtung bei Kühlung eines Bandes in Bandlaufrichtung durch die erhöhte Effizienz reduziert werden. Insbesondere kann Kühlmittel direkt an einer benötigten Stelle aufgebracht werden, sodass einerseits einzelne Bereiche der zu kühlenden Oberfläche gezielt gekühlt und andererseits Verluste von Kühlmittel zur Kühlung vermieden werden. Auf der Oberfläche vagabundierendes Kühlmedium wird durch die Düse von der eigentlichen Kühlzone abgeschirmt. Somit ist die Kühlleistung der Düse weitestgehend unabhängig von dem vagabundierenden Kühlmedium. Sind mehrere Düsen über eine Walzen- oder Bandbreite verteilt, können Teilbereiche der Walze oder des Bandes entweder weniger stark gekühlt werden oder gänzlich ungekühlt bleiben, indem Düsen in diesen Bereichen abgeschaltet werden.Further advantages of the invention include high heat transfer coefficients between the surface to be cooled and the nozzle and an increase in efficiency over known systems. In addition, the length of a cooling device can be reduced when cooling a tape in the direction of tape travel by the increased efficiency. In particular, coolant can be applied directly to a required location, so that, on the one hand, individual areas of the surface to be cooled are specifically cooled and, on the other hand, losses of coolant for cooling are avoided. On the surface vaporizing cooling medium is shielded by the nozzle of the actual cooling zone. Thus, the cooling performance of the nozzle is largely independent of the stray cooling medium. If multiple nozzles are distributed across a roller or belt width, portions of the roller or belt may either be less cooled or remain completely uncooled by shutting off nozzles in those areas.

Gemäß einer bevorzugten Ausführungsform des Verfahrens ist der Abstand des Auslasses (ausschließlich) in einer im Wesentlichen senkrecht zu der zu kühlenden Oberfläche stehenden Richtung variabel. Das bedeutet, dass der Abstand nicht auf ein festes Maß beschränkt ist. Der Abstand ist durch den Volumenstrom einstellbar.According to a preferred embodiment of the method, the distance of the outlet is (exclusively) variable in a direction substantially perpendicular to the surface to be cooled. This means that the distance is not limited to a fixed amount. The distance is adjustable by the volume flow.

Gemäß einer weiteren bevorzugten Ausführungsform des Verfahrens ist die Düse zumindest teilweise durch eine Führung gleitend gelagert. Eine solche Führung kann zum Beispiel ein Gleitlager umfassen, wobei die Düse gleitend in einer Hülse des Lagers verschiebbar gelagert ist. Die Lagerung kann derart erfolgen, dass lediglich eine Bewegung in einer senkrecht zu der zu kühlenden Oberfläche stehenden Richtung ermöglicht ist. Dies gewährleistet eine möglichst kräftefreie selbstständige Einstellung des Abstands zwischen dem Düsenauslass und der zu kühlenden Oberfläche.According to a further preferred embodiment of the method, the nozzle is at least partially slidably mounted by a guide. Such a guide may comprise, for example, a sliding bearing, wherein the nozzle slidably in a sleeve the bearing is slidably mounted. The storage can be made such that only a movement is possible in a direction perpendicular to the surface to be cooled. This ensures a force-free independent adjustment of the distance between the nozzle outlet and the surface to be cooled.

Gemäß einer weiteren bevorzugten Ausführungsform des Verfahrens ist die Düse federnd und/oder zusätzlich mit einer Dämpfungsvorrichtung versehen gelagert. Vorzugsweise ist die Düse in einer senkrecht zur Oberfläche stehenden Richtung vorgespannt. Es ist möglich, dass die zu kühlende Oberfläche durch ein oder mehrere Düsen getragen wird. In diesem Falle ist die vorgespannte Lagerung der Düsen besonders vorteilhaft, da einerseits die zu kühlende Oberfläche und damit zum Beispiel Walz- oder Gießgut getragen werden kann, jedoch andererseits ein sich selbstständig einstellender Abstand zwischen zu kühlender Oberfläche und dem Band ermöglicht wird. Solche Düsen können sowohl auf der Oberseite eines Metallbandes oder Blechs als auch auf dessen Unterseite angeordnet werden.According to a further preferred embodiment of the method, the nozzle is mounted resiliently and / or additionally provided with a damping device. Preferably, the nozzle is biased in a direction perpendicular to the surface direction. It is possible that the surface to be cooled is carried by one or more nozzles. In this case, the prestressed mounting of the nozzles is particularly advantageous because, on the one hand, the surface to be cooled and, for example, rolled or cast material can be carried, but on the other hand, a self-adjusting distance between the surface to be cooled and the strip is made possible. Such nozzles can be arranged both on the top of a metal strip or sheet and on its underside.

Gemäß einer weiteren bevorzugten Ausführungsform des Verfahrens ist die Düse im Wesentlichen parallel zu der zu kühlenden Oberfläche, insbesondere durch eine Oszillationsvorrichtung, oszillierbar. Durch ein derartiges Merkmal kann einer ungleichmäßigen Kühlung der Oberfläche entgegengewirkt werden. Insbesondere kann mit einer begrenzten Anzahl von Düsen eine größere Oberfläche abgedeckt werden. Die Oszillation weist bevorzugt zumindest eine Komponente senkrecht zur Bandlaufrichtung auf bzw. parallel zu axialen Richtung einer Walze auf. Vorzugsweise erfolgt die Oszillation dabei in einer parallel zu der zu kühlenden Oberfläche liegenden Ebene. Bei einer Anordnung mit mehreren Düsen, können diese auch in verschiedene Richtungen und mit verschiedenen Frequenzen oszillieren.According to a further preferred embodiment of the method, the nozzle is substantially parallel to the surface to be cooled, in particular oscillatable by an oscillating device. By such a feature, uneven cooling of the surface can be counteracted. In particular, a larger surface area can be covered with a limited number of nozzles. The oscillation preferably has at least one component perpendicular to the strip running direction or parallel to the axial direction of a roll. Preferably, the oscillation takes place in a plane parallel to the surface to be cooled. In an arrangement with several nozzles, they can also oscillate in different directions and with different frequencies.

Gemäß einer weiteren bevorzugten Ausführungsform des Verfahrens weist die Düse zwischen dem Einlass und dem Auslass einen Führungsbereich auf, in dem das Kühlmittel im Wesentlichen in einer senkrecht zu der zu kühlenden Oberfläche stehenden Richtung geführt und seitlich von diesem umschlossen wird. Mit anderen Worten wird der Volumenstrom dem Auslass im Wesentlichen senkrecht zu dessen Querschnitt stehend zugeführt. Dadurch können insbesondere bei Verwendung einer Kühlflüssigkeit unerwünschte Verwirbelungen vermieden werden, welche zu einer Bildung von Luftblasen führen könnte. Denn die Wärmeübertragung zwischen der Kühlflüssigkeit und der zu kühlenden Oberfläche kann durch die Vermeidung von Luftblasen bedeutend verbessert werden.According to a further preferred embodiment of the method, the nozzle has a guide region between the inlet and the outlet, in which the coolant is guided substantially in a direction perpendicular to the surface to be cooled and is laterally enclosed by this. In other words, the volume flow is supplied to the outlet substantially perpendicular to its cross-section standing. As a result, unwanted turbulences can be avoided, in particular when using a cooling liquid, which could lead to the formation of air bubbles. Because the heat transfer between the coolant and the surface to be cooled can be significantly improved by avoiding air bubbles.

Gemäß einer weiteren bevorzugten Ausführungsform des Verfahrens vergrößert sich der Querschnitt des Auslasses der Düse in Richtung der zu kühlenden Oberfläche. Durch eine sich verbreiternde oder aufweitende Form des Auslasses in Richtung der zu kühlenden Oberfläche können Teile des Kühlmittelstroms in eine horizontale Richtung abgelenkt werden. Eine derartige Form kann den Effekt des Soges weiter verstärken. Vorzugsweise erfolgt die genannte Aufweitung stetig und/oder zum Beispiel trichterförmig oder nach außen gekrümmt.According to a further preferred embodiment of the method, the cross section of the outlet of the nozzle increases in the direction of the surface to be cooled. By a widening or widening shape of the outlet in the direction of the surface to be cooled, parts of the coolant flow can be deflected in a horizontal direction. Such a shape can further enhance the effect of the suction. Preferably, said expansion is continuous and / or, for example, funnel-shaped or outwardly curved.

Gemäß einer bevorzugten Ausführungsform des Verfahrens ist der zweite Querschnitt in einer parallel zu der zu kühlenden Oberfläche liegenden Ebene im Wesentlichen rotationssymmetrisch ausgebildet. Mit anderen Worten kann der Querschnitt im Wesentlichen kreisförmig ausgebildet sein. Durch eine derartige Ausbildung kann eine homogene Versorgung mit Kühlmittel erreicht werden.According to a preferred embodiment of the method, the second cross section is formed substantially rotationally symmetrical in a plane lying parallel to the surface to be cooled. In other words, the cross section may be substantially circular. By such a configuration, a homogeneous supply of coolant can be achieved.

Gemäß einer weiteren bevorzugten Ausführungsform des Verfahrens ist die Düse in einer parallel zu der zu kühlenden Oberfläche liegenden Ebene nichtrotationssymmetrisch ausgebildet. Sie ist bevorzugt länglich, insbesondere elliptisch ausgebildet. Durch ein solches Merkmal kann zum Beispiel einer asymmetrischen Kühlzone bei bewegten Kühlflächen entgegengewirkt werden.According to a further preferred embodiment of the method, the nozzle is non-rotationally symmetrical in a plane lying parallel to the surface to be cooled. It is preferably elongate, in particular elliptical. By such a feature, for example, an asymmetric cooling zone can be counteracted with moving cooling surfaces.

Gemäß einer weiteren bevorzugten Ausführungsform des Verfahrens umfasst das Einstellen des Volumenstroms ein Einstellen von dessen Strömungsgeschwindigkeit und/oder von dessen Druck. Die genauen Werte eines solchen Drucks oder Volumenstroms hängen von der jeweils vorliegenden Geometrie und Größe der Düse ab.According to another preferred embodiment of the method, adjusting the volume flow comprises adjusting it Flow velocity and / or its pressure. The exact values of such a pressure or volume flow depend on the particular geometry and size of the nozzle.

Gemäß einer weiteren bevorzugten Ausführungsform des Verfahrens wird der variable Abstand zwischen dem Auslass und der zu kühlenden Oberfläche durch ein Begrenzungselement (unabhängig von dem bereitgestellten Volumenstrom) größer als 0,1 mm und vorzugsweise größer als 0,5 mm gehalten. Durch ein solches Begrenzungselement bzw. durch solch einen Anschlag kann zum Beispiel selbst im Falle eines Ausfalls des Volumenstroms eine Kollision der Düse mit der zu kühlenden Oberfläche vermieden werden.According to a further preferred embodiment of the method, the variable distance between the outlet and the surface to be cooled is kept greater than 0.1 mm and preferably greater than 0.5 mm by a limiting element (irrespective of the volumetric flow provided). By such a limiting element or by such a stop, for example, even in the case of a failure of the volume flow, a collision of the nozzle can be avoided with the surface to be cooled.

Gemäß einer weiteren bevorzugten Ausführungsform des Verfahrens werden mehrere Düsen rasterartig in einer der zu kühlenden Oberfläche gegenüberliegenden Ebene angeordnet. Durch diese rasterartige Anordnung von Düsen kann ein großer Bereich der zu kühlenden Oberfläche abgedeckt werden. Mit anderen Worten wird eine Vielzahl von Düsen nebeneinanderliegend gegenüber der zu kühlenden Oberfläche angeordnet. Anders beschrieben, können mehrere Düsen in einer Reihe angeordnet werden, zum Beispiel mehr als vier Düsen. Im Falle der Kühlung einer Walze können vorzugsweise mehrere Düsen in eine parallel zur Walzenachse liegenden Richtung angeordnet sein. Es können im Allgemeinen auch mehrere solcher Reihen vorgesehen werden. Im Falle der Kühlung von Walz- oder Gießgut, wie einem Metallband, können solche Reihen sich quer zur Bandlaufrichtung erstrecken. Zudem können mehrere Reihen hintereinander in Bandlaufrichtung angeordnet werden. Es ist ebenfalls möglich, dass die Reihen relativ zueinander quer zur Bandlaufrichtung versetzt sind, sodass in Bandlaufrichtung betrachtet, in den Zwischenräumen zweier benachbarter Düsen einer Reihe, Düsen einer in Bandlaufrichtung benachbarten Reihe liegen. Ebenfalls ist es möglich, dass einzelne Düsen oder Düsenreihen gleich- oder verschiedensinnig, parallel zur Kühloberfläche oszillieren, um ein möglichst gleichmäßiges Kühlergebnis zu erhalten.According to a further preferred embodiment of the method, a plurality of nozzles are arranged in a grid-like manner in a plane opposite the surface to be cooled. By this grid-like arrangement of nozzles, a large area of the surface to be cooled can be covered. In other words, a plurality of nozzles is arranged side by side opposite the surface to be cooled. Stated differently, multiple nozzles may be arranged in a row, for example, more than four nozzles. In the case of cooling a roller, preferably a plurality of nozzles may be arranged in a direction parallel to the roller axis. In general, several such rows can be provided. In the case of cooling of rolled or cast material, such as a metal strip, such rows may extend transversely to the strip running direction. In addition, several rows can be arranged one behind the other in the strip running direction. It is also possible that the rows are offset relative to one another transversely to the strip running direction, so that viewed in the direction of tape travel, lie in the interstices of two adjacent nozzles of a row, nozzles of an adjacent tape running direction series. It is also possible for individual nozzles or nozzle rows to oscillate in the same direction or at different levels, parallel to the cooling surface, in order to obtain the most uniform possible cooling result.

Gemäß einer weiteren bevorzugten Ausführungsform des Verfahrens wird der Auslass der Düse gegenüberliegend der Oberfläche einer Walze angeordnet oder gegenüberliegend der Oberfläche eines Metallbands, insbesondere zwischen zwei Walzgerüsten einer Walzstraße angeordnet. Besonders an solchen Positionen ist das erfindungsgemäße Verfahren von besonderem Vorteil.According to a further preferred embodiment of the method, the outlet of the nozzle is arranged opposite the surface of a roll or arranged opposite the surface of a metal strip, in particular between two roll stands of a rolling train. Especially in such positions, the inventive method is of particular advantage.

Darüber hinaus ist die Erfindung auf eine Kühlvorrichtung zum Kühlen einer Oberfläche eines Metallbandes, eines Blechs oder einer Walze zur Durchführung des Verfahrens gemäß einer der vorhergehenden Ausführungsformen gerichtet. Dabei umfasst die Vorrichtung mindestens eine Düse, umfassend einen Einlass mit einem ersten Querschnitt zur Leitung eines Volumenstroms und einen der zu kühlenden Oberfläche gegenüberliegenden Auslass mit einem zweiten Querschnitt zur Leitung des Volumenstroms, welcher größer als der erste Querschnitt ist, und wobei die Kühlvorrichtung ferner derart ausgebildet ist, dass der Abstand des Auslasses der Düse senkrecht zu der zu kühlenden Oberfläche zwischen 0,1 mm und 10 mm, vorzugsweise zwischen 0,5 mm und 5 mm oder zwischen 0,5 mm und 2 mm variabel bzw. frei verstellbar ist. Insbesondere kann die Düse gleitend durch eine Führung geführt sein.In addition, the invention is directed to a cooling device for cooling a surface of a metal strip, a sheet or a roller for carrying out the method according to one of the preceding embodiments. In this case, the device comprises at least one nozzle, comprising an inlet with a first cross section for directing a volume flow and an outlet opposite the surface to be cooled with a second cross section for directing the volumetric flow, which is greater than the first cross section, and wherein the cooling device further such is formed so that the distance of the outlet of the nozzle is perpendicular to the surface to be cooled between 0.1 mm and 10 mm, preferably between 0.5 mm and 5 mm or between 0.5 mm and 2 mm variable or freely adjustable. In particular, the nozzle may be slidably guided by a guide.

Ferner ist die Erfindung auf eine Walzvorrichtung zum Walzen von Walzgut, gerichtet, welche die genannte Kühlvorrichtung umfasst. Die Walzvorrichtung umfasst mindestens eine Walze mit einer zu kühlenden Walzenoberfläche auf die der Düsenauslass zur Kühlung der Walzenoberfläche gerichtet ist. Alternativ oder zusätzlich umfasst die Walzvorrichtung mindestens zwei Walzgerüste zum Walzen eines Metallbandes, wobei eine erfindungsgemäße Kühlvorrichtung zwischen den beiden Walzgerüsten zur Kühlung der Oberfläche des sich zwischen den beiden Walzgerüsten befindlichen Metallbandes angeordnet ist.Further, the invention is directed to a rolling mill for rolling rolling, which comprises said cooling device. The rolling device comprises at least one roller with a roll surface to be cooled on which the nozzle outlet is directed for cooling the roll surface. Alternatively or additionally, the rolling device comprises at least two rolling stands for rolling a metal strip, wherein a cooling device according to the invention is arranged between the two rolling stands for cooling the surface of the metal strip located between the two rolling stands.

Ferner wird die Düse bevorzugt eingesetzt, um lokal, das heißt am Ort der Düse, gezielte Gefügeprozesse im zu kühlenden Körper (insbesondere dem Walzgut) hervorzurufen.Furthermore, the nozzle is preferably used to locally, that is, at the location of the nozzle, specific structural processes in the body to be cooled (in particular the rolling stock) cause.

Sämtliche Merkmale der oben beschriebenen Ausführungsformen können miteinander kombiniert oder gegeneinander ausgetauscht werden.All features of the embodiments described above can be combined with each other or replaced.

Kurze Beschreibung der FigurenBrief description of the figures

Im Folgenden werden kurz die Figuren der Ausführungsbeispiele beschrieben. Weitere Details sind der detaillierten Beschreibung der Ausführungsbeispiele zu entnehmen. Es zeigen:

Figur 1
eine schematische Querschnittsansicht eines Ausführungsbeispiels einer erfindungsgemäßen Düse;
Figur 2
eine schematische Querschnittsansicht eines Ausführungsbeispiels einer erfindungsgemäßen Kühlvorrichtung; und
Figur 3
eine teiltransparente, schematische Draufsicht auf ein weiteres erfindungsgemäßes Ausführungsbeispiel einer Kühlvorrichtung.
The figures of the embodiments will be briefly described below. Further details can be found in the detailed description of the embodiments. Show it:
FIG. 1
a schematic cross-sectional view of an embodiment of a nozzle according to the invention;
FIG. 2
a schematic cross-sectional view of an embodiment of a cooling device according to the invention; and
FIG. 3
a partially transparent, schematic plan view of another inventive embodiment of a cooling device.

Detaillierte Beschreibung der AusführungsbeispieleDetailed description of the embodiments

Die Figur 1 zeigt einen schematischen Querschnitt eines Ausführungsbeispiels einer für das erfindungsgemäße Verfahren verwendbaren Düse 2. Die dargestellte Düse 2 umfasst einen Einlass 3 sowie einen gegenüberliegend der zu kühlenden Oberfläche eines Körpers bzw. Bandes 1 angeordneten Auslass 5. Zwischen dem Einlass 3 und dem Auslass 5 weist die Düse 2 bevorzugt einen Bereich zum Führen 9 eines in den Einlass 3 geleiteten Volumenstroms V zu dem Auslass 5 auf. Der Volumenstrom V wird bevorzugt senkrecht zu der zu kühlenden Oberfläche stehend dem Auslass 5 zugeführt. Der Einlass 3 weist bevorzugt einen geringeren lichten Durchmesser bzw. Querschnitt E als der Auslass 5 auf. Mit anderen Worten weist der Auslass 5 einen größeren lichten Durchmesser bzw. Querschnitt A auf als der Einlassbereich 3 und/oder der Führungsbereich 9. Die Düse 2 bzw. deren Auslass 5 weitet sich in Richtung der zu kühlenden Oberfläche auf und ist vorzugsweise im Führungsbereich 9 durch ein Führungselement 7 verschiebbar gelagert bzw. relativ zur Oberfläche des zu kühlenden Bandes 1 derart gelagert, dass der Abstand d zwischen dem zu kühlenden Band 1 und dem Auslass 5 der Düse 2 variabel ist. Dabei gleitet die Düse 2 bevorzugt in der Führung 7. Diese Bewegung findet vorzugsweise in einer senkrecht zu der zu kühlenden Oberfläche stehenden Richtung S statt. Durch die Führung 7 ist die Düse 2 insbesondere gegen Kippmomente gesichert. Aus bzw. in Richtung S wird bevorzugt der Düsenauslass 5 durch den Volumenstrom V des Kühlfluids angeströmt. Als Fluide können im Allgemeinen Flüssigkeiten, insbesondere Wasser oder Öl-Wasser-Gemische in Frage kommen. Alternativ ist ebenso eine Kühlung durch Gase, wie zum Beispiel Luft oder Inertgase, möglich. Bevorzugt wird als Kühlmittel im Allgemeinen allerdings eine Flüssigkeit verwendet, da so höhere Wärmeübergangskoeffizienten als bei Gasen realisiert werden können. Bevorzugt soll allerdings nur ein einphasiges Kühlfluid Verwendung finden. Wird der Volumenstrom V entsprechend eingestellt, kann sich die Düse 2 an der zu kühlenden Oberfläche festsaugen. Dies geschieht wie bereits zuvor beschrieben gemäß dem Bernoulli-Prinzip oder anders ausgedrückt gemäß dem hydrodynamischen Paradoxon. Die Einstellung kann durch eine Anpassung des Drucks oder der Geschwindigkeit des der Düse 2 zugeführten Volumenstroms V erfolgen.The FIG. 1 2 shows a schematic cross section of an embodiment of a nozzle 2 which can be used for the method according to the invention. The illustrated nozzle 2 comprises an inlet 3 and an outlet 5 arranged opposite the surface of a body or belt 1 to be cooled Nozzle 2 preferably has an area for guiding 9 a volume flow V directed into the inlet 3 to the outlet 5. The volume flow V is preferably perpendicular to the to be cooled Standing surface supplied to the outlet 5. The inlet 3 preferably has a smaller clear diameter or cross section E than the outlet 5. In other words, the outlet 5 has a larger clear diameter or cross section A than the inlet region 3 and / or the guide region 9. The nozzle 2 or its outlet 5 widens in the direction of the surface to be cooled and is preferably in the guide region 9 mounted displaceably by a guide element 7 or mounted relative to the surface of the belt to be cooled 1 such that the distance d between the belt to be cooled 1 and the outlet 5 of the nozzle 2 is variable. In this case, the nozzle 2 preferably slides in the guide 7. This movement preferably takes place in a direction S perpendicular to the surface to be cooled. Through the guide 7, the nozzle 2 is particularly secured against tilting moments. From or in the direction S, the nozzle outlet 5 is preferably flown through by the volume flow V of the cooling fluid. Fluids may generally be liquids, in particular water or oil-water mixtures. Alternatively, cooling by gases, such as air or inert gases, is also possible. Preferably, however, a liquid is generally used as the coolant, since in this way higher heat transfer coefficients than in the case of gases can be realized. Preferably, however, only a single-phase cooling fluid should be used. If the volume flow V is adjusted accordingly, the nozzle 2 may become stuck to the surface to be cooled. This is done as already described above according to the Bernoulli principle or in other words according to the hydrodynamic paradox. The adjustment can be done by adjusting the pressure or the speed of the nozzle 2 supplied volume flow V.

Das Bernoulli-Prinzip an sich ist dem Fachmann bekannt. Ein entsprechender Effekt tritt beispielsweise ebenfalls bei einer Vorbeifahrt eines PKW an einem LKW auf, wobei, während sich beide Fahrzeuge auf gleicher Höhe befinden, der PKW relativ zum LKW hingesogen wird. Nach Passage des LKW bewegt sich der PKW quer zu seiner Fahrtrichtung wieder zurück. Der während des Passierens entstehende Sog wird durch den eingeengten und beschleunigten Luftstrom zwischen beiden Fahrzeugen verursacht. Gemäß dem Prinzip von Bernoulli resultiert dieser eingeengte, beschleunigte Luftstrom in einem Unterdruck zwischen beiden Fahrzeugen relativ zum Luftdruck in der verbleibenden Umgebung der Fahrzeuge. Diese Erläuterung soll allerdings lediglich der Veranschaulichung dienen und sollte nicht einschränkend verstanden werden.The Bernoulli principle itself is known to the person skilled in the art. A corresponding effect, for example, also occurs when passing a car on a truck, wherein, while both vehicles are at the same height, the car is sucked relative to the truck. After passage of the truck, the car moves back across its direction of travel. The while passing through arising suction is caused by the constricted and accelerated air flow between both vehicles. According to the principle of Bernoulli, this narrowed, accelerated air flow results in a negative pressure between both vehicles relative to the air pressure in the remaining environment of the vehicles. However, this discussion is intended to be illustrative only and should not be taken as limiting.

In Bezug auf die Erfindung bzw. das beschriebene Ausführungsbeispiel tritt ein Sogeffekt ein, wenn der aus dem Auslass 5 austretende Volumenstrom V' zwischen dem Auslass 5 und der zu kühlenden Oberfläche 1 eine hinreichend hohe Relativgeschwindigkeit erreicht hat, sodass der Druck innerhalb des zwischen dem Auslass 5 und der zu kühlenden Oberfläche 1 strömenden Volumenstroms V' unter den die Düse 2 umgebenden Druck abfällt. Dieser Druck kann dem Atmosphärendruck entsprechen. Wird der Volumenstrom V konstant gehalten, wenn sich der Sogeffekt eingestellt hat, besteht gemäß dem Bernoulli-Prinzip ein sich selbst erhaltendes Kräftegleichgewicht. Wird nun der Abstand d zwischen der zu kühlenden Oberfläche und dem Düsenauslass 5 verändert, stellt die Düse automatisch den Abstand im Kräftegleichgewicht wieder her. Solche Abstandsveränderungen können zum Beispiel durch eine unregelmäßige zu kühlende Oberfläche hervorgerufen werden oder zum Beispiel durch eine verformte Walzenoberfläche oder eine ungenaue Führung eines Metallbandes 1. Gleiches kann bei der Kühlung von Walzen für unregelmäßige Walzenoberflächen gelten.With respect to the invention or the described embodiment, a suction effect occurs when the volume flow V 'emerging from the outlet 5 between the outlet 5 and the surface 1 to be cooled has reached a sufficiently high relative speed, so that the pressure within the between the outlet 5 and the surface 1 to be cooled flowing volume flow V 'below the nozzle 2 surrounding pressure drops. This pressure can correspond to the atmospheric pressure. If the volumetric flow V is kept constant when the suction effect has set, according to the Bernoulli principle there is a self-sustaining equilibrium of forces. If now the distance d between the surface to be cooled and the nozzle outlet 5 is changed, the nozzle automatically restores the distance in the equilibrium of forces. Such variations in distance may be caused, for example, by an irregular surface to be cooled or, for example, by a deformed roll surface or inaccurate guidance of a metal strip 1. The same may apply to the cooling of rolls for irregular roll surfaces.

Im Allgemeinen kann die Düse 2 bzw. das erfindungsgemäße Verfahren auf einer Bandoberseite Anwendung finden, jedoch ebenfalls auf einer Bandunterseite.In general, the nozzle 2 or the method according to the invention can be used on a strip top side, but also on a strip underside.

Die Figur 2 zeigt einen schematischen Querschnitt eines Ausführungsbeispiels einer Kühlvorrichtung 10 zur Kühlung eines Metallbandes 1. Zur Vereinfachung wurden für gleiche oder analoge Elemente dieselben Bezugszeichen wie in der Figur 1 verwendet. Die in der Figur 2 dargestellte Vorrichtung 10 weist eine Vielzahl von Düsen 2 auf, die gemeinsam durch einen Kühlfluidbehälter 14 gespeist werden. Die Kühlvorrichtung 10 ist jeweils auf der Bandoberseite und auf der Bandunterseite zur Kühlung des Metallbandes 1 angeordnet. Die einzelnen Düsen 2 sind in Bandlaufrichtung B in hintereinanderliegenden Reihen angeordnet. Jede Reihe erstreckt sich vorzugsweise quer zur Bandlaufrichtung B. Diese Reihen können senkrecht zur Bandlaufrichtung B versetzt sein, sodass in Bandlaufrichtung B betrachtet, ein größerer Teil der Breite des Bandes 1 durch die Düsen 2 abgedeckt ist als durch eine der Reihen. Die Düsen 2 werden ähnlich wie in der Figur 1 gezeigt jeweils mit einem Volumenstrom V über ihren Einlass 3 gespeist. Dabei kann der Behälter 14 entsprechend unter Druck stehen, um das Kühlfluid in die Einlässe 3 der Düsen 2 zu pressen. Die Düsen 2 sind senkrecht zu der zu kühlenden Oberfläche durch Führungselemente 7 (zum Beispiel Gleitlager) gleitend geführt, sodass der Abstand d zwischen dem Düsenauslass 5 und der zu kühlenden Oberfläche variabel ist. Dennoch kann der Abstand d, zum Beispiel mechanisch, begrenzt sein. Um eine Kollision mit der zu kühlenden Oberfläche zu verhindern, weist die Vorrichtung 10, insbesondere die Düsen 2 und/oder die Führungselemente 3, vorzugsweise Anschläge 11 auf, welche die Bewegung der Düsen 2 in Richtung der zu kühlenden Oberfläche begrenzen. Zusätzlich können die Düsen 2 durch elastische Mittel und/oder Federelemente 13 im Wesentlich in der senkrecht zu der zu kühlenden Oberfläche vorgespannt sein.The FIG. 2 shows a schematic cross section of an embodiment of a cooling device 10 for cooling a metal strip 1. For simplicity, the same reference numerals as in the. For identical or analogous elements FIG. 1 used. The in the FIG. 2 illustrated device 10 has a Variety of nozzles 2, which are fed together by a cooling fluid container 14. The cooling device 10 is arranged in each case on the upper side of the strip and on the underside of the strip for cooling the metal strip 1. The individual nozzles 2 are arranged in the tape running direction B in successive rows. Each row preferably extends transversely to the tape running direction B. These rows may be offset perpendicularly to the tape running direction B, so that viewed in the tape running direction B, a greater part of the width of the tape 1 is covered by the nozzles 2 than by one of the rows. The nozzles 2 are similar as in the FIG. 1 shown in each case with a volume flow V fed via its inlet 3. In this case, the container 14 can be correspondingly under pressure to press the cooling fluid into the inlets 3 of the nozzles 2. The nozzles 2 are slidably guided perpendicularly to the surface to be cooled by guide elements 7 (for example slide bearings), so that the distance d between the nozzle outlet 5 and the surface to be cooled is variable. Nevertheless, the distance d, for example mechanically, may be limited. To prevent a collision with the surface to be cooled, the device 10, in particular the nozzles 2 and / or the guide elements 3, preferably stops 11, which limit the movement of the nozzles 2 in the direction of the surface to be cooled. In addition, the nozzles 2 may be biased by elastic means and / or spring elements 13 substantially in the perpendicular to the surface to be cooled.

Ferner ist es im Allgemeinen möglich, dass die Kühlvorrichtung 10 eine oder mehrere Oszillationsvorrichtungen (nicht dargestellt) umfasst, welche entweder zur Oszillation jeder einzelnen Düse 2 parallel zu der zu kühlenden Oberfläche ausgebildet ist oder sämtliche Düsen 2 der Vorrichtung 10 gemeinsam oszillieren kann. Bevorzugt wäre eine Oszillation des gesamten Behälters 14 samt der an diesem montierten Düsen 2 möglich.Furthermore, it is generally possible for the cooling device 10 to comprise one or more oscillation devices (not shown), which is either designed to oscillate each individual nozzle 2 parallel to the surface to be cooled or to oscillate all the nozzles 2 of the device 10 together. Preferably, an oscillation of the entire container 14 together with the nozzle 2 mounted on this would be possible.

Die Figur 3 zeigt eine teilweise transparente Draufsicht auf ein Ausführungsbeispiel einer Kühlvorrichtung 10'. Diese Vorrichtung 10' entspricht im Wesentlichen jener gemäß der Figur 2, jedoch sind sechs in Bandlaufrichtung B hintereinander angeordnete Düsenreihen vorgesehen. Die Vorrichtung gemäß Figur 2 weist lediglich vier solcher Reihen auf. Die Düsen 2 werden durch den Fluidbehälter 14' mit Kühlfluid versorgt. Das Fluid tritt in Form des Volumenstroms V' jeweils aus den Auslässen 5 der Düsen 2 aus, sodass eine Wärmeübertragung zwischen dem Band 1 und dem Kühlfluid bzw. dem Volumenstrom V' erfolgen kann. Wie in der Figur 3 dargestellt, verlässt der Volumenstrom V' den Auslass 5 der Düse bevorzugt und im Allgemeinen in einer zu der zu kühlenden Oberfläche im Wesentlichen parallel stehenden Richtung. Weist der Düsenauslass 5 die dargestellte rotationssymmetrische bzw. kreisförmige Form auf, so bewegt sich der den Auslass verlassende Volumenstrom V' im Wesentlichen konzentrisch von der Düse 2 weg.The FIG. 3 shows a partially transparent plan view of an embodiment of a cooling device 10 '. This device 10 'essentially corresponds to that according to FIG FIG. 2 However, six are in the tape direction B provided successively arranged nozzle rows. The device according to FIG. 2 has only four such rows. The nozzles 2 are supplied with cooling fluid by the fluid container 14 '. The fluid emerges in the form of the volume flow V 'from the outlets 5 of the nozzles 2, so that a heat transfer between the belt 1 and the cooling fluid or the volume flow V' can take place. Like in the FIG. 3 As shown, the volumetric flow V 'leaves the outlet 5 of the nozzle preferably and generally in a direction substantially parallel to the surface to be cooled. If the nozzle outlet 5 has the illustrated rotationally symmetric or circular shape, then the volume flow V 'leaving the outlet moves substantially concentrically away from the nozzle 2.

Generell kann eine erfindungsgemäße Düse 2 verschiedene Formen aufweisen, wie zum Beispiel schlitzartige oder runde Formen. Bei einer schlitzartigen Ausbildung kann sich die Düse 2 zumindest über einen Teil der Breite der zu kühlenden Oberfläche erstrecken, wie etwa über die Breite einer Walze oder eines Metallbandes.In general, a nozzle 2 according to the invention may have different shapes, such as slit-like or round shapes. In a slit-like configuration, the nozzle 2 may extend at least over part of the width of the surface to be cooled, such as across the width of a roll or a metal strip.

Im Allgemeinen kann der Querschnitt der Düsen 2 bzw. des Düsenauslasses 5 allerdings ebenfalls an einen sich aufgrund einer Bewegung der zu kühlenden Oberfläche einstellenden asymmetrischen Wirkungsbereich angepasst werden.In general, however, the cross-section of the nozzles 2 or of the nozzle outlet 5 can likewise be adapted to an asymmetrical effective range which arises as a result of a movement of the surface to be cooled.

Der lichte Durchmesser des Düsenauslasses kann ferner bevorzugt zwischen 0,5 cm und 10 cm oder bevorzugt zwischen 1 cm und 5 cm liegen.The clear diameter of the nozzle outlet may furthermore preferably be between 0.5 cm and 10 cm or preferably between 1 cm and 5 cm.

Im Falle einer Kühlung mit einem Gas, wie zum Beispiel Luft oder einem Inertgas, kann der Abstand zwischen dem Auslass 5 der Düse 2 und der zu kühlenden Oberfläche zum Beispiel zwischen 0,1 mm und 5 mm liegen oder bevorzugt zwischen 0,1 mm und 3 mm liegen.In the case of cooling with a gas, such as air or an inert gas, the distance between the outlet 5 of the nozzle 2 and the surface to be cooled may for example be between 0.1 mm and 5 mm, or preferably between 0.1 mm and 3 mm.

Im Falle einer Kühlung mit einer Flüssigkeit, wie zum Beispiel mit Wasser, einem Wassergemisch oder einer Emulsion kann der Abstand zwischen dem Auslass 5 der Düse 2 und der zu kühlenden Oberfläche beispielsweise zwischen 0,5 mm und 5 mm liegen oder bevorzugt zwischen 1 mm und 5 mm oder sogar zwischen 1 mm und 2 mm liegen.In the case of cooling with a liquid, such as with water, a water mixture or an emulsion, the distance between the outlet 5 of the nozzle 2 and the surface to be cooled, for example, between 0.5 mm and 5 mm or preferably between 1 mm and 5 mm or even between 1 mm and 2 mm.

Noch kleinere Abstände als die genannten sind in der Regel nicht von Vorteil, da in einem solchen Fall eine erhöhte Gefahr einer Kollision zwischen der zu kühlenden Oberfläche und der Düse 2 bestünde. Eine derartige Kollision kann zur Beschädigung der Düse 2 und oder der zu kühlenden Oberfläche führen.Even smaller distances than those mentioned are generally not advantageous since in such a case an increased risk of a collision between the surface to be cooled and the nozzle 2 would exist. Such a collision can damage the nozzle 2 and / or the surface to be cooled.

Werden mehrere Düsen gegenüberliegend der zu kühlenden Oberfläche angeordnet, können diese vorzugsweise untereinander Abstände aufweisen, welche dem 0,5-fachen bis 5-fachen oder vorzugsweise dem 1-fachen bis 2-fachen des lichten Durchmessers des Auslasses 5 entsprechen.If a plurality of nozzles are arranged opposite the surface to be cooled, they may preferably have spacings between one another which correspond to 0.5 times to 5 times or preferably 1 to 2 times the clear diameter of the outlet 5.

Die oben beschriebenen Ausführungsbeispiele dienen vor allem dem besseren Verständnis der Erfindung und sollten nicht einschränkend verstanden werden. Der Schutzumfang der vorliegenden Patentanmeldung ergibt sich aus den Patentansprüchen.Above all, the embodiments described above serve to better understand the invention and should not be understood as limiting. The scope of protection of the present patent application results from the patent claims.

Die Merkmale der beschriebenen Ausführungsbeispiele können miteinander kombiniert oder gegeneinander ausgetauscht werden.The features of the described embodiments can be combined or replaced with each other.

Ferner können die beschriebenen Merkmale durch den Fachmann an vorhandene Gegebenheiten oder vorliegende Anforderungen angepasst werden.Furthermore, the features described can be adapted by the skilled person to existing circumstances or existing requirements.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Walzgut, Gießgut, Metallband oder BlechRolling stock, foundry, metal strip or sheet metal
22
Düsejet
33
Einlassinlet
55
Auslassoutlet
77
Führungselementguide element
99
Führungsbereichguide region
1010
Kühlvorrichtungcooler
10'10 '
Kühlvorrichtungcooler
1111
Begrenzungselementlimiting element
1313
Vorspannelement / Federelement /DämpfungselementBiasing element / spring element / damping element
1414
Fluidbehälterfluid container
14'14 '
Fluidbehälterfluid container
AA
Querschnitt des AuslassesCross section of the outlet
BB
BandlaufrichtungTape direction
Ee
Querschnitt des EinlassesCross section of the inlet
SS
zur zu kühlenden Oberfläche senkrechte Richtungvertical direction to the surface to be cooled
VV
Volumenstrom des KühlmittelsVolume flow of the coolant
V'V '
aus dem Auslass der Düse austretender Volumenstromfrom the outlet of the nozzle exiting flow
dd
Abstand der Düse zur zu kühlenden OberflächeDistance of the nozzle to the surface to be cooled

Claims (16)

  1. Method of cooling a surface of cast material, rolling stock (1) or a roll, comprising the following steps:
    providing a nozzle (2), which comprises an inlet (3) and an outlet (5) which is opposite the surface to be cooled,
    and providing a preferably single-phase volume flow (V) of a cooling fluid, which Is fed to the nozzle (2) by way of the inlet (3) and leaves the nozzle (2) through the outlet (5),
    characterised in that
    at least the nozzle outlet (5) is mounted at a variable spacing (d) from the surface to be cooled and
    the volume flow (V) of the cooling fluid fed to the inlet (3) of the nozzle (2) is set in such a way that the nozzle (2) firmly sucks against the surface (1), which is to be cooled, in accordance with the Bernoulli principle.
  2. Method according to claim 1, wherein the spacing (d) of the outlet (5) from the surface to the cooled is variable substantially in a direction (8) perpendicular to the surface to be cooled.
  3. Method according to claim 1 or 2, wherein the nozzle (2) is mounted to be at least partly sliding in a guide (7).
  4. Method according to any one of the preceding claims, wherein the nozzle (2) is mounted to be biased substantially perpendicularly to the surface to be cooled.
  5. Method according to any one of the preceding claims, wherein the cross-section (A) of the outlet (5) is formed to be substantially rotationally symmetrical in a plane lying parallel with the surface to be cooled or, alternatively, is formed to be elongate, particularly substantially elliptical, to counteract the influence of a surface to be cooled which is moved.
  6. Method according to any one of the preceding claims, wherein the nozzle (2) is subjected to oscillatory movement substantially parallel to the surface (1) to be cooled.
  7. Method according to any one of the preceding claims, wherein several nozzles (2) or rows of nozzles (2) are subjected to oscillatory movements substantially parallel to the surface (1) to be cooled and the oscillation of adjacent nozzles (2) or nozzle rows (2) takes place at least in part in the same sense or in opposite sense.
  8. Method according to any one of the preceding claims, wherein the nozzle (2) has between the inlet (3) and the outlet (5) a guide region (9) in which the coolant is guided substantially in a direction (S) perpendicular to the surface (1) to be cooled from the inlet (3) to the outlet (5) and is laterally enclosed by this.
  9. Method according to any one of the preceding claims, wherein the cross-section (A) of the outlet (5) widens, preferably constantly, in downstream direction.
  10. Method according to any one of the preceding claims, wherein the setting of the volume flow comprises setting of the flow speed thereof and/or the pressure thereof.
  11. Method according to any one of the preceding claims, wherein the variable spacing (d) between the outlet (5) and the surface (1) to be cooled is kept by a limiting element (11) to be larger than 0.09 millimetres and preferably larger than 0.5 millimetres independently of the volume flow (V) provided.
  12. Method according to any one of the preceding claims, wherein the supplied volume flow (V) is formed by a cooling liquid.
  13. Method according to any one of the preceding claims, wherein the outlet (5) of the nozzle (2) is arranged opposite the surface of a roll or opposite the surface of a metal strip (1) between two roll stands of a roll train.
  14. Method according to any one of the preceding claims, wherein several nozzles (2) are arranged in grid-like form in a plane opposite the surface (1) to be cooled or several nozzles (2) are arranged in each of a plurality of mutually adjacent rows opposite the surface to be cooled.
  15. A cooling device (10) for cooling a surface of cast material, rolling stock (1) or a roll and for carrying out the method according to any one of the preceding claims, comprising:
    at least one nozzle (2) comprising an inlet (3) with a first clear cross-section (E) and an outlet (5), which Is opposite the surface (1) to be cooled, with a second clear cross-section (A) greater than the first cross-section (E), wherein the cooling device (10) is additionally constructed so that the spacing (d), which is perpendicular to the surface to be cooled, between the outlet (5) of the nozzle (2) and the surface to be cooled is variable between 0.1 millimetres and 5 millimetres, preferably between 0.5 millimetres and 2 millimetres.
  16. A rolling device for the rolling of rolling stock, comprising at least one cooling device (10) according to claim 15,
    wherein the rolling device comprises at least one roll with a roll surface to be cooled and the outlet (5) of the nozzle (2) for cooling is directed towards the roll surface; or
    wherein the rolling device comprises at least two mutually adjacent roll stands for rolling a metal strip (1) and the cooling device (10) is arranged between the two roll stands for cooling the surface of the metal strip (1) present between the two roll stands.
EP13732950.4A 2012-07-02 2013-07-01 Method and device for cooling surfaces in casting installations, rolling installations or other strip processing lines Active EP2866957B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012211454.8A DE102012211454A1 (en) 2012-07-02 2012-07-02 Method and device for cooling surfaces in casting plants, rolling mills or other strip processing lines
PCT/EP2013/063866 WO2014006008A1 (en) 2012-07-02 2013-07-01 Method and device for cooling surfaces in casting installations, rolling installations or other strip processing lines

Publications (2)

Publication Number Publication Date
EP2866957A1 EP2866957A1 (en) 2015-05-06
EP2866957B1 true EP2866957B1 (en) 2016-04-27

Family

ID=48741150

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13732950.4A Active EP2866957B1 (en) 2012-07-02 2013-07-01 Method and device for cooling surfaces in casting installations, rolling installations or other strip processing lines

Country Status (8)

Country Link
US (1) US9421593B2 (en)
EP (1) EP2866957B1 (en)
JP (1) JP5840818B2 (en)
KR (1) KR101659474B1 (en)
CN (1) CN104602831B (en)
DE (1) DE102012211454A1 (en)
RU (1) RU2612467C2 (en)
WO (1) WO2014006008A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10129243B2 (en) 2013-12-27 2018-11-13 Avaya Inc. Controlling access to traversal using relays around network address translation (TURN) servers using trusted single-use credentials
ES2781198T3 (en) 2015-05-29 2020-08-31 Voestalpine Stahl Gmbh Method for non-contact cooling of steel sheets and device for it
EP3515615B1 (en) * 2016-09-19 2020-01-22 SMS Group GmbH Roll treatment during operation
EP3308868B1 (en) * 2016-10-17 2022-12-07 Primetals Technologies Austria GmbH Cooling of a roll of a roll stand
CN107746928B (en) * 2017-11-21 2024-04-12 上海信鹏印刷器材有限公司 Continuous tempering device and method for die-cutting knife steel belt
BR112020009263B1 (en) 2017-12-04 2023-01-10 Nippon Steel Corporation SURFACE TRACKING NOZZLE, OBSERVATION DEVICE FOR MOVING OBJECT SURFACE AND OBSERVATION METHOD FOR MOVING OBJECT SURFACE
CN111372688B (en) * 2017-12-04 2022-03-29 日本制铁株式会社 Surface following nozzle, observation device for surface of moving object, and observation method for surface of moving object
EP3808466A1 (en) * 2019-10-16 2021-04-21 Primetals Technologies Germany GmbH Cooling device with coolant jets with hollow cross-section

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2921488A (en) * 1955-11-23 1960-01-19 United States Steel Corp Method and apparatus for cooling mill rolls
BE851382A (en) * 1977-02-11 1977-05-31 Centre Rech Metallurgique IMPROVEMENTS IN METHODS AND DEVICES FOR COMBATING BURDING OF ROLLER CYLINDERS
DE2751013C3 (en) 1977-11-15 1981-07-09 Kleinewefers Gmbh, 4150 Krefeld Cooling device
JPS57156830A (en) * 1981-03-24 1982-09-28 Kawasaki Steel Corp Cooling method for rolling material
SU1386324A1 (en) * 1985-11-10 1988-04-07 Краматорский Индустриальный Институт Method of removing scale from the surface of heated metal
SU1588781A1 (en) * 1988-06-03 1990-08-30 Донецкий политехнический институт Method of surface treatment of moving rolled stock
CN2035282U (en) * 1988-07-07 1989-04-05 冶金工业部钢铁研究总院 Cooling device for hot-state steel plate
DE4116019C2 (en) 1991-05-16 1997-01-23 Sundwiger Eisen Maschinen Method and device for cooling a flat material, in particular a metal strip
JPH04367313A (en) * 1991-06-11 1992-12-18 Nippon Steel Corp Method and device for cooling strip
JPH0688134A (en) * 1992-09-08 1994-03-29 Nippon Steel Corp Device for cooling strip
JP3360889B2 (en) 1993-09-24 2003-01-07 石川島播磨重工業株式会社 Side guide equipment for strip winder
JPH07284820A (en) 1994-04-14 1995-10-31 Hitachi Ltd Device and method for cooling roll for rolling mill
JP3494327B2 (en) * 1995-10-03 2004-02-09 株式会社共立合金製作所 Descaler nozzle
DE19718530B4 (en) 1997-05-02 2005-02-03 Sms Demag Ag Process for cooling of rolling-cold rolling stock and apparatus for carrying out the method and use of the apparatus
JPH11244928A (en) 1998-03-05 1999-09-14 Nippon Steel Corp Method for washing metallic strip
DE10207584A1 (en) 2002-02-22 2003-09-11 Vits Maschb Gmbh I Ins Process for cooling metal strips or plates and cooling device
JP2003285114A (en) * 2002-03-26 2003-10-07 Jfe Steel Kk Skinpass rolling method of hot-dip galvanizing steel sheet and apparatus for skinpass rolling
JP3867073B2 (en) 2003-10-17 2007-01-10 新日本製鐵株式会社 Cooling apparatus and cooling method for hot rolled steel sheet
ATE491533T1 (en) * 2004-08-05 2011-01-15 Kobe Steel Ltd DEPOSIT REMOVAL DEVICE
WO2008139632A1 (en) * 2007-05-11 2008-11-20 Nippon Steel Corporation Apparatus, and method, for controlled cooling of steel sheet
JP5646261B2 (en) * 2010-09-22 2014-12-24 三菱日立製鉄機械株式会社 Hot strip strip cooling system

Also Published As

Publication number Publication date
US20150239027A1 (en) 2015-08-27
RU2015103150A (en) 2016-08-20
CN104602831B (en) 2017-06-09
EP2866957A1 (en) 2015-05-06
CN104602831A (en) 2015-05-06
WO2014006008A1 (en) 2014-01-09
US9421593B2 (en) 2016-08-23
RU2612467C2 (en) 2017-03-09
DE102012211454A1 (en) 2014-01-02
KR101659474B1 (en) 2016-09-23
JP2015527199A (en) 2015-09-17
JP5840818B2 (en) 2016-01-06
KR20150016411A (en) 2015-02-11

Similar Documents

Publication Publication Date Title
EP2866957B1 (en) Method and device for cooling surfaces in casting installations, rolling installations or other strip processing lines
EP2651577B1 (en) Method and apparatus for applying a lubricant while rolling metallic rolled stock
DE102016102093B3 (en) Continuous cooling device and method for cooling a metal strip
DE2901896A1 (en) PROCESS AND DEVICE FOR DESCALING METALLIC RIBBONS OR THE SAME, IN PARTICULAR MADE OF STEEL
AT522007B1 (en) Ribbon floatation system with a nozzle system
EP3509768B1 (en) Device and method for applying a liquid medium to a roll and/or to a rolled material and/or for removing the liquid medium
EP3074150B1 (en) Method for heat-treating, and quenching device for cooling plate- or web-like sheet metal
EP2934778B1 (en) Device for cooling rolled stock
DE2500079C2 (en) Device for cooling in a continuous caster
DE2053947C3 (en) Method and device for generating coolant jets for cooling metal cast strands
DE2165049B2 (en) Method and apparatus for quenching
DE102016101160B4 (en) Device for the floating guiding and simultaneously cooling of sheet material and method for operating such a device
DE112008000152B4 (en) diverter
DE2102800B2 (en) PLANT FOR THE THERMAL TREATMENT OF ROLLED PRODUCTS IN THE COOLANT FLOW
EP1423220B1 (en) Method and device for draining waste water in the inner bend of a beam blank casting machine
CH648865A5 (en) DEVICE FOR COOLING THE SURFACE OF A SOLID BODY.
DE1583418B2 (en) DEVICE FOR CONTINUOUS SHUTTERING OF RAILS
EP1131170B1 (en) Method and device for reducing the formation of scales on rolling stock
DE19960593C2 (en) Device for cooling a cast metal strand
WO2024152070A1 (en) Continuous flow cooling device
EP3870921A1 (en) Cooling device for cooling planar or strip-shaped metal sheet and cooling method
DE10126882C2 (en) Fluid flow shaper
DE1783125C (en) Method and device for cooling an approximately horizontally moving strand in the secondary cooling zone of a continuous caster Separation from 1508796
DE102020201561A1 (en) Process for suppressing the formation of scale on the surface of a metallic rolling stock
DE2507971C3 (en) Method and device for changing the secondary cooling in the continuous casting of steel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141219

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SMS GROUP GMBH

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20151119

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 794146

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013002822

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160728

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160829

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013002822

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

26N No opposition filed

Effective date: 20170130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160731

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20180622

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20190719

Year of fee payment: 7

Ref country code: FI

Payment date: 20190722

Year of fee payment: 7

REG Reference to a national code

Ref country code: FI

Ref legal event code: MAE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200701

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230707

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240719

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240725

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240730

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240722

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240725

Year of fee payment: 12