EP2865983B1 - Collecteur d'échangeur de chaleur et échangeur de chaleur le comportant - Google Patents

Collecteur d'échangeur de chaleur et échangeur de chaleur le comportant Download PDF

Info

Publication number
EP2865983B1
EP2865983B1 EP13780882.0A EP13780882A EP2865983B1 EP 2865983 B1 EP2865983 B1 EP 2865983B1 EP 13780882 A EP13780882 A EP 13780882A EP 2865983 B1 EP2865983 B1 EP 2865983B1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
refrigerant
header
holes
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13780882.0A
Other languages
German (de)
English (en)
Other versions
EP2865983A1 (fr
EP2865983A4 (fr
Inventor
Akira Ishibashi
Takuya Matsuda
Sangmu Lee
Takashi Okazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of EP2865983A1 publication Critical patent/EP2865983A1/fr
Publication of EP2865983A4 publication Critical patent/EP2865983A4/fr
Application granted granted Critical
Publication of EP2865983B1 publication Critical patent/EP2865983B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0265Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using guiding means or impingement means inside the header box
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0265Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using guiding means or impingement means inside the header box
    • F28F9/0268Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using guiding means or impingement means inside the header box in the form of multiple deflectors for channeling the heat exchange medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/0071Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F2009/0285Other particular headers or end plates
    • F28F2009/0292Other particular headers or end plates with fins

Definitions

  • the present invention relates to a heat exchanger having a heat exchanger header used in a refrigeration cycle apparatus such as an air-conditioning apparatus, a refrigeration cycle apparatus and an air-conditioning apparatus.
  • an inlet side header is required to have a function of equally distributing refrigerant.
  • a header having such a function hitherto, there has been a header in which a looped flow passage that makes a U-turn in the vertical direction is formed in the header, and an incoming two-phase refrigerant flow is circulated and homogenized in the header, and is distributed to each of a plurality of heat transfer tubes (see, for example, Patent Literature 1).
  • Patent Literature 1 Japanese Unexamined Patent Application Publication No. 2011-85324 (Abstract, Fig. 1 )
  • US2006081363A1 discloses a cooling system for a reciprocating engine including a main cooling device and a side tank.
  • the main cooling device includes at least one heat dissipation tube that contains an internal fluid for transporting excess heat developed by a reciprocating engine.
  • the side tank is attached to the main cooling device and includes a plurality of exterior fins for dissipating heat to cool airflow.
  • the exterior fins form an adjustable mounting location.
  • JPS63271099A discloses a heat exchanger according to the preamble of claim 1.
  • US2004031598A1 discloses a heat exchanger comprising a hollow header and a plurality of heat exchanging tubes which are in fluid communication with the header, the cross-sectional shape of the header is formed into an angular cross-sectional shape including a rectangular cross-sectional shape and a square cross-sectional shape.
  • JPH11325785A provides a radiator with integrated oil cooler in which heat exchanging efficiency is enhanced through simple structure while enhancing the recycle performance of each part.
  • JPH11337289A improves pressure resistance without introducing a reduction in an effective front surface area by forming a header in a flat tubular state in which its inner diameter in a tube inserting direction is shorter than its inner diameter in a direction perpendicular to the tube inserting direction, and coupling opposed walls via a reinforcing wall.
  • the present invention has been made in view of such points, and it is an object of the present invention to provide a heat exchanger having a heat exchanger header that can suppress pressure loss, can equally distribute refrigerant without degrading heat transfer performance of a heat exchanger, and has a simple structure, a heat exchanger having the heat exchanger header, a refrigeration cycle apparatus and an air-conditioning apparatus.
  • a heat exchanger according to claim 1 is provided.
  • a heat exchanger according to the present invention is a heat exchanger in which refrigerant is flowed in parallel through a plurality of heat transfer tubes disposed in parallel, and comprises a heat exchanger header being configured to distribute the refrigerant to the plurality of heat transfer tubes in parallel by effect of surface tension, wherein a plurality of through-holes to which ends of the plurality of heat transfer tubes are connected are arranged side by side in a longitudinal direction, wherein at least one chamber communicating with the plurality of through-holes and serving as a refrigerant flow passage is formed, and wherein each of the plurality of through-holes is an inlet side through-hole or an outlet side through-hole to which a refrigerant inlet side or refrigerant outlet side end of the plurality of heat transfer tubes is connected, and in a part of the chamber that faces the inlet side through-holes, a plurality of grooves extending in the longitudinal direction of the header are formed in a lateral direction
  • a heat exchanger header that can suppress pressure loss, can equally distribute refrigerant without degrading heat transfer performance of a heat exchanger, and has a simple structure can be obtained.
  • Fig. 1 is a schematic perspective view of a heat exchanger employing a heat exchanger header according to Embodiment 1.
  • the same reference signs are used for the same or corresponding components, and this is common throughout the specification.
  • the forms of components described in the whole specification are illustrative only, and the present invention is not limited to these descriptions.
  • the heat exchanger 1 is a parallel flow heat exchanger in which refrigerant is flowed in parallel, particularly a one-way flow passage type heat exchanger in which refrigerant is flowed from one side to the other side in the whole heat exchanger 1.
  • the heat exchanger 1 has a pair of headers 10 and 20 spaced from each other, a plurality of flat tubes (heat transfer tubes) 30 that are disposed in parallel between the pair of headers 10 and 20 and both ends of which are connected to the pair of headers 10 and 20, and a plurality of fins 40.
  • the pair of headers 10 and 20, the flat tubes 30, and the fins 40 are all formed of aluminum or aluminum alloy.
  • the fins 40 are plate-like fins that are stacked at intervals between the pair of headers 10 and 20 and between which air passes, and the plurality of flat tubes 30 are passed therethrough.
  • the fins 40 do not necessarily have to be plate-like fins, and only have to be fins 40 disposed such that air passes in the air passage direction.
  • the fins 40 may be, for example, corrugated fins or the like alternately stacked with the flat tubes 30 in the vertical direction. In short, the fins 40 only have to be fins disposed such that air passes in the air passage direction.
  • the flat tubes 30 have a plurality of through-holes 30a serving as refrigerant flow passages as shown in Fig. 2 .
  • Heat transfer tubes are not limited to flat tubes, and circular tubes and tubes having any other shape can be used.
  • the inlet header 10 on the refrigerant inlet side of the plurality of flat tubes 30 is connected to a refrigerant inlet pipe 10a
  • the outlet header 20 on the refrigerant outlet side of the plurality of flat tubes 30 is connected to a refrigerant outlet pipe 20a.
  • the present invention has a characteristic in, of the pair of headers 10 and 20, particularly the header on the inlet side (hereinafter referred to as inlet header 10). The structure thereof will be described with reference to Fig. 3 below.
  • Fig. 3 is an exploded perspective view of the inlet header 10 of Fig. 1 .
  • Fig. 4 is a sectional view of the inlet header part of Fig. 1 taken along line A-A.
  • the inlet header 10 has a box-like header main body 11 with one side open, and a plate-like lid body 13 covering an opening 11a of the header main body 11, and at least one chamber 10A serving as a refrigerant flow passage is formed therebetween.
  • a plurality of through-holes 12 serving as inlet side through-holes are arranged side by side along the longitudinal direction of the header main body 11.
  • the refrigerant inlet side ends of the plurality of flat tubes 30 are connected to the plurality of through-holes 12, and communicate with the chamber 10A.
  • the refrigerant inlet pipe 10a is connected to the inlet header 10.
  • a plurality of grooves 14 extending in the longitudinal direction are formed over the entire length in the lateral direction perpendicular to the longitudinal direction.
  • the grooves 14 are formed by the gaps between a plurality of protrusions 15 protruding from the lid body 13.
  • the grooves 14 are provided in order to draw refrigerant liquid flowing into the inlet header 10 into the grooves by the effect of surface tension and to thereby equally distribute the refrigerant from the inlet header 10 to each pass.
  • the box-like header main body 11 is formed by cutting or the like, and the through-holes 12 are formed in the header main body 11.
  • the lid body 13 is formed by cutting or the like.
  • the lid body 13 is fittably configured so as to be able to be temporarily fastened to the opening 11a of the header main body 11, and brazing filler metal is applied to the fitting parts.
  • the lid body 13 When manufacturing the whole heat exchanger 1, the lid body 13 is fitted in and temporarily fastened to the opening 11a of the header main body 11, and, in a state where the outlet header 20, the flat tubes 30, and the fins 40 are all assembled, the whole is joined by brazing at the same time.
  • Fig. 5 is a diagram showing a refrigerant circuit of a refrigeration cycle apparatus 50 to which the heat exchanger 1 of Fig. 1 is applied.
  • the refrigeration cycle apparatus 50 includes a compressor 51, a condenser 52, an expansion valve 53 as a pressure reducing device, and a evaporator 54.
  • the heat exchanger 1 is used as at least one of the condenser 52 and the evaporator 54.
  • Gas refrigerant discharged from the compressor 51 flows into the condenser 52, exchanges heat with air passing through the condenser 52 to become high-pressure liquid refrigerant, and flows out.
  • the high-pressure liquid refrigerant flowing out of the condenser 52 is reduced in pressure by the expansion valve 53 to become low-pressure two-phase gas-liquid refrigerant, and flows into the evaporator 54.
  • the low-pressure two-phase gas-liquid refrigerant flowing into the evaporator 54 exchanges heat with air passing through the evaporator 54 to become low-pressure gas refrigerant, and is sucked into the compressor 51 again.
  • Fig. 6 is a diagram showing the flow of refrigerant in the case where the heat exchanger 1 of Fig. 1 is used as an evaporator.
  • Two-phase gas-liquid refrigerant flowing out of the expansion valve 53 flows through the refrigerant inlet pipe 10a into the inlet header 10.
  • the refrigerant flowing into the inlet header 10 flows from one end to the other end of the flat tubes 30 constituting each pass of the heat exchanger 1, merges in the outlet header 20, and flows through the refrigerant outlet pipe 20a to the outside.
  • Fig. 7 is a diagram showing the flow state of refrigerant in the inlet header 10.
  • Fig. 8 is a sectional view taken along line B-B of Fig. 7 , and is a schematic diagram showing a state where liquid refrigerant is accumulated between the grooves in the inlet header 10.
  • Fig. 9 includes diagrams (a) and (b) showing the flow state of refrigerant in a header not provided with grooves 14 as a comparative example.
  • Embodiment 1 by providing the lid body 13 with a plurality of grooves 14 and causing surface tension to act, unevenness of liquid refrigerant can be suppressed, and refrigerant can be equally distributed to and caused to flow into each of the plurality of flat tubes 30.
  • the heat exchange efficiency can be improved, and the capacity in the case where the heat exchanger 1 is used as an evaporator can be exerted to the maximum.
  • Embodiment 1 utilizes the action of surface tension of liquid refrigerant to prevent uneven refrigerant distribution, the pressure loss can be suppressed as compared to the conventional configuration, and the performance degradation in the case where the heat exchanger 1 is used as an evaporator can be suppressed.
  • the inlet header 10 of Embodiment 1 is composed of a header main body 11 and a lid body 13 having grooves 14, and has a simple structure, it is easy to manufacture, and can be reduced in cost.
  • the inlet header is not limited to the structure shown in Fig. 3 , and various modifications, such as the following (1) and (2), may be made without departing from of the scope of the present invention.
  • Fig. 12 is a diagram showing a heat exchanger 1A according to Embodiment 2 of the present invention.
  • the heat exchanger 1A is a parallel flow heat exchanger in which refrigerant is flowed in parallel, particularly a U-turn flow passage type heat exchanger.
  • a configuration example is shown in which the number of passes is five.
  • the heat exchanger 1A has a pair of headers 70 and 80 spaced from each other, a plurality of (20 here) flat tubes (heat transfer tubes) 30 that are disposed in parallel between the pair of headers 70 and 80 and both ends of which are connected to the pair of headers 70 and 80, and a plurality of fins 40.
  • the pair of headers 70 and 80, the flat tubes 30, and the fins 40 are all formed of aluminum or aluminum alloy.
  • the configurations of the flat tubes 30 and the fins 40 are the same as Embodiment 1.
  • Fig. 13 is an exploded perspective view of the header 70 of Fig. 12 .
  • the header 70 has a box-like header main body 71 with one side open.
  • a plurality of through-holes 72 to which a plurality of flat tubes 30 are connected are arranged side by side along the longitudinal direction of the header main body 71.
  • Two partition plates 73 are provided inside the header main body 71, and three independent chambers A, B, and C that communicate with the plurality of through-holes 72 and serve as refrigerant flow passages are formed, and are covered by lid bodies 74A, 74B, and 74C, respectively.
  • a plurality of grooves 14 having the same function as Embodiment 1 are formed in parts of the lid bodies 74A, 74B, and 74C that face the refrigerant inlet side ends of the flat tubes 30. A specific description will be given below.
  • the chamber A is an inflow chamber into which refrigerant from the outside flows.
  • the refrigerant inlet side ends of the flat tubes 30 are connected to the plurality of through-holes 72 communicating with the chamber A, and therefore grooves 14 are formed on the whole of the lid body 74A.
  • the chamber B is a U-turn chamber serving as a U-turn flow passage. Of the plurality of through-holes 72 communicating with the chamber B, the upper half is connected to the refrigerant inlet side ends of the flat tubes 30, and the lower half is connected to the refrigerant outlet side ends of the flat tubes 30, and therefore grooves 14 are formed on the upper half of the lid body 74B.
  • the chamber C is an outflow chamber from which refrigerant flows to the outside.
  • the plurality of through-holes 72 communicating with the chamber C are connected to the refrigerant outlet side ends of the flat tubes 30, and therefore grooves 14 are not formed on the lid body 74C.
  • the through-holes to which the refrigerant inlet side ends of the flat tubes 30 are connected may be referred to as inlet side through-holes
  • the through-holes to which the refrigerant outlet side ends of the flat tubes 30 are connected may be referred to as outlet side through-holes.
  • the header 80 is provided with one partition plate 83 as shown in Fig. 12 , and the inside thereof is divided into two chambers D and E.
  • the chambers D and E are covered by lid bodies 84D and 84E, respectively.
  • a plurality of grooves 14 are formed in parts of the lid bodies 84D and 84E that face the inlet side through-holes of the flat tubes 30. Specifically, in each of the lid bodies 84D and 84E, a plurality of grooves 14 are formed on the upper half thereof.
  • the header main body 71 is formed by cutting or the like, and the through-holes 72 are formed in the header main body 71.
  • the lid bodies 74A, 74B, and 74C are formed by cutting or the like.
  • the lid bodies 74A, 74B, and 74C are fittably configured so as to be able to be temporarily fastened to the openings of the chambers A, B, and C of the header main body 71, and brazing filler metal is applied to the fitting parts.
  • the header 80 can be manufactured in the same manner.
  • the lid bodies 74A, 74B, and 74C are fitted in and temporarily fastened to the openings of the chambers A, B, and C, respectively, of the header 70, and similarly, the lid bodies 84D and 84E are fitted in and temporarily fastened to the openings of the chambers D and E, respectively, of the header 80.
  • the whole is joined by brazing at the same time.
  • Two-phase gas-liquid refrigerant flowing through the refrigerant inlet pipe 10a flows into the chamber A, flows from one end to the other end of a flat tube group connected to the chamber A, and flows into the chamber D.
  • the refrigerant flowing into the chamber D makes a U-turn here, flows from one end to the other end of another flat tube group connected to the chamber D, and flows into the chamber B.
  • the refrigerant flowing into the chamber B makes a U-turn here, flows from one end to the other end of another flat tube group connected to the chamber B, and flows into the chamber E.
  • the refrigerant flowing into the chamber E makes a U-turn here, and flows from one end to the other end of another flat tube group connected to the chamber E.
  • the refrigerant flowing out of this other end merges in the chamber C, and flows through the refrigerant outlet pipe 20a to the outside.
  • Embodiment 2 also in a U-turn flow passage type heat exchanger, the same advantageous effects as Embodiment 1 can be obtained.
  • the positions of the ends closest to the border between the inlet side through-hole group and the outlet side through-hole group are all the same. However, they may be as shown in Fig. 14 .
  • Fig. 14 shows modifications of the grooves 14 of Fig. 13 and includes views of the lid body 74B, 84D, 84E as viewed from the side of the surface on which grooves 14 are formed.
  • the positions of the ends closest to the border between the inlet side through-hole group and the outlet side through-hole group may be alternately staggered in the lateral direction of the lid body.
  • the end faces of the grooves 14 closest to the border are inclined surfaces, the end faces are wide as compared to a configuration in which the positions of the ends are all the same as shown in Fig. 13 , and therefore it can be expected that the effect of drawing liquid refrigerant is improved.
  • the positions of the ends of the protrusions 15 are not limited to such an alternately staggered configuration. As long as every two of the protrusions 15 adjacent in the lateral direction of the lid body differ in position, the same effect can be expected.
  • Fig. 14 (b) shows another example of the configuration in which every two of the protrusions 15 adjacent in the lateral direction of the lid body differ in position. As shown, the length in the longitudinal direction of the protrusions 15 may decrease toward the central part in the lateral direction, or, although not shown, the length in the longitudinal direction of the protrusions 15 may increase toward the central part in the lateral direction.
  • Embodiment 3 corresponds to a configuration in which a plurality of (two here) lines of U-turn flow passage type heat exchangers of Embodiment 2 are provided in the air passage direction.
  • Fig. 15 includes diagrams showing a heat exchanger according to Embodiment 3 of the present invention.
  • Fig. 15 (a) is a schematic side view of the heat exchanger as viewed from a direction perpendicular to the air passage direction shown by dashed arrows.
  • Fig. 15 (b) is a schematic sectional view of an upstream side heat exchanging unit 1Ba on the upstream side in the air passage direction.
  • Fig. 15 (c) is a schematic sectional view of a downstream side heat exchanging unit 1Bb on the downstream side in the air passage direction.
  • Fig. 15 (d) is a plan view of the heat exchanger.
  • Embodiment 3 will be described below focusing on differences from Embodiment 2.
  • the heat exchanger 1 B has a heat exchanger 1A that is the same as Embodiment 2, as the upstream side heat exchanging unit 1 Ba, and has the downstream side heat exchanging unit 1 Bb on the downstream side in the air passage direction.
  • the upstream side heat exchanging unit 1 Ba and the downstream side heat exchanging unit 1Bb are connected by an inter-line pipe 90.
  • the downstream side heat exchanging unit 1Bb has ten passes.
  • the downstream side heat exchanging unit 1Bb has more passes than the upstream side heat exchanging unit 1Ba. The reason that the number of passes differs between the upstream side heat exchanging unit 1Ba and the downstream side heat exchanging unit 1 Bb will be described later.
  • the downstream side heat exchanging unit 1Bb is the same as the upstream side heat exchanging unit 1Ba except that it differs in the configuration of the header part from the upstream side heat exchanging unit 1Ba.
  • a header 700 to which the inter-line pipe 90 is connected in the downstream side heat exchanging unit 1Bb differs in the number of partition plates from the upstream side heat exchanging unit 1Ba.
  • the header 700 is provided with one partition plate 703, and two chambers F and G are formed therein.
  • a header 800 is provided with no partition plate, and one chamber H is formed in the whole thereof.
  • grooves 14 are provided in parts of the headers 700 and 800 of the downstream side heat exchanging unit 1 Bb that face the refrigerant inlet side end of each flat tube 30.
  • the flow of refrigerant in the upstream side heat exchanging unit 1Ba of the heat exchanger 1B is the same as that in Embodiment 2.
  • Refrigerant flowing out of the refrigerant outlet pipe 20a of the upstream side heat exchanging unit 1B flows through the inter-line pipe 90 and the refrigerant inlet pipe 100a into the chamber F of the downstream side heat exchanging unit 1 Bb.
  • the refrigerant flowing into the chamber F flows from one end to the other end of a flat tube group communicating with the chamber F, and flows into the chamber H.
  • the refrigerant flowing into the chamber H makes a U-turn here, flows from one end to the other end of another flat tube group connected to the chamber H.
  • the refrigerant flowing out of this other end merges in the chamber G, and flows through the refrigerant outlet pipe 200a to the outside.
  • the heat exchanger 1B When the heat exchanger 1B is used as an evaporator, refrigerant inflows in a two-phase gas-liquid state, and finally outflows in a state of gas refrigerant. Therefore, the quality increases as refrigerant flows toward the second half of the flow passage.
  • the quality When the quality is low, the pressure loss during passing through the flow passage is small, and therefore it is preferable to increase the flow rate of refrigerant to increase the heat transfer coefficient.
  • the quality when the quality is high, the pressure loss during passing through the flow passage is large, and therefore it is preferable to decrease the flow rate of refrigerant. The larger the number of passes, the lower the flow rate of refrigerant.
  • the quality of refrigerant is low. Therefore, the number of passes is reduced to increase the flow rate of refrigerant, and to increase the heat transfer coefficient.
  • the downstream side heat exchanging unit 1Bb corresponding to the second half of the flow passage the quality is high. Therefore, the number of passes is increased to reduce the flow rate of refrigerant, and to reduce the pressure loss.
  • Embodiment 3 the same advantageous effects as Embodiment 1 and 2 can be obtained, and owing to the multi-line configuration, the heat exchange capacity can be improved. Since the number of passes on the upstream side in the air passage direction where the quality of passing refrigerant is low is reduced to increase the flow rate of refrigerant, and to increase the heat transfer coefficient, the heat exchange capacity can also be improved thereby.
  • Embodiment 3 Although a two-line configuration is described in Embodiment 3, a three or more-line configuration may be used.
  • the outer shape of header is square
  • the outer shape of header is not limited to a square shape, and may be a cylindrical shape.
  • a square shape is preferable in terms of securing the size required as a header and causing lines to interfere with each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Claims (12)

  1. Échangeur de chaleur (1) dans lequel circule un fluide frigorigène en parallèle à travers une pluralité de tubes de transfert de la chaleur (30) disposés en parallèle, comprenant un collecteur d'échangeur de chaleur (10),
    dans lequel une pluralité de trous traversants (12) auxquels sont connectées les extrémités de la pluralité de tubes de transfert de la chaleur (30), sont agencés côte à côte dans la direction longitudinale du collecteur d'échangeur de chaleur (10),
    dans lequel une pluralité de chambres (A, B, C) qui communiquent avec la pluralité de trous traversants (12), et qui servent de passage au flux de fluide frigorigène, séparées dans la direction longitudinale, sont formées dans le collecteur d'échangeur de chaleur (10), et
    dans lequel chacun de la pluralité de trous traversants (12) est soit un trou traversant du côté entrée, soit un trou traversant du côté sortie, auxquels sont connectées une extrémité du côté entrée de fluide frigorigène, et une extrémité du côté sortie de fluide frigorigène, respectivement, de la pluralité de tubes de transfert de la chaleur (30), et dans une partie de chacune de la pluralité de chambres (A, B, C) qui fait face aux trous traversants du côté entrée (12) dans les chambres, une pluralité de rainures (14) du collecteur d'échangeur de chaleur (10) sont formées dans une direction latérale perpendiculaire à la direction longitudinale, caractérisé en ce que le collecteur d'échangeur de chaleur (10) est configuré pour répartir le fluide frigorigène vers la pluralité de tubes de transfert de la chaleur (30) en parallèle par effet d'une tension superficielle, dans lequel la pluralité de rainures (14) conduisent le fluide frigorigène liquide dans les rainures par l'effet de la tension superficielle.
  2. Échangeur de chaleur selon la revendication 1,
    dans lequel chacune de la pluralité de chambres (A, B, C) est classée selon l'une quelconque d'une chambre d'entrée (A) dans laquelle circule le fluide frigorigène en provenance de l'extérieur, d'une chambre de demi-tour (B) qui sert de passage de flux de demi-tour, et d'une chambre de sortie (C) à partir de laquelle le fluide frigorigène circule vers l'extérieur,
    dans lequel les trous traversants (12) qui communiquent avec la chambre d'entrée (A) sont tous des trous traversants du côté entrée (12), et la pluralité de rainures (14) sont formées sur toute la longueur dans la direction longitudinale de la partie qui forme la chambre d'entrée (A),
    dans lequel les trous traversants (12) qui communiquent avec la chambre de demi-tour (B) sont divisés en un groupe de trous traversants du côté entrée, et en un groupe de trous traversants du côté sortie, et la pluralité de rainures (14) sont formées dans une partie qui fait face au groupe de trous traversants du côté entrée, et
    dans lequel les trous traversants (12) qui communiquent avec la chambre de sortie (C) sont tous des trous traversants du côté sortie (12), et la pluralité de rainures (14) ne sont pas formées dans une partie qui forme la chambre de sortie (C).
  3. Échangeur de chaleur selon la revendication 2, dans lequel la pluralité de rainures (14) sont constituées par des espaces entre une pluralité de saillies qui font saillie (15), et chaque deux saillies de la pluralité de saillies (15) formées dans la chambre de demi-tour (B) qui sont adjacentes dans la direction latérale, diffèrent en position de l'extrémité la plus proche d'un bord entre le groupe de trous traversants du côté entrée, et le groupe de trous traversants du côté sortie.
  4. Échangeur de chaleur selon l'une quelconque des revendications 1 à 3, dans lequel la pluralité de rainures (14) sont constituées par des espaces entre une pluralité de saillies qui font saillie (15), et chaque deux adjacentes de la pluralité de saillies (15) diffèrent en hauteur.
  5. Échangeur de chaleur selon la revendication 4, dans lequel les hauteurs de la pluralité de saillies (15) sont alternativement grandes et petites dans la direction latérale.
  6. Échangeur de chaleur selon la revendication 4, dans lequel les hauteurs de la pluralité de saillies (15) sont configurées de façon à être grandes de manière croissante vers une partie centrale dans la direction latérale.
  7. Échangeur de chaleur selon l'une quelconque des revendications 1 à 6, dans lequel le collecteur (10, 70) comprend un corps principal de collecteur (11, 71) qui présente une forme similaire à celle d'une boîte avec un côté ouvert, et dont la surface inférieure (11b, 71b) qui fait face à l'ouverture (11a, 71a) présente la pluralité de trous traversants (12, 72) formés à l'intérieur, et un corps de couvercle (13, 74A, 74B, 74C) qui présente une forme similaire à celle d'une plaque qui couvre l'ouverture (11a, 71a).
  8. Échangeur de chaleur selon la revendication 7, dans lequel les rainures (14) sont formées dans le corps de couvercle (13).
  9. Échangeur de chaleur (1B) comprenant, dans la direction de passage de l'air, au moins deux unités d'échange de la chaleur (1Ba, 1Bb) comprenant une paire de collecteurs d'échangeur de la chaleur (70) selon la revendication 2 ou 3 espacés l'un de l'autre dans une direction perpendiculaire à la direction de passage de l'air, une pluralité de tubes de transfert de la chaleur (30) disposés en parallèle entre la paire de collecteurs d'échangeur de la chaleur (70), et dont les deux extrémités sont connectées à la pluralité de trous traversants (12) de la paires de collecteurs d'échangeur de chaleur (70), et une pluralité d'ailettes (40) disposées de telle sorte que l'air passe dans la direction de passage de l'air, où les unités d'échange de la chaleur (1Ba, 1Bb) sont connectées par une canalisation entre conduites (90), et un passage de flux de fluide frigorigène est formé dans lequel le fluide frigorigène circule à travers la pluralité de tubes de transfert de la chaleur (30) de l'unité d'échange de la chaleur (1Ba) d'un côté amont dans la direction de passage de l'air, à partir de la chambre d'entrée (A) vers la chambre de sortie (C) tout en faisant demi-tour dans la chambre de demi-tour (B), puis circule à travers la canalisation entre conduites (90) dans l'unité d'échange de la chaleur (1Ba) d'un côté aval dans la direction de passage de l'air, et circule à partir de la chambre d'entrée (F) vers la chambre de sortie (G) du collecteur d'échangeur de chaleur (70) tout en faisant demi-tour dans la chambre de demi-tour (H), et
    dans lequel, lorsque l'échangeur de chaleur (1) est utilisé en tant qu'évaporateur, le nombre de passages de fluide frigorigène du fluide frigorigène qui circule à travers l'unité d'échange de la chaleur (1Ba) du côté amont, est inférieur au nombre de passages de fluide frigorigène du réfrigérant qui circule à travers l'unité d'échange de la chaleur (1Bb) du côté aval.
  10. Échangeur de chaleur (1, 1A, 1B) selon l'une quelconque des revendications 1 à 9, dans lequel les tubes de transfert de la chaleur (30) sont des tubes plats qui présentent une pluralité de trous traversants (12) qui servent de passages de flux de fluide frigorigène.
  11. Appareil de cycle de réfrigération (50) comprenant un échangeur de chaleur (1) selon l'une quelconque des revendications 1 à 10.
  12. Appareil de climatisation comprenant l'appareil de cycle de réfrigération (50) selon la revendication 11.
EP13780882.0A 2012-04-26 2013-04-23 Collecteur d'échangeur de chaleur et échangeur de chaleur le comportant Active EP2865983B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2012/002879 WO2013160956A1 (fr) 2012-04-26 2012-04-26 Collecteur d'échangeur de chaleur et échangeur de chaleur le comportant
PCT/JP2013/061858 WO2013161795A1 (fr) 2012-04-26 2013-04-23 Collecteur d'échangeur de chaleur et échangeur de chaleur le comportant

Publications (3)

Publication Number Publication Date
EP2865983A1 EP2865983A1 (fr) 2015-04-29
EP2865983A4 EP2865983A4 (fr) 2016-05-25
EP2865983B1 true EP2865983B1 (fr) 2021-07-14

Family

ID=49482333

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13780882.0A Active EP2865983B1 (fr) 2012-04-26 2013-04-23 Collecteur d'échangeur de chaleur et échangeur de chaleur le comportant

Country Status (5)

Country Link
US (1) US20150053384A1 (fr)
EP (1) EP2865983B1 (fr)
CN (2) CN104285121B (fr)
ES (1) ES2883139T3 (fr)
WO (2) WO2013160956A1 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10032693B2 (en) * 2015-10-20 2018-07-24 General Electric Company Heat transfer chassis and method for forming the same
CN107367089A (zh) * 2016-05-13 2017-11-21 浙江盾安热工科技有限公司 微通道换热器
CN109328287B (zh) 2016-06-27 2021-06-18 三菱电机株式会社 制冷循环装置
EP3521747B1 (fr) * 2016-09-29 2021-06-23 Daikin Industries, Ltd. Échangeur de chaleur et climatiseur
JP6772731B2 (ja) * 2016-09-30 2020-10-21 ダイキン工業株式会社 熱交換器の製造方法
US11384995B2 (en) * 2017-12-11 2022-07-12 Mitsubishi Electric Corporation Finless heat exchanger and refrigeration cycle apparatus
CN107941054B (zh) * 2017-12-13 2020-04-17 深圳易信科技股份有限公司 气液热交换装置
CN108592663B (zh) 2018-02-12 2020-02-21 深圳易信科技股份有限公司 一种气液热交换装置
US11098966B2 (en) * 2018-08-08 2021-08-24 Denso International America, Inc. Header tank for heat exchanger
US11402161B2 (en) * 2019-04-22 2022-08-02 Hitachi-Johnson Controls Air Conditioning, Inc. Distributor, heat exchanger, indoor unit, outdoor unit, and air-conditioning device
JP6822525B2 (ja) * 2019-06-28 2021-01-27 ダイキン工業株式会社 熱交換器およびヒートポンプ装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63271099A (ja) * 1987-04-27 1988-11-08 Showa Alum Corp 熱交換器
JP3211044B2 (ja) * 1994-03-24 2001-09-25 株式会社ゼクセルヴァレオクライメートコントロール 熱交換器の出入口パイプの仮止め方法
JPH11325785A (ja) * 1998-05-14 1999-11-26 Zexel:Kk オイルクーラ一体型ラジエータ
JPH11337289A (ja) * 1998-05-27 1999-12-10 Showa Alum Corp 熱交換器
US6308771B1 (en) * 1998-10-29 2001-10-30 Advanced Thermal Solutions, Inc. High performance fan tail heat exchanger
US20020139515A1 (en) * 1999-07-02 2002-10-03 Kaveh Azar Heat sink with textured regions
US7044194B2 (en) * 1999-10-26 2006-05-16 Duramax Marine, Llc Heat exchanger with beveled header
JP2002130979A (ja) * 2000-10-25 2002-05-09 Showa Denko Kk 熱交換器
JP4767408B2 (ja) * 2000-12-26 2011-09-07 株式会社ヴァレオジャパン 熱交換器
AU2003250891A1 (en) * 2002-07-05 2004-01-23 Behr Gmbh And Co. Kg Heat exchanger in particular an evaporator for a vehicle air-conditioning unit
JP2004301454A (ja) * 2003-03-31 2004-10-28 Calsonic Kansei Corp 熱交換器用のヘッダタンク
US7775265B2 (en) * 2004-09-15 2010-08-17 Flex-A-Lite Consolidated, Inc. Side tank design
JPWO2008114381A1 (ja) * 2007-03-19 2010-07-01 富士通株式会社 ヒートシンク及び電子装置及び電子装置の製造方法
JP2008256234A (ja) * 2007-04-03 2008-10-23 Showa Denko Kk エバポレータ
EP2212639B1 (fr) * 2007-10-12 2016-08-31 Carrier Corporation Echangeur de chaleur comportant des collecteurs à chicanes
JP4827882B2 (ja) * 2008-05-08 2011-11-30 三菱電機株式会社 熱交換器モジュール、熱交換器、室内ユニット及び空調冷凍装置、並びに熱交換器の製造方法
JP5020298B2 (ja) 2009-10-15 2012-09-05 三菱電機株式会社 冷媒分配器及びこの冷媒分配器を用いたヒートポンプ装置
JP5147894B2 (ja) * 2010-05-07 2013-02-20 三菱電機株式会社 冷媒分配器、及び、蒸発器
KR101826365B1 (ko) * 2012-05-04 2018-03-22 엘지전자 주식회사 열교환기

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2013161795A1 (fr) 2013-10-31
EP2865983A1 (fr) 2015-04-29
CN203464829U (zh) 2014-03-05
ES2883139T3 (es) 2021-12-07
US20150053384A1 (en) 2015-02-26
CN104285121A (zh) 2015-01-14
EP2865983A4 (fr) 2016-05-25
CN104285121B (zh) 2016-10-12
WO2013160956A1 (fr) 2013-10-31

Similar Documents

Publication Publication Date Title
EP2865983B1 (fr) Collecteur d'échangeur de chaleur et échangeur de chaleur le comportant
EP2853843B1 (fr) Distributeur de fluide réfrigérant, et échangeur de chaleur équipé avec le distributeur de fluide réfrigérant
US9291407B2 (en) Multi-channel heat exchanger with improved uniformity of refrigerant fluid distribution
WO2015180661A1 (fr) Échangeur de chaleur
US20050061488A1 (en) Automotive heat exchanger
US7367388B2 (en) Evaporator for carbon dioxide air-conditioner
US20110056667A1 (en) Integrated multi-circuit microchannel heat exchanger
US20060102332A1 (en) Minichannel heat exchanger with restrictive inserts
US20120222848A1 (en) Integrated counter cross flow condenser
US10041710B2 (en) Heat exchanger and air conditioner
WO2013190617A1 (fr) Échangeur de chaleur
US10337808B2 (en) Condenser
JP2015203506A (ja) 熱交換器
JP5147894B2 (ja) 冷媒分配器、及び、蒸発器
US20100147501A1 (en) Curled manifold for evaporator
JP5716496B2 (ja) 熱交換器および空気調和機
JP2005030741A (ja) 熱交換器
JP5194279B2 (ja) エバポレータ
JP2007040605A (ja) 多段圧縮式冷凍サイクル装置用熱交換器
JP2012098016A (ja) 蒸発器
JP5832642B2 (ja) 熱交換器用ヘッダ、この熱交換器用ヘッダを備えた熱交換器、冷凍サイクル装置及び空気調和機
JP2018087646A (ja) エバポレータ
JP5508818B2 (ja) エバポレータ
JP2011158130A (ja) 熱交換器
JP2019152350A (ja) 熱交換装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141112

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RA4 Supplementary search report drawn up and despatched (corrected)

Effective date: 20160422

RIC1 Information provided on ipc code assigned before grant

Ipc: F28D 21/00 20060101ALI20160418BHEP

Ipc: F28F 9/02 20060101AFI20160418BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200330

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210204

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013078338

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1410990

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210815

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210714

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2883139

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20211207

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1410990

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211115

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211014

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211014

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013078338

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

26N No opposition filed

Effective date: 20220419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220423

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220423

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230309

Year of fee payment: 11

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230512

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230505

Year of fee payment: 11

Ref country code: DE

Payment date: 20230228

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230418

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 602013078338

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240229

Year of fee payment: 12

REG Reference to a national code

Ref country code: ES

Ref legal event code: GC2A

Effective date: 20240514