EP2855274B1 - Injectable nut cap - Google Patents
Injectable nut cap Download PDFInfo
- Publication number
- EP2855274B1 EP2855274B1 EP13723930.7A EP13723930A EP2855274B1 EP 2855274 B1 EP2855274 B1 EP 2855274B1 EP 13723930 A EP13723930 A EP 13723930A EP 2855274 B1 EP2855274 B1 EP 2855274B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cap member
- annular
- sealing material
- cavity
- cap
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003566 sealing material Substances 0.000 claims description 132
- 238000007789 sealing Methods 0.000 claims description 89
- 238000002347 injection Methods 0.000 claims description 17
- 239000007924 injection Substances 0.000 claims description 17
- 239000000565 sealant Substances 0.000 claims description 17
- 239000012530 fluid Substances 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 13
- 238000004891 communication Methods 0.000 claims description 10
- 230000007423 decrease Effects 0.000 claims description 3
- 239000000853 adhesive Substances 0.000 description 26
- 230000001070 adhesive effect Effects 0.000 description 26
- 239000004593 Epoxy Substances 0.000 description 11
- 239000000446 fuel Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 238000010943 off-gassing Methods 0.000 description 7
- 239000012812 sealant material Substances 0.000 description 7
- 239000004697 Polyetherimide Substances 0.000 description 6
- 230000001154 acute effect Effects 0.000 description 6
- 239000002131 composite material Substances 0.000 description 6
- 229920001601 polyetherimide Polymers 0.000 description 6
- 229920001021 polysulfide Polymers 0.000 description 6
- 239000011521 glass Substances 0.000 description 4
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 238000005304 joining Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 229920006332 epoxy adhesive Polymers 0.000 description 2
- 239000002828 fuel tank Substances 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 239000012815 thermoplastic material Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16B—DEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
- F16B39/00—Locking of screws, bolts or nuts
- F16B39/02—Locking of screws, bolts or nuts in which the locking takes place after screwing down
- F16B39/021—Locking of screws, bolts or nuts in which the locking takes place after screwing down by injecting a settable material after the screwing down
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D45/00—Aircraft indicators or protectors not otherwise provided for
- B64D45/02—Lightning protectors; Static dischargers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16B—DEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
- F16B37/00—Nuts or like thread-engaging members
- F16B37/14—Cap nuts; Nut caps or bolt caps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16B—DEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
- F16B11/00—Connecting constructional elements or machine parts by sticking or pressing them together, e.g. cold pressure welding
- F16B11/006—Connecting constructional elements or machine parts by sticking or pressing them together, e.g. cold pressure welding by gluing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16B—DEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
- F16B33/00—Features common to bolt and nut
- F16B33/004—Sealing; Insulation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/4998—Combined manufacture including applying or shaping of fluent material
- Y10T29/49993—Filling of opening
Definitions
- the present invention relates to a cap for forming a sealed cavity around one end of a fastener, a joint comprising such a cap, and a kit of parts and method for installing such a cap.
- Figure 1 is a side view of part of a fastener assembly passing through a panel 1, which may be a composite or metallic panel.
- the assembly comprises a fastener comprising an externally threaded bolt 2, an internally threaded nut 3, and a washer 4 (the fastener may alternatively comprise any other known fastener type, such as a rivet or swage fastener).
- sparking, plasma or out-gassing may occur at the locations indicated by reference 5 in Figure 1 .
- a known method of providing spark suppression is described in EP-A-0334011 .
- a volume of gas is enclosed by a cap around the fastener.
- the gas provides spark suppression for arcing that may occur between the composite structure and the metal fastener during any lightning strike.
- a first aspect of the invention provides a cap for forming a sealed cavity around one end of a fastener, the cap comprising: an inner cap member having an annular base terminating at an edge which surrounds an opening into an air cavity for enclosing the one end of a fastener; an outer cap member having an annular skirt or flange which extends radially outwardly away from the annular base, the annular skirt or flange and annular base between them defining an annular sealing cavity; and a sealing material inlet comprising an opening in the outer cap member that is in fluid communication with the annular sealing cavity, the opening being arranged to interconnect with a sealing material injection device to provide a flow of curable sealing material from the sealing material inlet into the annular sealing cavity.
- sealing material can be injected after positioning of the cap onto an end of a fastener it is possible to use sealing materials with short handling and curing times.
- the sealing material can be mixed in the sealing material injection device on application, thus ensuring that the material is applied during its working life and before it has started to cure.
- Quick cure sealing materials have the advantage of providing a stable bond very quickly. That is, the installed cap will be able to withstand accidental knocks or similar from assembly workers within a short timeframe.
- the annular sealing cavity provides a large contact area for the seal which in turn provides a strong, reliable bond between the cap and structure in a relatively small footprint area.
- a good seal between the cap and structure is essential, both to maintain a sealed volume of air within the air cavity so that the air cavity can safely contain out-gassing and sparking caused during a lightning strike, and to prevent leakage of fuel into the air cavity.
- the cap of the present invention also prevents air gaps within the cured seal, and provides for a clean and consistent application process. It is particularly important to prevent air gaps in the sealing material since such air gaps compromise the seal (bond line) and thereby permit fuel leakage into the air cavity.
- Sealing material within the annular sealing cavity has a primary function of sealing the air cavity when the nut cap is installed over a fastener passing through a structure, but may also have a function of bonding the cap to the structure.
- the sealing material may comprise a sealing and bonding material.
- the annular sealing cavity may comprise an annular sealing and bonding cavity.
- the cap may comprise an interfay cavity in fluid communication with the opening of the sealing material inlet and the annular sealing cavity.
- the interfay cavity carries a flow of curable sealing material from the sealing material inlet into the annular sealing cavity.
- the injected sealing material After the injected sealing material has cured within the interfay cavity it serves to bond the inner cap member to the outer cap member. This bond provides the cap with additional strength, flexibility and shock resistance, and increased resistance to fuel ingress.
- the opening of the sealing material inlet is preferably centred on a central axis of the outer cap member. Such a central position ensures an even flow to the whole circumference of the annular sealing cavity.
- the opening may be offset from the central axis in some embodiments in order to enable installation of the cap in confined spaces. It may be necessary in such cases to incorporate additional restriction features or other features into the cap to ensure that the flow of sealant material is able to provide an even seal (bond line).
- the interfay cavity may comprise a flow restriction feature arranged to restrict flow of curable sealing material from the opening to the annular sealing cavity.
- a flow restriction feature may comprise a region of reduced cross-sectional area of the interfay cavity.
- the flow restriction feature serves to prevent flow of sealing material into the annular sealing cavity until the whole interfay cavity is filled with sealing material. Once filled, the pressure within the sealing material increases sufficiently to overcome the resistance provided by the flow restriction feature, and thereby permit an even delivery of sealing material to the whole circumference of the annular sealing cavity.
- the cap may further comprise a reservoir arranged to receive curable sealing material from the opening and distribute it to the annular sealing cavity.
- the reservoir may comprise an open-topped chamber axially aligned with (i.e. positioned directly beneath) the opening. Once filled with sealing material, the reservoir may be arranged to overflow via a peripheral edge (i.e. upper edge) to provide a uniform flow of sealing material in all radial directions.
- the interfay cavity may have an annular cross-sectional shape.
- the inner cap member preferably comprises a substantially dome-shaped portion extending from the annular base
- the outer cap member preferably comprises a corresponding substantially dome-shaped portion extending from the annular skirt or flange.
- the dome shape of the outer cap member reduces the likelihood of damage to the cap e.g. by accidental knocking by an assembly worker, and minimises stress concentrations.
- the dome shape of the inner cap member enables the volume of the air cavity to be minimised, and therefore minimises the overall size and mass of the cap. The dome shape thus maximises the air cavity volume for a given weight and space envelope. Where an interfay cavity is provided, then the interfay cavity thus comprises a thin-walled dome-shaped cavity defined between the dome-shaped portions of the inner and outer cap members.
- the dome shape of the interfay cavity provides a low resistance fluid flow path for injected sealing material.
- the cap may comprise a plurality of channels formed in either an outer surface of the inner cap member or an inner surface of the outer cap member, each channel being in fluid communication with the opening of the sealing material inlet and the annular sealing cavity.
- the channels may be shallow channels which extend over only part of the gap between the inner and outer cap members - the rest of the gap providing a continuous interfay region. More preferably either: the channels are formed in the outer surface of the inner cap member and separated by ridges which abut the inner surface of the outer cap member; or the channels are formed in the inner surface of the outer cap member and separated by ridges which abut the outer surface of the inner cap member.
- the ridges divide the gap between the inner and outer cap members into a plurality of channels and do not permit the sealing material to flow between the channels.
- the ridges may be joined to the other cap member where they abut that other cap member.
- each channel has a channel inlet arranged to receive the flow of curable sealing material from the sealing material inlet and an outlet arranged to feed the flow of curable sealing material into the annular sealing cavity.
- the channels may run all the way to the edge of the annular base of the inner cap member, but more preferably the outlets of the channels are set back in an axial direction from the edge of the annular base of the inner cap member.
- the inner cap member may comprise a shoulder joining the annular base to a smaller diameter outboard portion, and the outlets of the channels may be set back in the axial direction from the shoulder or adjacent to the shoulder.
- the inner or outer cap member may be formed with channels on one side only, but more preferably the inner or outer cap member has a corrugated shape. That is, either: the channels are formed in an outer surface of the inner cap member and a plurality of corresponding channels are formed in an inner surface of the inner cap member; or the channels are formed in an inner surface of the outer cap member and a corresponding plurality of channels are formed in an outer surface of the outer cap member. Forming the inner or outer cap member with such a corrugated shape enables relatively narrow channels to be formed without resulting in a large amount of extra weight.
- the inner or outer cap member typically has side walls forming the channels with a substantially uniform wall thickness. This minimises the weight of the cap.
- Each channel may have a width which increases as it extends towards the annular sealing cavity. This encourages the separate streams of sealing material from the different channels to merge as they exit the channels.
- Each channel may have a depth which decreases as it extends towards the annular sealing cavity.
- the annular skirt or flange of the outer cap member terminates at an edge, the edge of the annular skirt or flange being offset in an axial direction from the edge of the annular base of the inner cap member. That is, when the cap is in place with the end of the fastener enclosed within the air cavity and the edge of the inner cap member abutting the structure through which the fastener passes, there will usually be a gap between the edge of the annular skirt or flange and the structure. This gap enables sealing material to flow out from the annular sealing cavity so that it forms a visible ring around the cap, thus providing a visual indication of a complete and uniform seal.
- the offset edge also enables the cap to be fitted to structures which have a raised region such as a fillet radius or step close to the edge of the inner cap member.
- the inner cap member and outer cap member are preferably formed as separate parts, cured sealant in the interfay cavity after assembly optionally bonding one to the other.
- the inner and outer cap members may be formed by injection moulding, preferably from a thermoplastic material such as a glass-filled polyetherimide (PEI).
- PEI polyetherimide
- a suitable glass-filled PEI is Ultem TM 2400, which includes 40% glass fibres by volume.
- the two parts may be correspondingly shaped such that when assembled together there is an interference fit between them that prevents inadvertent disassembly and provides a gripping force to hold the cap on the fastener during curing of the sealing material.
- the two parts may be joined together (for example by welding) before the sealing material is introduced.
- the two cap members may be formed together as one integral part, for example by additive layer manufacturing.
- the outer cap member is transparent in order to observe the sealing material as it is injected.
- the annular sealing cavity may have a generally flared shape such that its cross-sectional area decreases with distance from the edge of the annular base.
- the annular skirt or flange thus preferably extends radially outwardly from the annular base at an acute angle to the annular base.
- the annular skirt or flange may extend radially outwardly from the annular base at a right angle to the annular base.
- the annular skirt or flange may extend radially outwardly from the annular base along its full length.
- the annular skirt or flange may comprise a cylindrical portion which extends parallel with the annular base, and a shoulder which extends radially outwardly from the annular base and joins the cylindrical portion to an outboard portion of the outer cap member (which may be domed).
- the shoulder may extend radially outwardly from the annular base at an acute angle to the annular base, or at a right angle to the annular base.
- the sealing material inlet may comprise a projection (such as a boss) in the outer cap member, the projection containing the opening and being arranged to interconnect with the sealing material injection device.
- the annular parts of the cap may have a generally circular shape in cross-section, or they may be any other closed shape in cross-section such as hexagonal or square (for instance to enclose a fastener with a hexagonal or square shape).
- a second aspect of the present invention provides a joint comprising: a structure; a fastener passing through the structure; a cap according to the first aspect, wherein the air cavity of the inner cap member encloses an end of the fastener and the edge of the inner cap member abuts the structure; and sealing material filling the annular sealing cavity of the cap and contacting the structure to seal the air cavity.
- the sealing material within the annular sealing cavity thus serves to maximise the seal (bond) thickness and the leak path length between the outside of the seal (bond) and the air cavity (inner cavity).
- the sealing material fills the annular sealing cavity to also bond the cap to the structure.
- the bond between the cap and the structure is thus formed by the cap-sealant material bond and the sealant material-structure bond.
- a cap according to the first aspect may enclose each end of the fastener, so that the joint is sealed from both sides of the structure.
- the structure is preferably a structural component of an aircraft, more preferably a structural component of an aircraft wing, and most preferably a structural component of an aircraft wing which forms a boundary wall of a fuel tank.
- the structure preferably comprises a composite structural component, and the fastener may be a metal fastener. In such cases a lightning strike may be particularly likely to occur at the fastener.
- the structure typically comprises a pair of structural parts which are joined together by the fastener. In such aircraft applications the air cavity of the cap provides an air pocket within which controlled out-gassing or sparking events can safely occur in the event of a lightning strike.
- the sealing material also provides a fluid tight seal around the end of the fastener, thus preventing fuel leakage through the hole in the structure through which the fastener passes.
- the sealing material preferably comprises an epoxy based adhesive, most preferably a two-part epoxy based structural adhesive such as Scotch-Weld TM 7256 B/A, produced by 3M TM .
- epoxy based materials are normally used in applications in which its primary (or sole) purpose is to act as an adhesive, but in the present invention it acts as both an adhesive and a sealant.
- Such two-part adhesives are typically supplied in cartridge form (50ml cartridges being preferred) and are mixed within the nozzle of an injector gun on application.
- Epoxy based adhesives are free-flowing, have a low viscosity, and exhibit rapid cure at room temperature. By mixing the two-part adhesive on application it is possible to use adhesives with very low working lives, for example a working life of only a few minutes. Such adhesives could not be used with known sealing caps, which require application before assembly of the cap over the fastener end and/or by hand.
- a suitable alternative material for the sealing material is a sealant material such as a two-part polysulphide based sealant or silicone based sealant.
- the sealing material is thus typically an elastomer.
- a suitable polysulphide based sealant is MC-238 Class A/B, produced by Chemetall TM .
- Two-part sealants can be supplied within a cartridge for application via an applicator gun, and are typically mixed within the cartridge before delivery via the nozzle of the gun. Such sealants typically have a much longer cure time than two-part adhesives. In particular, the time taken to achieve a robust seal capable of withstanding accidental knocks etc may be 12 hours or more, compared to approximately 1 hour for an epoxy adhesive.
- the inner cap member may or may not abut the fastener. If it abuts the fastener then it may abut the fastener via a plurality of ribs projecting from an inner surface of the inner cap member.
- the fastener may project from the structure or it may be countersunk within the structure.
- a third aspect of the invention provides a kit of parts for forming a sealed cavity around one end of a fastener, the kit including:
- the sealing material can be a quick cure sealing material of the type which has a short working life, since it is applied directly to the assembled cap, optionally via a static mixing nozzle.
- the kit of parts can be used to form the joint of the second aspect, and thereby achieve the associated benefits.
- the cap may comprise a cap according to the first aspect.
- the injection device may be powered manually, electrically, or by compressed air.
- the injection device may be arranged to deliver a fixed volume of sealing material to thereby ensure a controlled and consistent application process.
- the curable sealing material may be a two-part adhesive or sealant material, the two parts of which are mixed together in the nozzle of the injection device before injection into the cap. Alternatively, the two parts may be pre-mixed before delivery via the nozzle of the injection device.
- the curable sealing material preferably comprises an epoxy based adhesive that has good flow characteristics, most preferably a two-part epoxy based adhesive such as Scotch-Weld TM 7256 B/A, produced by 3M TM .
- Such two-part adhesives are supplied in the form of cartridges (50ml cartridges, or larger cartridges, being preferred) which can be loaded into the injection device.
- the two parts of the adhesive are mixed within the nozzle of the injector gun on application.
- Epoxy based adhesives are free-flowing, have a low viscosity, and exhibit rapid cure at room temperature. By mixing the two-part adhesive on application it is possible to use adhesives with very short working lives, for example a working life of only a few minutes. Such adhesives could not be used with known sealing caps, which require application before assembly of the cap over the fastener end and/or by hand.
- a suitable alternative material for the sealing material is a sealant material such as a two-part polysulphide based sealant or manganese dioxide based sealant.
- a suitable polysulphide based sealant is MC-238 Class A/B, produced by Naftoseal TM .
- Two-part sealants can be mixed within an applicator gun before delivery, as discussed above, but typically have a much longer cure time than two-part adhesives. In particular, the time taken to achieve a robust seal capable of withstanding accidental knocks etc may be 12 hours or more, compared to approximately 1 hour for an epoxy adhesive.
- a fourth aspect of the invention provides a method of installing a cap to form a sealed cavity around one end of a fastener passing through a structure, the cap comprising: an inner cap member having an annular base terminating at an edge which surrounds an opening into an air cavity for enclosing the one end of a fastener; an outer cap member having an annular skirt or flange which extends radially outwardly away from the annular base, the annular skirt or flange and annular base between them defining an annular sealing cavity; and a sealing material inlet comprising an opening in the outer cap member that is in fluid communication with the annular sealing cavity, the method including:
- the cured sealing material may thus form a continuous void-free seal (bond) around the air cavity.
- the step of curing the curable sealing material may also include adhering the cap to the structure.
- the cap may comprise a cap according to the first aspect, and the method may result in a joint according to the second aspect.
- the method may use a kit of parts according to the third aspect.
- the structure preferably comprises a structural component of an aircraft, more preferably a structural component of an aircraft wing, and most preferably a structural component of an aircraft wing which forms a boundary wall of a fuel tank.
- the structure preferably comprises a composite structural component or a hybrid assembly of composite and metallic structural components, and the fastener comprises a metal fastener.
- a lightning strike may be particularly likely to occur at the fastener or in an area immediately surrounding the fastener.
- the structure typically comprises a pair of structural parts which are joined together by the fastener.
- the air cavity of the cap provides an air pocket which will safely contain out-gassing or sparking events that occur in the event of a lightning strike.
- the sealing material also provides a fluid tight seal around the end of the fastener, thus preventing fuel leakage into the inner air cavity.
- the curable sealing material preferably comprises an epoxy based adhesive, as described above in relation to the third aspect.
- Fig. 2 shows a simplified embodiment of the present invention
- Fig. 3 shows a more detailed embodiment. Equivalent features of each embodiment are identified by the same reference numerals.
- the injectable nut cap 100 of the present invention includes an inner cap member 10 and an outer cap member 20.
- the inner and outer cap members 10, 20 are injection moulded from a thermoplastic material such as glass-filled polyetherimide (PEI).
- PEI glass-filled polyetherimide
- a suitable glass-filled PEI is Ultem TM 2400, which includes 40% glass fibres by volume.
- the inner and outer cap members may alternatively be made by moulding, by an additive manufacturing process, or by any other suitable process.
- the inner cap member 10 is a generally thin-walled dome-shaped member, with a correspondingly dome-shaped inner air cavity 12 which encloses the tail end of a fastener protruding from a structural element, which in this embodiment is a composite aircraft structural component 50, but may be a hybrid composite-metallic component. That is, the air cavity 12 encloses the part of a bolt 2 which protrudes from the structural element 50, and a nut 3 and washer 4 fastened to that bolt 2.
- the inner cap member 10 is generally made up of a base cylindrical portion 13, a shoulder 14 joining the base cylindrical portion 13 to a smaller diameter mid cylindrical portion 15, and an upper dome portion 16 which extends from the mid cylindrical portion 15 to a central recessed portion 17.
- the exposed edge 18 of the base cylindrical portion 13 abuts the structural element 50 to fully encapsulate the tail end of the fastener 2, 3, 4 within the air cavity 12.
- the base cylindrical portion 13 has a diameter sized to fit snugly over the fastener 2, 3, 4 with an interference fit to hold the cap in place during injection and curing of sealing material (see below).
- it may incorporate mechanical locking features for providing a mechanical connection between the inner cap member 10 and the fastener 2, 3, 4.
- the washer 4 may incorporate an overhang portion which interconnects with a snap-fit mechanism of the base cylindrical portion 13.
- the outer cap member 20 is also a generally thin-walled dome shaped member, and is shaped to fit over the inner cap member 10 so that there is a continuous sealing volume 30 between them.
- the outer cap member 20 is generally made up of a central dome portion 23 and a mid cylindrical portion 24 which connects the dome portion 23 to an annular flared skirt or flange portion 25 which has a raised lip 26 at its free edge.
- the outer cap member 20 has a central opening 22 in its central dome portion 23 which is sized to interconnect with the nozzle 200 of a sealing material injector gun, as shown in Fig. 3 .
- the nozzle 200 delivers a continuous flow of sealing material 210 into the sealing volume 30 via the opening 22.
- a two-part epoxy based structural adhesive such as Scotch-Weld TM 7256 B/A, produced by 3M TM .
- This adhesive is supplied in cartridge form (50ml cartridges being preferred) and mixed within the nozzle 200 on application by the injector gun.
- epoxy based adhesives are free-flowing, have a low viscosity, and exhibit rapid cure at room temperature.
- a suitable alternative material is a two-part polysulphide based sealant such as MC-238 Class A/B, produced by Naftoseal TM .
- the sealing volume 30 between the inner and outer cap members 10, 20 has three key regions: a reservoir 32 (not shown in the embodiment of Fig. 2 ); an annular sealing volume 34; and an interfay volume 36 which interconnects the reservoir 32 and annular sealing volume 34.
- the reservoir 32 which is formed by the recessed portion 17 of the inner cap member 10, is directly below the opening 22 so that it receives sealing material 210 directly therefrom.
- the reservoir 32 serves to improve the flow of sealing material 210 into the sealing volume 30 by providing a relatively low flow resistance, and also serves to provide an even, uniform flow into the interfay volume 36.
- the interfay volume 36 comprises a generally thin-walled dome shaped volume through which sealing material 210 can flow from the reservoir 32 to the annular sealing volume 34 during assembly.
- the domed shape of the interfay volume 36 serves to aid this flow of sealing material 210 since it provides little flow resistance compared with, for example, a volume incorporating sharp changes of direction or sharp corners.
- the sealing material 210 within the interfay volume 36 serves to bond the inner cap member 10 and outer cap member 20 together, and adds structural rigidity to the cap 100.
- the annular sealing volume 34 is formed between the flared skirt or flange 25 of the outer cap member 20 and the lower portion of the inner cap member 10.
- the skirt or flange 25 extends radially outwardly away from the annular base 13 along its full length at a small acute angle, which increases at the lip 26.
- the annular sealing volume 34 has a generally flared shape such that its cross-sectional area increases with distance from the opening 22.
- the annular sealing volume 34 is open at its lower face such that the sealing material 210 can flow outwardly from the sealing volume 30 and into contact with the structural element 50.
- the flared shape of the annular sealing volume 34 provides a large adhesion area for the sealing material 210, which, once cured, acts to seal the cap 100 to the structural element 50. Moreover, this large adhesion area is achieved within a relatively small footprint on the structural element.
- the raised lip 26 of the outer cap member 20 is axially offset from the base edge 18 of the inner cap member 10 in the embodiment of Fig. 3 .
- This arrangement ensures that the outer cap member 20 does not clash with features of the structural element, such as ramps or radii (fillets), in the event that the fastener is located very close to such features.
- Such a potential clash is not uncommon in aircraft structures, where it is possible for the outer edge of a fastener to be located only 1.6mm from the edge of a fillet with a 5mm radius. It also ensures that the seal is able to accommodate small surface feature deviations in the structural element, and is sufficiently thick to have a degree of flexibility once cured.
- the sealing volume 30 in the embodiment of Fig. 3 also includes a flow restriction region 39 which comprises a region of decreased cross-sectional area between the interfay volume 36 and the annular sealing volume 34.
- the flow restriction region 39 serves to provide a region in which there is increased resistance to flow of sealing material 210. This provides an even distribution of sealing material 210 around the annular sealing volume 34 because sealing material 210 becomes 'backed up' above the flow restriction region 39 until the whole interfay volume 36 is filled with sealing material 210. Once the interfay volume 36 is completely filled the pressure within that volume increases sufficiently to cause the sealing material to overcome the resistance and flow through the flow restriction region 39 into the annular sealing volume 34. This flow will thus be uniform around the circumference of the annular sealing volume 34.
- the shape of the sealing volume 30 between the inner and outer cap members 10, 20 is maintained (at least before and during injection of the sealing material 210) by a plurality of vanes (not shown) extending radially inwardly from the inner face of the outer cap member 20 and spaced evenly around the circumference thereof.
- the vanes abut the outer face of the inner cap member 10 to ensure the outer cap member 20 is correctly located relative to the inner cap member 10.
- the vanes may control the relative radial position of the outer cap member 20 by means of their dimensions in a radial direction. That is, uniformly distributed vanes of equal axial width will ensure that the outer cap member 20 is co-axial with the inner cap member 10.
- the vanes may also control the relative positions of the cap members in an axial direction.
- the cap 100 is first placed in the position shown in Fig. 3 , with the tail end (or alternatively the head end) of a fastener enclosed within the air cavity 12.
- the nozzle 200 of a sealing material injector gun is then inserted into the opening 22 to create a temporary seal therebetween.
- the pre-mixed sealing material 210 is then injected from the nozzle 200 into the reservoir 32, where it collects. When the reservoir 32 is full it overflows, causing an evenly distributed flow of sealing material 210 into the interfay volume 36.
- the flow of sealing material 210 is initially blocked by the flow restriction region 39, but only until the interfay volume 36 is completely filled.
- the pressure of the sealing material 210 increases to a level at which it is forced through the flow restriction region 39 and into the annular sealing volume 34.
- the sealing material 210 completely fills the annular sealing volume 34 until it flows out and into contact with the structure 50, at which point the flow of sealing material 210 from the nozzle 200 is stopped.
- the nozzle 200 After injection of curable sealing material 210 into the sealing volume 30 the nozzle 200 is removed and the injected sealing material 210 is left to cure. On curing, it provides a strong adhesive bond between the cap 100 and structure 50, and also between the inner and outer cap members 10, 20.
- the sealing material is an epoxy based adhesive as discussed above, it may cure to handling strength (i.e. a degree suitable to provide sufficient strength to withstand knocks or similar from assembly workers) within an hour or so. This compares to handling strength cure times of 12 hours or more for polysulphide or manganese dioxide based sealants.
- the cured injected sealing material 210 also serves to fully seal the air cavity 12.
- trapped air within the air cavity 12 can provide a safe environment within which sparking and out-gassing events caused during a lightning strike can be contained. Ingress of fuel, water or other contaminants into the air cavity 12 is also prevented.
- the sealing material injection method of the present invention avoids the accumulation of air pockets (i.e. entrapment of air) within the sealing volume 30, since a uniformly distributed coverage of sealing material is achieved.
- air pockets are particularly undesirable because they may provide sites for uncontrolled sparking or out-gassing events and also cause the seal to be compromised and a consequent leakage of fuel through the fastener joint. In extreme cases such uncontrolled sparking or out-gassing events could even cause fuel ignition.
- Figs. 4 and 5 show an injectable nut cap 300 according to a third embodiment of the present invention. Equivalent features from the previous embodiments are identified by the same reference numerals.
- the nut cap includes an inner cap member 310 and an outer cap member 320 shown in Figs. 6-13 .
- the inner cap member 310 is a generally thin-walled dome-shaped member, with a correspondingly dome-shaped inner air cavity 312 which encloses the tail end of a fastener as shown in Fig. 5 .
- the inner cap member 310 is generally made up of a base 311 and a domed portion 310.
- the base 311 has a cylindrical portion 313 and a shoulder 314.
- the shoulder 314 joins the cylindrical portion 313 to the smaller diameter domed portion 310 which extends from the base 311 to an apex 317.
- the exposed inboard edge 318 of the cylindrical portion 313 abuts the structural element 50 to fully encapsulate the tail end of the fastener within the air cavity 312.
- the fastener comprises a nut 302 screwed onto a bolt 303, and a washer 304.
- the cylindrical portion 313 of the base 311 has mechanical locking features for providing a mechanical connection between the inner cap member 310 and the fastener.
- the washer 304 incorporates an overhang portion 305 which interconnects with three snap-fit projections 306 protruding from the inner surface of the cylindrical portion 313. These projections 306 prevent the cap from being forced away from the structure 50 by the pressure of the sealant material as it is injected.
- the inner cap member also has three axially extending ribs 307 which grip the sides of the washer 304 as shown in Fig. 5 .
- the outer cap member 320 is also a generally thin-walled dome shaped member, and is shaped to fit over the inner cap member 310.
- the outer cap member 320 is generally made up of an annular skirt 340 and a smaller diameter domed outboard portion 343.
- the annular skirt 340 has a cylindrical portion 341, a shoulder 342 joining the cylindrical portion 341 to the domed outboard portion 343, and a flared lip 326 at its free edge.
- a tapered boss 344 at the apex of the domed outboard portion 343 contains an opening 322.
- the outer diameter of the boss 344 is sized to be received within the nozzle of a sealing material injector gun 309 as shown in Fig. 5 .
- Fitting the nozzle over the boss 344 is preferred (rather than vice versa) since it does not restrict the flow of sealant material and results in a less directional flow of sealant into the cap.
- the nozzle may interconnect with the boss via a bayonet fitting or similar.
- the inner cap member has side walls with a substantially uniform wall thickness.
- the side walls are corrugated to form six outward-facing ridges 351 and channels 350 in an outer surface of the inner cap member and the same number of corresponding inward-facing ridges 352 and channels 353 in an inner surface of the inner cap member.
- the ridges 351 abut the inner surface of the domed portion 343 of the outer cap member as shown in Fig. 5 so that the sealing material cannot flow between the channels 350.
- the ridges 351 can be attached to the inner surface of the outer cap member 320 by ultrasonic welding.
- the sealing volume between the inner and outer cap members 310, 320 has three key regions: a reservoir 332; an annular sealing volume (or pocket) 334a-c between the skirt 340 and the base 311; and the channels 350 which interconnect the reservoir 332 and the annular sealing volume 334a-c (rather than a single continuous annular interfay volume as in the previous embodiment).
- the reservoir 332 is directly below the opening 322 so that it receives sealing material directly therefrom.
- the reservoir 332 serves to improve the flow of sealing material into the sealing volume 334a-c by providing a relatively low flow resistance, and also serves to provide an even, uniform flow into the channels 350.
- the sealing material within the channels 350 serves to bond the inner cap member 310 and outer cap member 320 together, and adds structural rigidity to the cap 300.
- the annular sealing volume has three parts shown in Fig. 5 : an upper part 334a between the shoulders 314, 342; a cylindrical part 334b between the cylindrical portions 341, 313; and a lower part 334c between the base 311 and the lip 326.
- the shoulder 342 extends radially outwardly away from a central axis 370 of the cap at a large acute angle, which is larger than the acute angle of the shoulder 314. Therefore the inner surface of the shoulder 342 extends radially away from the outer surface of the shoulder 314 at a small acute angle so that the upper part 334a of the annular sealing volume 334 has a flared shape with a cross-sectional area which increases with distance from the opening 322.
- the lower part 334c of the annular sealing volume also has a flared shape due to the flared lip 326 such that its cross-sectional area increases with distance from the opening 322.
- the annular sealing volume 334a-c is open at its lower face such that the sealing material can flow outwardly from the annular sealing volume and into contact with the structural element 50.
- the lip 326 is axially offset from the base edge 318 of the inner cap member 310.
- each channel 350 has an inlet 360 arranged to receive the flow of curable sealing material from the sealing material inlet and an outlet 361 arranged to feed the flow of curable sealing material into the upper part of the annular sealing volume 334a.
- the channels 350 terminate at the shoulder 314 so that their outlets 361 are set back in an axial direction from the edge 318 of the base 311.
- the advantage of replacing the continuous interfay region 36 of the previous embodiment with a series of channels 350 is that they present less resistance to flow so the sealing material can flow more freely from the reservoir into the annular sealing volume. This can be appreciated by comparing the surface area per unit volume of the two arrangements - the thin continuous interfay volume 36 of the previous embodiment having a higher surface area per unit volume and hence higher resistance than the channels 350.
- each channel 350 gradually reduces in the direction of flow.
- the circumferential width of each channel 350 also increases as it extends towards the annular sealing volume in the direction of flow. This encourages the streams of sealing material from the channels to merge as they exit the channels 350 and enter the annular sealing volume 334a-c.
- Figs. 14-17 show a kit of parts for forming an injectable nut cap according to a fourth embodiment of the present invention.
- the kit comprises an inner cap member 410 and an outer cap member 420.
- the inner cap member 410 is generally made up of a cylindrical base portion 413, and a domed portion 416 which extends from the base portion 413 to a planar apex 417.
- the outer cap member 420 is also a generally thin-walled dome shaped member, and is shaped to fit over the inner cap member 410.
- the outer cap member 420 is generally made up of an annular flange 440, a cylindrical base 441, and a domed outboard portion 442.
- the domed outboard portion 442 contains an opening 422 sized to interconnect with the nozzle of a sealing material injector gun (not shown).
- the inner cap member has side walls with a substantially uniform wall thickness.
- a plurality of outward-facing ridges 451 and channels 450 are formed in an outer surface of the inner cap member and the same number of corresponding inward-facing ridges 452 and channels 453 are formed in an inner surface of the inner cap member.
- the ridges 451 abut the inner surface of the outer cap member 420 when the cap is assembled so that the sealing material cannot flow between the channels.
- the ridges 451 can be attached to the inner surface of the outer cap member 420 by ultrasonic welding.
- each channel 450 has an inlet 460 arranged to receive the flow of curable sealing material from the sealing material inlet and an outlet 461 arranged to feed the flow of curable sealing material into the annular sealing volume 470.
- the channels 450 terminate at the edge 414 of the base 413.
- the channels 450 have an approximately semi-circular sectional shape which presents a low resistance to flow. The depth and width of each channel 450 remains substantially constant along its length.
- the inner surface of the base 441 of the outer cap member is formed with an annular projection 480 which is received as a snap fit in a corresponding recess 481 in the outer surface of the inner cap member in order to secure the cap members together before the sealant cures.
- the ridges and channels are formed in the inner cap member, and the outer cap member has a smooth outer surface. This is preferred since the smooth outer surface of the outer cap member does not attract dirt and has a profile with less impact on the flow of water or liquid over the cap.
- the outer cap member instead of the inner cap member may be corrugated to form the ridges and channels.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Aviation & Aerospace Engineering (AREA)
- Gasket Seals (AREA)
- Closures For Containers (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GBGB1209724.2A GB201209724D0 (en) | 2012-05-31 | 2012-05-31 | Injectable nut cap |
GB201307134A GB201307134D0 (en) | 2013-04-19 | 2013-04-19 | Injectable nut cap |
PCT/GB2013/051274 WO2013178985A1 (en) | 2012-05-31 | 2013-05-17 | Injectable nut cap |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2855274A1 EP2855274A1 (en) | 2015-04-08 |
EP2855274B1 true EP2855274B1 (en) | 2016-11-09 |
Family
ID=48468668
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13723930.7A Active EP2855274B1 (en) | 2012-05-31 | 2013-05-17 | Injectable nut cap |
Country Status (6)
Country | Link |
---|---|
US (1) | US9400007B2 (zh) |
EP (1) | EP2855274B1 (zh) |
JP (1) | JP5986301B2 (zh) |
CN (1) | CN104364158B (zh) |
CA (1) | CA2873823C (zh) |
WO (1) | WO2013178985A1 (zh) |
Families Citing this family (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2836728B1 (en) * | 2012-04-11 | 2016-08-24 | PRC-Desoto International, Inc. | Nut plate seal caps |
US10051767B2 (en) | 2012-09-28 | 2018-08-14 | The Boeing Company | Method and apparatus for covering a fastener system |
US9140291B2 (en) | 2012-09-28 | 2015-09-22 | The Boeing Company | Apparatus for covering a fastener system |
JP6270317B2 (ja) * | 2013-01-29 | 2018-01-31 | 三菱航空機株式会社 | 耐雷ファスナのシーラント層成形用治具、耐雷ファスナのシーラント層成形方法、耐雷ファスナ、航空機の翼、耐雷ファスナの成形方法および航空機の翼の製造方法 |
GB2519301A (en) * | 2013-10-15 | 2015-04-22 | Airbus Operations Ltd | Injectable cap |
MX367717B (es) | 2013-04-19 | 2019-09-03 | Airbus Operations Ltd | Tapa inyectable. |
EP2986529B1 (en) | 2013-04-19 | 2017-08-02 | Airbus Operations Limited | Injectable cap |
CA2919188C (en) | 2013-08-21 | 2020-06-09 | Airbus Operations Limited | Cap with injected sealant |
GB2520774A (en) * | 2013-12-02 | 2015-06-03 | Airbus Operations Ltd | Cap with injected sealant |
US9541118B2 (en) * | 2013-09-23 | 2017-01-10 | The Boeing Company | Systems and methods for use in covering a portion of a fastener protruding from a surface |
FR3014967B1 (fr) * | 2013-12-13 | 2016-07-29 | Airbus Operations Sas | Dispositif de fixation d'un objet par injection de liquide |
GB2523125B (en) * | 2014-02-13 | 2016-10-19 | Airbus Operations Ltd | Lobed nut cap |
GB2529237A (en) | 2014-08-14 | 2016-02-17 | Airbusgroup Ltd | Methods, device and apparatus for evaluating electrical current threat effects at joints |
US10252452B2 (en) * | 2014-11-17 | 2019-04-09 | The Boeing Company | Method of sealing a fastener |
GB2535519A (en) * | 2015-02-20 | 2016-08-24 | Airbus Operations Ltd | Two part cap |
GB2535518A (en) | 2015-02-20 | 2016-08-24 | Airbus Operations Ltd | Cap with injected sealant |
US10512805B2 (en) * | 2015-07-21 | 2019-12-24 | The Boeing Company | Ignition-quenching systems, apparatuses, and methods |
US10220422B2 (en) * | 2015-10-27 | 2019-03-05 | Hamilton Sundstrand Corporation | Powder removal |
US11161156B2 (en) * | 2015-10-27 | 2021-11-02 | Hamilton Sundstrand Corporation | Powder monitoring |
US9844929B2 (en) * | 2015-11-23 | 2017-12-19 | The Boeing Company | Automated fastener insert installation system for composite panels |
US10228684B2 (en) * | 2015-11-23 | 2019-03-12 | The Boeing Company | Automated fastener insert installation system for composite panels |
US9897130B2 (en) * | 2016-04-15 | 2018-02-20 | The Boeing Company | Telescoping cap assembly for encapsulating a fastener disposed within a confined space |
CN106567541B (zh) * | 2016-09-27 | 2018-11-20 | 浙江省交通工程建设集团有限公司 | 一种多功能模板连接器 |
CN110462942A (zh) * | 2017-04-03 | 2019-11-15 | 凯密特尔有限责任公司 | 用作对燃料和液压油以及雷击的组合保护的密封复合物填充的塑料盖 |
US10501202B2 (en) | 2017-08-23 | 2019-12-10 | The Boeing Company | Ignition-quenching systems, apparatuses, and methods |
US10655667B2 (en) | 2017-09-28 | 2020-05-19 | The Boeing Company | Rapid installation thermoplastic EME protection cap |
GB2568890A (en) * | 2017-11-29 | 2019-06-05 | Airbus Operations Ltd | Spark containment cap |
US10458455B2 (en) * | 2017-12-22 | 2019-10-29 | The Boeing Company | Systems and methods for making and using a fitted cap for applying a shaped sealant shroud to a portion of a fastener |
JP6557884B2 (ja) * | 2018-01-29 | 2019-08-14 | 順一 加川 | 建築工事において使用する防水用キャップの取付施工方法及び防水用キャップ。 |
GB2572376A (en) | 2018-03-28 | 2019-10-02 | Airbus Operations Ltd | Cap with sealant flow path |
GB2572377A (en) * | 2018-03-28 | 2019-10-02 | Airbus Operations Ltd | Cap with sealant flow path |
US10962043B2 (en) | 2018-04-24 | 2021-03-30 | The Boeing Company | Anchoring nut for an EME protection cap system |
US10920818B2 (en) | 2018-04-27 | 2021-02-16 | The Boeing Company | Anchoring washer for an EME protection cap system |
US11441586B2 (en) * | 2018-05-25 | 2022-09-13 | Divergent Technologies, Inc. | Apparatus for injecting fluids in node based connections |
US10948004B2 (en) | 2018-07-26 | 2021-03-16 | The Boeing Company | Anchoring bolt head for an EME protection cap system |
US11248647B2 (en) | 2018-11-09 | 2022-02-15 | The Boeing Company | EME cap for preventing uncured sealant squeeze out |
US10989244B2 (en) | 2018-11-20 | 2021-04-27 | The Boeing Company | EME protection cap system with push sealant extrusion mechanism |
GB2579229A (en) * | 2018-11-26 | 2020-06-17 | Airbus Operations Ltd | Spark containment cap |
US10982704B2 (en) | 2019-01-03 | 2021-04-20 | The Boeing Company | EME protection cap system with screw sealant mechanism |
US11236777B2 (en) | 2019-05-06 | 2022-02-01 | The Boeing Company | Friction fit electromagnetic effect protection cap system |
US11788573B2 (en) | 2019-05-23 | 2023-10-17 | The Boeing Company | Multi-component melt electromagnetic effect protection cap system |
US20210048059A1 (en) | 2019-08-12 | 2021-02-18 | Asyst Technologies L.L.C. | Injectable cap assembly and method of use |
US11754111B2 (en) | 2020-03-16 | 2023-09-12 | The Boeing Company | Compression fit EME protection seal cap |
CN113027892A (zh) * | 2021-03-17 | 2021-06-25 | 温州漏腐蚀五金制品有限公司 | 一种排气式螺栓保护组件 |
US12024310B2 (en) | 2021-04-08 | 2024-07-02 | The Boeing Company | Ignition-suppressing devices for shielding fasteners, aircraft fuel tanks having fasteners shielded by ignition-suppressing devices, and methods of installing ignition-suppressing devices in aircraft fuel tanks |
FR3136452A1 (fr) | 2022-06-13 | 2023-12-15 | Hutchinson | Capuchon antifoudre à double coquille à assemblage amelioré |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1805937A (en) * | 1928-12-27 | 1931-05-19 | Berge Joseph | Lock cap for fasteners |
US2710113A (en) | 1952-01-23 | 1955-06-07 | Gen Dynamics Corp | Seal construction |
US3557654A (en) * | 1968-06-19 | 1971-01-26 | Atlas Bolt And Screw Co The | Plastic headed fastener |
US4129060A (en) * | 1977-11-10 | 1978-12-12 | Nyltite Corporation | Screw head cover |
US4400123A (en) * | 1980-07-14 | 1983-08-23 | Rodun Development Corporation | Nut and thread protector |
JPH01143417A (ja) | 1987-11-30 | 1989-06-06 | Canon Electron Inc | Pll回路 |
US4826380A (en) * | 1988-01-19 | 1989-05-02 | Ltv Aerospace & Defense Company | Pre-cast sealant dome and method |
FR2626629B1 (fr) * | 1988-01-29 | 1990-03-09 | Aerospatiale | Procede et dispositif de fixation d'elements de structures d'aeronefs protegees contre la foudre, et outil pour la mise en oeuvre de ce procede |
US4905931A (en) * | 1988-02-18 | 1990-03-06 | The Boeing Company | Arc suppression around fasteners |
JPH02102910A (ja) | 1988-10-13 | 1990-04-16 | Dainippon Toryo Co Ltd | ボルト・ナットの防食方法及び保護キャップ |
GB8924231D0 (en) * | 1989-10-27 | 1989-12-13 | British Aerospace | Carbon fibre composite structures |
JPH075292Y2 (ja) * | 1989-12-11 | 1995-02-08 | 株式会社エポゾール | ボルト・ナット用キャップ |
US5419666A (en) * | 1993-09-27 | 1995-05-30 | Best; Don A. | Protective waterproof cover assembly for covering a fastener |
MY135737A (en) * | 1996-02-09 | 2008-06-30 | Petronas Res & Scient Services Sdn Bhd | Protective caps for bolts with nuts |
CN2338270Y (zh) * | 1998-06-19 | 1999-09-15 | 中国航空工业总公司第六○一研究所 | 飞机空速管的防雷击装置 |
DE102005030817B4 (de) * | 2005-07-01 | 2008-07-24 | Radolid Thiel Gmbh | Schutzkappe für Schraubverbindungen sowie Verfahren zur Herstellung von Schutzkappen für Schraubverbindungen |
JP5610758B2 (ja) | 2009-04-02 | 2014-10-22 | 三菱航空機株式会社 | 耐雷ファスナ、キャップ、耐雷ファスナの取り付け方法、航空機 |
WO2012107741A1 (en) * | 2011-02-10 | 2012-08-16 | Airbus Operations Limited | Cap for forming sealed cavity around fastener |
US8388293B2 (en) * | 2011-02-28 | 2013-03-05 | Physical Systems, Inc. | Insulated and sealed cap for a fastener component |
CN202250637U (zh) * | 2011-05-20 | 2012-05-30 | 西门子公司 | 用于风轮机的防雷击系统 |
-
2013
- 2013-05-17 CA CA2873823A patent/CA2873823C/en not_active Expired - Fee Related
- 2013-05-17 US US14/404,263 patent/US9400007B2/en active Active
- 2013-05-17 EP EP13723930.7A patent/EP2855274B1/en active Active
- 2013-05-17 JP JP2015514574A patent/JP5986301B2/ja not_active Expired - Fee Related
- 2013-05-17 CN CN201380028948.1A patent/CN104364158B/zh active Active
- 2013-05-17 WO PCT/GB2013/051274 patent/WO2013178985A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
EP2855274A1 (en) | 2015-04-08 |
US9400007B2 (en) | 2016-07-26 |
CA2873823A1 (en) | 2013-12-05 |
CN104364158B (zh) | 2016-06-15 |
CN104364158A (zh) | 2015-02-18 |
CA2873823C (en) | 2018-09-04 |
JP5986301B2 (ja) | 2016-09-06 |
US20150184688A1 (en) | 2015-07-02 |
JP2015519524A (ja) | 2015-07-09 |
WO2013178985A1 (en) | 2013-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2855274B1 (en) | Injectable nut cap | |
EP2986509B1 (en) | Injectable cap | |
EP2996941B1 (en) | Injectable nut cap | |
US11130591B2 (en) | Lobed nut cap | |
EP2986529B1 (en) | Injectable cap | |
US10220957B2 (en) | Two part cap | |
EP3027917B1 (en) | Cap to accommodate washers | |
US9951804B2 (en) | Spark containment cap | |
CN111216911A (zh) | 火花抑制帽 | |
GB2519301A (en) | Injectable cap |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20141127 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20160119 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20160318 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20160623 |
|
INTG | Intention to grant announced |
Effective date: 20160627 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 843657 Country of ref document: AT Kind code of ref document: T Effective date: 20161115 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602013013809 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161109 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20161109 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 843657 Country of ref document: AT Kind code of ref document: T Effective date: 20161109 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170210 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161109 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170209 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161109 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161109 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161109 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161109 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161109 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170309 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170309 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161109 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161109 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161109 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161109 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161109 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161109 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161109 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161109 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602013013809 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170209 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161109 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161109 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161109 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170531 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20170810 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161109 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161109 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170531 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170517 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170517 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170517 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20130517 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161109 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161109 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161109 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161109 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240521 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240521 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240528 Year of fee payment: 12 |