EP2859133B1 - Verfahren zum kaltgasspritzen mit einem trägergas - Google Patents

Verfahren zum kaltgasspritzen mit einem trägergas Download PDF

Info

Publication number
EP2859133B1
EP2859133B1 EP13735004.7A EP13735004A EP2859133B1 EP 2859133 B1 EP2859133 B1 EP 2859133B1 EP 13735004 A EP13735004 A EP 13735004A EP 2859133 B1 EP2859133 B1 EP 2859133B1
Authority
EP
European Patent Office
Prior art keywords
gas
cold
carrier gas
carrier
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP13735004.7A
Other languages
English (en)
French (fr)
Other versions
EP2859133A1 (de
Inventor
Oliver Stier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2859133A1 publication Critical patent/EP2859133A1/de
Application granted granted Critical
Publication of EP2859133B1 publication Critical patent/EP2859133B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles

Definitions

  • the invention relates to a method for cold gas spraying in which particles are accelerated with a carrier gas in a convergent-divergent nozzle directed onto a substrate to be coated and remain adhered to a substrate.
  • Cold gas spraying is a process known per se, in which particles intended for coating are preferably accelerated to supersonic speed by means of a convergent-divergent nozzle, so that they adhere to the surface to be coated on account of their impressed kinetic energy.
  • the kinetic energy of the particles is used, which leads to a plastic deformation of the same, wherein the coating particles are melted on impact only on their surface. Therefore, this method is referred to as cold gas spraying in comparison with other thermal spraying methods, because it is carried out at comparatively low temperatures at which the coating particles remain substantially fixed.
  • a cold gas spraying system which has a gas heater for heating a gas.
  • a stagnation chamber is connected, which is connected on the output side with the convergent-divergent nozzle, preferably a Laval nozzle.
  • Convergent-divergent nozzles have a converging section and a flared section connected by a nozzle throat.
  • the convergent-divergent nozzle produces on the output side a powder jet in the form of a gas stream with particles therein at high speed, preferably supersonic speed.
  • the cold gas jet is generated in the cold gas spraying with a carrier gas, which in the front of the convergent-divergent Nozzle lying stagnation chamber under high pressure (the stagnation pressure) is.
  • the carrier gas is expanded and accelerated by the nozzle and thus forms the cold gas jet. This also contains the particles intended for coating.
  • As the carrier gas different gases are used.
  • Helium or helium mixtures are necessary in any case according to the prior art, if gas velocities of more than 1400 m / s to be achieved.
  • hydrogen can also be used as gas, which has even more favorable gas-dynamic properties.
  • hydrogen gas is an explosive substance and must therefore be handled with particular care.
  • carrier gases can be used for the cold gas spraying of particles.
  • the proposed carrier gases are hydrogen and nitrogen or mixtures of these two carrier gases.
  • a mixing ratio of less than 5 mol% of hydrogen to helium should be selected in order to counteract an explosion tendency of the carrier gas.
  • the object of the invention is to provide a carrier gas for cold gas spraying, which is economical to use and yet technically enables gas velocities of more than 1400 m / s.
  • This object is achieved according to the invention with the method given above, that is used as a carrier gas forming gas 95/5 with a nitrogen content of 95 mol% and a hydrogen content of 5 mol%.
  • This is a commercial product, which is offered by the company Linde AG.
  • the small proportion of 5 mol% hydrogen has the advantage that the ignition limit for hydrogen-nitrogen mixtures of about 5.7 mol% is exceeded and therefore the forming gas can be safely processed.
  • the gas mixture also does not separate, so that during processing no concentration of hydrogen can take place. Additional safety measures beyond those of ordinary cold gas spraying are therefore advantageously not necessary.
  • gas forming velocities of more than 1400 m / s can be achieved with forming gas.
  • the proportion of hydrogen should be as high as possible, and this must not exceed 5.7 mol%, taking into account tolerances, to ensure the processing safety.
  • forming gas in the stagnation chamber of the cold spray system is heated to 1000 ° C. stagnation temperature and released from a stagnation pressure of 50 bar against atmospheric pressure in the stagnation chamber, flow velocities of approximately 1460 m / s can be achieved.
  • nitrogen nitrogen limit of 1400 m / s forming gas is advantageous in relation to nitrogen only marginally more expensive and thus the high costs associated with the use of helium as a carrier gas can be advantageously avoided.
  • the forming gas 95/5 is fed to a plant used for cold gas spraying as a mixture.
  • this has the advantage that the mixing ratio can be adjusted with comparatively high accuracy by gas suppliers and can already be stored as a mixture in a designated memory in the vicinity of the system.
  • the forming gas 95/5 is also used as a powder conveying gas for feeding the particles into the carrier gas stream.
  • the particles to be processed are in fact supplied to the cold spray system in that they are conveyed in a gas. In this they can be finely dispersed, so that clumping is counteracted.
  • the powder conveying gas can be present at a pressure with which the back pressure of the carrier gas at the feed point can be overcome. If the powder conveying gas also consists of forming gas, the carrier gas of the carrier gas stream is not changed by feeding the particles together with the powder conveying gas in its desired concentration. This has the advantage that the cold gas jet when leaving the convergent-divergent nozzle still has the optimum composition already explained above.
  • the process is operated at a stagnation temperature of 800 ° to 1200 ° C., preferably 1000 ° C., and a stagnation pressure of 30 to 60 bar, preferably 50 bar.
  • a stagnation temperature 800 ° to 1200 ° C., preferably 1000 ° C.
  • a stagnation pressure 30 to 60 bar, preferably 50 bar.
  • FIG. 1 a plant 11 is used, which is suitable for cold gas spraying.
  • the core of this system 11 is a convergent-divergent nozzle 12, wherein in FIG. 1 a convergent part 13 and a divergent part 14 can be seen, which are connected by a nozzle neck 15, the narrowest point in the nozzle 12 with each other.
  • a stagnation chamber 16 Before the convergent part 13 is a stagnation chamber 16, in which the carrier gas is under high pressure and flows relatively slowly.
  • the carrier gas leaves the nozzle 12 in the form of a cold gas jet 17 in the direction of a substrate 18, wherein the particles not shown in detail in the cold gas jet 17 adhere to the substrate 18 and form a layer 19.
  • the substrate 18 is moved in the direction of the indicated arrow 20 for the purpose of forming a layer.
  • the carrier gas originates from a pressure vessel 21 for the forming gas 95/5.
  • a first line 22 the carrier gas passes through a first compressor 23 in the stagnation chamber 16, wherein this is preheated on the way with a heater 24.
  • two pressure vessels 21a and 21b are used. There is nitrogen in one, hydrogen in the other. Via a suitable mixing device 28, these two gases are mixed via throttle valves 29 and leave the mixing device 28 as a finished forming gas.
  • the outlet 30 of the mixing device may optionally be connected to the first line 22 and / or the second line 25 of the cold spraying installation 11 according to FIG FIG. 1 be connected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Nozzles (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zum Kaltgasspritzen, bei dem Partikel mit einem Trägergas in einer auf ein zu beschichtendes Substrat gerichteten konvergent-divergenten Düse beschleunigt werden und an einem Substrat haften bleiben.
  • Das Kaltgasspritzen ist ein an sich bekanntes Verfahren, bei dem für die Beschichtung vorgesehene Partikel mittels einer konvergent-divergenten Düse vorzugsweise auf Überschallgeschwindigkeit beschleunigt werden, damit diese aufgrund ihrer eingeprägten kinetischen Energie auf der zu beschichtenden Oberfläche haften bleiben. Hierbei wird die kinetische Energie der Teilchen genutzt, welche zu einer plastischen Verformung derselben führt, wobei die Beschichtungspartikel beim Auftreffen lediglich an ihrer Oberfläche aufgeschmolzen werden. Deshalb wird dieses Verfahren im Vergleich zu anderen thermischen Spritzverfahren als Kaltgasspritzen bezeichnet, weil es bei vergleichsweise tiefen Temperaturen durchgeführt wird, bei denen die Beschichtungspartikel im Wesentlichen fest bleiben. Vorzugsweise wird zum Kaltgasspritzen, welches auch als kinetisches Spritzen bezeichnet wird, eine Kaltgasspritzanlage verwendet, die eine Gasheizeinrichtung zum Erhitzen eines Gases aufweist. An die Gasheizeinrichtung wird eine Stagnationskammer angeschlossen, die ausgangsseitig mit der konvergent-divergenten Düse, vorzugsweise einer Lavaldüse verbunden wird. Konvergent-divergente Düsen weisen einen zusammenlaufenden Teilabschnitt sowie einen sich aufweitenden Teilabschnitt auf, die durch einen Düsenhals verbunden sind. Die konvergent-divergente Düse erzeugt ausgangsseitig einen Pulverstrahl in Form eines Gasstroms mit darin befindlichen Partikeln mit hoher Geschwindigkeit, vorzugsweise Überschallgeschwindigkeit.
  • Der Kaltgasstrahl wird beim Kaltgasspritzen mit einem Trägergas erzeugt, welches in der vor der konvergent-divergenten Düse liegenden Stagnationskammer unter hohem Druck (dem Stagnationsdruck) steht. Das Trägergas wird durch die Düse entspannt und stark beschleunigt und bildet so den Kaltgasstrahl. In diesem befinden sich auch die zur Beschichtung vorgesehenen Partikel. Als Trägergas werden unterschiedliche Gase verwendet.
  • Gemäß der EP 484 533 B1 wird ausgeführt, dass aufgrund der gasdynamischen Eigenschaften grundsätzlich Luft als Trägergas geeignet ist, der zusätzlich Helium beigemischt werden kann. Weitere Quellen, wie die EP 1 152 067 B1 führen andere Gase wie Stickstoff, Argon, Wasserstoff, Sauerstoff, Wasserdampf oder Gemische aus diesen Substanzen an. Außerdem werden die besonderen Eigenschaften von Helium hervorgehoben. Die besondere Bedeutung von Inertgasen wird auch gemäß der US 6,759,085 B2 hervorgehoben, wobei Argon und Helium aufgeführt werden und als zumischbare Gase Stickstoff und Wasserstoff erwähnt werden. Gemäß der US 2004/0037954 A1 werden wie auch gemäß der US 2010/0143700 A1 Stickstoff, Helium sowie Mischungen aus diesen beiden Gasen als besonders vorteilhaft aufgeführt, da diese Mischungen aufgrund der gasdynamischen Eigenschaften sich für das Kaltgasspritzen sogar noch günstiger verhalten, als Helium alleine. Helium oder Heliummischungen sind in jedem Falle gemäß dem Stand der Technik notwendig, wenn Gasgeschwindigkeiten von mehr als 1400 m/s erreicht werden sollen. Gemäß der US 2004/0037954 A1 ist außerdem erwähnt, dass auch Wasserstoff als Gas verwendet werden kann, welches noch günstigere gasdynamische Eigenschaften hat. Allerdings ist zu bemerken, dass Wasserstoffgas eine explosive Substanz ist und daher mit besonderer Vorsicht gehandhabt werden muss. Gemäß der US 2009/0282832 A1 wird angegeben, dass als Trägergas grundsätzlich Wasserstoff, Stickstoff oder Mischungen dieser Gase verwendet werden können. Genauere Angaben zum möglichen Mischungsverhältnis werden gemäß dieser Druckschrift allerdings nicht gemacht. In der US 2010/0015467 A1 wird Wasserstoff neben anderen Gasen wie Argon, Neon, Helium und Stickstoff aufgeführt und es wird bemerkt, dass diese Gase auch miteinander gemischt werden können. Außerdem wird gemäß der US 2011/0303535 A1 auf die Möglichkeit hingewiesen, mit Wasserstoff die höchsten Gasgeschwindigkeiten erzielen zu können. Dies gelte mit Einschränkungen auch für Mischungen von Wasserstoff mit anderen Gasen.
  • Aus der US 2009/0282832 A1 ist es bekannt, dass für das Kaltgasspritzen von Partikeln unterschiedliche Trägergase Verwendung finden können. Vorgeschlagen werden als Trägergase Wasserstoff und Stickstoff oder Gemische dieser beiden Trägergase. Gemäß der US 2010/0143700 A1 ist es auch möglich, Helium und Wasserstoff zur Erzeugung eines Trägergases zu mischen. Bevorzugt soll hierbei ein Mischungsverhältnis von weniger als 5 mol-% Wasserstoff zum Helium gewählt werden, um einer Explosionsneigung des Trägergases entgegenzuwirken.
  • Zusammenfassend lässt sich sagen, dass im Schrifttum eine Fülle von unterschiedlichen möglichen Trägergasen offenbart wird, wobei Stickstoff, Luft, Helium und Wasserstoff häufig genannt werden. Allerdings ist Wasserstoff wegen der Explosionsgefahr nur unter hohen Sicherheitsvorkehrungen zu verwenden, weswegen dessen Anwendung unwirtschaftlich ist. Mit gewöhnlichen Kaltspritzanlagen wird daher eher Helium verarbeitet, mit dem ebenfalls sehr hohe Gasgeschwindigkeiten realisiert werden können. Allerdings ist Helium in der Beschaffung sehr teuer und liegt von den Beschaffungskosten um zwei Größenordnungen und mehr über dem Standardgas für das Kaltspritzverfahren Stickstoff. Wegen des weltweit steigenden Rohstoffbedarfs ist sogar mit einer steigenden Preisentwicklung zu rechnen, was die Anwendung von Helium für das Kaltgasspritzen zukünftig noch unattraktiver macht, wenn wirtschaftliche Argumente eine Rolle spielen. Dennoch nennt O. Stier et al. in seinem Beitrag "Cost Analysis of Cold-sprayed MCrAlY Coatings for Industrial Power Generation Gas Turbine Blades" auf der North American Cold Spray Conference vom 25.-27.10.2011 als hauptsächlich angewendete Trägergase Stickstoff, Luft, Helium oder Mischungen jeweils von Stickstoff mit Helium oder Luft mit Helium.
  • Die Aufgabe der Erfindung liegt darin, ein Trägergas für das Kaltgasspritzen zur Verfügung zu stellen, welches wirtschaftlich in der Anwendung ist und dennoch technisch Gasgeschwindigkeiten von mehr als 1400 m/s ermöglicht.
  • Diese Aufgabe wird mit dem eingangs angegebenen Verfahren erfindungsgemäß dadurch gelöst, dass als Trägergas Formiergas 95/5 mit einem Stickstoffanteil von 95 mol-% und einem Wasserstoffanteil von 5 mol-% verwendet wird. Dies ist ein kommerzielles Produkt, welches u. a. durch die Firma Linde AG angeboten wird. Der geringe Anteil von 5 mol-% Wasserstoff hat den Vorteil, dass die Zündgrenze für Wasserstoff-Stickstoff-Gemische von ca. 5,7 mol-% unterschritten wird und sich daher das Formiergas sicher verarbeiten lässt. Das Gasgemisch trennt sich auch nicht, so dass bei der Verarbeitung keine Aufkonzentration an Wasserstoff erfolgen kann. Zusätzliche Sicherheitsmaßnahmen über die des gewöhnlichen Kaltgasspritzens hinaus sind vorteilhaft daher nicht erforderlich. Andererseits lassen sich mit Formiergas Gasgeschwindigkeiten von mehr als 1400 m/s erreichen. Dabei soll der Anteil an Wasserstoff möglichst hoch sein, wobei dieser unter Berücksichtigung von Toleranzen 5,7 mol-% nicht überschreiten darf, um die Verarbeitungssicherheit zu gewährleisten. Wird Formiergas in der Stagnationskammer der Kaltspritzanlage beispielsweise auf 1000°C Stagnationstemperatur erwärmt und von einem Stagnationsdruck in der Stagnationskammer von 50 bar gegen Atmosphärendruck entspannt, lassen sich beispielsweise Strömungsgeschwindigkeiten von ca. 1460 m/s erreichen. Dies stellt eine eindeutige Überschreitung der für beispielsweise Sticksstoff geltenden Grenze von 1400 m/s dar, wobei Formiergas vorteilhaft im Verhältnis zu Stickstoff nur unwesentlich teurer ist und somit die hohen Kosten in Verbindung mit der Verwendung von Helium als Trägergas vorteilhaft vermieden werden können. Erfindungsgemäß ist vorgesehen, dass das Formiergas 95/5 einer zum Kaltgasspritzen verwendeten Anlage als Gemisch zugeführt wird. Dies hat den Vorteil, dass das Mischungsverhältnis mit vergleichsweise hoher Genauigkeit durch Gaslieferanten eingestellt werden kann und bereits als Gemisch in einem dafür vorgesehenen Speicher in der Nähe der Anlage gespeichert werden kann.
  • Gemäß einer anderen Ausgestaltung der Erfindung wird vorgesehen, dass das Formiergas 95/5 auch als Pulverfördergas zum Einspeisen der Partikel in den Trägergasstrom verwendet wird. Üblicherweise werden die zu verarbeitenden Partikel nämlich dadurch der Kaltspritzanlage zugeführt, dass diese in einem Gas gefördert werden. In diesem können sie fein dispers verteilt werden, so dass Verklumpungen entgegengewirkt wird. Außerdem kann das Pulverfördergas mit einem Druck vorliegen, mit dem der Gegendruck des Trägergases an der Einspeisungsstelle überwunden werden kann. Wenn das Pulverfördergas ebenfalls aus Formiergas besteht, so wird das Trägergas des Trägergasstroms durch Einspeisung der Partikel zusammen mit dem Pulverfördergas in seiner gewünschten Konzentration nicht verändert. Dies hat den Vorteil, dass der Kaltgasstrahl beim Verlassen der konvergent-divergenten Düse immer noch die oben bereits erläuterte optimale Zusammensetzung aufweist.
  • Weiterhin ist es vorteilhaft, wenn das Verfahren bei einer Stagnationstemperatur von 800 - 1200 °C, bevorzugt 1000 °C, und einem Stagnationsdruck von 30 - 60 bar, bevorzugt 50 bar betrieben wird. Hierdurch lassen sich die bereits angesprochenen Gasgeschwindigkeiten von über 1400 m/s erreichen.
  • Weitere Einzelheiten der Erfindung werden nachfolgend anhand der Zeichnung beschrieben. Gleiche oder sich entsprechende Zeichnungselemente sind in den einzelnen Figuren jeweils mit den gleichen Bezugszeichen versehen und werden nur insoweit mehrfach erläutert, wie sich Unterschiede zwischen den einzelnen Figuren ergeben. Es zeigen
  • Figur 1
    ein Ausführungsbeispiel des erfindungsgemäßen Verfahrens, dargestellt, anhand eines schematischen Anlagenaufbaus für das Kaltgasspritzen unter Verwendung von vorgemischtem Formiergas und
    Figur 2
    ein alternatives Ausführungsbeispiel für das Mischen von Formiergas aus seinen Einzelkomponenten.
  • Für das erfindungsgemäße Verfahren kommt gemäß Figur 1 eine Anlage 11 zum Einsatz, die zum Kaltgasspritzen geeignet ist. Kernstück dieser Anlage 11 ist eine konvergent-divergente Düse 12, wobei in Figur 1 ein konvergenter Teil 13 und ein divergenter Teil 14 zu erkennen ist, die durch einen Düsenhals 15, der engsten Stelle in der Düse 12, miteinander verbunden sind. Vor dem konvergenten Teil 13 liegt eine Stagnationskammer 16, in der das Trägergas unter hohem Druck befindlich ist und verhältnismäßig langsam strömt.
  • Das Trägergas verlässt die Düse 12 in Form eines Kaltgasstrahls 17 in Richtung eines Substrates 18, wobei die nicht näher dargestellten Partikel im Kaltgasstrahl 17 auf dem Substrat 18 haften bleiben und eine Schicht 19 bilden. Das Substrat 18 wird zwecks Schichtbildung in Richtung des angedeuteten Pfeils 20 bewegt.
  • Das Trägergas stammt aus einem Druckbehälter 21 für das Formiergas 95/5. Durch eine erste Leitung 22 gelangt das Trägergas durch einen ersten Verdichter 23 in die Stagnationskammer 16, wobei dies auf dem Weg mit einer Heizung 24 vorgewärmt wird. Über eine zweite Leitung 25 und einen zweiten Verdichter 26 wird ein Pulverreservoir 27 mit dem in diesem Fall als Pulverfördergas verwendeten Formiergas beschickt, wobei dieses in dem Ausführungsbeispiel gemäß Figur 1 in den konvergenten Teil 13 der Düse eingespeist werden kann.
  • Gemäß Figur 2 werden zwei Druckbehälter 21a und 21b verwendet. In einem befindet sich Stickstoff, im anderen befindet sich Wasserstoff. Über eine geeignete Mischvorrichtung 28 werden diese beiden Gase über Drosselventile 29 gemischt und verlassen die Mischvorrichtung 28 als fertiges Formiergas. Der Ausgang 30 der Mischvorrichtung kann wahlweise an die erste Leitung 22 und/oder die zweite Leitung 25 der Kaltspritzanlage 11 gemäß Figur 1 angeschlossen werden.

Claims (3)

  1. Verfahren zum Kaltgasspritzen, bei dem Partikel mit einem Trägergas in einer auf ein zu beschichtendes Substrat gerichteten konvergent-divergenten Düse (12) beschleunigt werden und an einem Substrat (18) haften bleiben,
    dadurch gekennzeichnet,
    dass als Trägergas Formiergas 95/5 mit einem Stickstoffanteil von 95 mol-% und einem Wasserstoffanteil von 5 mol-% verwendet wird, wobei das Formiergas 95/5 einer zum Kaltgasspritzen verwendeten Anlage (11) als Gemisch zugeführt wird.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    dass das Formiergas 95/5 auch als Pulverfördergas zum Einspeisen der Partikel in den Trägergasstrom verwendet wird.
  3. Verfahren nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet,
    dass das Verfahren bei einer Stagnationstemperatur von 800 bis 1200 °C, bevorzugt 1000 °C, und einem Stagnationsdruck von 30 bis 60 bar, bevorzugt 50 bar, betrieben wird.
EP13735004.7A 2012-07-19 2013-07-04 Verfahren zum kaltgasspritzen mit einem trägergas Not-in-force EP2859133B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012212682.1A DE102012212682A1 (de) 2012-07-19 2012-07-19 Verfahren zum Kaltgasspritzen mit einem Trägergas
PCT/EP2013/064156 WO2014012797A1 (de) 2012-07-19 2013-07-04 Verfahren zum kaltgasspritzen mit einem trägergas

Publications (2)

Publication Number Publication Date
EP2859133A1 EP2859133A1 (de) 2015-04-15
EP2859133B1 true EP2859133B1 (de) 2018-01-03

Family

ID=48771423

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13735004.7A Not-in-force EP2859133B1 (de) 2012-07-19 2013-07-04 Verfahren zum kaltgasspritzen mit einem trägergas

Country Status (3)

Country Link
EP (1) EP2859133B1 (de)
DE (1) DE102012212682A1 (de)
WO (1) WO2014012797A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11662300B2 (en) 2019-09-19 2023-05-30 Westinghouse Electric Company Llc Apparatus for performing in-situ adhesion test of cold spray deposits and method of employing
US11898986B2 (en) 2012-10-10 2024-02-13 Westinghouse Electric Company Llc Systems and methods for steam generator tube analysis for detection of tube degradation
US11935662B2 (en) 2019-07-02 2024-03-19 Westinghouse Electric Company Llc Elongate SiC fuel elements

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL243972B1 (pl) * 2020-10-01 2023-11-13 Siec Badawcza Lukasiewicz Inst Obrobki Plastycznej Sposób niskociśnieniowego natryskiwania na zimno powłok z proszków cząstek stałych i układ do niskociśnieniowego natryskiwania na zimno powłok z proszków cząstek stałych

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3637320A (en) * 1968-12-31 1972-01-25 Texas Instruments Inc Coating for assembly of parts
WO1991019016A1 (en) 1990-05-19 1991-12-12 Institut Teoreticheskoi I Prikladnoi Mekhaniki Sibirskogo Otdelenia Akademii Nauk Sssr Method and device for coating
DE19747386A1 (de) * 1997-10-27 1999-04-29 Linde Ag Verfahren zum thermischen Beschichten von Substratwerkstoffen
US6364932B1 (en) 2000-05-02 2002-04-02 The Boc Group, Inc. Cold gas-dynamic spraying process
DE10224780A1 (de) 2002-06-04 2003-12-18 Linde Ag Verfahren und Vorrichtung zum Kaltgasspritzen
DE10224777A1 (de) * 2002-06-04 2003-12-18 Linde Ag Verfahren und Vorrichtung zum Kaltgasspritzen
US6759085B2 (en) 2002-06-17 2004-07-06 Sulzer Metco (Us) Inc. Method and apparatus for low pressure cold spraying
US7128948B2 (en) * 2003-10-20 2006-10-31 The Boeing Company Sprayed preforms for forming structural members
US7553385B2 (en) 2004-11-23 2009-06-30 United Technologies Corporation Cold gas dynamic spraying of high strength copper
CA2571099C (en) * 2005-12-21 2015-05-05 Sulzer Metco (Us) Inc. Hybrid plasma-cold spray method and apparatus
CN100547112C (zh) * 2006-04-30 2009-10-07 宝山钢铁股份有限公司 不锈钢包覆碳钢的复合钢板的制造方法
CN101730757B (zh) 2006-11-07 2015-09-30 H.C.施塔克有限公司 涂覆基材表面的方法和经过涂覆的产品
US20110303535A1 (en) 2007-05-04 2011-12-15 Miller Steven A Sputtering targets and methods of forming the same
US20100143700A1 (en) 2008-12-08 2010-06-10 Victor K Champagne Cold spray impact deposition system and coating process
DE102010005375A1 (de) * 2010-01-22 2011-07-28 MTU Aero Engines GmbH, 80995 Vorrichtung und Verfahren zum Pulverspritzen mit erhöhter Gasstromgeschwindigkeit
EP2531632A2 (de) * 2010-02-01 2012-12-12 Crucible Intellectual Property, LLC Thermisches sprühtpulver und beschichtung auf nickelbasis sowie herstellungsverfahren dafür

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11898986B2 (en) 2012-10-10 2024-02-13 Westinghouse Electric Company Llc Systems and methods for steam generator tube analysis for detection of tube degradation
US11935662B2 (en) 2019-07-02 2024-03-19 Westinghouse Electric Company Llc Elongate SiC fuel elements
US11662300B2 (en) 2019-09-19 2023-05-30 Westinghouse Electric Company Llc Apparatus for performing in-situ adhesion test of cold spray deposits and method of employing

Also Published As

Publication number Publication date
DE102012212682A1 (de) 2014-01-23
EP2859133A1 (de) 2015-04-15
WO2014012797A1 (de) 2014-01-23

Similar Documents

Publication Publication Date Title
EP2859133B1 (de) Verfahren zum kaltgasspritzen mit einem trägergas
EP2298962B1 (de) Kaltgasspritzen von oxydhaltigen Schutzschichten
DE69813483T2 (de) Zyklonmischer
EP2732072B1 (de) Verfahren zum reparieren einer schadstelle in einem gussteil und verfahren zum erzeugen eines geeigneten reparaturmaterials
DE102005005359A1 (de) Verfahren zum Kaltgasspritzen und für dieses Verfahren geeignete Beschichtungsanlage
DE102006009147A1 (de) Zweistoffdüse mit Weitwinkelstrahl
EP1727623B1 (de) Wasserdampfunterstutztes lackierverfahren
DE2724318A1 (de) Verfahren und anlage zum druckluftstrahlen
DE10319481A1 (de) Lavaldüse für das thermische Spritzen und das kinetische Spritzen
EP2737101A2 (de) Beschichtungsverfahren nutzend spezielle pulverförmige beschichtungsmaterialien und verwendung derartiger beschichtungsmaterialien
DE102008019682A1 (de) Kaltgasspritzanlage
DE2845593A1 (de) Verfahren und vorrichtung zur kuehlung und befeuchtung staubhaltiger heisser gase oder abgase
EP0924315B1 (de) Heissgaserzeugung beim thermischen Spritzen
DE102016114533A1 (de) Eisenbasierte Legierung zur Herstellung thermisch gespritzter Verschleißschutzschichten
EP3250352A2 (de) Vorrichtung und verfahren zum beleimen von partikeln
EP2127759A1 (de) Kaltgasspritzanlage und Verfahren zum Kaltgasspritzen
DE3883788T2 (de) Vorrichtung und verfahren zur mikroatomisierung von flüssigkeiten, insbesondere schmelzen.
DE102009025473A1 (de) Kaltsprühdüse
DE10348805A1 (de) Verfahren und Vorrichtung zur Erzeugung eines Wasserabrasivstrahls
DE102009009474B4 (de) Gasspritzanlage und Verfahren zum Gasspritzen
DE102012014665A1 (de) Brenner zum Lichtbogendrahtspritzen
DE102014104341A1 (de) Verfahren und Vorrichtung zur Erzeugung von Flüssigkeitsnebel
DE3843436C2 (de)
EP3180163B1 (de) Strahlschneidvorrichtung und strahlschneidverfahren
DE102012204426A1 (de) Vorrichtung und Verfahren zum Sprühbeschichten eines Gegenstands mit einem Heißkleber

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150107

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502013009191

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C23C0024080000

Ipc: C23C0024040000

RIC1 Information provided on ipc code assigned before grant

Ipc: C23C 24/04 20060101AFI20170509BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170725

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 960348

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013009191

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180103

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180403

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180403

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180503

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013009191

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

26N No opposition filed

Effective date: 20181005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180704

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180731

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 960348

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180103

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200813

Year of fee payment: 8

Ref country code: FR

Payment date: 20200720

Year of fee payment: 8

Ref country code: DE

Payment date: 20200921

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20201002

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502013009191

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210704

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220201

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731