EP2860752B1 - Elektroden-Vorrichtung mit Pre- und/oder Postfilter und Herstellungs-Verfahren hierzu sowie Massenspektrometer mit einer solchen Elektroden-Vorrichtung - Google Patents

Elektroden-Vorrichtung mit Pre- und/oder Postfilter und Herstellungs-Verfahren hierzu sowie Massenspektrometer mit einer solchen Elektroden-Vorrichtung Download PDF

Info

Publication number
EP2860752B1
EP2860752B1 EP14188177.1A EP14188177A EP2860752B1 EP 2860752 B1 EP2860752 B1 EP 2860752B1 EP 14188177 A EP14188177 A EP 14188177A EP 2860752 B1 EP2860752 B1 EP 2860752B1
Authority
EP
European Patent Office
Prior art keywords
electrode
insulator
blank
gap
sections
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14188177.1A
Other languages
English (en)
French (fr)
Other versions
EP2860752A1 (de
Inventor
Bernd Laser
Carsten Laser
Frank Schäfer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vacutec Hochvakuum- & Prazisionstechnik GmbH
Original Assignee
Vacutec Hochvakuum- & Prazisionstechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vacutec Hochvakuum- & Prazisionstechnik GmbH filed Critical Vacutec Hochvakuum- & Prazisionstechnik GmbH
Publication of EP2860752A1 publication Critical patent/EP2860752A1/de
Application granted granted Critical
Publication of EP2860752B1 publication Critical patent/EP2860752B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/06Electron- or ion-optical arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/06Electron- or ion-optical arrangements
    • H01J49/062Ion guides
    • H01J49/063Multipole ion guides, e.g. quadrupoles, hexapoles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/06Electron- or ion-optical arrangements
    • H01J49/068Mounting, supporting, spacing, or insulating electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/42Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
    • H01J49/4205Device types
    • H01J49/421Mass filters, i.e. deviating unwanted ions without trapping
    • H01J49/4215Quadrupole mass filters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing

Definitions

  • the invention relates to a method according to claim 1 for producing an electrode device, in particular a multipole, for use in a mass spectrometer, wherein the electrode device comprises at least one main filter and at least one pre and / or post filter.
  • the invention further relates to such an electrode device according to claim 6, as well as a mass spectrometer with such a multi-pole electrode device according to claim 11.
  • Multipolar electrode arrangements for the characterization of chemical compounds are known in the art, for example from the German patent 944900 known.
  • Such multipole mass filters operate without a magnetic field.
  • a quadrupole for example, comprises four metal rods which serve as electrodes and are arranged on a circle with radius R 0 .
  • the voltage across the electrodes is composed of a high-frequency AC voltage and a DC voltage, wherein the respectively opposite pairs of the electrodes have a phase-shifted by 180 ° high-frequency voltage.
  • the ions to be separated are shot as a fine ion beam in the longitudinal direction of the electrodes in the field. Due to the applied AC and DC voltages, the ions are moved on defined trajectories through the mass filter. Outside stable boundary conditions, the ions collide with the electrodes, neutralizing them. As a result, these neutralized ions no longer reach the detector.
  • the applied voltage to the electrodes is linear to the detected ion mass, which is why for the passage through the mass range, ie for setting the desired mass to be detected, a proportional change of AC voltage and DC voltage is made.
  • a change in the resolution can be effected by changing the voltage conditions.
  • a stability diagram plays a role, which is calculated according to the differential equations of Mathieu.
  • Pre- and post-filters act as a pre- and post-stage of the main filter, by applying only a weak AC voltage.
  • the field does not start or stop abruptly for the ions, but the ions are slowly led into or out of the field. Therefore, the ions achieve a higher stability and thus a better focus.
  • the pre and post filters work similarly to lenses.
  • pre- and post-filters In the implementation of pre- and post-filters in practical application, the high-precision alignment of the electrodes to one another (eg prefilter to main filter) must be taken into consideration, since even small inaccuracies lead to field disturbances can.
  • prefilter to main filter e.g. prefilter to main filter
  • DE 22 15 763 For example, the implementation of pre and post filters is shown. However, a great effort must be made here at high cost for the highly accurate alignment of the filter to each other.
  • US 2004/0 245 460 A1 shows the production of modules that can be assembled into a multipole.
  • the individual modules each have a carrier element, an insulator and one or more electrodes.
  • the electrodes can be divided into several segments, which can be charged differently with voltage.
  • the electrodes are also processed so that they have, for example, a hyperbolic surface.
  • the prior art according to US 2004/0 245 460 A1 has the disadvantage that when separating into the individual segments, the cutting tool comes into contact with the insulator, whereby the separating tool and / or the insulator is damaged.
  • the object of the invention is thus to improve the production method for electrode devices with pre and / or post filters and to provide a resulting electrode device.
  • the invention solves this problem by providing a manufacturing method for an electrode device with pre- and / or post-filter and provides an electrode device with pre- and / or post-filter as a product.
  • the electrode device in this case comprises a plurality of electrode arrangements which can be joined together to form the electrode device.
  • An electrode assembly has one or more electrodes.
  • the electrodes are each made of an electrode blank, which preferably has metal. Particularly preferably, the electrode blank consists of solid material.
  • the electrode blank is preferably rod-shaped and in particular has a round cross-section. The blank may be formed, for example, as a round rod. From this electrode blank, the main filter, one or more prefilters and / or one or more post-filters are produced.
  • the manufacturing process comprises several steps, which are repeated until the intended Number of pre and / or post filters is reached.
  • the electrode blank may also have, for example, a trapezoidal or rectangular cross section and thus serve, for example, for ion guidance or for ion transfer.
  • pre- and post-filter includes that the pre- and post-filters may also be lenses or lens-like, as they preferentially focus the ions to enter them with a collimated beam into the main filter. In this case, in contrast to the main filter, no filtering takes place in the true sense, ie. little or no ions are neutralized. Whether the pre- and / or post filters only have a focusing effect or also neutralize ions also depends on whether and how the pre- and / or post filters are supplied with DC voltage. Both possibilities can be realized with the present invention.
  • each electrode blank is connected to holding means.
  • the electrode device comprises four electrode blanks, the electrode blanks being divided into a plurality of electrode arrays.
  • an electrode assembly each comprises two electrode blanks.
  • one of the electrode assemblies comprises only one electrode blank and the other electrode assembly comprises three electrode blanks.
  • the electrode device may be e.g. composed of four individual electrode assemblies, each having an electrode blank.
  • the holding means are designed such that they can hold the electrode rod assemblies as a device. They can then also be referred to as a holding device.
  • the holding means comprise at least one carrier element, each blank of the electrode being connected to the one or more carrier elements is connected.
  • the attachment takes place indirectly by interposition of one or more insulators.
  • the holding means are thus formed as a carrier element or carrier elements and at least one insulator.
  • each blank electrode is separated into two sections, wherein the sections are axially spaced apart by means of a gap.
  • the gap thus extends through the entire electrode blank and electrically separates the two sections from each other, whereby the individual sections can be applied independently of each other with voltage.
  • the portions are held in a constant relative position or in a constant relative position to each other during and after the separation by the holding means.
  • Each of the sections is used as a filter along with the sections of the other electrode blanks in the finished electrode device. For example, several first sections form a prefilter and several second sections form a main filter.
  • a "set" of filter sections (eg, a first and a second section for pre- and main filters) is thus made from a single electrode blank, the holding means holding the sections at each time in position relative to each other so that the relative position between the Sections not changed.
  • This method has the advantage that the separation between a pre- and post-filter and the main filter takes place only when the two sections are firmly connected by the holding means. A shift of the sections against each other and a re-alignment thus eliminated and saves additional effort. The exact positioning of the electrodes increases the analytical accuracy.
  • This separation step ie the separation of the electrode blank into two sections, is performed as often as it corresponds to the intended number of pre and / or post filters.
  • the number of electrode blanks corresponds to the number of desired electrodes. If e.g. a prefilter and a post filter are provided, the electrode blanks are separated twice into two sections, so that each electrode blank a total of three sections arise, each axially spaced from each other with a gap and of the holding means in a constant relative position held each other. The total of three sections are then used together with the sections of the other electrode blanks as pre-filter, main filter and post-filter. The multiple electrode arrays are joined together in a further step by connecting the holding means to the electrode device.
  • the holding means comprise at least one carrier element, in particular a single carrier element, and insulator means comprising at least one insulator.
  • the insulator or insulators, ie non-conductive material preferably comprise quartz or ceramic, wherein in the case where the insulator means consist entirely of quartz, the material of the electrode blank is preferably made of (for example marketed under the trademark "Invar") Alloy with the material number 1.3912 (German steel key) is.
  • the metal of the electrode blank is preferably an iron-nickel-cobalt-based fused alloy, for example, as the alloy (sold under the trade mark "Vacon") with the material number 1.3981 (German steel key). or as the under the name Vacon 11 or Vacon 11 T available alloy.
  • the insulator means are connected according to the invention with the electrode blank, wherein this compound can be made detachable or non-detachable.
  • the insulator or the insulators are applied with an adhesive, by screws or by soldering to the electrode blank.
  • the metal of the electrode and the insulators preferably have a similar coefficient of thermal expansion, so that a permanent connection between metal and insulator is ensured.
  • the carrier element is connected according to the invention with at least one insulator of the insulator means. If the insulator means comprise a plurality of insulators, the carrier element is connected to at least one of these insulators. If the insulator means comprise only one insulator, the carrier element is connected to exactly this insulator.
  • the carrier element which preferably has a semicircular arc-like shape in cross-section, is preferably made of the same material as the electrode blank.
  • the carrier element and the insulator or the insulators are preferably detachably or non-detachably connected to one another.
  • the connection is created by gluing by means of an adhesive, by soldering, by screwing or by sintering.
  • the insulator is connected by gluing to the carrier element and thus produces a permanent connection.
  • At least one insulator of the insulator means is connected to both sections and thereby holds the sections in the same relative position to one another. If the insulator means comprise a plurality of insulators, then at least one of the insulators and / or the carrier element is connected to both sections. If the insulator means comprise only one insulator, this one insulator and / or the carrier element is connected to both sections. The insulator acts in an insulating manner between the electrode blank and the carrier element, so that the blank electrode and the carrier element are e.g. can also consist of the same material.
  • the insulator means may comprise a plurality of short insulators, a long insulator, or a combination of these two solutions.
  • the insulator or the insulators are designed or positioned such that there is a stable connection between the two sections.
  • a long insulator may be positioned on the electrode blank so that it is connected to both sections. The carrier element is then positioned on the insulator.
  • the insulator means in particular an insulator of the insulator means, hold the sections in the same relative position relative to each other.
  • the electrode blank and / or the insulator is then provided with a recess.
  • the recess or the recesses are arranged such that they lie between the insulator and the intermediate space and the intermediate space is connected to the recess or the recesses.
  • the gap thus extends between the cavity of the recess and the side of the electrode blank, which lies opposite the cavity of the recess.
  • two electrode blanks are applied to a carrier element, which are each divided into different filters.
  • a carrier element which are each divided into different filters.
  • Such an arrangement comprises two sections which are to become main filters and two sections which are to become prefilters, wherein a main filter section and a prefilter section are always connected to each other by an insulator.
  • a recess is first introduced into the electrode blank, which divides the electrode blank into two sections. Subsequently, an insulator is positioned over the recess and connected to both sections. During the subsequent separation of the two sections by a gap, these sections are through the insulator in a constant relative position to each other held. Thereafter, a carrier element is connected to the insulator to be joined in a further step with another carrier element to an electrode device.
  • the gap is formed such that the presence of an insulator and / or a carrier element, which are positioned over the gap, through this gap have no influence on the field geometry of the multipole and thus do not affect the trajectory of ions.
  • the trajectory of the ions or the main direction of movement of the ions, neglecting their circular movement, is arranged along the electrode blank, namely in particular on the side of the blank electrode which lies opposite the side of the electrode blank fitted with the insulator means.
  • the trajectory of the ions thus substantially corresponds to a longitudinal axis to the electrode blank, which after the o.g. Criteria, in particular on the opposite side of the insulator means, is arranged.
  • a visual axis to the insulator means and / or the carrier element advantageously no normal to this longitudinal axis, a visual axis to the insulator means and / or the carrier element.
  • a normal in this context is an axis which is at a 90 ° angle to the longitudinal axis.
  • the gap for example, on angled or is formed like a staircase or obliquely and / or the entry and exit point of the intermediate space from the blank are offset from each other.
  • a training with angulations or a step-like design prevents the so-called "needle-point effect" disturbing the field geometry.
  • the intermediate space angelnungen and the entry and exit point of the intermediate space from the blank are offset from each other.
  • Such an arrangement has the advantage that the probability that the ions pass through the gap to the insulator is greatly reduced.
  • the ions can not establish direct contact with the surface of the insulator. Therefore, the ions can not react with the surface of the insulator, which is why no electrostatic charge of this surface can take place by the ions. With such a charge, the ion would namely absorb an electron of the insulator and would be neutralized with it.
  • the insulator on the other hand, would be positively charged, which would change the field geometry. An altered electric field would affect the trajectory of the other ions.
  • the intersection of the gap starts e.g. at the recess and is continued in the direction of the opposite side of the blank.
  • the first section is thus formed transversely to the longitudinal axis of the blank, a second section along the longitudinal axis, whereupon a further section follows, which is aligned again transversely to the longitudinal axis.
  • further angulations can be incorporated by further longitudinally and transversely to the longitudinal direction extending portions in the configuration of the intermediate space.
  • the transition from the recess to the intermediate space and the exit point of the intermediate space from the electrode blank are offset from one another, wherein in particular between a prefilter and a main filter, the exit point of the intermediate space from the electrode blank is preferably offset in the direction of flight of the ions. This prevents an undefined electric field from being generated by surface charging of the insulator, which would influence the trajectory of the further ions.
  • the offset between the entry and exit point of the gap in or out of the electrode blank may be mirrored at the transition between the main filter and post filter to the transition between prefilter and main filter, or in the same way, so not mirrored, be formed.
  • a mirrored construction has the advantage that the main filter thereby symmetrical is trained. This results in a more homogeneous field, which means less interference for the ions.
  • a similar construction could also make use of the advantage in the transition between the main filter and the postfluter that the probability that the ions reach the insulator is kept even lower, since the exit point of the intermediate space from the electrode blank is offset in the direction of flight.
  • the sections of the electrode blank are simultaneously processed together with the carrier element such that contours of the blank and of the carrier element are ground.
  • the working is preferably carried out by grinding, in particular by the use of a grindstone.
  • the individual sections of the electrode blank are preferably ground in the longitudinal direction so that a circular and a non-circular, in particular substantially hyperbolic, section is formed in the cross-section of the electrode blank. This has the advantage that a better field geometry is formed, resulting in a more accurate measurement.
  • the joint processing of the electrode blank and carrier element by e.g. Grinding can take place temporally before separating the electrode blank into the two sections. Preferably, however, the processing is carried out after the separation cut. Alternatively, the processing of the electrode blanks may also be omitted, e.g. to save costs.
  • the end portions of the support members are formed convex and concave by the machining, so that they center themselves later in the pairwise assembly of the support elements.
  • each section becomes an electrode.
  • Each of these electrodes has a circular section and a substantially hyperbolic section as a result of the machining in cross-section.
  • the respective similarly machined portions of all provided electrode blanks in particular after being joined to the electrode device, form the individual filters, e.g. Prefilter and main filter.
  • the recess is introduced into the electrode blank by a machining or non-cutting (erosive) manufacturing process. Machining processes can e.g. Milling, sawing, planing, grinding or drilling. Non-cutting or abrading methods may e.g. be carried out by chemical or thermal removal. This includes the method of electroerosion, etching, laser cutting or water jet cutting.
  • the recess is introduced by a machining process in the electrode blank.
  • the recess is sawn into the electrode blank.
  • the recess can also be introduced by casting in the production of the blank.
  • the gap separating the sections of the electrode blank is made by a machining and / or non-cutting manufacturing process.
  • the intermediate space is ground, milled or sawed into the electrode blank, for example with a wire saw.
  • the gap is made by electro-erosion, etching, laser cutting or water jet cutting.
  • the production of the intermediate space takes place by means of wire erosion.
  • the use of wire or electrical erosion has the advantage that substantially no mechanical stresses are generated in the components and a very accurate removal of the metal is possible.
  • the fact that the recess is first introduced prevents the tool, eg the eroding wire, from coming into contact with the insulator when the intermediate space is produced. Of the Insulator holds both sections together during and after separation and acts as an insulator between the electrode and the support element.
  • a separation between pre- and post-filter and main filter is necessary in order to be able to act on the various sections differently with AC voltage and DC voltage.
  • the pre- or post-filter is preferably applied only with an alternating voltage.
  • an electrode or an electrode device to which no readjustment between the various sections is necessary because an insulator or the support member during the separation of the electrode blank holds both sections of the electrode blank together.
  • the invention thus shows an effective method for producing an electrode device with pre and / or post filters, wherein the electrodes are aligned with high precision, in particular with respect to the filter sections to each other and to the distances to the other electrodes of the multipole.
  • the electrode device resulting from the method according to the invention has extremely straight electrode rods which have a very high parallelism to each other.
  • the measuring method offers thanks to the invention by better focusing of the ion beam, a higher transmission rate of the ions and a higher resolution.
  • the product of the manufacturing method according to the invention namely a very precisely working electrode device, has a plurality of electrode arrangements with at least one electrode blank, holding means and a gap separating the blank electrode into two sections, so that these axially spaced apart and thus are electrically isolated from each other.
  • the holding means comprise insulator means and a support member, wherein at least parts of the insulator means hold the two sections in a constant relative position to each other.
  • at least one insulator of the insulator means and / or the electrode blank has a recess. This recess in particular preferably has a greater extent in the longitudinal direction of the electrode blank than the intermediate space.
  • At least one insulator of the insulator means is connected to the electrode blank and the carrier element.
  • each pair of electrode blanks are connected to a support member and have been processed together so that the electrode portions each have a circular portion and a hyperbolic portion and the support members can adjust themselves when assembled, forming an electrode device.
  • the invention preferably comprises a multi-pole electrode device with at least two electrode arrangements according to the invention.
  • the electrode device is designed as a multipole, in particular as a quadrupole, and consists of two electrode arrangements according to the invention.
  • the electrode arrangements preferably each comprise two sections, which are designed as main filters, and at least two sections, which are formed as prefilters, and / or at least two sections, which are designed as post filters.
  • the individual sections are arranged according to the invention.
  • the electrode assemblies are interconnected by the support members to form an electrode assembly.
  • the carrier elements themselves center each other through the ground end sections, which are convex and concave and fit exactly into one another.
  • the invention further comprises a mass spectrometer with an electrode device according to the invention or a plurality of electrode arrangements according to the invention.
  • Fig. 1 shows a schematically simplified electrode assembly 1 for use in a multi-pole electrode device, in particular in a multipole, a mass filter or mass spectrometer.
  • the electrode assembly 1 is composed, inter alia, of a section for a main filter 3, a section for a prefilter 5 and a section for a postfilter 7.
  • the invention is not limited to this embodiment.
  • an electrode arrangement 1 according to the invention may also have only one section for a prefilter 5 or only one section for a postfilter 7.
  • the portion for the prefilter 5 and the portion for the postfilter 7 are electrically separated from each other by the portion for the main filter 3 by gaps, to be differently supplied with AC voltage and DC voltage.
  • the ions to be detected according to the set mass arrive at a multipole in operation, e.g. through the field of a pre-filter 5, where initially only AC voltage is applied, in the field of the main filter 3, where the DC voltage is added.
  • the prefilter 5 ensures that the ions enter the field of the main filter 3 in a more stable state, whereby a better focusing of the ions is possible.
  • the pre and post filters 5, 7 therefore work much like lenses.
  • the ions are filtered according to their mass-to-charge ratios, whereby ions which do not correspond to the desired mass and are thus to be sorted out are attracted by the DC-charged electrodes and collide with the electrode electrode. Arrangement 1 are neutralized.
  • the ions which are to be counted and which are to hit the detector for this purpose are prevented from being defocused by an abruptly breaking off field at the end of the main filter 3 by the postfilter 7.
  • DC voltage and AC voltage are gradually attenuated or the DC voltage completely switched off to achieve an even higher focus.
  • a post filter 7 is used in cases where further ion optical components are provided.
  • Fig. 2 shows a schematic representation of the process steps S1 to S5 for the preparation of an electrode assembly 1 with a prefilter 5.
  • Postfilter 7 can be prepared in an analogous manner.
  • an unprocessed electrode blank 9a is shown. This is preferably made of metal, in particular the metals Invar or Vacon come into question.
  • the electrode blank 9 is manufactured as a round rod. Alternatively, however, the electrode blank 9 may also have a trapezoidal or rectangular cross-section, in which case it can then be used to guide the ions, for example around curves.
  • a recess 11 is introduced into the electrode blank 9a, for example by sawing or milling. This recess 11 does not pass through the entire electrode blank 9a, but only affects the surface.
  • the recess 11 divides the electrode blank into two sections 13a, 15a, which at the end of the manufacturing process represent the individual filters (for example main filter, prefilter).
  • an insulator 17a is applied to the electrode blank 9a, so that the insulator 17a partially or completely covers the recess 11 and the recess 11 is thus provided as a cavity in the electrode blank 9a below the insulator 17a.
  • the insulator 17a is connected to both sections 13a, 15a.
  • the connection between the insulator 17 and the electrode rod assembly 9 is non-detachable and realized by adhesive.
  • the insulator 17 is formed as a quartz.
  • the insulator 17 may also be made of ceramic.
  • the metal of the electrode blank 9 has a similar temperature expansion coefficient as the Insulator so that a permanent connection between the metal and insulator 17 is possible.
  • a gap 19 is made between the cavity and the opposite side of the electrode blank 9. Through this gap 19, the sections 13, 15 axially spaced from each other. There is thus an electrical separation between the sections 13, 15, so that the sections 13, 15 can be acted upon independently of one another with voltages.
  • the insulator 17 holds the sections 13, 15 in a constant relative position to each other during the separation process, so that a complex adjustment is eliminated.
  • the intermediate space 19 various methods are suitable. Particularly suitable for this are milling, drilling, sawing and electro-erosion. When sawing, it is preferred to use a wire saw or a saw wire, which may be e.g. can be occupied at short intervals with diamond segments. This method opens up the possibility of making the gap flexible and e.g. also to introduce corners. Particularly preferably, the production of the intermediate space 19 can be done by means of wire erosion cutting. The recess 11 prevents that e.g. the eroding wire comes in contact with the insulator 17 in the separation of the electrode blank 9, the two sections 13, 15.
  • a continuous section of the intermediate space 19 is necessary in order to be able to connect the two sections 13 and 15 of the electrode blank 9 separately from one another.
  • the first portion 13a may be regarded as a later part of the pre-filter 5 and the second portion 15a as a later part of the main filter 3.
  • the first section 13a corresponds to the main filter 3 and the second section 15a corresponds to the postfilter 7.
  • the separation of the two sections 13, 15 through the recess 11 and the gap 19 is formed such that no normal to the longitudinal axis of the electrode blank 9, a visual axis to the insulator 17 forms.
  • This has the advantage that the ions can not come into contact with the insulator 17 and thus no surface charging of the insulator 17 by the ions can take place. A surface charge of the insulator 17 would adversely affect the field geometry.
  • the gap 19a for the latter training on angled or is formed like a staircase.
  • the exit point 21 of the intermediate space 19a from the electrode blank 9a is preferably offset from the transition 23 between the recess 11 and the intermediate space 19a.
  • this offset is formed in the transition from prefilter to main filter in the direction of flight of the ions, i. the exit point 21 is closer to the main filter 3.
  • a sawing wire or a wire saw or the method of electroerosion are used for the cutting of angled or for the step-like training, as this very flexible cuts are possible.
  • a step S5 at least one carrier element 25a is connected to the insulator 17a.
  • the connection between the insulator 17 and the carrier element 25 is preferably carried out by gluing.
  • a further processed electrode blank 9 is preferably arranged on the carrier element 25, which is preferably formed semicircular in cross-section in cross-section.
  • the electrode blanks 9 are processed together with the carrier elements 25.
  • the common processing is preferably done by grinding, in particular by a grindstone.
  • the cross sections of the electrode blanks 9 thereby each receive a circular section and a non-circular, in particular substantially hyperbolic, section.
  • the end portions of the support members 25 are simultaneously formed convex and concave to achieve later centering with another support member 25, a self-centering.
  • Fig. 3 shows an alternative embodiment of step S4, in particular from the gap 19a Fig. 2 ,
  • the gap 19b is formed such that it has an oblique section. Again, it is advantageous if - at least at the transition between pre-filter and main filter - the exit point 21 of the intermediate space 19b from the electrode blank 9b closer to the main filter 3 as the transition 23 between the recess 11 and the gap 19b.
  • Fig. 4 shows a cross-sectional view of step S3, wherein the viewer looks directly into the recess 11.
  • the upper part of the electrode blank 9c is removed for the formation of the recess 11.
  • the insulator 17c is applied over the recess 11, so that the recess 11 is at least partially covered by the insulator 17c.
  • the gap 19c (not shown here) is then produced, for example, by wire erosion between the later exit point 21 and the cavity of the recess 11.
  • Fig. 5 shows a schematic view of the electrode blank 9d.
  • the direction of flight 27 of the ions 29 is in the longitudinal direction, that is parallel to the longitudinal axis 31 of the electrode blank 9, fixed.
  • the longitudinal axis 31 is arranged on the side of the electrode blank 9, which is opposite to the side on which the insulator 17 is applied.
  • No normal 33 to the longitudinal axis 31 of the electrode blank 9 represents a visual axis to the insulator 17 is in particular this is ensured by the angulations and by the offset of the entry and exit points 21, 23 of the intermediate space 19d into and out of the electrode blank 9d. This measure completely or at least partially prevents the ions 29 from electrostatically charging the surface of the insulator 17d and thereby changing the field geometry.
  • Fig. 6 Figure 4 shows alternative embodiments A, B and C from step S4 Fig. 2
  • Fig. 6A shows a recess 34, which is introduced into the insulator 17e instead of in the electrode blank 9e.
  • the recess 11, 34 may be present both in the electrode blank 9f as well as in the insulator 17f.
  • the recess 11, 34 respectively prevents the separating tool from coming into contact with the insulator 17f when the electrode blank 9f is separated into the two sections 13f, 15f. This is particularly important when the gap 19f is introduced by electroerosion in the electrode blank 9f.
  • the insulator 17g and the electrode blank 9g without recess 11, 34 be configured.
  • Fig. 7 shows an alternative embodiment of the product according to the invention. Shown there are several short insulators 17h 'to 17h “", wherein in each case two of the insulators 17h' to 17h “" on a portion 13h, 15h are arranged.
  • the use of a plurality of insulators 17h 'to 17h “", in particular by the arrangement in the outer regions of the sections 13h, 15h, increases the stability of the electrode assembly 1.
  • the carrier element 25h is connected to the insulators 17h' to 17h ", wherein the two sections 13h, 15h are thereby held by the carrier element 25h in a constant relative position to each other.
  • the gap 19h is formed in this case staircase also in this case, so that there is no visual axis to the support member 25h here.
  • the insulators 17h 'to 17h "" may also have different lengths.
  • Fig. 8 shows a further alternative embodiment, wherein in each case one long insulator 17i ', 17i "is arranged on each of the sections 13i, 15i, and such a design increases as the use of several short insulators 17h' through 17h""in FIG Fig. 7 , the stability of the electrode assembly 1.
  • Fig. 9 shows a further alternative embodiment, wherein a long insulator 17j interconnects both sections 13j, 15j.
  • the support member 25 no longer holds the portions 13j, 15j together and in a constant relative position to each other but the insulator 17j placed over the gap 19j.
  • Fig. 10 shows an electrode device 35 which is composed of two electrode assemblies 1.
  • the electrode assemblies 1 each have a carrier element 25, wherein the end portions 37 of the carrier elements 25 are convex and concave and with the other carrier element 25 fit into each other.
  • the electrode blanks 9 are each attached to the inside of the support elements 25 by insulators 17 to the support elements 25.
  • the electrode assemblies 1 are preferably machined prior to assembly to the electrode device 35, in particular ground, so that the electrode blanks 9 each have a circular portion and a substantially hyperbolic portion (not shown here) and the support member 25, the convex and concave shaped end portions 37 receives.
  • the support members 25 may either be extended over almost the entire length of the electrode blanks 9, or may be arranged as ring-like elements at individual positions.
  • the electrode device 35 is fixed by means of the carrier elements 25 in the mass spectrometer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Tubes For Measurement (AREA)

Description

  • Die Erfindung betrifft ein Verfahren nach Anspruch 1 zur Herstellung einer Elektroden-Vorrichtung, insbesondere eines Multipols, für die Verwendung in einem Massenspektrometer, wobei die Elektroden-Vorrichtung mindestens einen Hauptfilter und mindestens einen Pre- und/oder Postfilter umfasst. Die Erfindung betrifft weiterhin eine derartige Elektroden-Vorrichtung nach Anspruch 6, sowie ein Massenspektrometer mit einer solchen mehrpoligen Elektroden-Vorrichtung nach Anspruch 11.
  • Mehrpolige Elektrodenanordnungen zur Charakterisierung von chemischen Verbindungen sind im Stand der Technik, beispielsweise aus der deutschen Patentschrift 944900 bekannt. Derartige Multipol-Massenfilter funktionieren ohne ein Magnetfeld. Ein Quadrupol z.B. umfasst vier Metallstäbe, die als Elektroden dienen und auf einem Kreis mit Radius R0 angeordnet sind. Die Spannung an den Elektroden setzt sich aus einer hochfrequenten Wechselspannung und einer Gleichspannung zusammen, wobei die jeweils gegenüberliegenden Paare der Elektroden eine um 180° phasenverschobene Hochfrequenz-Spannung aufweisen. Die zu trennenden Ionen werden als feiner Ionenstrahl in Längsrichtung der Elektroden in das Feld geschossen. Durch die anliegenden Wechsel- und Gleichspannungen werden die Ionen auf definierten Flugbahnen durch das Massenfilter bewegt. Außerhalb stabiler Randbedingungen kollidieren die Ionen mit den Elektroden, wobei sie neutralisiert werden. Dies führt dazu, dass diese neutralisierten Ionen nicht mehr bis zum Detektor gelangen.
  • Die an den Elektroden angelegte Spannung ist linear zur nachgewiesenen Ionenmasse, weshalb für das Durchfahren des Massebereichs, also für die Einstellung der gewünschten zu detektierenden Masse, eine proportionale Änderung von Wechselspannung und Gleichspannung vorzunehmen ist. Eine Änderung der Auflösung kann durch die Veränderung der Spannungsverhältnisse bewirkt werden. Insbesondere spielt dabei ein Stabilitätsdiagramm eine Rolle, welches nach den Differenzialgleichungen von Mathieu berechnet wird. Ein guter Überblick über die Funktionsweise eines Quadrupols inklusive Erklärung des Stabilitätsdiagramms ist zu finden in Miller & Denton, 1986, "The Quadrupole Mass Filter: Basic Operating Concepts", Journal of Chemical Education, Volume 63, No. 7, Seiten 617 bis 623.
  • Bei der Messung mit einem Multipol ist insbesondere die Ausrichtung der Elektroden zueinander wichtig, da diese hochpräzise ausgeführt sein muss. Ein Herstellungsverfahren für diese hochpräzise Ausrichtung ist z.B. aus DE 10 2004 054 835 A1 bekannt. Trotzdem bleibt das Problem, dass Randbereiche der Elektroden instabilere Zonen für Ionen darstellen und so zu einer Defokussierung beitragen. Dieser Effekt wurde insbesondere untersucht von Dawson, 1971, "Fringing Fields In The Quadrupole Mass Filter", International Journal of Mass Spectrometry and Ion Physics, Volume 6, Seiten 33 bis 44. Dawson unternahm Simulationen auf Grundlage der Erkenntnisse von Brubaker, welcher erstmalig Pre- und Postfilter vorschlug. Pre- und Postfilter fungieren als Vor- bzw. Nachstufe des Hauptfilters, indem nur eine abgeschwächte Wechselspannung beaufschlagt wird. Das Feld beginnt bzw. endet dadurch für die Ionen nicht abrupt, sondern die Ionen werden langsam in das Feld herein- bzw. herausgeführt. Deshalb erreichen die Ionen eine höhere Stabilität und somit eine bessere Fokussierung. Die Pre- und Postfilter funktionieren damit ähnlich wie Linsen.
  • Bei der Umsetzung von Pre- und Postfiltern in der praktischen Anwendung ist die hochpräzise Ausrichtung der Elektroden zueinander (z.B. Prefilter zu Hauptfilter) zu berücksichtigen, da schon kleine Ungenauigkeiten zu Feldstörungen führen können. In DE 22 15 763 z.B. ist die Umsetzung von Pre- und Postfiltern zwar gezeigt. Jedoch muss hier für die hochgenaue Ausrichtung der Filter zueinander ein großer Aufwand mit hohen Kosten getrieben werden.
  • US 2004/0 245 460 A1 zeigt die Herstellung von Modulen, die zu einem Multipol zusammengesetzt werden können. Die einzelnen Module weisen jeweils ein Trägerelement, einen Isolator und ein oder mehrere Elektroden auf. Die Elektroden können in mehrere Segmente geteilt sein, welche unterschiedlich mit Spannung beaufschlagt werden können. Die Elektroden sind zudem bearbeitet, so dass sie z.B. eine hyperbolische Oberfläche aufweisen. Der Stand der Technik gemäß US 2004/0 245 460 A1 hat den Nachteil, dass beim Trennen in die einzelnen Segmente das Trennwerkzeug mit dem Isolator in Kontakt kommt, wodurch das Trennwerkzeug und/oder der Isolator beschädigt wird.
  • Die Aufgabe der Erfindung ist es somit, das Herstellungsverfahren für Elektrodenvorrichtungen mit Pre- und/oder Postfiltern zu verbessern und eine daraus resultierende Elektrodenvorrichtung bereitzustellen.
  • Die Erfindung löst diese Aufgabe, indem sie ein Herstellungsverfahren für eine Elektroden-Vorrichtung mit Pre- und/oder Postfilter aufzeigt und eine Elektroden-Vorrichtung mit Pre- und/oder Postfilter als Erzeugnis bereitstellt. Die Elektroden-Vorrichtung umfasst dabei mehrere Elektroden-Anordnungen, die zu der Elektroden-Vorrichtung zusammengefügt werden können. Eine Elektroden-Anordnung weist eine oder mehrere Elektroden auf. Die Elektroden werden dabei jeweils aus einem Elektroden-Rohling gefertigt, welcher bevorzugt Metall aufweist. Besonders bevorzugt besteht der Elektroden-Rohling aus Vollmaterial. Der Elektroden-Rohling ist bevorzugt stabförmig ausgebildet und weist insbesondere einen runden Querschnitt auf. Der Rohling kann z.B. als Rundstab ausgebildet sein. Aus diesem Elektroden-Rohling werden der Hauptfilter, ein oder mehrere Prefilter und/oder ein oder mehrere Postfilter hergestellt. Das Herstellungsverfahren umfasst dabei mehrere Schritte, welche so oft wiederholt werden, bis die vorgesehene Anzahl von Pre- und/oder Postfiltern erreicht ist. Alternativ kann der Elektroden-Rohling auch z.B. einen trapezförmigen oder rechteckförmigen Querschnitt aufweisen und somit z.B. zur Ionenführung oder zum Ionentransfer dienen.
  • Der Begriff der Pre- und Postfilter schließt ein, dass die Pre- und Postfilter auch Linsen sein können bzw. linsenartig funktionieren können, da sie bevorzugt die Ionen fokussieren, um diese mit einem gebündelten Strahl in den Hauptfilter eintreten zu lassen. Es findet in diesem Fall also im Gegensatz zum Hauptfilter keine Filterung im eigentlichen Sinne statt, d.h. es werden wenig oder keine Ionen neutralisiert. Ob die Pre- und/oder Postfilter nur fokussierend wirken oder auch Ionen neutralisieren, hängt auch davon ab, ob und wie die Pre- und/oder Postfilter mit Gleichspannung beaufschlagt werden. Beide Möglichkeiten können mit der vorliegenden Erfindung realisiert werden.
  • Zur Herstellung einer Elektroden-Anordnung wird jeder Elektroden-Rohling mit Haltemitteln verbunden. Für eine Elektroden-Vorrichtung als Quadrupol z.B., umfasst die Elektroden-Vorrichtung vier Elektroden-Rohlinge, wobei die Elektroden-Rohlinge auf mehrere Elektroden-Anordnungen aufgeteilt sind. Z.B. umfasst eine Elektroden-Anordnung jeweils zwei Elektroden-Rohlinge. Alternativ umfasst eine der Elektroden-Anordnungen nur einen Elektroden-Rohling und die andere Elektroden-Anordnung drei Elektroden-Rohlinge. Auch kann sich die Elektroden-Vorrichtung z.B. aus vier einzelnen Elektroden-Anordnungen zusammensetzen, die jeweils einen Elektroden-Rohling aufweisen.
  • Bevorzugt sind die Haltemittel derart ausgebildet, dass sie wie eine Vorrichtung die Elektrodenstab-Anordnungen halten können. Sie können dann auch als Haltevorrichtung bezeichnet werden.
  • Erfindungsgemäß weisen die Haltemittel mindestens ein Trägerelement auf, wobei jeder Elektroden-Rohling mit dem einen oder den mehreren Trägerelementen verbunden wird. Insbesondere erfolgt die Befestigung mittelbar durch Zwischenschaltung eines oder mehrerer Isolatoren. Durch die Haltemittel, insbesondere die Trägerelemente, können die Elektroden-Anordnungen miteinander verbunden und zu einer Elektroden-Vorrichtung zusammengefügt werden.
  • Die Haltemittel sind somit als Trägerelement bzw. Trägerelemente und mindestens ein Isolator ausgebildet.
  • In einem weiteren Schritt wird jeder Elektroden-Rohling in zwei Abschnitte getrennt, wobei die Abschnitte mittels eines Zwischenraumes axial voneinander beabstandet sind. Der Zwischenraum erstreckt sich damit durch den gesamten Elektroden-Rohling und trennt die zwei Abschnitte elektrisch voneinander, wodurch die einzelnen Abschnitte unabhängig voneinander mit Spannung beaufschlagt werden können. Die Abschnitte werden während und nach dem Trennen durch die Haltemittel in einer gleichbleibenden relativen Position bzw. in einer gleichbleibenden Relativposition zueinander gehalten. Jeder der Abschnitte wird zusammen mit den Abschnitten der anderen Elektroden-Rohlinge in der fertigen Elektroden-Vorrichtung als Filter eingesetzt. Z.B. bilden mehrere erste Abschnitte ein Prefilter und mehrere zweite Abschnitte ein Hauptfilter. Ein "Set" aus Filterabschnitten (z.B. ein erster und ein zweiter Abschnitt für Pre- und Hauptfilter) wird somit aus einem einzigen Elektroden-Rohling gefertigt, wobei die Haltemittel die Abschnitte zu jedem Zeitpunkt derart zueinander in Position halten, dass sich die Relativposition zwischen den Abschnitten nicht verändert. Dieses Verfahren hat den Vorteil, dass die Trennung zwischen einem Pre- bzw. Postfilter und dem Hauptfilter erst dann erfolgt, wenn durch die Haltemittel die beiden Abschnitte fest miteinander verbunden sind. Eine Verschiebung der Abschnitte gegeneinander und eine erneute Ausrichtung entfällt somit und erspart zusätzlichen Aufwand. Durch die exakte Positionierung der Elektroden wird die analytische Messgenauigkeit erhöht.
  • Dieser Trennschritt, also das Trennen des Elektroden-Rohlings in zwei Abschnitte, wird so oft durchgeführt, wie es der vorgesehenen Anzahl der Pre- und/oder Postfilter entspricht. Die Anzahl der Elektroden-Rohlinge entspricht dabei der Anzahl der gewünschten Elektroden. Wenn z.B. ein Prefilter und ein Postfilter vorgesehen sind, werden die Elektroden-Rohlinge zweimal in jeweils zwei Abschnitte getrennt, so dass bei jedem Elektroden-Rohling insgesamt drei Abschnitte entstehen, welche jeweils mit einem Zwischenraum axial voneinander beabstandet sind und von den Haltemitteln in einer gleichbleibenden relativen Position zueinander gehalten werden. Die insgesamt drei Abschnitte werden dann zusammen mit den Abschnitten der anderen Elektroden-Rohlinge als Prefilter, Hauptfilter und Postfilter eingesetzt. Die mehreren Elektroden-Anordnungen werden in einem weiteren Schritt durch Verbinden der Haltemittel zu der Elektroden-Vorrichtung zusammengefügt.
  • Erfindungsgemäß umfassen die Haltemittel mindestens ein Trägerelement, insbesondere ein einziges Trägerelement, und Isolatormittel, die mindestens einen Isolator aufweisen. Der Isolator bzw. die Isolatoren, also nicht-leitendes Material, umfassen bevorzugt Quarz oder Keramik, wobei im Falle, dass die Isolatormittel vollständig aus Quarz bestehen, das Material des Elektroden-Rohlings bevorzugt aus der (beispielsweise unter der Marke "Invar" vertriebenen) Legierung mit der Werkstoffnummer 1.3912 (Deutscher Stahlschlüssel) ist. Im Falle, dass die Isolatormittel aus Keramik bestehen, ist das Metall des Elektroden-Rohlings bevorzugt eine Einschmelzlegierung auf Eisen-Nickel-Kobalt-Basis, beispielsweise als die (unter der Marke "Vacon" vertriebene) Legierung mit der Werkstoffnummer 1.3981 (Deutscher Stahlschlüssel) bzw. als die unter der Bezeichnung Vacon 11 oder Vacon 11 T erhältliche Legierung.
  • Die Isolatormittel werden erfindungsgemäß mit dem Elektroden-Rohling verbunden, wobei diese Verbindung lösbar oder nicht lösbar gestaltet sein kann. Vorzugsweise wird der Isolator bzw. werden die Isolatoren mit einem Kleber, durch Schrauben oder durch Löten auf den Elektroden-Rohling aufgebracht. Es ist jedoch z.B. auch möglich, die Isolatormittel, insbesondere, wenn sie aus Keramik bestehen, auf den Elektroden-Rohling aufzusintern. Das Metall der Elektrode und die Isolatoren haben vorzugsweise einen ähnlichen Temperaturausdehnungskoeffizienten, so dass eine dauerhafte Verbindung zwischen Metall und Isolator gewährleistet ist.
  • Das Trägerelement wird erfindungsgemäß mit mindestens einem Isolator der Isolatormittel verbunden. Umfassen die Isolatormittel mehrere Isolatoren, wird das Trägerelement mit mindestens einem dieser Isolatoren verbunden. Umfassen die Isolatormittel nur einen Isolator, wird das Trägerelement mit genau diesem Isolator verbunden. Das Trägerelement, welches vorzugsweise im Querschnitt eine halbkreisbogenartige Form aufweist, ist vorzugsweise aus dem gleichen Material wie der Elektroden-Rohling gefertigt. Das Trägerelement und der Isolator bzw. die Isolatoren sind vorzugsweise lösbar oder nicht-lösbar miteinander verbunden. Bevorzugt wird die Verbindung durch Kleben mittels eines Klebstoffes, durch Löten, durch Schrauben oder durch Sintern geschaffen. Besonders bevorzugt wird der Isolator durch Kleben mit dem Trägerelement verbunden und so eine dauerhafte Verbindung hergestellt.
  • Erfindungsgemäß ist mindestens ein Isolator der Isolatormittel mit beiden Abschnitten verbunden und hält dadurch die Abschnitte in der gleichbleibenden relativen Position zueinander. Weisen die Isolatormittel mehrere Isolatoren auf, ist somit mindestens einer der Isolatoren und/oder das Trägerelement mit beiden Abschnitten verbunden. Umfassen die Isolatormittel nur einen Isolator, ist dieser eine Isolator und/oder das Trägerelement mit beiden Abschnitten verbunden. Der Isolator wirkt isolierend zwischen dem Elektroden-Rohling und dem Trägerelement, so dass Elektroden-Rohling und Trägerelement z.B. auch aus dem gleichen Material bestehen können.
  • Die Isolatormittel können z.B. mehrere kurze Isolatoren aufweisen, einen langen Isolator oder eine Kombination von diesen beiden Lösungen. Dabei ist der Isolator bzw. sind die Isolatoren derart ausgebildet bzw. positioniert, dass eine stabile Verbindung zwischen den beiden Abschnitten besteht. Ein langer Isolator kann z.B. auf dem Elektroden-Rohling positioniert werden, so dass er mit beiden Abschnitten verbunden ist. Auf dem Isolator wird dann das Trägerelement positioniert.
  • Erfindungsgemäß halten die Isolatormittel, insbesondere ein Isolator der Isolatormittel, die Abschnitte in der gleichbleibenden relativen Position zueinander. Der Elektroden-Rohling und/oder der Isolator wird dann mit einer Ausnehmung versehen. Die Ausnehmung bzw. die Ausnehmungen sind dabei derart angeordnet, dass sie zwischen dem Isolator und dem Zwischenraum liegen und der Zwischenraum mit der Ausnehmung bzw. den Ausnehmungen verbunden ist. Der Zwischenraum verläuft somit zwischen dem Hohlraum der Ausnehmung und der Seite des Elektroden-Rohlings, die dem Hohlraum der Ausnehmung gegenüber liegt. Das Versehen des Isolators oder des Elektroden-Rohlings mit einer Ausnehmung hat den Vorteil, dass der Isolator, welcher über der Trennstelle des Zwischenraumes liegt, nicht in Kontakt mit dem Trennwerkzeug kommt.
  • Vorzugsweise sind auf einem Trägerelement zwei Elektroden-Rohlinge aufgebracht, welche jeweils in verschiedene Filter unterteilt werden. Z.B. umfasst eine solche Anordnung zwei Abschnitte, aus denen Hauptfilter werden sollen und zwei Abschnitte, aus denen Prefilter werden sollen, wobei immer ein Hauptfilter-Abschnitt und ein Prefilter-Abschnitt durch einen Isolator miteinander verbunden sind.
  • Die Reihenfolge der o.g. Schritte kann variiert werden. Z.B. wird zunächst eine Ausnehmung in den Elektroden-Rohling eingebracht, welche den Elektroden-Rohling in zwei Abschnitte gliedert. Anschließend wird ein Isolator über der Ausnehmung positioniert und mit beiden Abschnitten verbunden. Beim anschließenden Trennen der beiden Abschnitte durch einen Zwischenraum werden diese Abschnitte durch den Isolator in einer gleichbleibenden Relativposition zueinander gehalten. Danach wird ein Trägerelement mit dem Isolator verbunden, um in einem weiteren Schritt mit einem weiteren Trägerelement zu einer Elektroden-Vorrichtung zusammengefügt zu werden.
  • In einer bevorzugten Ausführungsform ist der Zwischenraum derart ausgebildet, dass die Präsenz eines Isolators und/oder eines Trägerelements, die über dem Zwischenraum positioniert sind, durch diesen Zwischenraum keinen Einfluss auf die Feldgeometrie des Multipols haben und somit die Flugbahn von Ionen nicht beeinflussen.
  • Die Flugbahn der Ionen bzw. die Hauptbewegungsrichtung der Ionen bei Vernachlässigung ihrer Kreisbewegung, ist längs zum Elektroden-Rohling angeordnet, nämlich insbesondere auf der Seite des Elektroden-Rohlings, die der mit den Isolatormitteln bestückten Seite des Elektroden-Rohlings gegenüber liegt. Die Flugbahn der Ionen entspricht somit im Wesentlichen einer Längsachse zum Elektroden-Rohling, welche nach den o.g. Kriterien, insbesondere auf der gegenüberliegenden Seite der Isolatormittel, angeordnet ist. Um die Beeinflussung der Feldgeometrie zu vermeiden, bildet vorteilhafterweise keine Normale zu dieser Längsachse, eine Sichtachse zu den Isolatormitteln und/oder dem Trägerelement. Eine Normale ist in diesem Zusammenhang eine Achse, die im 90°-Winkel zu der Längsachse steht.
  • Vorteilhafterweise weist der Zwischenraum dafür z.B. Verwinkelungen auf bzw. ist treppenartig oder schräg ausgebildet und/oder der Ein- und Austrittspunkt des Zwischenraumes aus dem Rohling sind gegeneinander versetzt. Insbesondere eine Ausbildung mit Verwinkelungen bzw. eine stufenartige Ausbildung verhindert, dass der sog. "needle-point effect" die Feldgeometrie stört. Besonders bevorzugt weist der Zwischenraum Verwinkelungen auf und der Ein- und Austrittspunkt des Zwischenraumes aus dem Rohling sind gegeneinander versetzt.
  • Eine solche Anordnung hat den Vorteil, dass die Wahrscheinlichkeit, dass die Ionen durch den Zwischenraum zum Isolator gelangen, stark reduziert wird. Die Ionen können somit keinen direkten Kontakt zu der Oberfläche des Isolators aufbauen. Daher können die Ionen nicht mit der Oberfläche des Isolators reagieren, weshalb auch keine elektrostatische Ladung dieser Oberfläche durch die Ionen stattfinden kann. Bei einer solchen Aufladung würde das Ion nämlich ein Elektron des Isolators aufnehmen und wäre damit neutralisiert. Der Isolator hingegen wäre positiv geladen, was die Feldgeometrie verändern würde. Ein verändertes elektrisches Feld würde die Flugbahn der weiteren Ionen beeinflussen.
  • Der Schnitt des Zwischenraumes beginnt z.B. an der Ausnehmung und ist in Richtung der gegenüberliegenden Seite des Rohlings weitergeführt. Der erste Abschnitt ist somit quer zur Längsachse des Rohlings ausgebildet, ein zweiter Abschnitt längs zur Längsachse, woraufhin ein weiterer Abschnitt folgt, der wieder quer zur Längsachse ausgerichtet ist. Natürlich können weitere Verwinkelungen durch weitere längs und quer zur Längsrichtung verlaufende Abschnitte in die Ausgestaltung des Zwischenraumes eingebaut werden.
  • Weiterhin bevorzugt sind der Übergang von der Ausnehmung zum Zwischenraum und der Austrittspunkt des Zwischenraumes aus dem Elektroden-Rohling gegeneinander versetzt, wobei insbesondere zwischen einem Prefilter und einem Hauptfilter der Austrittspunkt des Zwischenraumes aus dem Elektroden-Rohling bevorzugt in Flugrichtung der Ionen versetzt ist. Dadurch wird verhindert, dass durch eine Oberflächenaufladung des Isolators ein undefiniertes elektrisches Feld entsteht, was die Flugbahn der weiteren Ionen beeinflussen würde.
  • Der Versatz zwischen Ein- und Austrittspunkt des Zwischenraumes in bzw. aus dem Elektroden-Rohling kann bei dem Übergang zwischen Hauptfilter und Postfilter spiegelverkehrt zum Übergang zwischen Prefilter und Hauptfilter aufgebaut sein, oder in gleicher Weise, also nicht spiegelverkehrt, ausgebildet sein. Ein spiegelverkehrter Aufbau hat den Vorteil, dass der Hauptfilter dadurch symmetrisch ausgebildet ist. Dies hat ein homogeneres Feld zur Folge, was weniger Störeinflüsse für die Ionen bedeutet. Ein gleichartiger Aufbau hingegen könnte auch beim Übergang zwischen Hauptfilter und Postflter den Vorteil nutzen, dass die Wahrscheinlichkeit, dass die Ionen zum Isolator gelangen, noch geringer gehalten wird, da der Austrittspunkt des Zwischenraumes aus dem Elektroden-Rohling in Flugrichtung versetzt ist.
  • In einer bevorzugten Ausführungsform werden als weiterer Schritt die Abschnitte des Elektroden-Rohlings zeitgleich zusammen mit dem Trägerelement derart bearbeitet, dass Konturen des Rohlings und des Trägerelements geschliffen werden. Das Bearbeiten wird nämlich vorzugsweise durch Beschleifen durchgeführt, insbesondere durch die Benutzung von einem Schleifstein. Die einzelnen Abschnitte des Elektroden-Rohlings werden dabei vorzugsweise in Längsrichtung abgeschliffen, so dass im Querschnitt des Elektroden-Rohlings ein kreisförmiger und ein nicht-kreisförmiger, insbesondere im Wesentlichen hyperbolischer, Abschnitt entsteht. Dies hat den Vorteil, dass eine bessere Feldgeometrie ausgebildet wird, was zu einer exakteren Messung führt. Die gemeinsame Bearbeitung von Elektroden-Rohling und Trägerelement durch z.B. Beschleifen kann zeitlich auch vor dem Trennen des Elektroden-Rohlings in die zwei Abschnitte erfolgen. Bevorzugt wird die Bearbeitung jedoch nach dem Trennschnitt ausgeführt. Alternativ kann die Bearbeitung der Elektroden-Rohlinge auch entfallen, z.B. um Kosten zu sparen.
  • Die Endabschnitte der Trägerelemente werden durch die Bearbeitung konvex und konkav ausgebildet, so dass sie sich später beim paarweisen Zusammenfügen der Trägerelemente selbst zentrieren. Eine solche Vorgehensweise hat den Vorteil, dass eine sehr präzise Ausrichtung der Elektroden zueinander gewährleistet ist und somit die Elektroden nach dem Schleifen nicht mehr justiert werden müssen. Insbesondere resultiert diese Vorgehensweise in einer Genauigkeit der Elektrodenoberflächen zueinander von < 1 µm.
  • Durch das Bearbeiten der einzelnen Abschnitte wird jeder Abschnitt zu einer Elektrode. Jede dieser Elektroden weist durch die Bearbeitung im Querschnitt einen kreisförmigen Abschnitt und einen im Wesentlichen hyperbolischen Abschnitt auf. Die jeweils gleichartig bearbeiteten Abschnitte aller vorgesehenen Elektroden-Rohlinge bilden insbesondere nach Zusammenfügen zu der Elektroden-Vorrichtung die einzelnen Filter, wie z.B. Prefilter und Hauptfilter.
  • In einer bevorzugten Ausführungsform wird die Ausnehmung in den Elektroden-Rohling durch ein spanendes oder nicht-spanendes (abtragendes) Fertigungsverfahren eingebracht. Spanende Verfahren können z.B. Fräsen, Sägen, Hobeln, Schleifen oder Bohren sein. Nicht-spanende bzw. abtragende Verfahren können z.B. durch chemische oder thermische Abtragung ausgeführt werden. So zählt auch die Methode der Elektroerosion, das Ätzen, Laserschneiden oder Wasserstrahlschneiden dazu. Vorzugsweise wird die Ausnehmung durch ein spanendes Verfahren in den Elektroden-Rohling eingebracht. Insbesondere wird die Ausnehmung in den Elektroden-Rohling gesägt. Alternativ kann die Ausnehmung auch bei der Herstellung des Rohlings durch Gießen eingebracht werden.
  • In einer bevorzugten Ausführungsform wird der Zwischenraum, welcher die Abschnitte des Elektroden-Rohlings voneinander trennt, durch ein spanendes und/oder nicht-spanendes Fertigungsverfahren hergestellt. Insbesondere wird bei einem spanenden Verfahren der Zwischenraum in den Elektroden-Rohling geschliffen, gefräst oder gesägt, z.B. mit einer Seilsäge. Alternativ wird bei nichtspanenden Fertigungsverfahren der Zwischenraum mittels Elektroerosion, Ätzen, Laserschneiden oder Wasserstrahlschneiden hergestellt. Insbesondere erfolgt die Herstellung des Zwischenraumes mittels Drahterosion. Die Nutzung von Draht- bzw. Elektroerosion hat den Vorteil, dass im Wesentlichen keine mechanischen Spannungen in den Bauteilen erzeugt werden und eine sehr genaue Abtragung des Metalls möglich ist. Dadurch, dass zunächst die Ausnehmung eingebracht wird, wird verhindert, dass bei Herstellung des Zwischenraumes das Werkzeug, z.B. der erodierende Draht, in Kontakt mit dem Isolator kommt. Der Isolator hält beide Abschnitte während und nach der Trennung zusammen und wirkt als Isolator zwischen Elektrode und Trägerelement.
  • Eine Trennung zwischen Pre- bzw. Postfilter und Hauptfilter ist notwendig, um die verschiedenen Abschnitte unterschiedlich mit Wechselspannung und Gleichspannung beaufschlagen zu können. Der Pre- bzw. Postfilter wird vorzugsweise nur mit einer Wechselspannung beaufschlagt. Trotz dieser Trennung zwischen Pre- bzw. Postfilter und Hauptfilter ergibt sich aus der vorliegenden Erfindung eine Elektrode bzw. eine Elektroden-Vorrichtung, an der keine Nachjustierung zwischen den verschiedenen Abschnitten notwendig ist, da ein Isolator oder das Trägerelement während der Trennung des Elektroden-Rohlings beide Abschnitte des Elektroden-Rohlings zusammenhält.
  • Die Erfindung zeigt somit ein effektives Verfahren zur Herstellung einer Elektroden-Vorrichtung mit Pre- und/oder Postfiltern, wobei die Elektroden hochpräzise ausgerichtet sind, insbesondere in Bezug auf die Filterabschnitte zueinander und auf die Abstände zu den anderen Elektroden des Multipols. Die aus dem erfindungsgemäßen Verfahren resultierende Elektroden-Vorrichtung weist extrem gerade Elektrodenstäbe auf, die eine sehr hohe Parallelität zueinander haben. Somit ist nun auch eine mehrpolige Elektroden-Vorrichtung mit Pre- und/oder Postfiltern möglich, welche hochgenau arbeitet und eine starke Verbesserung zum Stand der Technik darstellt. Insbesondere bietet das Messverfahren dank der Erfindung durch bessere Bündelung bzw. Fokussierung des lonenstrahls eine höhere Transmissionsrate der Ionen und eine höhere Auflösung.
  • Das Erzeugnis aus dem erfindungsgemäßen Herstellungsverfahren, nämlich eine sehr genau arbeitende Elektroden-Vorrichtung, weist mehrere Elektroden-Anordnungen mit folgenden Merkmalen auf: Mindestens einen Elektroden-Rohling, Haltemittel sowie einen Zwischenraum, der den Elektroden-Rohling in zwei Abschnitte trennt, so dass diese axial voneinander beabstandet sind und somit elektrisch voneinander getrennt sind. Die Haltemittel umfassen dabei Isolatormittel und ein Trägerelement, wobei zumindest Teile des Isolatormittels die beiden Abschnitte in einer gleichbleibenden Relativposition zueinander halten. Erfindungsgemäß weist zumindest ein Isolator der Isolatormittel und/oder der Elektroden-Rohling eine Ausnehmung auf. Diese Ausnehmung hat insbesondere bevorzugt eine größere Ausdehnung in Längsrichtung des Elektroden-Rohlings als der Zwischenraum. Mindestens ein Isolator der Isolatormittel ist mit dem Elektroden-Rohling und dem Trägerelement verbunden. Insbesondere sind jeweils zwei Elektroden-Rohlinge mit einem Trägerelement verbunden und sind zusammen derart bearbeitet worden, dass die Elektroden-Abschnitte jeweils einen kreisförmigen Abschnitt und einen hyperbolischen Abschnitt aufweisen und die Trägerelemente sich bei Zusammenfügen selbst justieren können, wobei sie eine Elektroden-Vorrichtung bilden.
  • Die Erfindung umfasst bevorzugt eine mehrpolige Elektroden-Vorrichtung mit mindestens zwei erfindungsgemäßen Elektroden-Anordnungen. Vorzugsweise ist die Elektroden-Vorrichtung als Multipol, insbesondere als Quadrupol, ausgebildet und besteht aus zwei erfindungsgemäßen Elektroden-Anordnungen. Die Elektroden-Anordnungen umfassen jeweils vorzugsweise zwei Abschnitte, die als Hauptfilter ausgebildet sind sowie mindestens zwei Abschnitte, die als Prefilter ausgebildet sind und/oder mindestens zwei Abschnitte, die als Postfilter ausgebildet sind. Die einzelnen Abschnitte sind dabei erfindungsgemäß angeordnet. Die Elektroden-Anordnungen werden durch die Trägerelemente miteinander verbunden, so dass sie eine Elektroden-Vorrichtung bilden. Insbesondere zentrieren sich die Trägerelemente selbst zueinander durch die beschliffenen Endabschnitte, die konvex und konkav ausgebildet sind und exakt ineinander passen.
  • Die Erfindung umfasst weiterhin ein Massenspektrometer mit einer erfindungsgemäßen Elektroden-Vorrichtung bzw. mehreren erfindungsgemäßen Elektroden-Anordnungen.
  • Weitere vorteilhafte Ausführungsformen ergeben sich aus den Unteransprüchen sowie aus den anhand der beifügten Zeichnungen näher erläuterten Ausführungsbeispielen. In den Zeichnungen zeigen:
  • Fig. 1
    eine schematische Ansicht einer Elektrode mit Pre- und Postfilter;
    Fig. 2
    eine schematische Darstellung der Verfahrensschritte S1 bis S5 zur Herstellung einer mit einem Prefilter-Abschnitt ausgestatteten Elektroden-Anordnung;
    Fig. 3
    eine alternative Ausführungsform von dem in Fig. 2 dargestellten Verfahrensschritt S4,
    Fig. 4
    eine schematische Querschnittsansicht des in Fig. 2 dargestellten Verfahrensschrittes S3,
    Fig. 5
    ein erläuterndes Schema zur Ausbildung des Zwischenraumes nach Schritt S4 der Fig. 2,
    Fig. 6-9
    mehrere alternative Ausführungsformen der Erfindung und
    Fig. 10
    eine schematische Zeichnung einer Seitenansicht einer Elektroden-Vorrichtung.
  • Gleiche Bezugsziffern in den Figuren bezeichnen gleiche Teile. Die mit zusätzlichen Buchstaben versehenen Ziffern 9, 13, 15, 17, 19 und 25, wie z.B. 17a, bezeichnen die jeweiligen Teile in dem jeweiligen Ausführungsbeispiel. Fehlt die Angabe eines Buchstabens, sind alle Ausführungsbeispiele des jeweiligen Teils gemeint. Findet sich z.B. die Angabe "Isolator 17", sind alle Ausführungsbeispiele des Isolators, nämlich 17a bis 17k, gemeint.
  • Fig. 1 zeigt eine schematisch vereinfachte Elektroden-Anordnung 1 für die Verwendung in einer mehrpoligen Elektroden-Vorrichtung, insbesondere in einem Multipol, eines Massefilters bzw. Massenspektrometers. Die Elektroden-Anordnung 1 setzt sich dabei u.a. zusammen aus einem Abschnitt für einen Hauptfilter 3, einem Abschnitt für einen Prefilter 5 und einem Abschnitt für einen Postfilter 7. Die Erfindung ist nicht auf dieses Ausführungsbeispiel beschränkt. So kann z.B. eine erfindungsgemäße Elektroden-Anordnung 1 auch nur einen Abschnitt für einen Prefilter 5 oder nur einen Abschnitt für einen Postfilter 7 aufweisen.
  • Der Abschnitt für den Prefilter 5 und der Abschnitt für den Postfilter 7 sind von dem Abschnitt für den Hauptfilter 3 durch Zwischenräume elektrisch voneinander getrennt, um unterschiedlich mit Wechselspannung und Gleichspannung beaufschlagt werden zu können. Die gemäß der eingestellten Masse zu detektierenden Ionen gelangen bei einem Multipol im Betrieb z.B. durch das Feld eines Prefilters 5, wo zunächst nur Wechselspannung anliegt, in das Feld des Hauptfilters 3, wo die Gleichspannung hinzugeschaltet wird. Der Prefilter 5 sorgt dafür, dass die Ionen in einem stabileren Zustand in das Feld des Hauptfilters 3 eintreten, wodurch eine bessere Fokussierung der Ionen möglich ist. Die Pre- und Postfilter 5, 7 arbeiten daher ähnlich wie Linsen.
  • Im Feld des Hauptfilters 3, werden die Ionen nach ihren Masse-zu-Ladungs-Verhältnissen gefiltert, wobei Ionen, die nicht der gewünschten Masse entsprechen und somit aussortiert werden sollen, von den mit Gleichspannung beaufschlagten Elektroden angezogen werden und bei Kollision mit der Elektroden-Anordnung 1 neutralisiert werden.
  • Die Ionen, die gezählt werden sollen, und dafür auf den Detektor treffen sollen, werden vor einer Defokussierung durch ein abrupt abbrechendes Feld am Ende des Hauptfilters 3 durch den Postfilter 7 bewahrt. Hier werden z.B. Gleichspannung und Wechselspannung graduell abgeschwächt oder die Gleichspannung komplett abgeschaltet, um eine noch höhere Fokussierung zu erreichen. Bevorzugt wird ein Postfilter 7 in den Fällen eingesetzt, wenn weitere ionenoptische Bauteile vorgesehen sind.
  • Fig. 2 zeigt eine schematische Darstellung der Verfahrensschritte S1 bis S5 für die Herstellung einer Elektroden-Anordnung 1 mit einem Prefilter 5. Postfilter 7 können in analoger Weise hergestellt werden. In S1 ist zunächst ein unbearbeiteter Elektroden-Rohling 9a gezeigt. Dieser besteht vorzugsweise aus Metall, wobei insbesondere die Metalle Invar oder Vacon infrage kommen. Insbesondere ist der Elektroden-Rohling 9 als Rundstab gefertigt. Alternativ kann der Elektroden-Rohling 9 jedoch auch einen trapezförmigen oder rechteckförmigen Querschnitt aufweisen, wobei er dann zur Führung der Ionen, beispielsweise um Kurven, genutzt werden kann.
  • In Schritt S2 wird, beispielsweise durch Sägen oder Fräsen, eine Ausnehmung 11 in den Elektroden-Rohling 9a eingebracht. Diese Ausnehmung 11 geht dabei nicht durch den kompletten Elektroden-Rohling 9a hindurch, sondern betrifft nur die Oberfläche. Die Ausnehmung 11 gliedert den Elektroden-Rohling in zwei Abschnitte 13a, 15a, welche am Ende des Herstellungsverfahrens die einzelnen Filter (z.B. Hauptfilter, Prefilter) darstellen.
  • In einem Schritt S3 wird ein Isolator 17a auf den Elektroden-Rohling 9a aufgebracht, so dass der Isolator 17a die Ausnehmung 11 teilweise oder komplett überdeckt und die Ausnehmung 11 somit als Hohlraum im Elektroden-Rohling 9a unter dem Isolator 17a gegeben ist. Der Isolator 17a wird dabei mit beiden Abschnitten 13a, 15a verbunden. Vorzugsweise ist die Verbindung zwischen dem Isolator 17 und der Elektrodenstab-Anordnung 9 nicht-lösbar und durch Klebstoff realisiert. Bevorzugt ist der Isolator 17 als Quarz ausgebildet. Alternativ kann der Isolator 17 auch aus Keramik bestehen. Bevorzugt weist das Metall des Elektroden-Rohlings 9 einen ähnlichen Temperaturausdehnungskoeffizienten wie der Isolator auf, so dass eine dauerhafte Verbindung zwischen Metall und Isolator 17 möglich ist.
  • In einem Schritt S4 wird ein Zwischenraum 19 zwischen dem Hohlraum und der gegenüberliegenden Seite des Elektroden-Rohlings 9 hergestellt. Durch diesen Zwischenraum 19 sind die Abschnitte 13, 15 axial voneinander beabstandet. Es besteht somit eine elektrische Trennung zwischen den Abschnitten 13, 15, so dass die Abschnitte 13, 15 unabhängig voneinander mit Spannungen beaufschlagt werden können. Der Isolator 17 hält während des Trennvorgangs die Abschnitte 13, 15 in einer gleichbleibenden relativen Position zueinander, so dass eine aufwändige Justierung entfällt.
  • Für die Ausbildung des Zwischenraumes 19 sind verschiedene Methoden geeignet. Insbesondere infrage dafür kommen Fräsen, Bohren, Sägen und Elektroerosion. Bevorzugt wird beim Sägen eine Seilsäge oder ein Sägedraht genutzt, der z.B. in kurzen Abständen mit Diamant-Segmenten besetzt sein kann. Dieses Verfahren eröffnet die Möglichkeit, den Zwischenraum flexibel zu gestalten und z.B. auch Ecken einzubringen. Besonders bevorzugt kann die Herstellung des Zwischenraumes 19 mittels Drahterosionschneiden geschehen. Die Ausnehmung 11 verhindert dabei, dass z.B. der erodierende Draht bei der Trennung des Elektroden-Rohlings 9 die zwei Abschnitte 13, 15 mit dem Isolator 17 in Kontakt kommt.
  • Ein durchgehender Schnitt der Zwischenraumes 19 ist notwendig, um die beiden Abschnitte 13 und 15 des Elektroden-Rohlings 9 getrennt voneinander beschalten zu können. In Fig. 2 kann der erste Abschnitt 13a als späterer Teil des Prefilters 5 und der zweite Abschnitt 15a als späterer Teil des Hauptfilters 3 angesehen werden. Im Falle, dass eine Herstellung eines Postfilters 7 erfolgt, entspricht der erste Abschnitt 13a dem Hauptfilter 3 und der zweite Abschnitt 15a dem Postfilter 7.
  • Vorzugsweise ist die Trennung der beiden Abschnitte 13, 15 durch die Ausnehmung 11 und den Zwischenraum 19 derart ausgebildet, dass keine Normale zur Längsachse des Elektroden-Rohlings 9, eine Sichtachse zum Isolator 17 bildet. Dies hat den Vorteil, dass die Ionen nicht in Kontakt zum Isolator 17 treten können und somit keine Oberflächenaufladung des Isolators 17 durch die Ionen stattfinden kann. Eine Oberflächenaufladung des Isolators 17 würde die Feldgeometrie negativ beeinflussen.
  • Vorzugsweise weist der Zwischenraum 19a für die letztgenannte Ausbildung Verwinkelungen auf bzw. ist treppenartig ausgebildet. Der Austrittspunkt 21 des Zwischenraumes 19a aus dem Elektroden-Rohling 9a ist dabei bevorzugt gegenüber dem Übergang 23 zwischen der Ausnehmung 11 und dem Zwischenraum 19a versetzt. Bevorzugt ist dieser Versatz bei dem Übergang von Prefilter zu Hauptfilter in Flugrichtung der Ionen ausgebildet, d.h. der Austrittspunkt 21 liegt näher zum Hauptfilter 3. Dies macht einen Kontakt der Ionen mit dem Isolator 17a noch unwahrscheinlicher, da die Ionen, einmal in eine Richtung bewegt, mit großer Wahrscheinlichkeit nicht die entgegen gesetzte Richtung einschlagen werden, um durch den Zwischenraum 19a zum Isolator 17a zu gelangen. Vorzugsweise werden für das Schneiden von Verwinkelungen bzw. für die treppenartige Ausbildung ein Sägedraht bzw. eine Seilsäge oder die Methode der Elektroerosion genutzt, da damit sehr flexible Schnitte möglich sind.
  • In einem Schritt S5 wird mindestens ein Trägerelement 25a mit dem Isolator 17a verbunden. Die Verbindung zwischen dem Isolator 17 und dem Trägerelement 25 erfolgt vorzugsweise durch Kleben. Auf dem Trägerelement 25, welches vorzugsweise im Querschnitt halbkreisbogenförmig ausgebildet ist, wird bevorzugt ein weiterer bearbeiteter Elektroden-Rohling 9 angeordnet. In einem Schritt S6 (nicht dargestellt) werden die Elektroden-Rohlinge 9 gemeinsam mit den Trägerelementen 25 bearbeitet. Das gemeinsame Bearbeiten geschieht vorzugsweise durch Beschleifen, insbesondere durch einen Schleifstein. Die Querschnitte der Elektroden-Rohlinge 9 erhalten dadurch jeweils einen kreisförmigen Abschnitt und einen nicht-kreisförmigen, insbesondere im Wesentlichen hyperbelförmigen, Abschnitt. Die Endabschnitte der Trägerelemente 25 werden gleichzeitig konvex und konkav ausgebildet, um beim späteren Zusammenfügen mit einem weiteren Trägerelement 25 eine Selbstzentrierung zu erreichen.
  • Der Vorteil eines solchen Verfahrens ist eine sehr präzise Anordnung der Elektrodenoberflächen zueinander, die sonst nur mit sehr viel mehr Aufwand nach dem Schleifen der Einzelteile erreicht werden könnte.
  • Fig. 3 zeigt eine alternative Ausführungsform von Schritt S4, insbesondere von dem Zwischenraum 19a aus Fig. 2. Der Zwischenraum 19b ist dabei derart ausgebildet, dass er einen schrägen Schnitt aufweist. Auch hier ist es vorteilhaft, wenn - zumindest beim Übergang zwischen Prefilter und Hauptfilter - der Austrittspunkt 21 des Zwischenraumes 19b aus dem Elektroden-Rohling 9b näher zum Hauptfilter 3 liegt als der Übergang 23 zwischen der Ausnehmung 11 und dem Zwischenraum 19b.
  • Fig. 4 zeigt eine Querschnittsansicht von Schritt S3, wobei der Betrachter direkt in die Ausnehmung 11 blickt. Der obere Teil des Elektroden-Rohlings 9c ist für die Bildung der Ausnehmung 11 abgetragen. Der Isolator 17c ist über der Ausnehmung 11 aufgebracht, so dass die Ausnehmung 11 von dem Isolator 17c zumindest teilweise überdeckt wird. Der Zwischenraum 19c (hier nicht dargestellt) wird anschließend z.B. durch Drahterosion zwischen dem späteren Austrittspunkt 21 und dem Hohlraum der Ausnehmung 11 hergestellt.
  • Fig. 5 zeigt eine schematische Ansicht des Elektroden-Rohlings 9d. Die Flugrichtung 27 der Ionen 29 ist in Längsrichtung, also parallel zur Längsachse 31 des Elektroden-Rohlings 9, festgelegt. Die Längsachse 31 ist dabei an der Seite des Elektroden-Rohlings 9 angeordnet, die der Seite, an welcher der Isolator 17 aufgebracht ist, gegenüber liegt. Keine Normale 33 zur Längsachse 31 des Elektroden-Rohlings 9 stellt eine Sichtachse zum Isolator 17 dar. Insbesondere wird dies durch die Verwinkelungen und durch den Versatz des Eintritts- und Austrittspunktes 21, 23 des Zwischenraumes 19d in bzw. aus dem Elektroden-Rohling 9d sichergestellt. Durch diese Maßnahme wird komplett oder zumindest teilweise verhindert, dass die Ionen 29 die Oberfläche des Isolators 17d elektrostatisch aufladen und dadurch die Feldgeometrie verändern.
  • Fig. 6 zeigt alternative Ausführungsformen A, B und C von Schritt S4 aus Fig. 2. Fig. 6A zeigt dabei eine Ausnehmung 34, welche in den Isolator 17e anstatt in den Elektroden-Rohling 9e eingebracht ist. Alternativ kann, wie in Fig. 6B gezeigt, die Ausnehmung 11, 34 auch sowohl im Elektroden-Rohling 9f wie auch im Isolator 17f vorhanden sein. Die Ausnehmung 11, 34 verhindert jeweils, dass das Trennwerkzeug beim Trennen des Elektroden-Rohlings 9f in die zwei Abschnitte 13f, 15f mit dem Isolator 17f in Kontakt kommt. Dies ist insbesondere dann wichtig, wenn der Zwischenraum 19f durch Elektroerosion in den Elektroden-Rohling 9f eingebracht wird. Als weitere Alternative kann, wie in Fig. 6C gezeigt, der Isolator 17g und der Elektroden-Rohling 9g ohne Ausnehmung 11, 34 ausgestaltet sein.
  • Fig. 7 zeigt eine alternative Ausführungsform des erfindungsgemäßen Erzeugnisses. Gezeigt sind dort mehrere kurze Isolatoren 17h' bis 17h"", wobei jeweils zwei der Isolatoren 17h' bis 17h"" auf einem Abschnitt 13h, 15h angeordnet sind. Die Verwendung mehrerer Isolatoren 17h' bis 17h"", insbesondere durch die Anordnung in den äußeren Bereichen der Abschnitte 13h, 15h, erhöht die Stabilität der Elektroden-Anordnung 1. Das Trägerelement 25h ist mit den Isolatoren 17h' bis 17h"" verbunden, wobei die beiden Abschnitte 13h, 15h dadurch von dem Trägerelement 25h in einer gleichbleibenden Relativposition zueinander gehalten werden. Vorzugsweise ist der Zwischenraum 19h auch in diesem Fall treppenartig ausgebildet, damit auch hier keine Sichtachse zum Trägerelement 25h besteht. Die Isolatoren 17h' bis 17h"" können zudem unterschiedliche Längen aufweisen.
  • Fig. 8 zeigt eine weitere alternative Ausführungsform, wobei jeweils ein langer Isolator 17i', 17i" auf jeweils einem der Abschnitte 13i, 15i angeordnet ist. Auch eine solche Ausbildung erhöht, wie der Einsatz mehrerer kurzer Isolatoren 17h' bis 17h"" in Fig. 7, die Stabilität der Elektroden-Anordnung 1.
  • Fig. 9 zeigt eine weitere alternative Ausführungsform, wobei ein langer Isolator 17j beide Abschnitte 13j, 15j miteinander verbindet. In diesem Fall hält nicht mehr das Trägerelement 25 die Abschnitte 13j, 15j zusammen und in einer gleichbleibenden Relativposition zueinander, sondern der Isolator 17j, welcher über dem Zwischenraum 19j platziert ist.
  • Fig. 10 zeigt eine Elektroden-Vorrichtung 35, welche aus zwei Elektroden-Anordnungen 1 zusammengesetzt ist. Die Elektroden-Anordnungen 1 weisen jeweils ein Trägerelement 25 auf, wobei die Endabschnitte 37 der Trägerelemente 25 konvex und konkav ausgebildet sind und mit dem jeweils anderen Trägerelement 25 ineinander passen. Die Elektroden-Rohlinge 9 sind jeweils an der Innenseite der Trägerelemente 25 durch Isolatoren 17 an den Trägerelementen 25 befestigt. Die Elektroden-Anordnungen 1 werden bevorzugt vor dem Zusammenfügen zur Elektroden-Vorrichtung 35 bearbeitet, insbesondere geschliffen, so dass die Elektroden-Rohlinge 9 jeweils einen kreisförmigen Abschnitt und einen im Wesentlichen hyperbelförmigen Abschnitt erhalten (hier nicht gezeigt) und das Trägerelement 25 die konvex und konkav geformten Endabschnitte 37 erhält. Die Trägerelemente 25 können entweder über fast die gesamte Länge der Elektroden-Rohlinge 9 erstreckt werden, oder als ringartige Elemente an einzelnen Positionen angeordnet werden. Beim Einbau in ein Massenspektrometer wird die Elektroden-Vorrichtung 35 mittels der Trägerelemente 25 in dem Massenspektrometer befestigt.
  • Alle in der vorstehenden Beschreibung und in den Ansprüchen genannten Merkmale sind sowohl einzeln als auch in beliebiger Kombination mit den Merkmalen der unabhängigen Ansprüche kombinierbar. Die Offenbarung der Erfindung ist somit nicht auf die beschriebenen bzw. beanspruchten Merkmalskombinationen beschränkt. Vielmehr sind alle im Rahmen der Erfindung sinnvollen Merkmalskombinationen als offenbart zu betrachten.

Claims (11)

  1. Verfahren zur Herstellung einer mehrpoligen Elektroden-Vorrichtung (35), insbesondere eines Multipols, für den Einsatz in einem Massenspektrometer, wobei die Elektroden-Vorrichtung mindestens ein Hauptfilter (3) und mindestens ein Pre- und/oder Postfilter (5, 7) umfasst und die Elektroden-Vorrichtung (35) mehrere Elektroden-Anordnungen (1) umfasst, wobei jede Elektroden-Anordnung (1) ein oder mehrere stabförmige Elektroden-Rohlinge (9) aufweist und zur Herstellung der Elektroden-Anordnung (1) folgende Schritte durchgeführt werden:
    a) Verbinden (S3) jedes Elektroden-Rohlings (9) mit Isolatormitteln (17a, b, d-f), wobei die Isolatormittel (17a, b, d-f) mindestens einen Isolator (17a, b, d-f) aufweisen,
    b) Trennen (S4) jedes Elektroden-Rohlings (9) in zwei Abschnitte (13, 15), wobei die Abschnitte (13, 15) mittels eines Zwischenraumes (19) axial voneinander beabstandet sind und der mindestens eine Isolator (17a, b, d-f) die Abschnitte (13a, b, d-f, 15a, b, d-f) während und nach dem Trennen (S4) in einer gleichbleibenden, relativen Position zueinander hält,
    c) Durchführen dieses Trennschritts (S4) so oft, wie es der vorgesehenen Anzahl der Pre- und/oder Postfilter (5, 7) entspricht,
    d) Verbinden (S5) eines Trägerelements (25) mit dem mindestens einen Isolator (17) und
    e) Zusammenfügen der mehreren Elektroden-Anordnungen (1) durch Verbinden der Trägerelemente (25) zu der Elektroden-Vorrichtung (35),
    dadurch gekennzeichnet, dass
    f) der Elektroden-Rohling (9a-d, f) und/oder der Isolator (17e, f) mit einer Ausnehmung (11, 34) versehen (S2) wird bzw. werden, wobei die Ausnehmung bzw. Ausnehmungen (11, 34) derart angeordnet ist bzw. sind, dass die Ausnehmung bzw. Ausnehmungen (11, 34) zwischen dem Isolator (17a, b, d-f) und dem Zwischenraum (19a, b, d-f) liegt bzw. liegen und der Zwischenraum (19a, b, d-f) mit der Ausnehmung bzw. den Ausnehmungen (11, 34) verbunden ist.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass
    der Zwischenraum (19) derart ausgebildet wird, dass, ausgehend von einer Längsachse (31) des Elektroden-Rohlings (9), welche an der Seite des Elektroden-Rohlings (9) angeordnet ist, die der Seite mit dem Isolator (17) gegenüber liegt, keine Normale (33) zu dieser Längsachse (31) eine Sichtachse zum Isolator (17) und/oder zum Trägerelement (25) bildet.
  3. Verfahren nach einem der Ansprüche 1 oder 2,
    dadurch gekennzeichnet, dass
    der Elektroden-Rohling (9) zusammen mit dem Trägerelement (25) derart bearbeitet wird, dass der Querschnitt des Elektroden-Rohlings (9) einen kreisförmigen Abschnitt und einen nicht-kreisförmigen, insbesondere im Wesentlichen hyperbelförmigen, Abschnitt erhält und das Trägerelement (25) zwei unterschiedlich geformte, jedoch in ihrer Form aneinander angepasste Endabschnitte (37) erhält.
  4. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    der Zwischenraum (19) mittels Sägen, Fräsen, Schleifen, Laserschneiden, Wasserstrahlschneiden, Ätzen oder Elektroerosion hergestellt wird.
  5. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Ausnehmung (11, 34) in den Elektroden-Rohling (9a-d, f) und/oder den mindestens einen Isolator (17e, f) mittels Sägen, Fräsen, Schleifen, Laserschneiden, Wasserstrahlschneiden, Ätzen oder Elektroerosion eingebracht wird und die Ausnehmung (11) in den Elektroden-Rohling (9a-d, f) alternativ mittels Gießen eingebracht wird.
  6. Mehrpolige Elektroden-Vorrichtung, insbesondere Multipol, für den Einsatz in einem Massenspektrometer, wobei die Elektroden-Vorrichtung (35) mindestens ein Hauptfilter (3) und mindestens ein Pre- und/oder Postfilter (5, 7) umfasst und die Elektroden-Vorrichtung (35) mehrere Elektroden-Anordnungen (1) umfasst, wobei jede Elektroden-Anordnung (1) ein oder mehrere stabförmige Elektroden-Rohlinge (9) aufweist und
    a) jeder Elektroden-Rohling (9) mit Isolatormitteln (17a, b, d-f) verbunden ist, wobei die Isolatormittel (17a, b, d-f) mindestens einen Isolator (17a, b, d-f) aufweisen,
    b) für jeden Pre- und/oder Postfilter (5, 7) ein Zwischenraum (19) die Elektroden-Rohlinge (9) jeweils in die zwei Abschnitte (13, 15) trennt, wobei die Abschnitte (13, 15) mittels des Zwischenraumes (19) axial voneinander beabstandet sind und der mindestens eine Isolator (17a, b, d-f) die beiden Abschnitte (13a, b, d-f, 15a, b, d-f) in einer gleichbleibenden relativen Position zueinander hält,
    c) ein Trägerelement (25) mit dem mindestens einen Isolator (17) verbunden ist und
    d) die mehreren Elektroden-Anordnungen (1) durch Verbinden der Trägerelemente (25) zu der Elektroden-Vorrichtung (35) zusammengefügt sind,
    dadurch gekennzeichnet, dass
    e) der Elektroden-Rohling (9a-d, f) und/oder der Isolator (17e, f) eine Ausnehmung (11, 34) aufweisen, welche mit dem Zwischenraum (19a, b, d-f) verbunden ist bzw. sind und welche den Isolator (17a, b, d-f) von dem Zwischenraum (19a, b, d-f) trennt bzw. trennen.
  7. Elektroden-Vorrichtung nach Anspruch 6,
    dadurch gekennzeichnet, dass
    der Zwischenraum (19) derart ausgebildet ist, dass, ausgehend von einer Längsachse (31) des Elektroden-Rohlings (9), welche an der Seite des Elektroden-Rohlings (9) angeordnet ist, die der Seite mit dem Isolator (17) gegenüber liegt, keine Normale (33) zu dieser Längsachse (31) eine Sichtachse zum Isolator (17) und/oder zum Trägerelement (25) bildet.
  8. Elektroden-Vorrichtung nach einem der Ansprüche 6 oder 7,
    dadurch gekennzeichnet, dass
    der Elektroden-Rohling (9) zusammen mit dem Trägerelement (25) derart bearbeitet ist, dass der Querschnitt des Elektroden-Rohlings (9) einen kreisförmigen Abschnitt und einen nicht-kreisförmigen, insbesondere im Wesentlichen hyperbelförmigen, Abschnitt aufweist und das Trägerelement (25) zwei unterschiedlich geformte, jedoch in ihrer Form aneinander angepasste Endabschnitte (37) aufweist.
  9. Elektroden-Vorrichtung nach einem der Ansprüche 6 bis 8,
    dadurch gekennzeichnet, dass
    der Zwischenraum (19) mittels Sägen, Fräsen, Schleifen, Laserschneiden, Wasserstrahlschneiden, Ätzen oder Elektroerosion hergestellt ist.
  10. Elektroden-Vorrichtung nach einem der Ansprüche 6 bis 9,
    dadurch gekennzeichnet, dass
    die Ausnehmung (11, 34) in den Elektroden-Rohling (9a-d, f) und/oder den Isolator (17e, f) durch Sägen, Fräsen, Schleifen, Laserschneiden, Wasserstrahlschneiden, Ätzen oder Elektroerosion eingebracht ist und die Ausnehmung (11) in den Elektroden-Rohling (9a-d, f) alternativ durch Gießen des Elektroden-Rohlings (9a-d, f) eingebracht ist.
  11. Massenspektrometer mit einer mehrpoligen Elektroden-Vorrichtung (35) nach einem der Ansprüche 6 bis 10,
    dadurch gekennzeichnet, dass
    die mehrpolige Elektroden-Vorrichtung (35) mindestens zwei Elektroden-Anordnungen (1) aufweist.
EP14188177.1A 2013-10-11 2014-10-08 Elektroden-Vorrichtung mit Pre- und/oder Postfilter und Herstellungs-Verfahren hierzu sowie Massenspektrometer mit einer solchen Elektroden-Vorrichtung Active EP2860752B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102013111254.4A DE102013111254B4 (de) 2013-10-11 2013-10-11 Elektroden-Vorrichtung mit Pre- und/oder Postfilter und Herstellungs-Verfahren hierzu sowie Massenspektrometer mit einer solchen Elektroden-Vorrichtung

Publications (2)

Publication Number Publication Date
EP2860752A1 EP2860752A1 (de) 2015-04-15
EP2860752B1 true EP2860752B1 (de) 2017-04-19

Family

ID=51660413

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14188177.1A Active EP2860752B1 (de) 2013-10-11 2014-10-08 Elektroden-Vorrichtung mit Pre- und/oder Postfilter und Herstellungs-Verfahren hierzu sowie Massenspektrometer mit einer solchen Elektroden-Vorrichtung

Country Status (3)

Country Link
US (1) US9190252B2 (de)
EP (1) EP2860752B1 (de)
DE (1) DE102013111254B4 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017107137B4 (de) 2017-04-03 2022-06-23 VACUTEC Hochvakuum- & Präzisionstechnik GmbH Vorrichtung mit einem Multipol und einer Haltevorrichtung zum Halten des Multipols, Haltevorrichtung, Massenspektrometer mit einer derartigen Vorrichtung, Montageeinheit zur Positionierung des Multipols sowie Verfahren zum Positionieren einer Haltevorrichtung gegenüber einem Multipol

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT528250A (de) 1953-12-24
DE2215763C3 (de) 1972-03-30 1978-06-08 Geoffrey William Bellingdon Cesham Buckinghamshire Ball (Grossbritannien) Verfahren zur Herstellung eines Körpers für ein Ionenfilter eines Massenspektrometer
US6936815B2 (en) * 2003-06-05 2005-08-30 Thermo Finnigan Llc Integrated shield in multipole rod assemblies for mass spectrometers
DE102004054835A1 (de) 2004-11-12 2006-05-24 VACUTEC Hochvakuum- & Präzisionstechnik GmbH Verfahren zur Herstellung einer Elektrode bzw. mehrpoligen Elektrodenanordnung sowie mehrpolige Elektrodenanordnung und Elektrode für eine mehrpolige Elektrodenanordnung
US7423262B2 (en) * 2005-11-14 2008-09-09 Agilent Technologies, Inc. Precision segmented ion trap
US7501623B2 (en) * 2006-01-30 2009-03-10 Varian, Inc. Two-dimensional electrode constructions for ion processing
US8173976B2 (en) * 2009-07-24 2012-05-08 Agilent Technologies, Inc. Linear ion processing apparatus with improved mechanical isolation and assembly

Also Published As

Publication number Publication date
DE102013111254B4 (de) 2019-04-25
DE102013111254A1 (de) 2015-04-16
US20150102213A1 (en) 2015-04-16
US9190252B2 (en) 2015-11-17
EP2860752A1 (de) 2015-04-15

Similar Documents

Publication Publication Date Title
EP1657737B1 (de) Verfahren zur Herstellung einer mehrpoligen Elektrodenanordnung sowie mehrpolige Elektrodenanordnung
DE2921505A1 (de) Vorrichtung zur elektrochemischen bearbeitung von werkstuecken
DE102012202993B4 (de) Ionenschneider mit Beschleunigungs- und Verlangsamungs-Optik
DE102014105908A1 (de) Werkzeug zur spanenden Bearbeitung eines Werkstücks
EP0572687B1 (de) Ionenfilter, insbesondere für ein Massenspektrometer, sowie Verfahren zur Herstellung desselben
EP0353436A1 (de) Einstellvorrichtung, insbesondere für Werkzeuge
EP0593894B1 (de) Werkzeug für eine Stanzpresse mit einer Laser-Schweissanlage
DE102011053720A1 (de) Sägeblatt mit Leistungszähnen und Oberflächenzähnen
EP2860752B1 (de) Elektroden-Vorrichtung mit Pre- und/oder Postfilter und Herstellungs-Verfahren hierzu sowie Massenspektrometer mit einer solchen Elektroden-Vorrichtung
EP0134268A1 (de) Justier- oder Positioniertisch und Verfahren zu dessen Herstellung
WO2017148641A1 (de) Schneidplatte, werkzeughalter und werkzeug zur spanenden bearbeitung eines werkstücks
DE102013111253A1 (de) Elektroden-Vorrichtung und Herstellungsverfahren hierzu sowie Massenspektrometer mit einer solchen Elektroden-Vorrichtung
DE102017107137B4 (de) Vorrichtung mit einem Multipol und einer Haltevorrichtung zum Halten des Multipols, Haltevorrichtung, Massenspektrometer mit einer derartigen Vorrichtung, Montageeinheit zur Positionierung des Multipols sowie Verfahren zum Positionieren einer Haltevorrichtung gegenüber einem Multipol
DE2914284A1 (de) Werkzeugmaschine
EP1375038B1 (de) Decolletagewerkzeug in der Form einer Wendeschneidplatte
EP3976982B1 (de) Verfahren zum herstellen eines mehrschichtgleitlagers und gleitlagerherstellvorrichtung
DE3720203A1 (de) Verfahren zur herstellung eines raeumwerkzeugs
EP3663043A1 (de) Schleifwerkzeug
DE2850922C2 (de) Verfahren zur Herstellung eines Mehrspur-Magnetkopfes
DE102020128646A1 (de) Multipol mit an seinen Stirnseiten angeordneten Aufnahmeringen sowie derartiger Aufnahmering
DE102021122424A1 (de) Werkzeug zur spanenden Bearbeitung, Schneideinsatz-Halter und Schneideinsatz
DE102013109274B3 (de) Thermisch kompensierte optische Baugruppe mit einem zwischen Wälzkörpern gelagerten optischen Element
DD213550A1 (de) Verfahren zur herstellung kompakter trennsysteme fuer massenspektrometer
WO2019034503A1 (de) Magnetischer kern und verfahren zur herstellung eines magnetischen kerns
WO2019034501A1 (de) Geschlitzter magnetischer kern und verfahren zur herstellung eines geschlitzten magnetischen kerns

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141008

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20150828

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20161109

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 886681

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014003466

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170419

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170819

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014003466

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

26N No opposition filed

Effective date: 20180122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171008

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20141008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230519

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231025

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231023

Year of fee payment: 10

Ref country code: DE

Payment date: 20230717

Year of fee payment: 10

Ref country code: CH

Payment date: 20231102

Year of fee payment: 10

Ref country code: AT

Payment date: 20231019

Year of fee payment: 10