EP2864671A1 - Dispositif de transmission continûment variable - Google Patents

Dispositif de transmission continûment variable

Info

Publication number
EP2864671A1
EP2864671A1 EP13729969.9A EP13729969A EP2864671A1 EP 2864671 A1 EP2864671 A1 EP 2864671A1 EP 13729969 A EP13729969 A EP 13729969A EP 2864671 A1 EP2864671 A1 EP 2864671A1
Authority
EP
European Patent Office
Prior art keywords
axis
satellite
bell
around
bells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13729969.9A
Other languages
German (de)
English (en)
Inventor
Pierre Chevalier
Adrien PANZUTI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inawa
Original Assignee
Inawa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inawa filed Critical Inawa
Publication of EP2864671A1 publication Critical patent/EP2864671A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H15/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members
    • F16H15/48Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members with members having orbital motion
    • F16H15/50Gearings providing a continuous range of gear ratios
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M9/00Transmissions characterised by use of an endless chain, belt, or the like
    • B62M9/04Transmissions characterised by use of an endless chain, belt, or the like of changeable ratio
    • B62M9/06Transmissions characterised by use of an endless chain, belt, or the like of changeable ratio using a single chain, belt, or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H15/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members
    • F16H15/02Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members without members having orbital motion
    • F16H15/04Gearings providing a continuous range of gear ratios
    • F16H15/06Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B
    • F16H15/26Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a spherical friction surface centered on its axis of revolution
    • F16H15/30Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a spherical friction surface centered on its axis of revolution with internal friction surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H15/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members
    • F16H15/02Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members without members having orbital motion
    • F16H15/04Gearings providing a continuous range of gear ratios
    • F16H15/06Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B
    • F16H15/32Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line
    • F16H15/36Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line with concave friction surface, e.g. a hollow toroid surface
    • F16H15/38Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line with concave friction surface, e.g. a hollow toroid surface with two members B having hollow toroid surfaces opposite to each other, the member or members A being adjustably mounted between the surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H15/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members
    • F16H15/02Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members without members having orbital motion
    • F16H15/04Gearings providing a continuous range of gear ratios
    • F16H15/42Gearings providing a continuous range of gear ratios in which two members co-operate by means of rings or by means of parts of endless flexible members pressed between the first mentioned members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H15/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members
    • F16H15/48Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members with members having orbital motion
    • F16H15/50Gearings providing a continuous range of gear ratios
    • F16H15/52Gearings providing a continuous range of gear ratios in which a member of uniform effective diameter mounted on a shaft may co-operate with different parts of another member

Definitions

  • the invention relates to a device for continuously variable transmission of a rotational movement.
  • Such a device can, for example, be used in the motor or pump industry as well as in the automotive field or, more generally, in the field of mobility.
  • continuously variable transmission devices sometimes called “drives” or “CVT” (continuously variable transmission) bring the particular advantage of being able to continuously control the rotational speed of an output shaft, which has an advantage over speed boxes whose reduction ratios are fixed.
  • variable speed drives in which two bells cooperate with a satellite which bears against the internal surfaces of these bells and whose angular position around a perpendicular and non-secant axis with the axis of rotation of the bells makes it possible to adjust the transmission ratio of this variator.
  • the position of the satellite relative to the inner surfaces of the bells is adjusted by sliding the satellite relative to these surfaces, perpendicular to its direction of rotation.
  • the control means of the position of the satellite must overcome a frictional force between the satellite and the internal surfaces of the bells. To avoid overly stressing these control means, it is therefore appropriate that this friction force is relatively low.
  • it is important to limit the slip between the input and output elements that is to say to work with a relatively high coefficient of friction between this satellite and these surfaces.
  • the invention intends to respond more particularly by proposing a new continuously variable transmission device whose transmission ratio can be adjusted rapidly, with less effort and less wear. that in the known materials, while limiting the number of parts of the device.
  • the invention relates to a device for continuously variable transmission of a rotational movement comprising a rotating driving bell around a first axis, a rotating driven bell around a second axis aligned with the first axis and a satellite provided with a first band in contact with an inner surface of the driving bell and a second band in contact with an inner surface of the driven bell, areas of contact between these bands and the inner surfaces of the bells being defined in a same radial first plane relative to the first axis, while the satellite is rotating about a third axis included in the first radial plane and whose angular orientation relative to the first axis defines the transmission ratio of the device and while the satellite is pivoted about a fourth axis perpendicular to the first radial plane and non-intersecting with the first axis.
  • the satellite is pivotable about a fifth axis parallel to the first radial plane and perpendicular to the third axis.
  • the change in the ratio of the input and output speeds of the device can be obtained by a change in the angular position of the satellite resulting not from a direct sliding of the satellite on the inner surfaces of the driving bells. and conducted but its pivoting around the fifth axis.
  • the control force required to change the speed ratio of the device according to the invention is less than that required in the known drives of DE-A-10 2006 016 955 and FR-A-2 173 528. Of this In fact, the wear of the device is lower and the speed ratio changes are faster than with these known variators.
  • such a device may incorporate one or more of the following features taken in any technically permissible combination:
  • the angular position of the satellite around the fourth axis is adjustable by a primary switchover of the satellite around the fifth axis, this primary switching inducing a secondary tilting of the satellite around the fourth axis.
  • the secondary tilting of the satellite is induced by its primary tilting creating resulting forces, producing a pivoting torque, and by the fact that the inner surfaces of the bells are left and the bells are rotating.
  • Control means of the angular position of the satellite about the fifth axis act on the satellite by pivoting about a fifth axis, orienting the bands of the satellite relative to the inner surfaces of the bells by a primary tilt inducing a tilting secondary satellite around the fourth axis.
  • the satellite is free to rotate about the fourth axis and the fifth axis, while a differential torque created between the driving bell and the driven bell acts on the satellite by rotating it around the fifth axis, orienting the bands. of the satellite relative to the inner surfaces of the bells by a primary tilt which induces a secondary tilting of the satellite around the fourth axis.
  • the two bells are rotatably mounted on the same fixed shaft whose longitudinal axis is parallel to the first axis, while the satellite is pivotally mounted on the shaft, around the fourth axis.
  • the driving bell is integral with a driving shaft
  • the driven bell is integral with a driven shaft
  • the device comprises a housing for holding and guiding the rotation of the driving bell, the driven bell and the satellite
  • the device then advantageously comprises a satellite carrier which defines the position of the third axis and which is pivotally mounted around the fourth axis and around the fifth axis relative to the housing.
  • This carrier can be mounted in the housing by a finger joint connection.
  • a control finger of the ball joint is driven in translation in a plane perpendicular to the fifth axis and including the third axis.
  • the carrier is mounted in the housing by a double pivot connection comprising a first pivot connection around the fourth axis, this first pivot connection being free to rotate, and a second pivot connection around the fifth axis, this second pivot connection. being rotated.
  • FIG. 1 is an axial section of a transmission device according to the invention in a first configuration of use
  • FIG. 2 is a section on the plane ll-ll in Figure 1; there is indicated in II the sectional plane of Figure 1; - Figures 3 and 4 are sections similar respectively to Figures 1 and 2 in a second configuration of use of the device; the corresponding sectional planes have been indicated in III-III and IV-IV;
  • FIG. 5 is a section similar to FIG. 3 when the satellite has reached a position that is offset from that of FIG. 3,
  • Figures 6 and 7 are sections similar respectively to Figures 1 and 2 in a third configuration of use of the device; in V-V and VI-VI the corresponding sectional planes have been indicated;
  • FIG. 8 is a section similar to FIG. 6 when the satellite has reached a position that is offset from that of FIG. 6,
  • Figure 9 is a section similar to Figure 1 for a device according to a second embodiment of the invention.
  • FIG. 10 is a section along the plane X-X in Figure 9; IX-IX is indicated therein the sectional plane of FIG. 9.
  • Figures 1 1 and 12 are sections similar respectively to Figures 9 and 10, in a second configuration of use of the device, it is indicated in XI-XI and XII-XII corresponding sectional planes. ;
  • Figures 13 and 14 are sections similar respectively to Figures 9 and 10 in a third configuration of use of the device; in XIII-XIII and XIV-XIV the corresponding sectional planes have been indicated;
  • FIGS. 15 and 16 are sections similar respectively to FIGS. 9 and 10 in a fourth configuration of use of the device; in XV-XV and XVI-XVI the corresponding sectional plans were indicated;
  • FIGS. 17 and 18 are sections similar respectively to FIGS. 9 and 10 in a fifth configuration of use of the device; in XVII-XVII and XVIII-XVIII the corresponding sectional planes were indicated;
  • Figure 19 is a section similar to Figure 1 for a device according to a third embodiment of the invention.
  • FIG. 20 is a section along the X-X plane in Figure 19; it was indicated in XIX-XIX the cutting plane of Figure 19 and
  • Figure 21 is a view similar to Figure 6 for a device according to a fourth embodiment of the invention.
  • the continuously variable transmission device 2 shown in FIGS. 1 to 8 is intended to transmit a rotational movement between a driving bell 4 and a driven bell 6.
  • the driving bell is integral in rotation with a pinion 8 intended to mesh with a chain not shown
  • the led bell 6 is provided with two outer flanges 62 and 64 provided with orifices 66 for attachment of the spokes of a cycle wheel.
  • the device 2 can be used to drive the rear wheel of a cycle, by means of a chain engaged with the pinion 8.
  • X4 is the axis of rotation of the bell 4 and X6 the axis of rotation of the bell 6.
  • the X4 and X6 axes are parallel and aligned.
  • the bells 4 and 6 are rotatably mounted about a fixed shaft 10, a longitudinal and central axis X10 is parallel to the axes X4 and X6.
  • the axis X10 is an axis of symmetry of the shaft 10. In practice, the axes X4, X6 and X10 are merged.
  • Bearings 12, 14 and 16 can support the bells 4 and 6 on the shaft 10 with the possibility of rotation.
  • a bearing 18 is mounted between the outer surface of the bell 4 and the inner surface of the bell 6, allowing a differentiated rotational movement of these bells, respectively about the axes X4 and X6.
  • S4 and S6 respectively denote the interior surfaces of the bells 4 and 6, these surfaces being respectively centered on the X4 and X6 axes.
  • the device 2 also comprises a satellite 20 mounted on the shaft 10 with the possibility of rotation about an axis X20.
  • the axis X20 and X10 are parallel, the axis X20 is shifted relative to the axis X10 in a direction radial with respect to the axis X10, by a distance d1 which is not zero.
  • the satellite 20 comprises two rings 204 and 206 respectively disposed in the internal volume V4 or V6 of a bell 4 or 6 and each provided with a band 205 or 207 intended to be in contact with the inner surface S4 or S6 of the bell adjacent.
  • a first contact zone Z4 is defined between the strip 205 and the surface S4, whereas a second contact zone Z6 is defined. in this same plane, between the band 207 and the surface S6.
  • the speed transmission ratio of the device 2 depends on the ratio of the distance between the zone Z4 and the axis X10, on the one hand, and the distance between the zone Z6 and the axis X10, on the other hand. The higher this ratio, that is, the further the zone Z4 is from the axis X10, the higher the speed transmission ratio.
  • the band 207 is immobilized on the ring 206 by means of pins 208. Similar pins, not visible in the figures, are used to fasten the elements 204 and 205 in rotation. elements 207 and 206 and respectively the elements 204 and 205 may be monoblock.
  • a bearing 209 is engaged in the inner volume of the rings 204 and 206. Note respectively 214 and 216 the surfaces of the rings 204 and 206 which are radial with respect to the axis X20 and oriented towards the other ring.
  • the surface 216 is provided with hollow recesses 217 in which are partially received balls 218 and springs 219.
  • the surface 214 is also provided with hollow recesses 220 for partial reception of the balls 218.
  • the balls are disposed between the surfaces 214 and 216 and partially engaged in the housings 217 and 220.
  • Springs 219 are arranged in the vicinity of the balls 218 and received in housing adjacent to the housing 217.
  • the relative angular position of the rings 204 and 206 around the axis X20 may vary, in a direction such that the balls 218 move in the housings 217 in the direction of the springs 219.
  • this relative angular displacement of the rings 204 and 206 has the effect of axially dilate the satellite 20, that is to say axially move the rings 204 and 206 away from each other and increase the intensity of the contact force between the strip 205 and the surface S4 and between the web 207 and the surface S6.
  • the springs 219 exert a return force in the opposite direction of the relative angular displacement between the rings 204 and 206.
  • the elements 217 to 220 constitute a preloading mechanism which allows adjusting the contact force between the strips 205 and 207 and the inner surfaces of the bells, as a function of the resistant torque of the driven bell 6 relative to the driving bell 4.
  • the balls 218 can be replaced by other rolling elements, such as rollers or needles.
  • the geometry of the housings 217 and the position of the springs 218 are adapted.
  • the satellite 20 also comprises a jacket 222 arranged radially inside the bearing 209 and a first part of a ball joint 223 immobilized inside the jacket 222.
  • a second portion of ball 123 is immobilized on the shaft 10 by means of a screw 124.
  • a needle cage constitutes the rolling body bearing 209 and allows the rotation of the satellite 20 around the axis X20, while the shaft 10 and the ball are fixed in rotation with respect to the axis X10.
  • the offset between the X10 and X20 axes comes from the geometry of the inner portion 123 of the ball which, in the plane of Figure 1, is not symmetrical with respect to the axis X10.
  • the outer portion 223 of the ball joint consists of two half-shells which are attached around the portion 123 once it has been immobilized on the shaft 10 by the screw 124. The two half-shells are then held in place by the shirt 222 which plays the role of a hoop.
  • the portion 123 is provided with a notch 125 in which opens a pin 30 whose tail 302 is immobilized in the part 223 of the ball, for example screwed in this part.
  • a spring 40 is hooked, by a first end 402, into the bore 306 and, by a second end 404, onto the shaft 10. This spring forms an elastically deformable element for returning the pin 30 to its position.
  • a cable 50 is hooked, by a first end 502, in the bore 306 and extends to the outside of the device 2.
  • the cable 50 passes through a groove 102 formed in the outer surface of the shaft 10, in a direction parallel to the axis X10.
  • the representation of the cable 50 is interrupted to allow the groove 102 to be viewed.
  • This groove is disposed radially inside the bearings 12 and 14, which allows the cable 10 to open out of the volume.
  • internal device 2 that is to say, the sum of volumes V4 and V6. Outside this volume, the cable 50 passes through a plug 60 through an orifice 602 which opens radially outwards.
  • the pin 30 is subjected to two opposing forces, namely an elastic traction force E40 exerted by the spring 40, which tends to move it to the left in Figure 2, and a traction force E50 transmitted by the cable 50 when we shoot at it.
  • E40 and E50 are exerted along the main directions of the spring and the cable, in the vicinity of their ends 402 and 502. For clarity of the drawing, the arrows representing these forces are shifted laterally to Figures 2, 4 and 7.
  • the satellite 20 is free to pivot about an axis Y20 perpendicular to the plane of Figure 1, that is to say a radial plane with respect to the axis X4 which contains the contact areas Z4 and Z6.
  • the satellite can take, relative to the bells 4 and 6, the positions respectively shown in Figures 1, 5 and 8.
  • the zones Z4 and Z6 extend at the same radial distance from the axes X4 and X6.
  • the transmission ratio of the rotational movement between the bells 4 and 6 is equal to 1.
  • zone Z4 is further radially from axis X4 than zone Z6 is remote from axis X6.
  • the reduction ratio of the device 2 is maximum.
  • the bell 6 rotates faster than the bell 4.
  • the speed transmission ratio of the rotational movement between the bells 4 and 6 is greater than 1
  • the axis X20 forms with the axis X10 a non-zero angle ⁇ in the plane of this figure.
  • the satellite 20 switches in the opposite direction to the configuration of FIG. 5.
  • the axis X20 forms with the axis X10 an angle ⁇ oriented in opposite direction with respect to the angle ⁇ and practically having the same value.
  • the zone Z4 is radially closer to the axis X4 than the zone Z6 is close to the axis X6, so that the transmission ratio of the device 2 is less than 1, in practice at least in the configuration shown in Figure 8.
  • the bell 6 rotates slower than the bell 4.
  • the satellite 20 is also mobile in rotation, that is to say, pivoting about a fifth axis Z20 which extends, in the plane of Figures 1, 3, 5, 6 and 8, perpendicular to the axis X20.
  • the satellite 20 does not tend to change position relative to the bells 4 and 6.
  • the position of the zones Z4 and Z6 with respect to the axes X4 and X6 is stable.
  • the elastic force E40 overcomes the traction force E50, which creates a pivoting or primary tilting of the satellite 20 in the trigonometric direction, as represented by the arrow F1, in the plane of Figure 4 about the axis Z20.
  • the satellite 20 remains in the configuration of FIG. 4, to the point where it continues its secondary tilting movement in the direction of the arrow F2, which makes it move from the configuration of Figure 3 to the configuration of Figure 5.
  • the driving bell 4 of the continuously variable transmission device 2 is secured to a first shaft 104 which is driven and centered on a first axis X4.
  • the led bell 6 is secured to a second shaft 106 centered on a second axis X6.
  • the axes X4 and X6 respectively form axes of rotation for the bells 4 and 6.
  • a satellite 20 rotates about a third axis X20 included in the plane of FIG. 9, when it is driven by the driving bell 4.
  • This satellite 20 comprises two rings 204 and 206 mounted together on a bearing 209
  • the rings 204 and 206 may be in one piece.
  • a ball portion 223 has a spherical outer surface S223, non-coaxial with the axis X20 which constitutes the central axis of the satellite X20, and a cylindrical internal surface S'223 coaxial with the axis X20.
  • the bearing 209 is housed radially inside the surface S'223.
  • the bearing 209 and the ball portion 223 together constitute a carrier for the satellite 20 and define the position of the axis X20 with respect to the bells 4 and 6.
  • the X4 and X6 axes which are aligned, are offset radially with respect to the axis X20, by a non-zero distance di, as in the first embodiment.
  • the rings 204 and 206 bear respectively strips 205 and 207 of contact with the inner surfaces S4 and S6 of the bells 4 and 6.
  • a housing 150 is provided around the bells 4 and 6 and the satellite 20.
  • This housing 150 consists of two flanges 154 and 156, provided respectively with passage holes of the shafts 104 and 106, and a cylindrical body 158 secured to two flanges.
  • a ball portion 153 is immobilized on the internal radial surface of the body 158 and cooperates with the ball portion 223 to allow pivoting of the elements 209 and 223 and the satellite 20 about a fourth axis Y20 perpendicular to the plane of FIGS. 9, 1 1, 13, 15 and 17 and stand with the Y20 axis.
  • the elements 209 and 223 and the satellite 20 can also pivot about a fifth axis Z20 included in the plane of Figures 9, 1 1, 13, 15 and 17 and perpendicular to the axis X20.
  • the bell 4 is supported by the housing 150 by means of a circular bearing 124 and an axial bearing 134. These bearings are respectively disposed between an outer radial surface 42 of the bell 4 and the cylindrical body 158 and between an axial surface. 44 of the bell 4 and the flange 154.
  • the bearings 124 and 134 guide the bell 4 in rotation around the X4 axis.
  • two bearings 126 and 136 guide the bell 6 in rotation about the axis X6, with respect to the casing 150.
  • the ball formed of the elements 153 and 223 is a finger ball joint. More particularly, this ball comprises a finger or pin 30 engaged in a housing 224 of the portion 223 and which is integral with a piston 42 belonging to a control subassembly 40. There is therefore a free rotation of the elements 153 and 223. relative to each other about the axis Y20, a rotation locked around the axis X20 and a rotation indexed by the finger 30 about the axis Z20. The indexing of the rotation around the axis Z20 is induced by the translation of the finger 30, parallel to the axis X10.
  • the control subassembly 40 also comprises a body 44 fixed on the casing 150, in which is disposed the piston 42 and which defines two chambers 46 and 48 each connected to a pipe 52 or 54 supplied with a control fluid, such as oil. Alternatively, air or water may be used as the control fluid.
  • a control fluid such as oil. Alternatively, air or water may be used as the control fluid.
  • the control subassembly 40 can also be produced by other technical solutions for moving a part in translation such as a rack, a cam, a cable and by other power means such as an electric motor, an electric magnet, a mechanical actuator.
  • the piston 42 is in a median position in that in the chambers 46 and 48 have the same volume.
  • contact zones Z4 and Z6 defined between the strips 205 and 207, on the one hand, and the inner surfaces S4 and S6 of the bells 4 and 6, on the other hand, are located substantially at the same radial distance from the axes X4 and X6.
  • the transmission ratio of the device 2 of this second embodiment is equal to 1.
  • the piston 42 When it is necessary to increase the transmission ratio of this device 2, the piston 42 is moved towards the bell 6 in the plane of FIG. 12. This is obtained by feeding the chamber 46 with oil to a pressure greater than that present in the chamber 48. This movement of the piston 42 in the direction of the arrow F1 1 has the effect of driving the finger 30 towards the bell 6, which pivots the part 223 of the ball around of the Z20 axis. This creates a primary pivoting or tilting of the satellite 20 in the trigonometric direction, as represented by the arrow F1, in the plane of FIG. 12 about the axis Z20.
  • the secondary tilting of the satellite 20 around the axis Y20 continues as long as the satellite 20 is maintained in the tilted position shown in FIG. 12. This makes it possible to reach the configuration of FIG. 13 where the transmission ratio of the device 2 is maximum, while the satellite 20 is in a stable configuration, pivoting about the axis Y20 because the piston 42 has been brought back to a median configuration, with respect to the body 44 of subassembly 40, by balancing the pressures of oil in the chambers 46 and 48. The satellite 20 remains in this configuration as the piston 42 is not displaced relative to the body 44.
  • the axes X20 and X4 define between them a non-zero angle.
  • the X20 and X4 axes define between them a non-zero angle ⁇ oriented in the opposite direction to the angle ⁇ and having substantially the same value.
  • this second embodiment also, an indirect control of the pivoting of the satellite 20 is obtained, thanks to the fact that this satellite is pivoting around of the Z20 axis and that it is controlled in a plane perpendicular to this axis, by means of the subassembly 40.
  • the satellite carrier is formed of a first cradle which is housed the bearing 209. This first cradle is in pivot connection Y20 axis with a second cradle. Rotation around the Y20 axis is free. The second cradle is in axis Z20 pivot connection with the casing 150. The rotation around the Z20 axis is indexed by a control block similar to the subassembly 40.
  • the bells 4 and 6 are respectively one-piece with the shafts 104 and 106.
  • a driving mode similar to that of the first embodiment is used for the continuously variable transmission device 2, with an action in a radial plane perpendicular to a radial plane containing the contact areas Z4 and Z6 between the satellite 20 and the leading and driven bells 4 and 6.
  • This embodiment differs from the first in that the axes of rotation X10 and X20 coincide when they are parallel, while the axes of rotation X4 and X6 are axially offset with respect to the X10 and X20 axes by a radial distance d2 that is not zero.
  • the cable 50 passes between the shaft and the bell 4.
  • this cable can pass between the shaft and the bell 6.
  • the cable 50 can pass inside the tree 10.
  • no cable or piston is used to control the positioning of the satellite 20 in the interior volumes V4 and V6 of the bells 4 and 6.
  • the pivoting control of the satellite 20, for adjusting the transmission ratio of the continuously variable transmission device 2 is performed in a radial plane containing contact zones Z4 and Z6 defined respectively between the strips 205 and 207 of the satellite 20 and the internal surfaces S4 and S6 of the bells 4 and 6.
  • An elastically deformable element namely a helical spring 40, is fixed between the head 304 of the pin 30, to which it is fixed by a first end 402, and an axially movable member 70, to which it is fixed by a second end 404. .
  • the spring 40 therefore exerts on the pin 30 an elastic force E40 comparable to that mentioned for the first two embodiments.
  • the part 70 is received inside a housing 103 of the fixed shaft 10, this housing being centered on the axis X10.
  • This housing allows translation along the axis X10 of the part 70 but blocks its rotation around X10.
  • a control rod 72 connects the part 70 by a helical link to a crank 74 located outside the internal volume of the device 2 which is the sum of the internal volumes V4 and V6 of the bells 4 and 6. It is thus possible, in rotating the crank 74 about the axis X10, as represented by the double arrow F5, axially moving the workpiece 70 along the axis X10. This movement makes it possible to vary the stiffness constant of the spring 40 and, consequently, the intensity of the force E40.
  • the satellite 20 is rotatably mounted around the axes Y20 and Z20 defined as in the first embodiment.
  • the user wishes to decrease the transmission ratio of the device 2, it increases the driving torque of the driving bell 4.
  • the input torque on the driving bell 4 is higher than the output torque on 6.
  • a differential torque is thus created between the bells 4 and 6.
  • the satellite is no longer statically balanced.
  • the tangential contact force between the band 205 and the surface S4 is greater than the tangential force between the band 207 and the surface S6.
  • a moment around the axis Z20 is created, which causes the satellite 20 to swing in the clockwise direction about the axis Z20, in the direction of the arrow F6 in FIG.
  • This primary tilting induces, as in the second embodiment, a secondary tilting around the axis Y20, in the direction of the arrow F7 in FIG.
  • the satellite 20 is in another configuration, in particular a configuration where the transmission ratio is minimal, it is possible to increase this transmission ratio by an inverse phenomenon, by reducing the torque exerted on the driving bell 4.
  • the secondary tilting mentioned above takes place against the elastic force E40. It is possible to modify the value of the differential torque from which this tilting can take place, by acting on the stiffness constant of the spring 40, that is to say by moving the piece 70 along the axis X10, inside the housing 104.
  • the crank 74, the rod link 72 and the part 70 thus constitute, with the spring 40, means for controlling the angular position of the satellite 20 around the axis Y20, in the internal volume of the device 2 constituted by the respective internal volumes V4 and V6 of the bells 4 and 6.
  • the invention is explained above and shown in the context of its use in the field of the cycle. However, it is applicable in other fields, in particular those of engines or pumps as well as in the automotive field and, more generally, in the field of mobility.

Abstract

Ce dispositif (2) de transmission continûment variable comprend : une cloche menante (4) tournante autour d'un premier axe (X4), une cloche menée (6) tournante autour d'un deuxième axe (X6), un satellite (20) pourvu d'une première bande (205) en contact avec une surface intérieure (S4) de la cloche menante et d'une deuxième bande (207) en contact avec une surface intérieure (S6) de la cloche menée. Des zones de contact (Z4, Z6) entre les bandes et les surfaces intérieures des cloches sont définies dans un même premier plan radial par rapport au premier axe. Le satellite (20) est tournant autour d'un troisième axe (X20) inclus dans le premier plan radial et dont l'orientation angulaire par rapport au premier axe (X4) définit le rapport de transmission du dispositif. Le satellite est pivotant autour d'un quatrième axe (Y20) perpendiculaire au premier plan radial et non sécant avec le premier axe (X4). Le satellite (20) est pivotant autour d'un cinquième axe (Z20) parallèle au premier plan radial et perpendiculaire au troisième axe (X20).

Description

Dispositif de transmission continûment variable
L'invention concerne un dispositif de transmission continûment variable d'un mouvement de rotation.
Un tel dispositif peut, par exemple, être utilisé dans l'industrie des moteurs ou des pompes ainsi que dans le domaine automobile ou, plus généralement, dans celui de la mobilité.
Dans ces différents domaines, les dispositifs de transmission continûment variables, parfois nommés « variateurs » ou « CVT » (continuously variable transmission) apportent l'avantage particulier de pouvoir contrôler de façon continue la vitesse de rotation d'un arbre de sortie, ce qui présente un avantage par rapport aux boîtes à vitesse dont les rapports de réduction sont fixes.
Il est connu d'utiliser le rapport de deux diamètres entre une entrée et une sortie pour réaliser une transmission de type CVT. L'entraînement entre l'entrée et la sortie se fait alors par friction.
Ainsi, DE-A-10 2006 016 955 et FR-A-2 173 528 divulguent des variateurs de vitesse dans lesquels deux cloches coopèrent avec un satellite qui est en appui contre les surfaces internes de ces cloches et dont la position angulaire autour d'un axe perpendiculaire et non sécant avec l'axe de rotation des cloches permet d'ajuster le rapport de transmission de ce variateur. La position du satellite par rapport aux surfaces intérieures des cloches est ajustée en faisant glisser le satellite par rapport à ces surfaces, perpendiculairement à son sens de rotation. Lors de ce glissement, les moyens de commande de la position du satellite doivent vaincre un effort de frottement entre ce satellite et les surfaces internes des cloches. Pour éviter de solliciter de façon trop importante ces moyens de commande, il convient donc que cet effort de frottement soit relativement faible. D'autre part, pour une transmission efficace du mouvement au sein du variateur de vitesse, il importe de limiter le glissement entre les éléments d'entrée et de sortie, c'est-à-dire de travailler avec un coefficient de frottement relativement important entre ce satellite et ces surfaces.
II existe donc deux contraintes opposées relatives au coefficient de frottement entre le satellite et les surfaces internes des cloches, ce qui impose des compromis et nuit soit à la durée de vie du variateur soit à son efficacité. En outre, dans ces variateurs connus, l'ajustement de la position angulaire du satellite est relativement long car il faut tenir compte du glissement à réaliser entre le satellite et les surfaces internes des cloches, ce glissement ne pouvant pas être immédiat compte tenu du frottement entre ces pièces. En outre, ce glissement du satellite, perpendiculairement à son sens de rotation lors de l'ajustement de sa position, tend à user le satellite et/ou les surfaces internes des cloches.
C'est à ces inconvénients et à cette double contrainte, qu'entend plus particulièrement répondre l'invention en proposant un nouveau dispositif de transmission continûment variable dont le rapport de transmission peut être ajusté rapidement, avec moins d'effort et moins d'usure que dans les matériels connus, tout en limitant le nombre de pièces du dispositif.
A cet effet, l'invention concerne un dispositif de transmission continûment variable d'un mouvement de rotation comprenant une cloche menante tournante autour d'un premier axe, une cloche menée tournante autour d'un deuxième axe aligné avec le premier axe et un satellite pourvu d'une première bande en contact avec une surface intérieure de la cloche menante et d'une deuxième bande en contact avec une surface intérieure de la cloche menée, des zones de contact entre ces bandes et les surfaces intérieures des cloches étant définies dans un même premier plan radial par rapport au premier axe, alors que le satellite est tournant autour d'un troisième axe inclus dans le premier plan radial et dont l'orientation angulaire par rapport au premier axe définit le rapport de transmission du dispositif et alors que le satellite est pivotant autour d'un quatrième axe perpendiculaire au premier plan radial et non sécant avec le premier axe. Conformément à l'invention, le satellite est pivotant autour d'un cinquième axe parallèle au premier plan radial et perpendiculaire au troisième axe.
Grâce à l'invention, le changement du rapport des vitesses d'entrée et de sortie du dispositif peut être obtenu grâce à un changement de la position angulaire du satellite résultant non pas d'un glissement direct du satellite sur les surfaces intérieures des cloches menantes et menées mais de son pivotement autour du cinquième axe. Ainsi, l'effort de commande nécessaire pour changer le rapport de vitesse du dispositif conforme à l'invention est inférieur à celui nécessaire dans les variateurs connus de DE-A-10 2006 016 955 et FR-A-2 173 528. De ce fait, l'usure du dispositif, est moindre et les changements de rapport de vitesse sont plus rapides qu'avec ces variateurs connus.
Selon des aspects avantageux mais non obligatoires de l'invention, un tel dispositif peut incorporer une ou plusieurs des caractéristiques suivantes prises dans toute combinaison techniquement admissible :
- La position angulaire du satellite autour du quatrième axe est réglable par un basculement primaire de ce satellite autour du cinquième axe, ce basculement primaire induisant un basculement secondaire du satellite autour du quatrième axe. - Le basculement secondaire du satellite est induit par son basculement primaire créant des forces résultantes, produisant un couple de pivotement, et par le fait que les surfaces intérieures des cloches sont gauches et que les cloches sont tournantes.
- Des moyens de commande de la position angulaire du satellite autour du cinquième axe agissent sur le satellite en le faisant pivoter autour d'un cinquième axe, en orientant les bandes du satellite par rapport aux surfaces intérieures des cloches par un basculement primaire induisant un basculement secondaire du satellite autour du quatrième axe. En variante, le satellite est libre en rotation autour du quatrième axe et du cinquième axe, alors qu'un couple différentiel créé entre la cloche menante et la cloche menée agit sur le satellite en le faisant pivoter autour du cinquième axe, en orientant les bandes du satellite par rapport aux surfaces intérieures des cloches par un basculement primaire qui induit un basculement secondaire du satellite autour du quatrième axe.
- Les deux cloches sont montées rotatives sur un même arbre fixe dont un axe longitudinal est parallèle au premier axe, alors que le satellite est monté pivotant sur l'arbre, autour du quatrième axe.
- La cloche menante est solidaire d'un arbre menant, alors que la cloche menée est solidaire d'un arbre mené et que le dispositif comprend un boîtier de maintien et de guidage en rotation de la cloche menante, de la cloche menée et du satellite. Le dispositif comprend alors avantageusement un porte-satellite qui définit la position du troisième axe et qui est monté pivotant, autour du quatrième axe et autour du cinquième axe, par rapport au boîtier. Ce porte-satellite peut être monté dans le boîtier par une liaison rotule à doigt. Dans ce cas, on peut prévoir qu'un doigt de commande de la liaison rotule est piloté en translation dans un plan perpendiculaire au cinquième axe et incluant le troisième axe. En variante, le porte-satellite est monté dans le boîtier par une double liaison pivot comprenant une première liaison pivot autour du quatrième axe, cette première liaison pivot étant libre en rotation, et une deuxième liaison pivot autour du cinquième axe, cette deuxième liaison pivot étant pilotée en rotation.
L'invention sera mieux comprise et d'autres avantages de celle-ci apparaîtront plus clairement à la lumière de la description qui va suivre de quatre modes de réalisation d'un dispositif conforme à son principe, donnée uniquement à titre d'exemple et faite en référence aux dessins annexés dans lesquels :
- la figure 1 est une coupe axiale d'un dispositif de transmission conforme à l'invention dans une première configuration d'utilisation ;
- la figure 2 est une coupe selon le plan ll-ll à la figure 1 ; on y a indiqué en l-l le plan de coupe de la figure 1 ; - les figures 3 et 4 sont des coupes analogues respectivement aux figures 1 et 2 dans une deuxième configuration d'utilisation du dispositif ; on y a indiqué en III- III et IV-IV les plans de coupe correspondants ;
- la figure 5 est une coupe analogue à la figure 3 lorsque le satellite a atteint une position décalée par rapport à celle de la figure 3,
- les figures 6 et 7 sont des coupes analogues respectivement aux figures 1 et 2 dans une troisième configuration d'utilisation du dispositif ; on y a indiqué en V-V et VI-VI les plans de coupe correspondants ;
- la figure 8 est une coupe analogue à la figure 6 lorsque le satellite a atteint une position décalée par rapport à celle de la figure 6,
- la figure 9 est une coupe analogue à la figure 1 pour un dispositif conforme à un deuxième mode de réalisation de l'invention ;
- la figure 10 est une coupe selon le plan X-X à la figure 9 ; on y a indiqué en IX-IX le plan de coupe de la figure 9.
- les figures 1 1 et 12 sont des coupes analogues respectivement aux figures 9 et 10, dans une deuxième configuration d'utilisation du dispositif, on y a indiqué en XI-XI et XII-XII les plans de coupe correspondants. ;
- les figures 13 et 14 sont des coupes analogues respectivement aux figures 9 et 10 dans une troisième configuration d'utilisation du dispositif ; on y a indiqué en XIII-XIII et XIV-XIV les plans de coupe correspondants ;
- les figures 15 et 16 sont des coupes analogues respectivement aux figures 9 et 10 dans une quatrième configuration d'utilisation du dispositif ; on y a indiqué en XV-XV et XVI-XVI les plans de coupe correspondants ;
- les figures 17 et 18 sont des coupes analogues respectivement aux figures 9 et 10 dans une cinquième configuration d'utilisation du dispositif ; on y a indiqué en XVII-XVII et XVIII-XVIII les plans de coupe correspondants ;
- la figure 19 est une coupe analogue à la figure 1 pour un dispositif conforme à un troisième mode de réalisation de l'invention ;
- la figure 20 est une coupe selon le plan X-X à la figure 19 ; on y a indiqué en XIX-XIX le plan de coupe de la figure 19 et
- la figure 21 est une vue analogue à la figure 6 pour un dispositif conforme à un quatrième mode de réalisation de l'invention.
Le dispositif de transmission continûment variable 2 représenté aux figures 1 à 8 est destiné à transmettre un mouvement de rotation entre une cloche menante 4 et une cloche menée 6. Dans l'exemple, la cloche menante est solidaire en rotation d'un pignon 8 destiné à engrener avec une chaîne non représentée, alors que la cloche menée 6 est pourvue de deux collerettes externes 62 et 64 pourvues d'orifices 66 d'accrochage des rayons d'une roue de cycle. Ainsi, le dispositif 2 peut être utilisé pour entraîner la roue arrière d'un cycle, au moyen d'une chaîne en prise avec le pignon 8.
On note X4 l'axe de rotation de la cloche 4 et X6 l'axe de rotation de la cloche 6.
Les axes X4 et X6 sont parallèles et alignés.
Les cloches 4 et 6 sont montées rotatives autour d'un arbre fixe 10 dont un axe longitudinal et central X10 est parallèle aux axes X4 et X6. L'axe X10 est un axe de symétrie de l'arbre 10. En pratique, les axes X4, X6 et X10 sont confondus. Des paliers 12, 14 et 16 permettent de supporter les cloches 4 et 6 sur l'arbre 10 avec possibilité de rotation. Un palier 18 est monté entre la surface externe de la cloche 4 et la surface interne de la cloche 6, permettant un mouvement de rotation différencié de ces cloches, respectivement autour des axes X4 et X6.
On note respectivement S4 et S6 les surfaces intérieures des cloches 4 et 6, ces surfaces étant respectivement centrées sur les axes X4 et X6.
Le dispositif 2 comprend également un satellite 20 monté sur l'arbre 10 avec possibilité de rotation autour d'un axe X20. Quand les axes X20 et X10 sont parallèles l'axe X20 est décalé par rapport à l'axe X10 selon une direction radiale par rapport à l'axe X10, d'une distance d1 non nulle.
Le satellite 20 comprend deux bagues 204 et 206 disposées respectivement dans le volume interne V4 ou V6 d'une cloche 4 ou 6 et pourvues chacune d'une bande 205 ou 207 destinée à être en contact avec la surface intérieure S4 ou S6 de la cloche adjacente.
Ainsi, dans le plan de la figure 1 qui est radial par rapport aux axes X4, X6 et X10, une première zone de contact Z4 est définie entre la bande 205 et la surface S4, alors qu'une deuxième zone de contact Z6 est définie, dans ce même plan, entre la bande 207 et la surface S6.
Le rapport de transmission en vitesse du dispositif 2 dépend du rapport de la distance entre la zone Z4 et l'axe X10, d'une part, et de la distance entre la zone Z6 et l'axe X10, d'autre part. Plus ce rapport est élevé, c'est-à-dire plus la zone Z4 est éloignée de l'axe X10, plus le rapport de transmission en vitesse est élevé.
Comme cela ressort des figures 4 et 7, la bande 207 est immobilisée sur la bague 206 au moyen de pions 208. Des pions analogues, non visibles sur les figures, sont utilisés pour solidariser en rotation les éléments 204 et 205. En variante, les éléments 207 et 206 et respectivement les éléments 204 et 205 peuvent être monobloc. Un palier 209, est engagé dans le volume intérieur des bagues 204 et 206. On note respectivement 214 et 216 les surfaces des bagues 204 et 206 qui sont radiales par rapport à l'axe X20 et orientées vers l'autre bague. La surface 216 est pourvue de logements en creux 217 dans lesquels sont partiellement reçues des billes 218 et des ressorts 219. La surface 214 est également pourvue de logements en creux 220 de réception partielle des billes 218. Ainsi, en configuration montée du dispositif 2, les billes sont disposées entre les surfaces 214 et 216 et partiellement engagées dans les logements 217 et 220. Des ressorts 219 sont disposés au voisinage des billes 218 et reçus dans des logements adjacents aux logements 217.
En fonction du couple résistant de la cloche menée 6 par rapport à la cloche menante 4, la position angulaire relative des bagues 204 et 206 autour de l'axe X20 peut varier, dans un sens tel que les billes 218 se déplacent dans les logements 217 en direction des ressorts 219. Compte tenu de la géométrie des logements 217, dont la profondeur par rapport à la surface 216 diminue en se rapprochant des logements adjacents qui reçoivent les ressorts 219, ce déplacement angulaire relatif des bagues 204 et 206 a pour effet de dilater axialement le satellite 20, c'est-à-dire d'écarter axialement les bagues 204 et 206 l'une de l'autre et d'augmenter l'intensité de l'effort de contact entre la bande 205 et la surface S4 et entre la bande 207 et la surface S6. En bout de course des billes 218 dans les logements 217, les ressorts 219 exercent un effort de rappel en sens inverse du déplacement angulaire relatif entre les bagues 204 et 206. Ainsi, les éléments 217 à 220 constituent un mécanisme de précontrainte qui permet d'ajuster l'effort de contact entre les bandes 205 et 207 et les surfaces intérieures des cloches, en fonction du couple résistant de la cloche menée 6 par rapport à la cloche menante 4.
En variante, les billes 218 peuvent être remplacées par d'autres éléments roulants, tels que des rouleaux ou des aiguilles. Dans ce cas, la géométrie des logements 217 et la position des ressorts 218 sont adaptées.
Le satellite 20 comprend également une chemise 222 disposée radialement à l'intérieur du palier 209 et une première partie d'une rotule 223 immobilisée à l'intérieur de la chemise 222.
Par ailleurs, une deuxième partie de rotule 123 est immobilisée sur l'arbre 10 au moyen d'une vis 124.
Une cage à aiguilles constitue le palier 209 à corps roulants et permet la rotation du satellite 20 autour de l'axe X20, alors que l'arbre 10 et la rotule sont fixes en rotation par rapport à l'axe X10. Le décalage entre les axes X10 et X20 provient de la géométrie de la partie interne 123 de la rotule qui, dans le plan de la figure 1 , n'est pas symétrique par rapport à l'axe X10.
En pratique, la partie externe 223 de la rotule est constituée de deux demi-coques qui sont rapportées autour de la partie 123 une fois que celle-ci a été immobilisée sur l'arbre 10 par la vis 124. Les deux demi-coques sont alors maintenues en place par la chemise 222 qui joue le rôle d'une frette.
La partie 123 est pourvue d'une encoche 125 dans laquelle débouche un pion 30 dont la queue 302 est immobilisée dans la partie 223 de la rotule, par exemple vissé dans cette partie. La tête 304 du pion 30, qui est pourvue d'un perçage 306, est engagée dans l'encoche 125 qui la guide en translation dans un mouvement parallèle au plan des figures 2, 4 et 7.
Un ressort 40 est accroché, par une première extrémité 402, dans le perçage 306 et, par une deuxième extrémité 404, sur l'arbre 10. Ce ressort forme un élément élastiquement déformable de rappel en position du pion 30.
Un câble 50 est accroché, par une première extrémité 502, dans le perçage 306 et s'étend jusqu'à l'extérieur du dispositif 2. En pratique, le câble 50 passe dans une gorge 102 ménagée dans la surface externe de l'arbre 10, selon une direction parallèle à l'axe X10. A la figure 7, la représentation du câble 50 est interrompue pour permettre la visualisation de la gorge 102. Cette gorge est disposée radialement à l'intérieur des paliers 12 et 14, ce qui permet au câble 10 de déboucher à l'extérieur du volume interne du dispositif 2, c'est-à-dire de la somme des volumes V4 et V6. A l'extérieur de ce volume, le câble 50 traverse un bouchon 60 par un orifice 602 qui débouche radialement vers l'extérieur.
Ainsi, le pion 30 est soumis à deux efforts antagonistes, à savoir un effort de traction élastique E40 exercé par le ressort 40, qui tend à le déplacer vers la gauche à la figure 2, et un effort de traction E50 transmis par le câble 50 lorsque l'on tire sur celui-ci. Les efforts E40 et E50 s'exercent selon les directions principales du ressort et du câble, au voisinage de leurs extrémités 402 et 502. Pour la clarté du dessin, les flèches représentant ces efforts sont décalées latéralement aux figures 2, 4 et 7.
Le satellite 20 est libre en pivotement autour d'un axe Y20 perpendiculaire au plan de la figure 1 , c'est à dire à un plan radial par rapport à l'axe X4 qui contient les zones de contact Z4 et Z6. Ainsi, le satellite peut prendre, par rapport aux cloches 4 et 6, les positions respectivement représentées aux figures 1 , 5 et 8. Dans la configuration des figures 1 et 2, les zones Z4 et Z6 s'étendent à une même distance radiale des axes X4 et X6. Ainsi, le rapport de transmission du mouvement de rotation entre les cloches 4 et 6 est égal à 1 .
Dans la configuration de la figure 5, la zone Z4 est plus éloignée radialement de l'axe X4 que la zone Z6 n'est éloignée de l'axe X6.
Dans cette configuration, le rapport de réduction du dispositif 2 est maximum. Ainsi, la cloche 6 tourne plus vite que la cloche 4. Le rapport de transmission en vitesse du mouvement de rotation entre les cloches 4 et 6 est supérieur à 1
Des configurations intermédiaires entre celles des figures 1 et 2, d'une part, et 5, d'autre part, peuvent être atteintes, comme expliqué ci-après.
Dans la configuration de la figure 5, l'axe X20 forme avec l'axe X10 un angle a non nul dans le plan de cette figure.
Dans la configuration de la figure 8, le satellite 20 basculé en sens inverse de la configuration de la figure 5. L'axe X20 forme avec l'axe X10 un angle β orienté en sens inverse par rapport à l'angle a et ayant pratiquement la même valeur. Dans ce cas, la zone Z4 est radialement plus proche de l'axe X4 que la zone Z6 n'est proche de l'axe X6, de sorte que le rapport de transmission du dispositif 2 est inférieur à 1 , en pratique minimum dans la configuration représentée à la figure 8. La cloche 6 tourne moins vite que la cloche 4.
Des configurations intermédiaires entre celles des figures 1 et 2, d'une part, et 8, d'autre part, peuvent être atteintes, comme expliqué ci-après.
Le satellite 20 est également mobile en rotation, c'est-à-dire pivotant, autour d'un cinquième axe Z20 qui s'étend, dans le plan des figures 1 , 3, 5, 6 et 8, perpendiculairement à l'axe X20.
La position du satellite 20 par rapport aux cloches menante et menée 4 et 6 est commandée non pas dans le plan des figures 1 , 3, 5, 6 et 8 qui contient les zones de contact Z4 et Z6 entre ce satellite et ces cloches, mais dans un plan perpendiculaire représenté aux figures 2, 4 et 7.
Dans la configuration des figures 1 et 2, l'effort de traction E50 exercé via le câble 50 équilibre l'effort élastique de traction E40 exercé par le ressort 40 tendu entre la tête
304 et l'arbre fixe 10. Dans ces conditions, le satellite 20 n'a pas tendance à changer de position par rapport aux cloches 4 et 6. En d'autres termes, la position des zones Z4 et Z6 par rapport aux axes X4 et X6 est stable.
Dans la configuration des figures 3 et 4, l'effort élastique E40 vainc l'effort de traction E50, ce qui crée un pivotement ou basculement primaire du satellite 20 dans le sens trigonométrique, comme représenté par la flèche F1 , dans le plan de la figure 4 autour de l'axe Z20.
Dans le plan de la figure 4, l'axe du satellite X20 n'étant pas parallèle à l'axe X10, des forces de traction FYi0 des cloches et des forces de traction FY20 du satellite n'ont pas la même direction et créent ainsi des forces résultantes FR à l'origine d'un couple de pivotement MY20 visible sur la figure 3. Ce basculement primaire F1 du satellite 20 autour de l'axe Z20 associé au fait que les surfaces intérieures S4 et S6 des cloches sont gauches et que les cloches sont tournantes, génère un basculement secondaire autour de l'axe Y20 dans le sens de la flèche F2 à la figure 3, c'est-à-dire dans un sens d'augmentation du rapport de transmission du dispositif 2.
Ce basculement du satellite 20 se poursuit tant que l'effort élastique E40 est plus important que l'effort de traction E50.
Tant que l'effort élastique E40 vain l'effort de traction E50, le satellite 20 demeure dans la configuration de la figure 4, au point qu'il poursuit son mouvement de basculement secondaire dans le sens de la flèche F2, ce qui le fait passer de la configuration de la figure 3 à la configuration de la figure 5.
Au contraire, dans la configuration des figures 6 et 7, l'effort E50 exercé via le câble 50 est plus important que l'effort élastique E40 exercé par le câble 40, de sorte que le satellite 20 bascule dans le sens horaire autour de l'axe Z20 dans le plan de la figure 7, comme représenté par la flèche F1 ', ce qui induit un basculement secondaire de ce satellite autour de l'axe Y20 dans le sens de la flèche F3, dans le plan de la figure 6, les forces FR étant alors, sur la figure 7, de sens opposé à leur sens sur la figure 4. Ceci a pour conséquence de diminuer le rapport de transmission du dispositif 2.
Tant que l'effort E50 est plus important que l'effort élastique E40, le satellite 20 est maintenu dans la configuration de la figure 7 au point que le basculement secondaire du satellite 20 autour de l'axe Y20 se poursuit dans le sens de la flèche F3, ce qui a pour effet de faire passer le satellite de la configuration de la figure 6 à celle de la figure 8.
Ainsi, une commande indirecte est obtenue dans la mesure où le pilotage du basculement du satellite 20 a lieu dans le plan radial des figures 2, 4 et 7 qui est perpendiculaire à celui qui contient les zones Z4 et Z6 et qui est celui des figures 1 , 3, 5, 6 et 8.
Dans les deuxième, troisième et quatrième modes de réalisation représentés respectivement aux figures 9 à 18, 19 et 20, et 21 , les éléments analogues à ceux du premier mode de réalisation portent les mêmes références et fonctionnement de la même façon. Dans ce qui suit, on ne décrit que ce qui distingue ces autres modes de réalisation du premier mode de réalisation.
Dans le deuxième mode de réalisation représenté aux figures 9 à 18, la cloche menante 4 du dispositif de transmission continûment variable 2 est solidaire d'un premier arbre 104 qui est menant et centré sur un premier axe X4. De même, la cloche menée 6 est solidaire d'un deuxième arbre 106 centré sur un deuxième axe X6. Les axes X4 et X6 forment respectivement des axes de rotation pour les cloches 4 et 6. Un satellite 20 tourne autour d'un troisième axe X20 inclus dans le plan de la figure 9, lorsqu' il est entraîné par la cloche menante 4. Ce satellite 20 comprend deux bagues 204 et 206 montées ensemble sur un palier 209 Les bagues 204 et 206 peuvent être monobloc. Une partie de rotule 223 a une surface externe sphérique S223, non coaxiale avec l'axe X20 qui constitue l'axe central du satellite X20, et une surface interne cylindrique S'223 coaxiale avec l'axe X20. Le palier 209 vient se loger radialement à l'intérieur de la surface S'223. Le palier 209 et la partie de rotule 223 constituent ensemble un porte-satellite pour le satellite 20 et définissent la position de l'axe X20 par rapport aux cloches 4 et 6.
Les axes X4 et X6, qui sont alignés, sont décalés radialement par rapport à l'axe X20, d'une distance di non nulle, comme dans le premier mode de réalisation. Les bagues 204 et 206 portent respectivement des bandes 205 et 207 de contact avec les surfaces internes S4 et S6 des cloches 4 et 6.
Un boîtier 150 est prévu autour des cloches 4 et 6 et du satellite 20. Ce boîtier 150 est constitué de deux flasques 154 et 156, pourvus respectivement d'orifices de passage des arbres 104 et 106, et d'un corps cylindrique 158 solidarisé aux deux flasques. Une partie de rotule 153 est immobilisée sur la surface radiale interne du corps 158 et coopère avec la partie de rotule 223 pour permettre un pivotement des éléments 209 et 223 et du satellite 20 autour d'un quatrième axe Y20 perpendiculaire au plan des figures 9, 1 1 , 13, 15 et 17 et séquent avec l'axe Y20.
Comme les surfaces des parties de rotule 153 et 223 qui sont en contact glissant l'une avec l'autre sont en portion de sphère, les éléments 209 et 223 et le satellite 20 peuvent également pivoter autour d'un cinquième axe Z20 compris dans le plan des figures 9, 1 1 , 13, 15 et 17 et perpendiculaire à l'axe X20.
La cloche 4 est supportée par le boîtier 150 aux moyens d'un palier circulaire 124 et d'un palier axial 134. Ces paliers sont respectivement disposés entre une surface radiale externe 42 de la cloche 4 et le corps cylindrique 158 et entre une surface axiale 44 de la cloche 4 et le flasque 154. Les paliers 124 et 134 guident la cloche 4 en rotation autour de l'axe X4. De la même façon, deux paliers 126 et 136 guident la cloche 6 en rotation autour de l'axe X6, par rapport au boîtier 150.
Comme il ressort plus particulièrement des figures 10, 12, 14, 16 et 18, la rotule formée des éléments 153 et 223 est une rotule à doigt. Plus particulièrement, cette rotule comprend un doigt ou pion 30 engagé dans un logement 224 de la partie 223 et qui est solidaire d'un piston 42 appartenant à un sous ensemble de commande 40. On a donc une rotation libre des éléments 153 et 223 l'un par rapport à l'autre autour de l'axe Y20, une rotation bloquée autour de l'axe X20 et une rotation indexée par le doigt 30 autour de l'axe Z20. L'indexation de la rotation autour de l'axe Z20 est induite par la translation du doigt 30, parallèle à l'axe X10 Le sous-ensemble de commande 40 comprend également un corps 44 fixé sur le boîtier 150, dans lequel est disposé le piston 42 et qui définit deux chambres 46 et 48 reliées chacune à un tuyau 52 ou 54 alimenté avec un fluide de commande, tel que de l'huile. En variante, de l'air ou de l'eau peut être utilisé comme fluide de commande.
Le sous-ensemble de commande 40 peut également être réalisé par d'autres solutions techniques de déplacement d'une pièce en translation comme une crémaillère, une came, un câble et par d'autres moyens de puissance comme un moteur électrique, un électro-aimant, un actionneur mécanique.
Dans la configuration des figures 9 et 10, le piston 42 est dans une position médiane en ce sens que dans les chambres 46 et 48 ont le même volume. Dans cette configuration, comparable à celle des figures 1 et 2 pour le premier mode de réalisation, des zones de contact Z4 et Z6 définies entre les bandes 205 et 207, d'une part, et les surfaces internes S4 et S6 des cloches 4 et 6, d'autre part, sont situées sensiblement à la même distance radiale des axes X4 et X6. Dans ce cas, le rapport de transmission du dispositif 2 de ce deuxième mode de réalisation est égal à 1 .
Lorsqu'il convient d'augmenter le rapport de transmission de ce dispositif 2, le piston 42 est déplacé en direction de la cloche 6 dans le plan de la figure 12. Ceci est obtenu en alimentant la chambre 46 avec de l'huile à une pression supérieure à celle présente dans la chambre 48. Ce déplacement du piston 42 dans le sens de la flèche F1 1 a pour effet d'entraîner le doigt 30 en direction de la cloche 6, ce qui fait pivoter la partie 223 de la rotule autour de l'axe Z20. Ceci créé un pivotement ou basculement primaire du satellite 20 dans le sens trigonométrique, comme représenté par la flèche F1 , dans le plan de la figure 12 autour de l'axe Z20.
Dans le plan de la figure 12, l'axe du satellite X20 n'étant pas parallèle aux axes X4 et X6, des forces de traction FYi0 des cloches et des forces de traction FY20 du satellite n'ont pas la même direction et créent ainsi des forces résultantes FR à l'origine d'un couple de pivotement MY20 visible sur la figure 1 1 . Ce basculement primaire F1 du satellite 20 autour de l'axe Z20 associé au fait que les surfaces intérieures S4, S6 des cloches sont gauches et que les cloches sont tournantes, génère un basculement secondaire autour de l'axe Y20 dans le sens de la flèche F2 à la figure 1 1 , c'est-à-dire dans un sens d'augmentation du rapport de transmission.
Le basculement secondaire du satellite 20 autour de l'axe Y20 se poursuit tant que le satellite 20 est maintenu dans la position basculée représentée à la figure 12. Ceci permet d'atteindre la configuration de la figure 13 où le rapport de transmission du dispositif 2 est maximum, alors que le satellite 20 est dans une configuration stable, en pivotement autour de l'axe Y20 car le piston 42 a été ramené dans une configuration médiane, par rapport au corps 44 de sous ensemble 40, en équilibrant les pressions d'huile dans les chambres 46 et 48. Le satellite 20 demeure dans cette configuration tant que le piston 42 n'est pas déplacé par rapport au corps 44.
Dans cette configuration, les axes X20 et X4 définissent entre eux un angle a non nul.
A l'inverse, lorsqu'il convient de diminuer le rapport de transmission des vitesses du dispositif 2, le piston 42 est déplacé en direction de la cloche 4, dans le sens de la flèche F1 1 ' à la figure 16, en alimentant la chambre 48 avec de l'huile sous une pression supérieure à celle présente dans la chambre 46. Ceci a pour effet de déplacer le doigt 30 en direction de la cloche 4 et de faire pivoter le satellite 20 dans le sens de la flèche F1 ' autour de l'axe Z20. Ce pivotement ou basculement primaire induit, pour les mêmes raisons que celles exposées précédemment, un basculement secondaire du satellite 20 autour de l'axe Y20, comme représenté par la flèche F3 à la figure 15, les forces FR étant alors orientées, sur la figure 16, en sens opposé à leur sens sur la figure 12.
Comme précédemment, ce basculement secondaire se poursuit tant que le doigt 30 est maintenu dans la configuration de la figure 16 jusqu'à atteindre la position des figures 17 et 18 où le piston 42 est ramené dans une position centrale par rapport au corps 44, ce qui induit que la position de la figure 17 est stable, en rotation autour de l'axe Y20, pour le satellite 20.
Dans cette configuration, les axes X20 et X4 définissent entre eux un angle β non nul orienté en sens inverse de l'angle a et ayant sensiblement la même valeur.
Ainsi, dans ce deuxième mode de réalisation également, une commande indirecte du pivotement du satellite 20 est obtenue, grâce au fait que ce satellite est pivotant autour de l'axe Z20 et qu'il est commandé dans un plan perpendiculaire à cet axe, au moyen du sous ensemble 40.
Selon une variante de ce deuxième mode de réalisation, au lieu d'une liaison rotule à doigt entre, d'une part, le porte-satellite formé des éléments 209 et 223 et, d'autre part, le boîtier 150, on peut utiliser une double liaison pivot. Dans cette variante le porte- satellite est formé d'un premier berceau où vient se loger le palier 209. Ce premier berceau est en liaison pivot d'axe Y20 avec un deuxième berceau. La rotation autour de l'axe Y20 est libre. Le deuxième berceau est en liaison pivot d'axe Z20 avec le carter 150. La rotation autour de l'axe Z20 est indexée par un bloc de commande similaire au sous- ensemble 40.
Selon une autre variante de ce deuxième mode de réalisation, les cloches 4 et 6 sont respectivement monoblocs avec les arbres 104 et 106.
Dans le troisième mode de réalisation représenté aux figures 19 et 20, un mode de pilotage analogue à celui du premier mode de réalisation est utilisé pour le dispositif de transmission continûment variable 2, avec une action dans un plan radial perpendiculaire à un plan radial contenant les zones de contact Z4 et Z6 entre le satellite 20 et les cloches menante et menée 4 et 6. Ce mode de réalisation diffère du premier en ce que les axes de rotation X10 et X20 sont confondus quand ils sont parallèles, alors que les axes de rotation X4 et X6 sont décalés axialement par rapport aux axes X10 et X20 d'une distance radiale d2 non nulle.
Dans les exemples décrits en référence aux premier et troisième modes de réalisation, le câble 50 passe entre l'arbre et la cloche 4. En variante, ce câble peut passer entre l'arbre et la cloche 6. Selon une autre variante, le câble 50 peut passer à l'intérieur de l'arbre 10.
Dans le quatrième mode de réalisation de l'invention représenté à la figure 21 , il n'est pas utilisé de câble ou de piston pour commander le positionnement du satellite 20 dans les volumes intérieurs V4 et V6 des cloches 4 et 6. Dans ce mode de réalisation, la commande en pivotement du satellite 20, pour l'ajustement du rapport de transmission du dispositif de transmission continûment variable 2, est effectuée dans un plan radial contenant des zones de contact Z4 et Z6 définies respectivement entre les bandes 205 et 207 du satellite 20 et les surfaces internes S4 et S6 des cloches 4 et 6.
Un élément élastiquement déformable, à savoir un ressort hélicoïdal 40, est fixé entre la tête 304 du pion 30, à laquelle il est fixé par une première extrémité 402, et une pièce mobile axialement 70, à laquelle il est fixé par une deuxième extrémité 404. Le ressort 40 exerce donc sur le pion 30 un effort élastique E40 comparable à celui mentionné au sujet des deux premiers modes de réalisation.
La pièce 70 est reçue à l'intérieur d'un logement 103 de l'arbre fixe 10, ce logement étant centré sur l'axe X10. Ce logement permet la translation selon l'axe X10 de la pièce 70 mais bloque sa rotation autour de X10. Une tige de commande 72 relie par une liaison hélicoïdale la pièce 70 à une manivelle 74 située à l'extérieur du volume interne du dispositif 2 qui est la somme des volumes internes V4 et V6 des cloches 4 et 6. Il est ainsi possible, en faisant tourner la manivelle 74 autour de l'axe X10, comme représenté par la double flèche F5, de déplacer axialement la pièce 70 le long de l'axe X10. Ce déplacement permet de faire varier la constante de raideur du ressort 40 et, par voie de conséquence, l'intensité de l'effort E40.
Le satellite 20 est monté libre en rotation autour des axes Y20 et Z20 définis comme dans le premier mode de réalisation.
Le fonctionnement est le suivant : dans la configuration de la figure 21 , le rapport de transmission de vitesse est maximum. Tant que les cloches 4 et 6 tournent à la vitesse stabilisée, le satellite 20 conserve la position représentée à la figure 21 .
Si l'utilisateur souhaite diminuer le rapport de transmission du dispositif 2, il augmente le couple d'entraînement de la cloche menante 4. De ce fait, le couple d'entrée sur la cloche menante 4 est plus élevé que le couple de sortie sur la cloche menée 6.Un couple différentiel est ainsi créé entre les cloches 4 et 6. Le satellite n'est plus équilibré statiquement. L'effort tangentiel de contact entre la bande 205 et la surface S4 est plus élevé que l'effort tangentiel entre la bande 207 et la surface S6. Un moment autour de l'axe Z20 est créé, ce qui fait basculer le satellite 20 dans le sens horaire autour de l'axe Z20, dans le sens de la flèche F6 à la figure 21 . Ce basculement primaire induit, comme dans le deuxième mode de réalisation, un basculement secondaire autour de l'axe Y20, dans le sens de la flèche F7 à la figure 21 , ce qui diminue la distance radiale entre la zone Z4 et l'axe de rotation X4 de la cloche 4 et augmente la distance radiale entre la zone Z6 et l'axe de rotation X6 de la cloche 6. Ainsi, le rapport de transmission du dispositif 2 diminue.
Si le satellite 20 est dans une autre configuration, notamment une configuration où le rapport de transmission est minimal, il est possible d'augmenter ce rapport de transmission par un phénomène inverse, en diminuant le couple exercé sur la cloche menante 4.
Le basculement secondaire mentionné ci-dessus a lieu à rencontre de l'effort élastique E40. Il est possible de modifier la valeur du couple différentiel à partir duquel ce basculement peut avoir lieu, en jouant sur la constante de raideur du ressort 40, c'est-à- dire en déplaçant la pièce 70 le long de l'axe X10, à l'intérieur du logement 104. La manivelle 74, la tige de liaison 72 et la pièce 70 constituent donc, avec le ressort 40, des moyens de commande de la position angulaire du satellite 20 autour de l'axe Y20, dans le volume interne du dispositif 2 constitué par les volumes internes respectifs V4 et V6 des cloches 4 et 6.
L'invention est expliquée ci-dessus et représentée dans le cadre de son utilisation dans le domaine du cycle. Elle est toutefois applicable dans d'autres domaines, notamment ceux des moteurs ou des pompes ainsi que dans le domaine automobile et, plus généralement dans celui de la mobilité.
Les caractéristiques techniques des modes de réalisation et variantes envisagés ci-dessus peuvent être combinées entre elles.

Claims

REVENDICATIONS
1 . - Dispositif (2) de transmission continûment variable d'un mouvement de rotation comprenant :
- une cloche menante (4) tournante autour d'un premier axe (X4) ;
- une cloche menée (6) tournante autour d'un deuxième axe (X6) aligné avec le premier axe ;
- un satellite (20) pourvu d'une première bande (205) en contact avec une surface intérieure (S4) de la cloche menante et d'une deuxième bande (207) en contact avec une surface intérieure (S6) de la cloche menée, des zones de contact (Z4, Z6) entre ces bandes (205, 207) et les surfaces intérieures (S4, S6) des cloches (4, 6) étant définies dans un même premier plan radial par rapport au premier axe, alors que le satellite est tournant autour d'un troisième axe (X20) inclus dans le premier plan radial et dont l'orientation angulaire (α, β) par rapport au premier axe (X4) définit le rapport de transmission du dispositif et alors que le satellite est pivotant autour d'un quatrième axe (Y20) perpendiculaire au premier plan radial et non sécant avec le premier axe caractérisé en ce que le satellite (20) est pivotant autour d'un cinquième axe (Z20) parallèle au premier plan radial et perpendiculaire au troisième axe (X20)
2. - Dispositif selon la revendication 1 , caractérisé en ce que la position angulaire du satellite (20) autour du quatrième axe (Y20) est réglable par un basculement primaire (F1 , F1 ' ; F6) du satellite autour du cinquième axe (Z20), ce basculement primaire induisant un basculement secondaire (F2, F3 ; F7) du satellite autour du quatrième axe (Y20).
3. - Dispositif selon la revendication 1 , caractérisé en ce que le basculement secondaire (F2, F3 ; F7) du satellite (20) est induit par son basculement primaire (F1 , F1 ' ; F6) créant des forces résultantes (FR), produisant un couple de pivotement (MY20) et par le fait que les surfaces intérieures (S4, S6) des cloches sont gauches et que les cloches sont tournantes.
4. - Dispositif selon l'une des revendications précédentes, caractérisé en ce que des moyens de commande (40, 50) de la position angulaire du satellite (20) autour du quatrième axe (Y20) agissent sur le satellite (20) en le faisant pivoter autour du cinquième axe (Z20), en orientant les bandes (205, 207) du satellite par rapport aux surfaces intérieures (S4, S6) des cloches (4, 6) par un basculement primaire induisant (F1 ; F1 ') un basculement secondaire (F2, F3) du satellite autour du quatrième axe (Y20).
5.- Dispositif selon l'une des revendications 1 à 3, caractérisé en ce que le satellite
(20) est libre en rotation autour du quatrième axe (Y20) et du cinquième axe (Z20) et en ce qu'un couple différentiel créé entre la cloche menante (4) et la cloche menée (6) agit sur le satellite en le faisant pivoter autour du cinquième axe (Z20), en orientant les bandes (205, 207) du satellite par rapport aux surfaces intérieures (S4, S6) des cloches par un basculement primaire (F6) qui induit un basculement secondaire (F7) du satellite autour du quatrième axe (Y20).
6. - Dispositif selon l'une des revendications précédentes, caractérisé en ce que les deux cloches (4, 6) sont montées rotatives sur un même arbre fixe (10) dont un axe longitudinal (X10) est parallèle au premier axe (X4) et en ce que le satellite (20) est monté pivotant sur l'arbre, autour du quatrième axe (Y20).
7. - Dispositif selon l'une des revendications 1 à 5, caractérisé en ce que la cloche menante (4) est solidaire d'un arbre menant (104), en ce que la cloche menée (6) est solidaire d'un arbre mené (106) et en ce que le dispositif comprend un boîtier (150) de maintien et de guidage en rotation de la cloche menante (4), de la cloche menée (6) et du satellite (20).
8. - Dispositif selon la revendication 7, caractérisé en ce qu'il comprend un porte- satellite (209, 223) qui définit la position du troisième axe (X20) et qui est monté pivotant, autour du quatrième axe (Y20) et autour du cinquième axe (Z20), par rapport au boîtier (150).
9. - Dispositif selon la revendication 8, caractérisé en ce que le porte-satellite (209, 223) est monté dans le boîtier (150) par une liaison rotule à doigt (30).
10. - Dispositif selon la revendication 9, caractérisé en ce qu'un doigt (30) de commande de la liaison rotule est piloté en translation (F1 1 , F1 1 ') dans un plan perpendiculaire au cinquième axe (Z20) et incluant le troisième axe (X20).
1 1 .- Dispositif selon la revendication 8, caractérisé en ce que le porte-satellite (209, 223) est monté dans le boîtier par une double liaison pivot comprenant une première liaison pivot autour du quatrième axe (Y20), cette première liaison pivot étant, libre en rotation, et une seconde liaison pivot autour du cinquième axe (Z20), cette deuxième liaison pivot étant pilotée en rotation.
EP13729969.9A 2012-06-21 2013-06-20 Dispositif de transmission continûment variable Withdrawn EP2864671A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1255867A FR2992390B1 (fr) 2012-06-21 2012-06-21 Dispositif de transmission continument variable
PCT/EP2013/062939 WO2013190067A1 (fr) 2012-06-21 2013-06-20 Dispositif de transmission continûment variable

Publications (1)

Publication Number Publication Date
EP2864671A1 true EP2864671A1 (fr) 2015-04-29

Family

ID=48652109

Family Applications (2)

Application Number Title Priority Date Filing Date
EP13729764.4A Withdrawn EP2864670A1 (fr) 2012-06-21 2013-06-20 Dispositif de transmission continûment variable
EP13729969.9A Withdrawn EP2864671A1 (fr) 2012-06-21 2013-06-20 Dispositif de transmission continûment variable

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP13729764.4A Withdrawn EP2864670A1 (fr) 2012-06-21 2013-06-20 Dispositif de transmission continûment variable

Country Status (8)

Country Link
US (1) US9534673B2 (fr)
EP (2) EP2864670A1 (fr)
JP (1) JP2015521721A (fr)
CN (2) CN104520611A (fr)
CA (2) CA2877077A1 (fr)
FR (1) FR2992390B1 (fr)
IN (1) IN2014DN10914A (fr)
WO (2) WO2013190028A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101895735B1 (ko) * 2017-12-18 2018-10-25 주식회사 제이에스테크 접촉력을 향상시킨 자전거용 무단변속기 및 그 무단변속기를 구비하는 자전거

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3760646A (en) * 1972-02-22 1973-09-25 Excelermatic Rotary motion transmitting device
DE3825860A1 (de) * 1988-07-29 1989-02-16 Joachim Ruehlemann Reibradgetriebe
USRE41892E1 (en) * 1997-09-02 2010-10-26 Fallbrook Technologies Inc. Continuously variable transmission
JP4729753B2 (ja) * 2004-07-02 2011-07-20 独立行政法人海上技術安全研究所 無段変速機構を有する手動車椅子
DE102006016955A1 (de) * 2006-04-11 2007-10-25 Schürmann, Erich, Dr. Stufenloses Reibradgetriebe mit Leerlauf und Rückwärtsgang
DE102006039319A1 (de) * 2006-08-22 2008-02-28 Stephan Horsthemke Mechanischer Schwungmassenhybrid, mit stufenlos variabler Schwungraddrehzahl, unter Schwungmassennutzung von Getriebekomponenten, für Fahrzeuge
US8398518B2 (en) * 2008-06-23 2013-03-19 Fallbrook Intellectual Property Company Llc Continuously variable transmission
JP2013190019A (ja) * 2012-03-13 2013-09-26 Toyota Motor Corp 無段変速機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2013190067A1 *

Also Published As

Publication number Publication date
WO2013190067A1 (fr) 2013-12-27
FR2992390B1 (fr) 2015-12-18
CA2877076A1 (fr) 2013-12-27
EP2864670A1 (fr) 2015-04-29
IN2014DN10914A (fr) 2015-09-11
CA2877077A1 (fr) 2013-12-27
WO2013190028A1 (fr) 2013-12-27
CN104520611A (zh) 2015-04-15
US20150240921A1 (en) 2015-08-27
US9534673B2 (en) 2017-01-03
FR2992390A1 (fr) 2013-12-27
JP2015521721A (ja) 2015-07-30
CN104508328A (zh) 2015-04-08

Similar Documents

Publication Publication Date Title
WO2013190067A1 (fr) Dispositif de transmission continûment variable
LU85244A1 (fr) Transmission a commande mecanique a rapport variable,a courroie trapezoidale et a poulies extensibles
FR3027541A1 (fr) Dispositif d'usinage vibratoire ameliore
EP3003616A1 (fr) Dispositif d'usinage vibratoire
FR2800824A1 (fr) Boite de vitesses a enroulement et poulies coniques
FR2813266A1 (fr) Roue dentee, engrenage de reduction et dispositif de direction assistee par moteur electrique
EP3049693B1 (fr) Dispositif réducteur de vitesse angulaire
FR2512511A1 (fr) Perfectionnements aux organes de variation de rapport de transmission
JP2007113749A (ja) 無段変速装置
FR2593874A1 (fr) Dispositif a changement de vitesse continu
FR2864592A1 (fr) Poulie a embrayage a roue libre pour l'entrainement en rotation d'un alternateur de vehicule automobile
FR1259249A (fr) Moyeu de roue contenant une dynamo
WO2012004544A1 (fr) Pompe a eau a entrainement reversible
FR2779201A1 (fr) Boite de vitesse a progression lineaire
BE565857A (fr)
FR2493947A1 (fr) Transmission mecanique
BE474481A (fr)
FR2874986A1 (fr) Poulie a gorge variable munie d'un dispositif de regulation du rayon de la gorge
FR2552186A1 (fr) Transmission a galets de traction a variation continue
BE470579A (fr)
BE334959A (fr)
BE514980A (fr)
BE398010A (fr)
FR3011052A1 (fr) Reducteur planetaire a double vitesse
BE553617A (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150112

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: PANZUTI, ADRIEN

Inventor name: CHEVALIER, PIERRE

RIC1 Information provided on ipc code assigned before grant

Ipc: F16H 15/30 20060101ALI20160803BHEP

Ipc: B62M 9/06 20060101AFI20160803BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20161025

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170307

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

19U Interruption of proceedings before grant

Effective date: 20161007

D18D Application deemed to be withdrawn (deleted)
19W Proceedings resumed before grant after interruption of proceedings

Effective date: 20211201

PUAJ Public notification under rule 129 epc

Free format text: ORIGINAL CODE: 0009425

32PN Public notification

Free format text: NOTIFICATION ETABLIE CONFORMEMENT A LA REGLE 142(2) CBE (REPRISE DE LA PROCEDURE CONFORMEMENT A LA REGLE 142(2) CBE EN DATE DU 02.06.2021)

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20220107

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

INTC Intention to grant announced (deleted)
PUAJ Public notification under rule 129 epc

Free format text: ORIGINAL CODE: 0009425

32PN Public notification

Free format text: CONSTATATION DE LA PERTE D'UN DROIT CONFORMEMENT A LA REGLE 112(1) CBE (OEB FORM XXXX EN DATE DU 28.07.2022)

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20230105