EP2866957B1 - Method and device for cooling surfaces in casting installations, rolling installations or other strip processing lines - Google Patents
Method and device for cooling surfaces in casting installations, rolling installations or other strip processing lines Download PDFInfo
- Publication number
- EP2866957B1 EP2866957B1 EP13732950.4A EP13732950A EP2866957B1 EP 2866957 B1 EP2866957 B1 EP 2866957B1 EP 13732950 A EP13732950 A EP 13732950A EP 2866957 B1 EP2866957 B1 EP 2866957B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cooled
- nozzle
- outlet
- cooling
- roll
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001816 cooling Methods 0.000 title claims description 53
- 238000000034 method Methods 0.000 title claims description 37
- 238000005096 rolling process Methods 0.000 title claims description 24
- 238000005266 casting Methods 0.000 title description 2
- 238000009434 installation Methods 0.000 title 2
- 239000002184 metal Substances 0.000 claims description 25
- 239000002826 coolant Substances 0.000 claims description 13
- 239000012809 cooling fluid Substances 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 7
- 230000010355 oscillation Effects 0.000 claims description 5
- 239000000110 cooling liquid Substances 0.000 claims description 2
- 230000003534 oscillatory effect Effects 0.000 claims 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 239000012530 fluid Substances 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 239000007921 spray Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000013016 damping Methods 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 235000019476 oil-water mixture Nutrition 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B45/00—Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
- B21B45/02—Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
- B21B45/0203—Cooling
- B21B45/0209—Cooling devices, e.g. using gaseous coolants
- B21B45/0215—Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
- B21B45/0233—Spray nozzles, Nozzle headers; Spray systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B27/00—Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
- B21B27/06—Lubricating, cooling or heating rolls
- B21B27/10—Lubricating, cooling or heating rolls externally
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B45/00—Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
- B21B45/02—Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
- B21B45/0203—Cooling
- B21B45/0209—Cooling devices, e.g. using gaseous coolants
- B21B45/0215—Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
- B21B45/0218—Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes for strips, sheets, or plates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B27/00—Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
- B21B27/06—Lubricating, cooling or heating rolls
- B21B27/10—Lubricating, cooling or heating rolls externally
- B21B2027/103—Lubricating, cooling or heating rolls externally cooling externally
Definitions
- the present invention is directed to a method and a device for cooling surfaces in casting plants, rolling mills or other strip processing lines.
- cooling medium is preferably applied to the surface of a cast or rolled stock, in particular a metal strip or sheet, or a roll.
- the DE 41 16 019 A1 refers, for example, to a device for cooling a metal strip with liquid nozzles arranged on both sides, which are designed as full jet nozzles. Impinging jets are formed by these nozzles, with areas of shooting flow forming around the impact point of the individual impact jets. In this device, the beams hit the belt surface freely and without any guidance or confinement.
- a disadvantage of such a device for example, the relatively high water consumption and despite the efforts made difficult to avoid formation of a vapor layer between the firing flow and the surface to be cooled.
- the DE 27 51 013 A1 discloses a cooling device in which a spray containing water droplets is generated and directed onto a metal plate to be cooled.
- the nozzles required for this purpose are designed as Venturi tubes, through which a targeted mixing of air and water is promoted.
- the resulting multiphasedeffensfrom leads to a vapor layer formation, which significantly affects the cooling effect.
- the JP 2005118838 A discloses a device for cooling by spray nozzles. By using the spray nozzles, a jet of liquid and gaseous components is formed. This also forms a vapor layer on the material to be cooled, which precludes effective cooling.
- the JP S57 156 830 A discloses a rolled strip metal cooling apparatus having a nozzle and a plate-like guide extending from said nozzle parallel to the surface of the metal strip to be cooled.
- the cooling water flowing out of the nozzle forms between the plate-like guide and the surface to be cooled a water film for cooling the metal strip.
- the nozzle and the plate-like guide are fixedly mounted via a spray bar on a height-adjustable cross member, so that the distance between the nozzle and the surface of the metal strip to be cooled is adjustable by raising and lowering the cross member.
- the object of the invention is to provide an improved method for cooling foundry material, rolling stock or rolls.
- the object is preferably to overcome at least one of the above-mentioned disadvantages.
- the required amount of coolant should preferably be reduced or the efficiency, effectiveness and / or flexibility of the cooling should be improved.
- a nozzle which has an inlet with a first clear or inner cross section and an outlet opposite the surface to be cooled with a second clear or Inner cross-section includes, which is preferably larger than the first cross section.
- a preferably single-phase volumetric flow of a cooling fluid is provided, which is supplied via the inlet of the nozzle and leaves the nozzle through the outlet. At least the nozzle outlet or the nozzle is stored at a variable (or freely adjustable) distance to the surface to be cooled.
- the volume flow of the cooling fluid supplied to the inlet of the nozzle is also adjusted in such a way that the nozzle or the nozzle outlet adheres to the surface to be cooled in accordance with the Bernoulli principle (or the hydrodynamic paradox).
- the nozzle is stored with a variable or freely adjustable distance to the surface to be cooled and the volume flow of the cooling fluid flowing through the nozzle is adjusted such that it automatically according to the Bernoulli principle (English: Bernoulli's principle) on the surface Suction, effective cooling of the surface is made possible.
- the cooling fluid for example water, air or an emulsion of water and oil
- a lower pressure negative pressure
- a state is reached in which the nozzle on the surface to be cooled becomes saturated due to the pressure difference to the pressure in the vicinity of the nozzle.
- the nozzle does not collide with the surface to be cooled, since the volume flow (permanent) is fed or tracked through the inlet of the nozzle.
- a substantially constant distance between the Nozzle outlet and the surface to be cooled guaranteed. This distance is self-regulating or in other words, the distance adjusts itself.
- variable or movable mounting of the nozzle at a distance from the surface may preferably be in a range between 0.1 mm and 5 mm, preferably between 0.5 mm and 2 mm.
- Further advantages of the invention include high heat transfer coefficients between the surface to be cooled and the nozzle and an increase in efficiency over known systems.
- the length of a cooling device can be reduced when cooling a tape in the direction of tape travel by the increased efficiency.
- coolant can be applied directly to a required location, so that, on the one hand, individual areas of the surface to be cooled are specifically cooled and, on the other hand, losses of coolant for cooling are avoided.
- On the surface vaporizing cooling medium is shielded by the nozzle of the actual cooling zone.
- the cooling performance of the nozzle is largely independent of the stray cooling medium. If multiple nozzles are distributed across a roller or belt width, portions of the roller or belt may either be less cooled or remain completely uncooled by shutting off nozzles in those areas.
- the distance of the outlet is (exclusively) variable in a direction substantially perpendicular to the surface to be cooled. This means that the distance is not limited to a fixed amount. The distance is adjustable by the volume flow.
- the nozzle is at least partially slidably mounted by a guide.
- a guide may comprise, for example, a sliding bearing, wherein the nozzle slidably in a sleeve the bearing is slidably mounted.
- the storage can be made such that only a movement is possible in a direction perpendicular to the surface to be cooled. This ensures a force-free independent adjustment of the distance between the nozzle outlet and the surface to be cooled.
- the nozzle is mounted resiliently and / or additionally provided with a damping device.
- the nozzle is biased in a direction perpendicular to the surface direction.
- the surface to be cooled is carried by one or more nozzles.
- the prestressed mounting of the nozzles is particularly advantageous because, on the one hand, the surface to be cooled and, for example, rolled or cast material can be carried, but on the other hand, a self-adjusting distance between the surface to be cooled and the strip is made possible.
- Such nozzles can be arranged both on the top of a metal strip or sheet and on its underside.
- the nozzle is substantially parallel to the surface to be cooled, in particular oscillatable by an oscillating device.
- the oscillation preferably has at least one component perpendicular to the strip running direction or parallel to the axial direction of a roll.
- the oscillation takes place in a plane parallel to the surface to be cooled. In an arrangement with several nozzles, they can also oscillate in different directions and with different frequencies.
- the nozzle has a guide region between the inlet and the outlet, in which the coolant is guided substantially in a direction perpendicular to the surface to be cooled and is laterally enclosed by this.
- the volume flow is supplied to the outlet substantially perpendicular to its cross-section standing.
- the cross section of the outlet of the nozzle increases in the direction of the surface to be cooled.
- a widening or widening shape of the outlet in the direction of the surface to be cooled parts of the coolant flow can be deflected in a horizontal direction.
- Such a shape can further enhance the effect of the suction.
- said expansion is continuous and / or, for example, funnel-shaped or outwardly curved.
- the second cross section is formed substantially rotationally symmetrical in a plane lying parallel to the surface to be cooled.
- the cross section may be substantially circular.
- the nozzle is non-rotationally symmetrical in a plane lying parallel to the surface to be cooled. It is preferably elongate, in particular elliptical.
- an asymmetric cooling zone can be counteracted with moving cooling surfaces.
- adjusting the volume flow comprises adjusting it Flow velocity and / or its pressure.
- the exact values of such a pressure or volume flow depend on the particular geometry and size of the nozzle.
- variable distance between the outlet and the surface to be cooled is kept greater than 0.1 mm and preferably greater than 0.5 mm by a limiting element (irrespective of the volumetric flow provided).
- a limiting element irrespective of the volumetric flow provided.
- a plurality of nozzles are arranged in a grid-like manner in a plane opposite the surface to be cooled.
- a large area of the surface to be cooled can be covered.
- a plurality of nozzles is arranged side by side opposite the surface to be cooled.
- multiple nozzles may be arranged in a row, for example, more than four nozzles.
- a plurality of nozzles may be arranged in a direction parallel to the roller axis. In general, several such rows can be provided.
- such rows may extend transversely to the strip running direction.
- several rows can be arranged one behind the other in the strip running direction. It is also possible that the rows are offset relative to one another transversely to the strip running direction, so that viewed in the direction of tape travel, lie in the interstices of two adjacent nozzles of a row, nozzles of an adjacent tape running direction series. It is also possible for individual nozzles or nozzle rows to oscillate in the same direction or at different levels, parallel to the cooling surface, in order to obtain the most uniform possible cooling result.
- the outlet of the nozzle is arranged opposite the surface of a roll or arranged opposite the surface of a metal strip, in particular between two roll stands of a rolling train. Especially in such positions, the inventive method is of particular advantage.
- the invention is directed to a cooling device for cooling a surface of a metal strip, a sheet or a roller for carrying out the method according to one of the preceding embodiments.
- the device comprises at least one nozzle, comprising an inlet with a first cross section for directing a volume flow and an outlet opposite the surface to be cooled with a second cross section for directing the volumetric flow, which is greater than the first cross section, and wherein the cooling device further such is formed so that the distance of the outlet of the nozzle is perpendicular to the surface to be cooled between 0.1 mm and 10 mm, preferably between 0.5 mm and 5 mm or between 0.5 mm and 2 mm variable or freely adjustable.
- the nozzle may be slidably guided by a guide.
- the invention is directed to a rolling mill for rolling rolling, which comprises said cooling device.
- the rolling device comprises at least one roller with a roll surface to be cooled on which the nozzle outlet is directed for cooling the roll surface.
- the rolling device comprises at least two rolling stands for rolling a metal strip, wherein a cooling device according to the invention is arranged between the two rolling stands for cooling the surface of the metal strip located between the two rolling stands.
- the nozzle is preferably used to locally, that is, at the location of the nozzle, specific structural processes in the body to be cooled (in particular the rolling stock) cause.
- FIG. 1 2 shows a schematic cross section of an embodiment of a nozzle 2 which can be used for the method according to the invention.
- the illustrated nozzle 2 comprises an inlet 3 and an outlet 5 arranged opposite the surface of a body or belt 1 to be cooled
- Nozzle 2 preferably has an area for guiding 9 a volume flow V directed into the inlet 3 to the outlet 5.
- the volume flow V is preferably perpendicular to the to be cooled Standing surface supplied to the outlet 5.
- the inlet 3 preferably has a smaller clear diameter or cross section E than the outlet 5.
- the outlet 5 has a larger clear diameter or cross section A than the inlet region 3 and / or the guide region 9.
- the nozzle 2 or its outlet 5 widens in the direction of the surface to be cooled and is preferably in the guide region 9 mounted displaceably by a guide element 7 or mounted relative to the surface of the belt to be cooled 1 such that the distance d between the belt to be cooled 1 and the outlet 5 of the nozzle 2 is variable.
- the nozzle 2 preferably slides in the guide 7. This movement preferably takes place in a direction S perpendicular to the surface to be cooled.
- the nozzle 2 is particularly secured against tilting moments.
- the nozzle outlet 5 is preferably flown through by the volume flow V of the cooling fluid.
- Fluids may generally be liquids, in particular water or oil-water mixtures.
- cooling by gases is also possible.
- gases such as air or inert gases
- a liquid is generally used as the coolant, since in this way higher heat transfer coefficients than in the case of gases can be realized.
- only a single-phase cooling fluid should be used. If the volume flow V is adjusted accordingly, the nozzle 2 may become stuck to the surface to be cooled. This is done as already described above according to the Bernoulli principle or in other words according to the hydrodynamic paradox. The adjustment can be done by adjusting the pressure or the speed of the nozzle 2 supplied volume flow V.
- a suction effect occurs when the volume flow V 'emerging from the outlet 5 between the outlet 5 and the surface 1 to be cooled has reached a sufficiently high relative speed, so that the pressure within the between the outlet 5 and the surface 1 to be cooled flowing volume flow V 'below the nozzle 2 surrounding pressure drops.
- This pressure can correspond to the atmospheric pressure.
- the volumetric flow V is kept constant when the suction effect has set, according to the Bernoulli principle there is a self-sustaining equilibrium of forces. If now the distance d between the surface to be cooled and the nozzle outlet 5 is changed, the nozzle automatically restores the distance in the equilibrium of forces.
- Such variations in distance may be caused, for example, by an irregular surface to be cooled or, for example, by a deformed roll surface or inaccurate guidance of a metal strip 1. The same may apply to the cooling of rolls for irregular roll surfaces.
- the nozzle 2 or the method according to the invention can be used on a strip top side, but also on a strip underside.
- FIG. 2 shows a schematic cross section of an embodiment of a cooling device 10 for cooling a metal strip 1.
- a cooling device 10 for cooling a metal strip 1.
- the in the FIG. 2 illustrated device 10 has a Variety of nozzles 2, which are fed together by a cooling fluid container 14.
- the cooling device 10 is arranged in each case on the upper side of the strip and on the underside of the strip for cooling the metal strip 1.
- the individual nozzles 2 are arranged in the tape running direction B in successive rows. Each row preferably extends transversely to the tape running direction B.
- These rows may be offset perpendicularly to the tape running direction B, so that viewed in the tape running direction B, a greater part of the width of the tape 1 is covered by the nozzles 2 than by one of the rows.
- the nozzles 2 are similar as in the FIG. 1 shown in each case with a volume flow V fed via its inlet 3.
- the container 14 can be correspondingly under pressure to press the cooling fluid into the inlets 3 of the nozzles 2.
- the nozzles 2 are slidably guided perpendicularly to the surface to be cooled by guide elements 7 (for example slide bearings), so that the distance d between the nozzle outlet 5 and the surface to be cooled is variable. Nevertheless, the distance d, for example mechanically, may be limited.
- the device 10 in particular the nozzles 2 and / or the guide elements 3, preferably stops 11, which limit the movement of the nozzles 2 in the direction of the surface to be cooled.
- the nozzles 2 may be biased by elastic means and / or spring elements 13 substantially in the perpendicular to the surface to be cooled.
- the cooling device 10 may comprise one or more oscillation devices (not shown), which is either designed to oscillate each individual nozzle 2 parallel to the surface to be cooled or to oscillate all the nozzles 2 of the device 10 together.
- an oscillation of the entire container 14 together with the nozzle 2 mounted on this would be possible.
- FIG. 3 shows a partially transparent plan view of an embodiment of a cooling device 10 '.
- This device 10 ' essentially corresponds to that according to FIG. 2 However, six are in the tape direction B provided successively arranged nozzle rows.
- the device according to FIG. 2 has only four such rows.
- the nozzles 2 are supplied with cooling fluid by the fluid container 14 '.
- the fluid emerges in the form of the volume flow V 'from the outlets 5 of the nozzles 2, so that a heat transfer between the belt 1 and the cooling fluid or the volume flow V' can take place.
- the volumetric flow V ' leaves the outlet 5 of the nozzle preferably and generally in a direction substantially parallel to the surface to be cooled. If the nozzle outlet 5 has the illustrated rotationally symmetric or circular shape, then the volume flow V 'leaving the outlet moves substantially concentrically away from the nozzle 2.
- a nozzle 2 according to the invention may have different shapes, such as slit-like or round shapes.
- the nozzle 2 may extend at least over part of the width of the surface to be cooled, such as across the width of a roll or a metal strip.
- the cross-section of the nozzles 2 or of the nozzle outlet 5 can likewise be adapted to an asymmetrical effective range which arises as a result of a movement of the surface to be cooled.
- the clear diameter of the nozzle outlet may furthermore preferably be between 0.5 cm and 10 cm or preferably between 1 cm and 5 cm.
- the distance between the outlet 5 of the nozzle 2 and the surface to be cooled may for example be between 0.1 mm and 5 mm, or preferably between 0.1 mm and 3 mm.
- the distance between the outlet 5 of the nozzle 2 and the surface to be cooled for example, between 0.5 mm and 5 mm or preferably between 1 mm and 5 mm or even between 1 mm and 2 mm.
- nozzles are arranged opposite the surface to be cooled, they may preferably have spacings between one another which correspond to 0.5 times to 5 times or preferably 1 to 2 times the clear diameter of the outlet 5.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Heat Treatments In General, Especially Conveying And Cooling (AREA)
- Metal Rolling (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
- Continuous Casting (AREA)
Description
Die vorliegende Erfindung ist auf ein Verfahren sowie eine Vorrichtung zur Kühlung von Oberflächen in Gießanlagen, Walzanlagen oder sonstigen Bandprozesslinien gerichtet. Dabei wird bevorzugt Kühlmedium auf die Oberfläche eines Gieß- oder Walzguts, insbesondere eines Metallbands bzw. Blechs, oder einer Walze aufgebracht.The present invention is directed to a method and a device for cooling surfaces in casting plants, rolling mills or other strip processing lines. In this case, cooling medium is preferably applied to the surface of a cast or rolled stock, in particular a metal strip or sheet, or a roll.
Aus dem Stand der Technik ist eine Vielzahl von Verfahren zur Kühlung von Metallbändern oder Walzen bekannt.From the prior art, a variety of methods for cooling metal strips or rolls is known.
Die
Die
Die
Die
Aufgabe der Erfindung ist es, ein verbessertes Verfahren zur Kühlung von Gießgut, Walzgut oder Walzen bereitzustellen. Bevorzugt besteht die Aufgabe darin, mindestens einen der oben genannten Nachteile zu überwinden. Insbesondere sollte bevorzugt die benötigte Kühlmittelmenge verringert bzw. die Effizienz, Effektivität und/oder Flexibilität der Kühlung verbessert werden.The object of the invention is to provide an improved method for cooling foundry material, rolling stock or rolls. The object is preferably to overcome at least one of the above-mentioned disadvantages. In particular, the required amount of coolant should preferably be reduced or the efficiency, effectiveness and / or flexibility of the cooling should be improved.
Die technische Aufgabe wird durch die Merkmale des unabhängigen Anspruchs 1 gelöst. Gemäß dem beanspruchten Verfahren zum Kühlen einer Oberfläche von Gießgut, Walzgut (insbesondere Metallband oder Blech) oder einer Walze wird eine Düse bereitgestellt, welche einen Einlass mit einem ersten lichten bzw. inneren Querschnitt und einen der zu kühlenden Oberfläche gegenüberliegenden Auslass mit einem zweiten lichten bzw. inneren Querschnitt umfasst, welcher vorzugsweise größer als der erste Querschnitt ist. Ferner wird ein vorzugsweise einphasiger Volumenstrom eines Kühlfluids bereitgestellt, welcher über den Einlass der Düse zugeführt wird und die Düse durch den Auslass verlässt. Zumindest der Düsenauslass oder die Düse wird mit variablem (bzw. frei einstellbaren) Abstand zu der zu kühlenden Oberfläche gelagert. Der Volumenstrom des dem Einlass der Düse zugeführten Kühlfluids wird zudem derart eingestellt, dass sich die Düse bzw. der Düsenauslass gemäß dem Bernoulli-Prinzip (bzw. dem hydrodynamischen Paradoxon) an der zu kühlenden Oberfläche (selbstständig) festsaugt.The technical problem is solved by the features of
Dadurch, dass die Düse mit variablem bzw. frei verstellbarem Abstand zu der zu kühlenden Oberfläche gelagert wird und der Volumenstrom des durch die Düse strömenden Kühlfluids derart eingestellt wird, dass diese sich gemäß dem Bernoulli-Prinzip (Englisch: Bernoulli's principle) selbsttätig an der Oberfläche festsaugt, wird eine effektive Kühlung der Oberfläche ermöglicht. Gemäß dem genannten Prinzip, entsteht beim Ausströmen des Kühlfluids (zum Beispiel Wasser, Luft oder eine Emulsion aus Wasser und Öl) aus dem Düsenauslass, ein relativ zu der Umgebung der Düse niedrigerer Druck (Unterdruck), welcher dazu führt, dass sich die Düse an der zu kühlenden Oberfläche festsaugt oder mit anderen Worten sich der Abstand zwischen dem Auslass und der Oberfläche eigenständig verringert. Dies kann zum Beispiel dadurch hervorgerufen werden, dass die Strömungsgeschwindigkeit des aus dem Auslass ausströmenden Fluids erhöht wird, wodurch sich gemäß dem Bernoulli-Prinzip der Druck der aus der Düse ausströmenden Flüssigkeit erniedrigt. Durch diese Druckerniedrigung im Bereich der Strömung zwischen der zu kühlenden Oberfläche und dem Düsenauslass wird ein Zustand erreicht, in dem sich die Düse an der zu kühlenden Oberfläche aufgrund des Druckunterschieds zum Druck in der Umgebung der Düse festsaugt. Die Düse kollidiert allerdings nicht mit der zu kühlenden Oberfläche, da der Volumenstrom (permanent) durch den Einlass der Düse zugeführt bzw. nachgeführt wird. Somit wird bei vorzugsweise konstantem Volumenstrom ein im Wesentlichen gleichbleibender Abstand zwischen dem Düsenauslass und der zu kühlenden Oberfläche gewährleistet. Dieser Abstand ist selbstregulierend oder anders ausgedrückt, der Abstand stellt sich selbst ein.Characterized in that the nozzle is stored with a variable or freely adjustable distance to the surface to be cooled and the volume flow of the cooling fluid flowing through the nozzle is adjusted such that it automatically according to the Bernoulli principle (English: Bernoulli's principle) on the surface Suction, effective cooling of the surface is made possible. According to the said principle, when the cooling fluid (for example water, air or an emulsion of water and oil) flows out of the nozzle outlet, a lower pressure (negative pressure) is created relative to the surroundings of the nozzle, which causes the nozzle to contact the vacuum to be cooled surface or in other words, the distance between the outlet and the surface is reduced independently. This can for example be caused by the fact that the flow rate of the fluid flowing out of the outlet is increased, whereby, according to the Bernoulli principle, the pressure of the liquid flowing out of the nozzle is lowered. As a result of this pressure reduction in the region of the flow between the surface to be cooled and the nozzle outlet, a state is reached in which the nozzle on the surface to be cooled becomes saturated due to the pressure difference to the pressure in the vicinity of the nozzle. However, the nozzle does not collide with the surface to be cooled, since the volume flow (permanent) is fed or tracked through the inlet of the nozzle. Thus, at a preferably constant volume flow, a substantially constant distance between the Nozzle outlet and the surface to be cooled guaranteed. This distance is self-regulating or in other words, the distance adjusts itself.
Die variable bzw. bewegliche Lagerung der Düse im Abstand zu der Oberfläche kann bevorzugt in einem Bereich zwischen 0,1 mm und 5 mm, vorzugsweise zwischen 0,5 mm und 2 mm liegen.The variable or movable mounting of the nozzle at a distance from the surface may preferably be in a range between 0.1 mm and 5 mm, preferably between 0.5 mm and 2 mm.
Weitere Vorteile der Erfindung umfassen hohe Wärmeübergangskoeffizienten zwischen der zu kühlenden Oberfläche und der Düse sowie eine Wirkungsgradsteigerung gegenüber bekannten Systemen. Zudem kann die Länge einer Kühleinrichtung bei Kühlung eines Bandes in Bandlaufrichtung durch die erhöhte Effizienz reduziert werden. Insbesondere kann Kühlmittel direkt an einer benötigten Stelle aufgebracht werden, sodass einerseits einzelne Bereiche der zu kühlenden Oberfläche gezielt gekühlt und andererseits Verluste von Kühlmittel zur Kühlung vermieden werden. Auf der Oberfläche vagabundierendes Kühlmedium wird durch die Düse von der eigentlichen Kühlzone abgeschirmt. Somit ist die Kühlleistung der Düse weitestgehend unabhängig von dem vagabundierenden Kühlmedium. Sind mehrere Düsen über eine Walzen- oder Bandbreite verteilt, können Teilbereiche der Walze oder des Bandes entweder weniger stark gekühlt werden oder gänzlich ungekühlt bleiben, indem Düsen in diesen Bereichen abgeschaltet werden.Further advantages of the invention include high heat transfer coefficients between the surface to be cooled and the nozzle and an increase in efficiency over known systems. In addition, the length of a cooling device can be reduced when cooling a tape in the direction of tape travel by the increased efficiency. In particular, coolant can be applied directly to a required location, so that, on the one hand, individual areas of the surface to be cooled are specifically cooled and, on the other hand, losses of coolant for cooling are avoided. On the surface vaporizing cooling medium is shielded by the nozzle of the actual cooling zone. Thus, the cooling performance of the nozzle is largely independent of the stray cooling medium. If multiple nozzles are distributed across a roller or belt width, portions of the roller or belt may either be less cooled or remain completely uncooled by shutting off nozzles in those areas.
Gemäß einer bevorzugten Ausführungsform des Verfahrens ist der Abstand des Auslasses (ausschließlich) in einer im Wesentlichen senkrecht zu der zu kühlenden Oberfläche stehenden Richtung variabel. Das bedeutet, dass der Abstand nicht auf ein festes Maß beschränkt ist. Der Abstand ist durch den Volumenstrom einstellbar.According to a preferred embodiment of the method, the distance of the outlet is (exclusively) variable in a direction substantially perpendicular to the surface to be cooled. This means that the distance is not limited to a fixed amount. The distance is adjustable by the volume flow.
Gemäß einer weiteren bevorzugten Ausführungsform des Verfahrens ist die Düse zumindest teilweise durch eine Führung gleitend gelagert. Eine solche Führung kann zum Beispiel ein Gleitlager umfassen, wobei die Düse gleitend in einer Hülse des Lagers verschiebbar gelagert ist. Die Lagerung kann derart erfolgen, dass lediglich eine Bewegung in einer senkrecht zu der zu kühlenden Oberfläche stehenden Richtung ermöglicht ist. Dies gewährleistet eine möglichst kräftefreie selbstständige Einstellung des Abstands zwischen dem Düsenauslass und der zu kühlenden Oberfläche.According to a further preferred embodiment of the method, the nozzle is at least partially slidably mounted by a guide. Such a guide may comprise, for example, a sliding bearing, wherein the nozzle slidably in a sleeve the bearing is slidably mounted. The storage can be made such that only a movement is possible in a direction perpendicular to the surface to be cooled. This ensures a force-free independent adjustment of the distance between the nozzle outlet and the surface to be cooled.
Gemäß einer weiteren bevorzugten Ausführungsform des Verfahrens ist die Düse federnd und/oder zusätzlich mit einer Dämpfungsvorrichtung versehen gelagert. Vorzugsweise ist die Düse in einer senkrecht zur Oberfläche stehenden Richtung vorgespannt. Es ist möglich, dass die zu kühlende Oberfläche durch ein oder mehrere Düsen getragen wird. In diesem Falle ist die vorgespannte Lagerung der Düsen besonders vorteilhaft, da einerseits die zu kühlende Oberfläche und damit zum Beispiel Walz- oder Gießgut getragen werden kann, jedoch andererseits ein sich selbstständig einstellender Abstand zwischen zu kühlender Oberfläche und dem Band ermöglicht wird. Solche Düsen können sowohl auf der Oberseite eines Metallbandes oder Blechs als auch auf dessen Unterseite angeordnet werden.According to a further preferred embodiment of the method, the nozzle is mounted resiliently and / or additionally provided with a damping device. Preferably, the nozzle is biased in a direction perpendicular to the surface direction. It is possible that the surface to be cooled is carried by one or more nozzles. In this case, the prestressed mounting of the nozzles is particularly advantageous because, on the one hand, the surface to be cooled and, for example, rolled or cast material can be carried, but on the other hand, a self-adjusting distance between the surface to be cooled and the strip is made possible. Such nozzles can be arranged both on the top of a metal strip or sheet and on its underside.
Gemäß einer weiteren bevorzugten Ausführungsform des Verfahrens ist die Düse im Wesentlichen parallel zu der zu kühlenden Oberfläche, insbesondere durch eine Oszillationsvorrichtung, oszillierbar. Durch ein derartiges Merkmal kann einer ungleichmäßigen Kühlung der Oberfläche entgegengewirkt werden. Insbesondere kann mit einer begrenzten Anzahl von Düsen eine größere Oberfläche abgedeckt werden. Die Oszillation weist bevorzugt zumindest eine Komponente senkrecht zur Bandlaufrichtung auf bzw. parallel zu axialen Richtung einer Walze auf. Vorzugsweise erfolgt die Oszillation dabei in einer parallel zu der zu kühlenden Oberfläche liegenden Ebene. Bei einer Anordnung mit mehreren Düsen, können diese auch in verschiedene Richtungen und mit verschiedenen Frequenzen oszillieren.According to a further preferred embodiment of the method, the nozzle is substantially parallel to the surface to be cooled, in particular oscillatable by an oscillating device. By such a feature, uneven cooling of the surface can be counteracted. In particular, a larger surface area can be covered with a limited number of nozzles. The oscillation preferably has at least one component perpendicular to the strip running direction or parallel to the axial direction of a roll. Preferably, the oscillation takes place in a plane parallel to the surface to be cooled. In an arrangement with several nozzles, they can also oscillate in different directions and with different frequencies.
Gemäß einer weiteren bevorzugten Ausführungsform des Verfahrens weist die Düse zwischen dem Einlass und dem Auslass einen Führungsbereich auf, in dem das Kühlmittel im Wesentlichen in einer senkrecht zu der zu kühlenden Oberfläche stehenden Richtung geführt und seitlich von diesem umschlossen wird. Mit anderen Worten wird der Volumenstrom dem Auslass im Wesentlichen senkrecht zu dessen Querschnitt stehend zugeführt. Dadurch können insbesondere bei Verwendung einer Kühlflüssigkeit unerwünschte Verwirbelungen vermieden werden, welche zu einer Bildung von Luftblasen führen könnte. Denn die Wärmeübertragung zwischen der Kühlflüssigkeit und der zu kühlenden Oberfläche kann durch die Vermeidung von Luftblasen bedeutend verbessert werden.According to a further preferred embodiment of the method, the nozzle has a guide region between the inlet and the outlet, in which the coolant is guided substantially in a direction perpendicular to the surface to be cooled and is laterally enclosed by this. In other words, the volume flow is supplied to the outlet substantially perpendicular to its cross-section standing. As a result, unwanted turbulences can be avoided, in particular when using a cooling liquid, which could lead to the formation of air bubbles. Because the heat transfer between the coolant and the surface to be cooled can be significantly improved by avoiding air bubbles.
Gemäß einer weiteren bevorzugten Ausführungsform des Verfahrens vergrößert sich der Querschnitt des Auslasses der Düse in Richtung der zu kühlenden Oberfläche. Durch eine sich verbreiternde oder aufweitende Form des Auslasses in Richtung der zu kühlenden Oberfläche können Teile des Kühlmittelstroms in eine horizontale Richtung abgelenkt werden. Eine derartige Form kann den Effekt des Soges weiter verstärken. Vorzugsweise erfolgt die genannte Aufweitung stetig und/oder zum Beispiel trichterförmig oder nach außen gekrümmt.According to a further preferred embodiment of the method, the cross section of the outlet of the nozzle increases in the direction of the surface to be cooled. By a widening or widening shape of the outlet in the direction of the surface to be cooled, parts of the coolant flow can be deflected in a horizontal direction. Such a shape can further enhance the effect of the suction. Preferably, said expansion is continuous and / or, for example, funnel-shaped or outwardly curved.
Gemäß einer bevorzugten Ausführungsform des Verfahrens ist der zweite Querschnitt in einer parallel zu der zu kühlenden Oberfläche liegenden Ebene im Wesentlichen rotationssymmetrisch ausgebildet. Mit anderen Worten kann der Querschnitt im Wesentlichen kreisförmig ausgebildet sein. Durch eine derartige Ausbildung kann eine homogene Versorgung mit Kühlmittel erreicht werden.According to a preferred embodiment of the method, the second cross section is formed substantially rotationally symmetrical in a plane lying parallel to the surface to be cooled. In other words, the cross section may be substantially circular. By such a configuration, a homogeneous supply of coolant can be achieved.
Gemäß einer weiteren bevorzugten Ausführungsform des Verfahrens ist die Düse in einer parallel zu der zu kühlenden Oberfläche liegenden Ebene nichtrotationssymmetrisch ausgebildet. Sie ist bevorzugt länglich, insbesondere elliptisch ausgebildet. Durch ein solches Merkmal kann zum Beispiel einer asymmetrischen Kühlzone bei bewegten Kühlflächen entgegengewirkt werden.According to a further preferred embodiment of the method, the nozzle is non-rotationally symmetrical in a plane lying parallel to the surface to be cooled. It is preferably elongate, in particular elliptical. By such a feature, for example, an asymmetric cooling zone can be counteracted with moving cooling surfaces.
Gemäß einer weiteren bevorzugten Ausführungsform des Verfahrens umfasst das Einstellen des Volumenstroms ein Einstellen von dessen Strömungsgeschwindigkeit und/oder von dessen Druck. Die genauen Werte eines solchen Drucks oder Volumenstroms hängen von der jeweils vorliegenden Geometrie und Größe der Düse ab.According to another preferred embodiment of the method, adjusting the volume flow comprises adjusting it Flow velocity and / or its pressure. The exact values of such a pressure or volume flow depend on the particular geometry and size of the nozzle.
Gemäß einer weiteren bevorzugten Ausführungsform des Verfahrens wird der variable Abstand zwischen dem Auslass und der zu kühlenden Oberfläche durch ein Begrenzungselement (unabhängig von dem bereitgestellten Volumenstrom) größer als 0,1 mm und vorzugsweise größer als 0,5 mm gehalten. Durch ein solches Begrenzungselement bzw. durch solch einen Anschlag kann zum Beispiel selbst im Falle eines Ausfalls des Volumenstroms eine Kollision der Düse mit der zu kühlenden Oberfläche vermieden werden.According to a further preferred embodiment of the method, the variable distance between the outlet and the surface to be cooled is kept greater than 0.1 mm and preferably greater than 0.5 mm by a limiting element (irrespective of the volumetric flow provided). By such a limiting element or by such a stop, for example, even in the case of a failure of the volume flow, a collision of the nozzle can be avoided with the surface to be cooled.
Gemäß einer weiteren bevorzugten Ausführungsform des Verfahrens werden mehrere Düsen rasterartig in einer der zu kühlenden Oberfläche gegenüberliegenden Ebene angeordnet. Durch diese rasterartige Anordnung von Düsen kann ein großer Bereich der zu kühlenden Oberfläche abgedeckt werden. Mit anderen Worten wird eine Vielzahl von Düsen nebeneinanderliegend gegenüber der zu kühlenden Oberfläche angeordnet. Anders beschrieben, können mehrere Düsen in einer Reihe angeordnet werden, zum Beispiel mehr als vier Düsen. Im Falle der Kühlung einer Walze können vorzugsweise mehrere Düsen in eine parallel zur Walzenachse liegenden Richtung angeordnet sein. Es können im Allgemeinen auch mehrere solcher Reihen vorgesehen werden. Im Falle der Kühlung von Walz- oder Gießgut, wie einem Metallband, können solche Reihen sich quer zur Bandlaufrichtung erstrecken. Zudem können mehrere Reihen hintereinander in Bandlaufrichtung angeordnet werden. Es ist ebenfalls möglich, dass die Reihen relativ zueinander quer zur Bandlaufrichtung versetzt sind, sodass in Bandlaufrichtung betrachtet, in den Zwischenräumen zweier benachbarter Düsen einer Reihe, Düsen einer in Bandlaufrichtung benachbarten Reihe liegen. Ebenfalls ist es möglich, dass einzelne Düsen oder Düsenreihen gleich- oder verschiedensinnig, parallel zur Kühloberfläche oszillieren, um ein möglichst gleichmäßiges Kühlergebnis zu erhalten.According to a further preferred embodiment of the method, a plurality of nozzles are arranged in a grid-like manner in a plane opposite the surface to be cooled. By this grid-like arrangement of nozzles, a large area of the surface to be cooled can be covered. In other words, a plurality of nozzles is arranged side by side opposite the surface to be cooled. Stated differently, multiple nozzles may be arranged in a row, for example, more than four nozzles. In the case of cooling a roller, preferably a plurality of nozzles may be arranged in a direction parallel to the roller axis. In general, several such rows can be provided. In the case of cooling of rolled or cast material, such as a metal strip, such rows may extend transversely to the strip running direction. In addition, several rows can be arranged one behind the other in the strip running direction. It is also possible that the rows are offset relative to one another transversely to the strip running direction, so that viewed in the direction of tape travel, lie in the interstices of two adjacent nozzles of a row, nozzles of an adjacent tape running direction series. It is also possible for individual nozzles or nozzle rows to oscillate in the same direction or at different levels, parallel to the cooling surface, in order to obtain the most uniform possible cooling result.
Gemäß einer weiteren bevorzugten Ausführungsform des Verfahrens wird der Auslass der Düse gegenüberliegend der Oberfläche einer Walze angeordnet oder gegenüberliegend der Oberfläche eines Metallbands, insbesondere zwischen zwei Walzgerüsten einer Walzstraße angeordnet. Besonders an solchen Positionen ist das erfindungsgemäße Verfahren von besonderem Vorteil.According to a further preferred embodiment of the method, the outlet of the nozzle is arranged opposite the surface of a roll or arranged opposite the surface of a metal strip, in particular between two roll stands of a rolling train. Especially in such positions, the inventive method is of particular advantage.
Darüber hinaus ist die Erfindung auf eine Kühlvorrichtung zum Kühlen einer Oberfläche eines Metallbandes, eines Blechs oder einer Walze zur Durchführung des Verfahrens gemäß einer der vorhergehenden Ausführungsformen gerichtet. Dabei umfasst die Vorrichtung mindestens eine Düse, umfassend einen Einlass mit einem ersten Querschnitt zur Leitung eines Volumenstroms und einen der zu kühlenden Oberfläche gegenüberliegenden Auslass mit einem zweiten Querschnitt zur Leitung des Volumenstroms, welcher größer als der erste Querschnitt ist, und wobei die Kühlvorrichtung ferner derart ausgebildet ist, dass der Abstand des Auslasses der Düse senkrecht zu der zu kühlenden Oberfläche zwischen 0,1 mm und 10 mm, vorzugsweise zwischen 0,5 mm und 5 mm oder zwischen 0,5 mm und 2 mm variabel bzw. frei verstellbar ist. Insbesondere kann die Düse gleitend durch eine Führung geführt sein.In addition, the invention is directed to a cooling device for cooling a surface of a metal strip, a sheet or a roller for carrying out the method according to one of the preceding embodiments. In this case, the device comprises at least one nozzle, comprising an inlet with a first cross section for directing a volume flow and an outlet opposite the surface to be cooled with a second cross section for directing the volumetric flow, which is greater than the first cross section, and wherein the cooling device further such is formed so that the distance of the outlet of the nozzle is perpendicular to the surface to be cooled between 0.1 mm and 10 mm, preferably between 0.5 mm and 5 mm or between 0.5 mm and 2 mm variable or freely adjustable. In particular, the nozzle may be slidably guided by a guide.
Ferner ist die Erfindung auf eine Walzvorrichtung zum Walzen von Walzgut, gerichtet, welche die genannte Kühlvorrichtung umfasst. Die Walzvorrichtung umfasst mindestens eine Walze mit einer zu kühlenden Walzenoberfläche auf die der Düsenauslass zur Kühlung der Walzenoberfläche gerichtet ist. Alternativ oder zusätzlich umfasst die Walzvorrichtung mindestens zwei Walzgerüste zum Walzen eines Metallbandes, wobei eine erfindungsgemäße Kühlvorrichtung zwischen den beiden Walzgerüsten zur Kühlung der Oberfläche des sich zwischen den beiden Walzgerüsten befindlichen Metallbandes angeordnet ist.Further, the invention is directed to a rolling mill for rolling rolling, which comprises said cooling device. The rolling device comprises at least one roller with a roll surface to be cooled on which the nozzle outlet is directed for cooling the roll surface. Alternatively or additionally, the rolling device comprises at least two rolling stands for rolling a metal strip, wherein a cooling device according to the invention is arranged between the two rolling stands for cooling the surface of the metal strip located between the two rolling stands.
Ferner wird die Düse bevorzugt eingesetzt, um lokal, das heißt am Ort der Düse, gezielte Gefügeprozesse im zu kühlenden Körper (insbesondere dem Walzgut) hervorzurufen.Furthermore, the nozzle is preferably used to locally, that is, at the location of the nozzle, specific structural processes in the body to be cooled (in particular the rolling stock) cause.
Sämtliche Merkmale der oben beschriebenen Ausführungsformen können miteinander kombiniert oder gegeneinander ausgetauscht werden.All features of the embodiments described above can be combined with each other or replaced.
Im Folgenden werden kurz die Figuren der Ausführungsbeispiele beschrieben. Weitere Details sind der detaillierten Beschreibung der Ausführungsbeispiele zu entnehmen. Es zeigen:
Figur 1- eine schematische Querschnittsansicht eines Ausführungsbeispiels einer erfindungsgemäßen Düse;
Figur 2- eine schematische Querschnittsansicht eines Ausführungsbeispiels einer erfindungsgemäßen Kühlvorrichtung; und
Figur 3- eine teiltransparente, schematische Draufsicht auf ein weiteres erfindungsgemäßes Ausführungsbeispiel einer Kühlvorrichtung.
- FIG. 1
- a schematic cross-sectional view of an embodiment of a nozzle according to the invention;
- FIG. 2
- a schematic cross-sectional view of an embodiment of a cooling device according to the invention; and
- FIG. 3
- a partially transparent, schematic plan view of another inventive embodiment of a cooling device.
Die
Das Bernoulli-Prinzip an sich ist dem Fachmann bekannt. Ein entsprechender Effekt tritt beispielsweise ebenfalls bei einer Vorbeifahrt eines PKW an einem LKW auf, wobei, während sich beide Fahrzeuge auf gleicher Höhe befinden, der PKW relativ zum LKW hingesogen wird. Nach Passage des LKW bewegt sich der PKW quer zu seiner Fahrtrichtung wieder zurück. Der während des Passierens entstehende Sog wird durch den eingeengten und beschleunigten Luftstrom zwischen beiden Fahrzeugen verursacht. Gemäß dem Prinzip von Bernoulli resultiert dieser eingeengte, beschleunigte Luftstrom in einem Unterdruck zwischen beiden Fahrzeugen relativ zum Luftdruck in der verbleibenden Umgebung der Fahrzeuge. Diese Erläuterung soll allerdings lediglich der Veranschaulichung dienen und sollte nicht einschränkend verstanden werden.The Bernoulli principle itself is known to the person skilled in the art. A corresponding effect, for example, also occurs when passing a car on a truck, wherein, while both vehicles are at the same height, the car is sucked relative to the truck. After passage of the truck, the car moves back across its direction of travel. The while passing through arising suction is caused by the constricted and accelerated air flow between both vehicles. According to the principle of Bernoulli, this narrowed, accelerated air flow results in a negative pressure between both vehicles relative to the air pressure in the remaining environment of the vehicles. However, this discussion is intended to be illustrative only and should not be taken as limiting.
In Bezug auf die Erfindung bzw. das beschriebene Ausführungsbeispiel tritt ein Sogeffekt ein, wenn der aus dem Auslass 5 austretende Volumenstrom V' zwischen dem Auslass 5 und der zu kühlenden Oberfläche 1 eine hinreichend hohe Relativgeschwindigkeit erreicht hat, sodass der Druck innerhalb des zwischen dem Auslass 5 und der zu kühlenden Oberfläche 1 strömenden Volumenstroms V' unter den die Düse 2 umgebenden Druck abfällt. Dieser Druck kann dem Atmosphärendruck entsprechen. Wird der Volumenstrom V konstant gehalten, wenn sich der Sogeffekt eingestellt hat, besteht gemäß dem Bernoulli-Prinzip ein sich selbst erhaltendes Kräftegleichgewicht. Wird nun der Abstand d zwischen der zu kühlenden Oberfläche und dem Düsenauslass 5 verändert, stellt die Düse automatisch den Abstand im Kräftegleichgewicht wieder her. Solche Abstandsveränderungen können zum Beispiel durch eine unregelmäßige zu kühlende Oberfläche hervorgerufen werden oder zum Beispiel durch eine verformte Walzenoberfläche oder eine ungenaue Führung eines Metallbandes 1. Gleiches kann bei der Kühlung von Walzen für unregelmäßige Walzenoberflächen gelten.With respect to the invention or the described embodiment, a suction effect occurs when the volume flow V 'emerging from the
Im Allgemeinen kann die Düse 2 bzw. das erfindungsgemäße Verfahren auf einer Bandoberseite Anwendung finden, jedoch ebenfalls auf einer Bandunterseite.In general, the
Die
Ferner ist es im Allgemeinen möglich, dass die Kühlvorrichtung 10 eine oder mehrere Oszillationsvorrichtungen (nicht dargestellt) umfasst, welche entweder zur Oszillation jeder einzelnen Düse 2 parallel zu der zu kühlenden Oberfläche ausgebildet ist oder sämtliche Düsen 2 der Vorrichtung 10 gemeinsam oszillieren kann. Bevorzugt wäre eine Oszillation des gesamten Behälters 14 samt der an diesem montierten Düsen 2 möglich.Furthermore, it is generally possible for the
Die
Generell kann eine erfindungsgemäße Düse 2 verschiedene Formen aufweisen, wie zum Beispiel schlitzartige oder runde Formen. Bei einer schlitzartigen Ausbildung kann sich die Düse 2 zumindest über einen Teil der Breite der zu kühlenden Oberfläche erstrecken, wie etwa über die Breite einer Walze oder eines Metallbandes.In general, a
Im Allgemeinen kann der Querschnitt der Düsen 2 bzw. des Düsenauslasses 5 allerdings ebenfalls an einen sich aufgrund einer Bewegung der zu kühlenden Oberfläche einstellenden asymmetrischen Wirkungsbereich angepasst werden.In general, however, the cross-section of the
Der lichte Durchmesser des Düsenauslasses kann ferner bevorzugt zwischen 0,5 cm und 10 cm oder bevorzugt zwischen 1 cm und 5 cm liegen.The clear diameter of the nozzle outlet may furthermore preferably be between 0.5 cm and 10 cm or preferably between 1 cm and 5 cm.
Im Falle einer Kühlung mit einem Gas, wie zum Beispiel Luft oder einem Inertgas, kann der Abstand zwischen dem Auslass 5 der Düse 2 und der zu kühlenden Oberfläche zum Beispiel zwischen 0,1 mm und 5 mm liegen oder bevorzugt zwischen 0,1 mm und 3 mm liegen.In the case of cooling with a gas, such as air or an inert gas, the distance between the
Im Falle einer Kühlung mit einer Flüssigkeit, wie zum Beispiel mit Wasser, einem Wassergemisch oder einer Emulsion kann der Abstand zwischen dem Auslass 5 der Düse 2 und der zu kühlenden Oberfläche beispielsweise zwischen 0,5 mm und 5 mm liegen oder bevorzugt zwischen 1 mm und 5 mm oder sogar zwischen 1 mm und 2 mm liegen.In the case of cooling with a liquid, such as with water, a water mixture or an emulsion, the distance between the
Noch kleinere Abstände als die genannten sind in der Regel nicht von Vorteil, da in einem solchen Fall eine erhöhte Gefahr einer Kollision zwischen der zu kühlenden Oberfläche und der Düse 2 bestünde. Eine derartige Kollision kann zur Beschädigung der Düse 2 und oder der zu kühlenden Oberfläche führen.Even smaller distances than those mentioned are generally not advantageous since in such a case an increased risk of a collision between the surface to be cooled and the
Werden mehrere Düsen gegenüberliegend der zu kühlenden Oberfläche angeordnet, können diese vorzugsweise untereinander Abstände aufweisen, welche dem 0,5-fachen bis 5-fachen oder vorzugsweise dem 1-fachen bis 2-fachen des lichten Durchmessers des Auslasses 5 entsprechen.If a plurality of nozzles are arranged opposite the surface to be cooled, they may preferably have spacings between one another which correspond to 0.5 times to 5 times or preferably 1 to 2 times the clear diameter of the
Die oben beschriebenen Ausführungsbeispiele dienen vor allem dem besseren Verständnis der Erfindung und sollten nicht einschränkend verstanden werden. Der Schutzumfang der vorliegenden Patentanmeldung ergibt sich aus den Patentansprüchen.Above all, the embodiments described above serve to better understand the invention and should not be understood as limiting. The scope of protection of the present patent application results from the patent claims.
Die Merkmale der beschriebenen Ausführungsbeispiele können miteinander kombiniert oder gegeneinander ausgetauscht werden.The features of the described embodiments can be combined or replaced with each other.
Ferner können die beschriebenen Merkmale durch den Fachmann an vorhandene Gegebenheiten oder vorliegende Anforderungen angepasst werden.Furthermore, the features described can be adapted by the skilled person to existing circumstances or existing requirements.
- 11
- Walzgut, Gießgut, Metallband oder BlechRolling stock, foundry, metal strip or sheet metal
- 22
- Düsejet
- 33
- Einlassinlet
- 55
- Auslassoutlet
- 77
- Führungselementguide element
- 99
- Führungsbereichguide region
- 1010
- Kühlvorrichtungcooler
- 10'10 '
- Kühlvorrichtungcooler
- 1111
- Begrenzungselementlimiting element
- 1313
- Vorspannelement / Federelement /DämpfungselementBiasing element / spring element / damping element
- 1414
- Fluidbehälterfluid container
- 14'14 '
- Fluidbehälterfluid container
- AA
- Querschnitt des AuslassesCross section of the outlet
- BB
- BandlaufrichtungTape direction
- Ee
- Querschnitt des EinlassesCross section of the inlet
- SS
- zur zu kühlenden Oberfläche senkrechte Richtungvertical direction to the surface to be cooled
- VV
- Volumenstrom des KühlmittelsVolume flow of the coolant
- V'V '
- aus dem Auslass der Düse austretender Volumenstromfrom the outlet of the nozzle exiting flow
- dd
- Abstand der Düse zur zu kühlenden OberflächeDistance of the nozzle to the surface to be cooled
Claims (16)
- Method of cooling a surface of cast material, rolling stock (1) or a roll, comprising the following steps:providing a nozzle (2), which comprises an inlet (3) and an outlet (5) which is opposite the surface to be cooled,and providing a preferably single-phase volume flow (V) of a cooling fluid, which Is fed to the nozzle (2) by way of the inlet (3) and leaves the nozzle (2) through the outlet (5),characterised in thatat least the nozzle outlet (5) is mounted at a variable spacing (d) from the surface to be cooled andthe volume flow (V) of the cooling fluid fed to the inlet (3) of the nozzle (2) is set in such a way that the nozzle (2) firmly sucks against the surface (1), which is to be cooled, in accordance with the Bernoulli principle.
- Method according to claim 1, wherein the spacing (d) of the outlet (5) from the surface to the cooled is variable substantially in a direction (8) perpendicular to the surface to be cooled.
- Method according to claim 1 or 2, wherein the nozzle (2) is mounted to be at least partly sliding in a guide (7).
- Method according to any one of the preceding claims, wherein the nozzle (2) is mounted to be biased substantially perpendicularly to the surface to be cooled.
- Method according to any one of the preceding claims, wherein the cross-section (A) of the outlet (5) is formed to be substantially rotationally symmetrical in a plane lying parallel with the surface to be cooled or, alternatively, is formed to be elongate, particularly substantially elliptical, to counteract the influence of a surface to be cooled which is moved.
- Method according to any one of the preceding claims, wherein the nozzle (2) is subjected to oscillatory movement substantially parallel to the surface (1) to be cooled.
- Method according to any one of the preceding claims, wherein several nozzles (2) or rows of nozzles (2) are subjected to oscillatory movements substantially parallel to the surface (1) to be cooled and the oscillation of adjacent nozzles (2) or nozzle rows (2) takes place at least in part in the same sense or in opposite sense.
- Method according to any one of the preceding claims, wherein the nozzle (2) has between the inlet (3) and the outlet (5) a guide region (9) in which the coolant is guided substantially in a direction (S) perpendicular to the surface (1) to be cooled from the inlet (3) to the outlet (5) and is laterally enclosed by this.
- Method according to any one of the preceding claims, wherein the cross-section (A) of the outlet (5) widens, preferably constantly, in downstream direction.
- Method according to any one of the preceding claims, wherein the setting of the volume flow comprises setting of the flow speed thereof and/or the pressure thereof.
- Method according to any one of the preceding claims, wherein the variable spacing (d) between the outlet (5) and the surface (1) to be cooled is kept by a limiting element (11) to be larger than 0.09 millimetres and preferably larger than 0.5 millimetres independently of the volume flow (V) provided.
- Method according to any one of the preceding claims, wherein the supplied volume flow (V) is formed by a cooling liquid.
- Method according to any one of the preceding claims, wherein the outlet (5) of the nozzle (2) is arranged opposite the surface of a roll or opposite the surface of a metal strip (1) between two roll stands of a roll train.
- Method according to any one of the preceding claims, wherein several nozzles (2) are arranged in grid-like form in a plane opposite the surface (1) to be cooled or several nozzles (2) are arranged in each of a plurality of mutually adjacent rows opposite the surface to be cooled.
- A cooling device (10) for cooling a surface of cast material, rolling stock (1) or a roll and for carrying out the method according to any one of the preceding claims, comprising:at least one nozzle (2) comprising an inlet (3) with a first clear cross-section (E) and an outlet (5), which Is opposite the surface (1) to be cooled, with a second clear cross-section (A) greater than the first cross-section (E), wherein the cooling device (10) is additionally constructed so that the spacing (d), which is perpendicular to the surface to be cooled, between the outlet (5) of the nozzle (2) and the surface to be cooled is variable between 0.1 millimetres and 5 millimetres, preferably between 0.5 millimetres and 2 millimetres.
- A rolling device for the rolling of rolling stock, comprising at least one cooling device (10) according to claim 15,
wherein the rolling device comprises at least one roll with a roll surface to be cooled and the outlet (5) of the nozzle (2) for cooling is directed towards the roll surface; or
wherein the rolling device comprises at least two mutually adjacent roll stands for rolling a metal strip (1) and the cooling device (10) is arranged between the two roll stands for cooling the surface of the metal strip (1) present between the two roll stands.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102012211454.8A DE102012211454A1 (en) | 2012-07-02 | 2012-07-02 | Method and device for cooling surfaces in casting plants, rolling mills or other strip processing lines |
PCT/EP2013/063866 WO2014006008A1 (en) | 2012-07-02 | 2013-07-01 | Method and device for cooling surfaces in casting installations, rolling installations or other strip processing lines |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2866957A1 EP2866957A1 (en) | 2015-05-06 |
EP2866957B1 true EP2866957B1 (en) | 2016-04-27 |
Family
ID=48741150
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13732950.4A Active EP2866957B1 (en) | 2012-07-02 | 2013-07-01 | Method and device for cooling surfaces in casting installations, rolling installations or other strip processing lines |
Country Status (8)
Country | Link |
---|---|
US (1) | US9421593B2 (en) |
EP (1) | EP2866957B1 (en) |
JP (1) | JP5840818B2 (en) |
KR (1) | KR101659474B1 (en) |
CN (1) | CN104602831B (en) |
DE (1) | DE102012211454A1 (en) |
RU (1) | RU2612467C2 (en) |
WO (1) | WO2014006008A1 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10129243B2 (en) | 2013-12-27 | 2018-11-13 | Avaya Inc. | Controlling access to traversal using relays around network address translation (TURN) servers using trusted single-use credentials |
ES2781198T3 (en) | 2015-05-29 | 2020-08-31 | Voestalpine Stahl Gmbh | Method for non-contact cooling of steel sheets and device for it |
EP3515615B1 (en) * | 2016-09-19 | 2020-01-22 | SMS Group GmbH | Roll treatment during operation |
EP3308868B1 (en) * | 2016-10-17 | 2022-12-07 | Primetals Technologies Austria GmbH | Cooling of a roll of a roll stand |
CN107746928B (en) * | 2017-11-21 | 2024-04-12 | 上海信鹏印刷器材有限公司 | Continuous tempering device and method for die-cutting knife steel belt |
BR112020009263B1 (en) | 2017-12-04 | 2023-01-10 | Nippon Steel Corporation | SURFACE TRACKING NOZZLE, OBSERVATION DEVICE FOR MOVING OBJECT SURFACE AND OBSERVATION METHOD FOR MOVING OBJECT SURFACE |
CN111372688B (en) * | 2017-12-04 | 2022-03-29 | 日本制铁株式会社 | Surface following nozzle, observation device for surface of moving object, and observation method for surface of moving object |
EP3808466A1 (en) * | 2019-10-16 | 2021-04-21 | Primetals Technologies Germany GmbH | Cooling device with coolant jets with hollow cross-section |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2921488A (en) * | 1955-11-23 | 1960-01-19 | United States Steel Corp | Method and apparatus for cooling mill rolls |
BE851382A (en) * | 1977-02-11 | 1977-05-31 | Centre Rech Metallurgique | IMPROVEMENTS IN METHODS AND DEVICES FOR COMBATING BURDING OF ROLLER CYLINDERS |
DE2751013C3 (en) | 1977-11-15 | 1981-07-09 | Kleinewefers Gmbh, 4150 Krefeld | Cooling device |
JPS57156830A (en) * | 1981-03-24 | 1982-09-28 | Kawasaki Steel Corp | Cooling method for rolling material |
SU1386324A1 (en) * | 1985-11-10 | 1988-04-07 | Краматорский Индустриальный Институт | Method of removing scale from the surface of heated metal |
SU1588781A1 (en) * | 1988-06-03 | 1990-08-30 | Донецкий политехнический институт | Method of surface treatment of moving rolled stock |
CN2035282U (en) * | 1988-07-07 | 1989-04-05 | 冶金工业部钢铁研究总院 | Cooling device for hot-state steel plate |
DE4116019C2 (en) | 1991-05-16 | 1997-01-23 | Sundwiger Eisen Maschinen | Method and device for cooling a flat material, in particular a metal strip |
JPH04367313A (en) * | 1991-06-11 | 1992-12-18 | Nippon Steel Corp | Method and device for cooling strip |
JPH0688134A (en) * | 1992-09-08 | 1994-03-29 | Nippon Steel Corp | Device for cooling strip |
JP3360889B2 (en) | 1993-09-24 | 2003-01-07 | 石川島播磨重工業株式会社 | Side guide equipment for strip winder |
JPH07284820A (en) | 1994-04-14 | 1995-10-31 | Hitachi Ltd | Device and method for cooling roll for rolling mill |
JP3494327B2 (en) * | 1995-10-03 | 2004-02-09 | 株式会社共立合金製作所 | Descaler nozzle |
DE19718530B4 (en) | 1997-05-02 | 2005-02-03 | Sms Demag Ag | Process for cooling of rolling-cold rolling stock and apparatus for carrying out the method and use of the apparatus |
JPH11244928A (en) | 1998-03-05 | 1999-09-14 | Nippon Steel Corp | Method for washing metallic strip |
DE10207584A1 (en) | 2002-02-22 | 2003-09-11 | Vits Maschb Gmbh I Ins | Process for cooling metal strips or plates and cooling device |
JP2003285114A (en) * | 2002-03-26 | 2003-10-07 | Jfe Steel Kk | Skinpass rolling method of hot-dip galvanizing steel sheet and apparatus for skinpass rolling |
JP3867073B2 (en) | 2003-10-17 | 2007-01-10 | 新日本製鐵株式会社 | Cooling apparatus and cooling method for hot rolled steel sheet |
ATE491533T1 (en) * | 2004-08-05 | 2011-01-15 | Kobe Steel Ltd | DEPOSIT REMOVAL DEVICE |
WO2008139632A1 (en) * | 2007-05-11 | 2008-11-20 | Nippon Steel Corporation | Apparatus, and method, for controlled cooling of steel sheet |
JP5646261B2 (en) * | 2010-09-22 | 2014-12-24 | 三菱日立製鉄機械株式会社 | Hot strip strip cooling system |
-
2012
- 2012-07-02 DE DE102012211454.8A patent/DE102012211454A1/en not_active Withdrawn
-
2013
- 2013-07-01 US US14/410,641 patent/US9421593B2/en not_active Expired - Fee Related
- 2013-07-01 RU RU2015103150A patent/RU2612467C2/en not_active IP Right Cessation
- 2013-07-01 CN CN201380045786.2A patent/CN104602831B/en active Active
- 2013-07-01 JP JP2015519179A patent/JP5840818B2/en not_active Expired - Fee Related
- 2013-07-01 EP EP13732950.4A patent/EP2866957B1/en active Active
- 2013-07-01 WO PCT/EP2013/063866 patent/WO2014006008A1/en active Application Filing
- 2013-07-01 KR KR1020157001392A patent/KR101659474B1/en active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
US20150239027A1 (en) | 2015-08-27 |
RU2015103150A (en) | 2016-08-20 |
CN104602831B (en) | 2017-06-09 |
EP2866957A1 (en) | 2015-05-06 |
CN104602831A (en) | 2015-05-06 |
WO2014006008A1 (en) | 2014-01-09 |
US9421593B2 (en) | 2016-08-23 |
RU2612467C2 (en) | 2017-03-09 |
DE102012211454A1 (en) | 2014-01-02 |
KR101659474B1 (en) | 2016-09-23 |
JP2015527199A (en) | 2015-09-17 |
JP5840818B2 (en) | 2016-01-06 |
KR20150016411A (en) | 2015-02-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2866957B1 (en) | Method and device for cooling surfaces in casting installations, rolling installations or other strip processing lines | |
EP2651577B1 (en) | Method and apparatus for applying a lubricant while rolling metallic rolled stock | |
DE102016102093B3 (en) | Continuous cooling device and method for cooling a metal strip | |
DE2901896A1 (en) | PROCESS AND DEVICE FOR DESCALING METALLIC RIBBONS OR THE SAME, IN PARTICULAR MADE OF STEEL | |
AT522007B1 (en) | Ribbon floatation system with a nozzle system | |
EP3509768B1 (en) | Device and method for applying a liquid medium to a roll and/or to a rolled material and/or for removing the liquid medium | |
EP3074150B1 (en) | Method for heat-treating, and quenching device for cooling plate- or web-like sheet metal | |
EP2934778B1 (en) | Device for cooling rolled stock | |
DE2500079C2 (en) | Device for cooling in a continuous caster | |
DE2053947C3 (en) | Method and device for generating coolant jets for cooling metal cast strands | |
DE2165049B2 (en) | Method and apparatus for quenching | |
DE102016101160B4 (en) | Device for the floating guiding and simultaneously cooling of sheet material and method for operating such a device | |
DE112008000152B4 (en) | diverter | |
DE2102800B2 (en) | PLANT FOR THE THERMAL TREATMENT OF ROLLED PRODUCTS IN THE COOLANT FLOW | |
EP1423220B1 (en) | Method and device for draining waste water in the inner bend of a beam blank casting machine | |
CH648865A5 (en) | DEVICE FOR COOLING THE SURFACE OF A SOLID BODY. | |
DE1583418B2 (en) | DEVICE FOR CONTINUOUS SHUTTERING OF RAILS | |
EP1131170B1 (en) | Method and device for reducing the formation of scales on rolling stock | |
DE19960593C2 (en) | Device for cooling a cast metal strand | |
WO2024152070A1 (en) | Continuous flow cooling device | |
EP3870921A1 (en) | Cooling device for cooling planar or strip-shaped metal sheet and cooling method | |
DE10126882C2 (en) | Fluid flow shaper | |
DE1783125C (en) | Method and device for cooling an approximately horizontally moving strand in the secondary cooling zone of a continuous caster Separation from 1508796 | |
DE102020201561A1 (en) | Process for suppressing the formation of scale on the surface of a metallic rolling stock | |
DE2507971C3 (en) | Method and device for changing the secondary cooling in the continuous casting of steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20141219 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SMS GROUP GMBH |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20151119 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 794146 Country of ref document: AT Kind code of ref document: T Effective date: 20160515 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502013002822 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 4 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20160427 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160427 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160727 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160427 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160427 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160728 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160427 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160427 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160427 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160829 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160427 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160731 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502013002822 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160427 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160427 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160427 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160427 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160427 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160427 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160427 |
|
26N | No opposition filed |
Effective date: 20170130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160731 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160731 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160427 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160701 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160701 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20130701 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160427 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160427 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160427 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160427 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160427 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20180622 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160427 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20190719 Year of fee payment: 7 Ref country code: FI Payment date: 20190722 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: FI Ref legal event code: MAE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200701 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200702 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200701 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230707 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240719 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240725 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240730 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20240722 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240725 Year of fee payment: 12 |