EP2852707B1 - Procédé de planification et de mise en oeuvre de procédures de compactage du sol, en particulier de compactage d'asphalte - Google Patents

Procédé de planification et de mise en oeuvre de procédures de compactage du sol, en particulier de compactage d'asphalte Download PDF

Info

Publication number
EP2852707B1
EP2852707B1 EP12810150.8A EP12810150A EP2852707B1 EP 2852707 B1 EP2852707 B1 EP 2852707B1 EP 12810150 A EP12810150 A EP 12810150A EP 2852707 B1 EP2852707 B1 EP 2852707B1
Authority
EP
European Patent Office
Prior art keywords
soil
compaction
area
bvü
passages
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12810150.8A
Other languages
German (de)
English (en)
Other versions
EP2852707A1 (fr
Inventor
Christoph KORB
Matthias Meier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamm AG
Original Assignee
Hamm AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=47504862&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2852707(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hamm AG filed Critical Hamm AG
Publication of EP2852707A1 publication Critical patent/EP2852707A1/fr
Application granted granted Critical
Publication of EP2852707B1 publication Critical patent/EP2852707B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/004Devices for guiding or controlling the machines along a predetermined path
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/02Improving by compacting
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/22Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for consolidating or finishing laid-down unset materials
    • E01C19/23Rollers therefor; Such rollers usable also for compacting soil
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/22Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for consolidating or finishing laid-down unset materials
    • E01C19/23Rollers therefor; Such rollers usable also for compacting soil
    • E01C19/26Rollers therefor; Such rollers usable also for compacting soil self-propelled or fitted to road vehicles
    • E01C19/266Rollers therefor; Such rollers usable also for compacting soil self-propelled or fitted to road vehicles fitted to vehicles, road-construction or earth-moving machinery, e.g. auxiliary roll readily movable to operative position ; provided with means for facilitating transport; Means for transporting rollers; Arrangements or attachments for converting vehicles into rollers, e.g. rolling sleeves for wheels
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/22Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for consolidating or finishing laid-down unset materials
    • E01C19/23Rollers therefor; Such rollers usable also for compacting soil
    • E01C19/28Vibrated rollers or rollers subjected to impacts, e.g. hammering blows
    • E01C19/282Vibrated rollers or rollers subjected to impacts, e.g. hammering blows self-propelled, e.g. with an own traction-unit
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C7/00Coherent pavings made in situ
    • E01C7/36Coherent pavings made in situ by subjecting soil to stabilisation

Definitions

  • the present invention relates to a method for planning and implementing soil compaction processes, in particular for asphalt compaction, by means of at least one soil compactor.
  • the US 2010/0087992 A1 discloses a method of compaction of a soil in which, during the performance of a compaction operation, the position of a soil compacter and the reaction of the soil to the compaction process are detected. Based on the information about in which previously compressed area the compression result does not match the compression result in other areas, the soil compactor is controlled to continue the compression operation.
  • the DE 694 16 006 T2 discloses a method of compaction of a subsurface in which the degree of compaction of the soil determined in the course of a compaction process is compared with a predetermined compaction degree and based on the result of the comparison, a soil compactor is controlled to achieve the desired compaction result.
  • this is already planned before carrying out a soil compaction process with regard to the relevant aspects and then carried out according to this plan, ie the compaction plan.
  • This ensures that no unnecessarily large number of compressor crossings is performed, which on the one hand reduce the efficiency of the entire machining process, but on the other hand also bring about the problem of undefined compaction of the soil.
  • the previous planning can be precisely determined where one or more soil compactors as often has to be moved over the soil area to be compacted in order to achieve the desired goal, namely a certain degree of compaction, which should be as constant as possible over the area to be compacted.
  • the measure a) further comprises determining at least one soil compactor to be used for compacting the soil area, and that in the measure b) the compaction plan is further defined based on the at least one compaction compactor to be compacted. Taking into account the soil compactor to be used in the preparation of the compaction plan, it can be ensured that a desired degree of compaction can be achieved as quickly as possible or as precisely as possible.
  • crabability describes whether or to what extent two compressor rollers of a soil compactor can be offset from each other transversely to the direction of travel of this soil compactor so that there is a region in which the two compressor rollers overlap and one for each roller Area exists, with which this laterally beyond the other roller protrudes.
  • the width edge areas of the floor area or at least one of these width edge areas or the course thereof are of particular importance.
  • such a width edge region can form the starting basis in determining the course of soil compactor crossings.
  • At least one width edge region of the bottom region to be compacted is determined by a device moving along the area of the soil to be compacted and preparing it, preferably an asphalt paver.
  • a device preparing the ground area for example an asphalt paver to be compacted, moves precisely in that area in which a soil compactor is subsequently to be moved when carrying out a compaction process. With the movement of this device, so for example asphalt paver, it is thus easily possible to determine the course of at least one Boothnrand Schemes and use for the subsequent creation of the compaction plan.
  • the floor area to be compacted can be defined with regard to its floor area width, so that ultimately it can be determined how many adjacent floor compactor crossings are required at least or at most in order to be able to detect the floor area to be compacted completely or almost completely and sufficiently often. It goes without saying that the soil area to be compacted can also be determined in particular with regard to the material to be compacted, ie, for example, asphalt or the like, as well as its stratification or with regard to the degree of compaction desired when carrying out the soil compaction process.
  • the compaction plan with at least one group of soil compactor crossings is defined, wherein at least one group of soil compactor crossings includes a plurality of soil compactor crossings adjacent to soil region width direction and wherein at least two, preferably all immediately adjacent floor area crossings have overlapping crossing lanes.
  • the overlap between immediately adjacent crossing lanes taking into account that there is an unavoidable inaccuracy or blurring with respect to the surface area actually traveled during the advancement of a soil compactor, ensures that in fact every area can also be detected.
  • the overlap is advantageously to be selected such that it is at least as large, advantageously larger, than the unavoidable blurring with respect to the actually detected surface areas when advancing a soil compactor.
  • a bottom area to be compacted is bounded by at least one width edge area
  • at least one group of ground compactor crossings has at least one crossing track substantially flush along a width edge area of the floor area to be compacted to be led.
  • substantially flush should be used here to state that the guided track along the width edge region lies in such a way that substantially no surface area remains in the width edge region in which the material to be compacted is not detected during a soil compactor crossing, but nevertheless avoided is that a soil compactor with his or her compressor rollers unnecessarily far beyond the width edge region beyond in an area in which no soil material to be compressed is no longer present.
  • the or at least a portion of, preferably all of the lane lanes of at least one group of soil compactor crossings, preferably substantially all groups of soil compactor crossings, may be guided to extend substantially in the direction of a bottom region longitudinal direction, which may be substantially orthogonal to the bottom region width direction, for example.
  • the guided overpass track can protrude laterally beyond the width edge region, in which case the size BB is to be added with the overall extent of the protrusion existing in the two edge regions.
  • the then existing or available overlap extent of the individual crossing lanes is less than in the case in which there is no projection in one or possibly both width edge areas.
  • At least one soil compactor passage may be defined to include a movement of at least one soil compactor to compress the soil area in a first direction of travel and a second direction of movement opposite the first direction of movement.
  • Fig. 1 is shown in a schematic representation and in side view generally denoted by 10 soil compactor, which runs on a bottom region B to be compacted to compact the compacted soil material M of the bottom portion B in one or more soil compactors crossings.
  • This material B may be, for example, in road construction asphalt material which is applied with a paving machine in one or more layers in the flowable state and is compacted before the complete hardening by or possibly more soil compactor 10.
  • the soil compactor 10 comprises two compressor rollers 12, 14, generally also referred to as bandages.
  • the compressor roller 12 is rotatably supported on a front compressor frame 16 and, if necessary, also driven for rotation.
  • the compressor roller 14 is rotatable on a rear compressor frame 18 and possibly also driven for rotation driven.
  • the front frame 16 and the rear frame 18 are pivotally supported on a central frame 20 about respective vertical axes A 1 and A 2 by a pivot drive, not shown.
  • this allows the directional control and, on the other hand, allows the setting of a so-called crab gear.
  • the front roller 12 and the rear roller 14 in the lateral direction, ie in the illustration of Fig.
  • the surface area of the bottom area to be compacted during the advancement of the soil compactor 10 is increased, with a partial area of this detected area being crossed by both compressor rollers 12, 14, while on both sides there are subareas which only from one of the two compressor rollers 12 , 14 are detected or overrun.
  • this adjustability of the crab also by different design of the soil compactor can be achieved.
  • the entire compressor frame can be rigid in itself and the pivotability of the two compressor rollers 12, 14 about respective vertical pivot axes can be realized where the rollers are connected to the rigid rigid compressor frame supporting.
  • a generally designated 22 cab with seating 24 and a display 26 is provided on the central compressor frame 20 .
  • the display 26 the occupant seated on the seat 24 can be represented for a compaction process to be performed relevant information.
  • the soil compactor 10 may receive or transmit information from a central station or other soil compactor.
  • the radio unit 28 may also be designed as a GPS unit in order to be able to obtain information about the positioning of the soil compactor 10 in space in this manner.
  • soil compactors in carrying out a compression process differently constructed soil compactors can be used. For example, these can be designed without the possibility of crabbing.
  • the soil compactors may also differ in the number of compressor rollers present, and when a soil compactor has only one compactor roller, it may further generally have wheels used for propulsion at the rear frame portion.
  • the soil compactors may continue to differ in the width of one or more of the existing compressor rolls, as well as in the weight of the compressor or the weight distribution on the two existing rollers.
  • Such soil compactors may further differ is the compaction modes that can be performed therewith. These include various physical aspects with which in addition to the surface load occurring due to the weight load, the compression result achieved in a soil compactor passage can be influenced or adjusted.
  • a compression mode may, for example, be a vibration mode in which, by a vibration mechanism provided in a respective compressor roller, the compressor roller is driven to vibrate substantially in the vertical direction.
  • Another compression mode may include an oscillation operation in which a compressor roller is driven by an oscillating drive to vibrate circumferentially about its roller rotational axis.
  • these different operating modes can also differ in the respective oscillation frequency or oscillation amplitude.
  • the compression modes may also include a static compression mode, that is, driving over with one or more compressor rolls without the additional generation of vibrational motions.
  • GPS Global Positioning System
  • the term GPS here represents a plurality of different, generally satellite-based operating systems, which offer the possibility in real time positioning of a unit equipped with such a unit, so for example a soil compactor or an asphalt paver or the like, and accordingly to provide this positioning or the movement history representing data or such data z. B. to use for controlling the Voranterrorism.
  • the driving over with one or more compressor rollers or alternatively or additionally one or more rubber wheels can be considered as each differentiating compression mode. In this case, it is also possible in particular to interpret a plurality of rubber wheels combined in groups and optionally also offset or overlapping one another in their entirety as one or more compressor rollers.
  • the soil area B to be compacted is first defined with regard to various parameters.
  • An essential parameter is the floor area width BB.
  • the bottom area length BL plays a substantial role in particular in the compaction of asphalt material, since it is an essential factor determining the area of the floor area to be compacted and it has to be taken into account that the compaction process has to be substantially completed before the material to be compacted is due to, for example Cooling has reached a state in which a further compression is practically unreachable.
  • the structure of the material M to be compacted will generally also have to be taken into account or the desired result after the compression process has been carried out.
  • an asphalt model can be created in a manner known per se, in which the degree of compaction desired, taking account of the asphalt stratification, is determined.
  • the selection of one or more soil compactors to be used can then be made from a group of soil compactors which differ in at least one of the parameters mentioned above and specifying them.
  • selecting several soil compactors from the group can of course also identical soil compactors be used.
  • the Fig. 3 shows a schematic representation of the compacted to bottom region B, which has the two in the Boden Schemeslteilscardi R L extending width edge regions BR 1 and BR 2 , for example, the edge regions of a road to be created. Between these two width edge regions BR 1 and BR 2 , the bottom region B extends with its bottom region width BB, wherein a bottom region width direction R B, for example, is substantially orthogonal to the bottom region longitudinal direction R L.
  • the course of the bottom region B to be compacted in the bottom region longitudinal direction R L is, above all, the Fig. 2 shows, basically determined by the course of the two width edge regions BR 1 and BR 2 . It may therefore be advantageous for the preparation of the compaction plan in the manner described below, first these width edge areas BR 1 and BR 2 in terms of their course and also their respective end in the Boden Schemesllindsraum R L to define. This can be done, for example, based on map data generated by surveying work, in which the course of the ground area to be compacted, for example, a road to be created, is reproduced.
  • the progression of the width edge regions BR 1 and BR 2 or the course of at least one of these two width edge regions BR 1 and BR 2 is determined in a work step preceding a compaction process.
  • a device is used, which moves in such a preceding step in the later to be compacted bottom area B.
  • an asphalt paver may be used which, in the soil area B to be compacted below, produces asphalt material.
  • the associated width edge area BR 1 and BR 2 detecting GPS units be provided so that in a Voranschulsvorgang both width edge regions BR 1 , BR 2 detected or their spatial position defining data can be determined and provided for the preparation of the compaction plan.
  • the floor area B is so wide that a previous processing is not possible with a single device, so for example a single asphalt paver, for example, several such pavers can side by side and in the direction of production slightly offset from each other to each other directly adjacent to several asphalt layers to deploy, which then define in their entirety the bottom area B to be compacted. It is then possible for the two lateral edge regions BR 1 , BR 2 to be provided on the various devices moving along the respective width edge regions when the asphalt pavers are advancing.
  • floor area B when preparing to be compacted floor area B with multiple devices, so for example asphalt pavers, prepared by all these devices together floor area can be used in its entirety as the then to be compacted floor area B to the compaction plan then especially using this entire area to create limiting width border areas.
  • a first group G 1 of ground area crossings BVÜ can be defined.
  • Each Boden Schemesüberfahrt BVÜ is assigned an overpass track ÜS, along which at a respective compactor crossing BVÜ, for example, the in Fig. 1 shown soil compactor 10 moves.
  • the floor area compressor 10 moves back once in a first direction of movement R 1 and once in an opposite second direction of movement R 2 .
  • the soil compactor 10 therefore moves twice along the designated overpass lane ÜS at each soil compactor crossing BVÜ, which, when using the in-transit track ÜS Fig. 1
  • the surface area detected by a respective over-travel track ÜS is passed over four times by one compacting roller, namely twice by the compacting roller 12 and twice by the compacting roller 14.
  • first group G 1 of soil compactor crossings BVÜ a total of four comprises in the bottom region widthwise direction R B offset from one another lying soil compactor crossings BVÜ 1a, BVÜ 1b BVÜ 1c and BVÜ 1d with respective crossing tracks ÜS 1a, ÜS 1b ÜS 1c and ÜS 1d.
  • each crossing track ÜS corresponds in its width to the compressor roller area VWB of the compressor rollers 12 and 14, which move beyond the floor area B.
  • a crossing lane ÜS 1a or ÜS 1d is guided along a respective width edge region BR 1 or BR 2 .
  • a respective side edge of the compressor roller 12 or 14 may be guided such that it is guided approximately exactly along the width edge region BR 1 or BR 2 .
  • a certain projection can also be provided in order to ensure that, taking into account the unavoidable unevenness in the movement of the soil compactor 10, no surface area arises in which At a respective width edge region BR 1 or BR 2, the material M can not or can not be compacted sufficiently.
  • the crossing lanes ÜS 1a to ÜS 1d are laid so that immediately adjacent crossing lanes ÜS overlap each other with a respective overlap amount ÜA 1 .
  • This overlap amount ÜA 1 is the same for all three overlapping areas Ü 1ab , Ü 1bc , U 1cd between immediately adjacent overpass lanes ÜS , so that a uniform distribution of the overpass lanes ÜS in ground area width direction R B is obtained.
  • the Fig. 4 shows two alternatively defined groups G 2 and G 3 of soil compaction crossings BVÜ.
  • Each of these two groups G 2 and G 3 comprises a crossing lane ÜS or a ground compactor crossing BVÜ less than the first group G 1 of ground compactor crossings.
  • the second group G 2 of soil compactor crossings BVÜ three soil compactor crossings BVÜ 2a, 2b and BVÜ BVÜ 2c each with a crossing track ÜS 2a, 2b and ÜS ÜS 2c.
  • On the left recognizable crossing lane ÜS 2a is guided so that it is guided either substantially exactly or with a certain projection along the width edge region BR 1 .
  • the individual crossing lanes ÜS 2a , ÜS 2b and ÜS 2c overlap each other with a Matterlappaussch ÜA 2 , which may be selected so that it corresponds to a poseenedauerlappaussch, but at least not less.
  • the minimum overlap extent can be determined, for example, in such a way that, taking into account the movement inaccuracies that unavoidably occur during the advancement of a soil compactor, a state is avoided in which immediately adjacent crossings no longer overlap one another or have a non-drilled surface area between them.
  • the third group G3 of the bottom area crossings BVÜ also has three soil compactor crossings BVÜ 3a, 3b and BVÜ BVÜ 3c respectively on a track crossing ÜS 3a, 3b and ÜS ÜS 3c.
  • the Bodenverêtrüberfahrten BVÜ the third group G 3 are placed so that the crossing lane ÜS 3c of in Fig. 4 is provided on the right or near the width edge region BR 2 provided compactor crossing BVÜ 3c neither substantially exactly or with a projection along this width edge region BR 2 .
  • the overlap amount ÜA 3 provided in this third group G 3 of soil compactor crossings BVÜ can also be selected at or near a minimum overlap extent in order to be able to detect the largest possible surface area in the bottom area width direction R B with the three intended ground compressor crossings BVÜ 3a , BVÜ 3b and BVÜ 3c . Nevertheless, there is also an edge strip N 3 , in which in the third group G 3 of soil compactor crossings, the ground area B in the ground area width direction BB is not overrun and therefore not compacted.
  • FIG Fig. 2 The positioning, for example, of the second group G 2 of soil compactor crossings BVÜ in a bottom region B shown in plan view is in FIG Fig. 2 shown.
  • Evident is the guided along the width edge region BR 1 crossing lane ÜS 2a as well as between the crossing lane ÜS 2c and the second second width edge region BR 2 formed with this second group G 2 of soil compactor crossings BVÜ not covered area N 2 .
  • the overlapping areas Ü 2ab and Ü 2bc between the crossing lanes ÜS 2a and ÜS 2b on the one hand and the crossing lanes ÜS 2b and ÜS 2c on the other hand can also be seen.
  • the order could be such that first the group G 1 is processed, then the group G 2 and then the group G 3 .
  • This supernatant can be chosen so that taking into account when moving a soil compactor forcibly Moving inaccuracies occurring is ensured that the entire surface in the bottom region B to the respective edge region BR 1 or BR 2 in a group is covered by soil compactor crossings.
  • the supernatant could be chosen to match the minimum overlap.
  • Fig. 5 also illustrated group G 1 ', which otherwise corresponds in principle to the group G 1 and has such a number of Bodenverêtrüberfahrten BVÜ that they can cover the entire width range of the bottom portion B, the two soil compactors crossings BVÜ 1a and BVÜ 1d are guided so that they overlap each associated width edge region BR 1 and BR 2 with the supernatant UST.
  • the respective supernatant ÜST can be chosen so that it corresponds to the minimum overlap extent.
  • a total projection GÜST is formed here, which therefore essentially corresponds to twice the supernatant ÜST present at a respective width edge region BR 1 or BR 2 , that is also, for example, twice the minimum overlap extent.
  • this overall projection GÜST is that the overlap amount ÜA 1 produced in the respective overlap areas is smaller than in the case of the group G 1 of FIG Fig. 3 in which the soil compactor crossings BVÜ 1a and BVÜ 1d are guided substantially without overhang along the width edge regions BR 1 and BR 2 .
  • this variable is either set to zero, namely, when there is essentially no projection to be provided, or taken into account with the respective value, namely, when working with a certain projection.
  • the number of soil compactor crossings or the individual crossings related to compressor rolls can be predetermined and then summarized in a compaction plan by corresponding superimposition of such groups of soil compactor crossings. It is understood that the combined in such a compaction plan soil compactor crossings or groups of soil compactor crossings can be positioned or designed differently than in the Fig. 3 . 4 and 5 shown. Thus, for example, a group of soil compactor crossings could be selected in which none of the crossing lanes is guided directly along a width edge region BR 1 or BR 2 .
  • one or more of these groups could of course be provided multiple times in a compaction plan, wherein advantageously between a repeatedly repeated group of soil compactor crossings defined with another location of the crossing lanes group is to avoid that in two immediately successive crossings the thereby each formed overlap areas are guided exactly in the same area of the floor area.
  • this plan can be converted into a geodata model.
  • the course of the movement of the soil compactor 10 can then be recorded and held as data to subsequently have the opportunity to check whether the soil compactor 10 was actually carried out with the required precision along the specified in the compaction plan crossing lanes when performing a compaction process.
  • data can also be stored, which further specify the compression process performed, for example, data concerning the compression mode of a particular compressor used or even possible errors such.
  • the unit producing the compaction plan does not necessarily have to be provided separately from a soil compactor used for soil compaction. It may, for example, also be provided on a soil compactor and use the information generated by converting the respective traffic lanes into geodata to guide a compressor along a respectively provided traffic lane or to display corresponding information. Furthermore, there is also the possibility that such provided at a compressor central station with others in this or another to Compressing soil compaction ground compressors communicate in order to transmit to them the required geo data for their respective compaction process of the traffic lanes based on the respective compaction plans for such compressors.

Claims (19)

  1. Méthode pour la planification et la réalisation de procédés de compactage du sol, en particulier pour le compactage de bitume, au moyen d'au moins un compacteur de sol, comprenant les mesures suivantes:
    a) définir une partie de sol à compacter (B), limité par deux zones de largeur de bord (BR1; BR2) s'étendant dans un sens longitudinal de la partie de sol (RL), où à cette fin, la trace d'au moins une zone de largeur de bord (BR1, BR2) de la partie de sol à compacter (B) est déterminée par un dispositif déplacé le long de la partie de sol à compacter (B) pour exécuter une mesure de préparation du sol précédant le processus de compaction,
    b) sur la base de la partie de sol (B) définie dans la mesure a) définir un plan de compaction avec le nombre et la trace des passages de compaction du sol (BVÜ) dans la partie de sol (B),
    c) pour exécuter le processus de compaction, déplacer au moins un compacteur de sol (10) dans la partie de sol (B) définie dans la mesure a) selon le plan de compaction défini dans la mesure (b).
  2. Méthode selon la revendication 1,
    caractérisée en ce que la mesure a) comprend en outre la détermination dudit au moins un compacteur de sol (10) à utiliser pour la compaction de la partie de sol (B) et en ce que dans la mesure b) le plan de compaction est en outre défini sur la base du au moins un compacteur de sol (10) à utiliser pour la compaction.
  3. Méthode selon la revendication 2,
    caractérisée en ce que ledit au moins un compacteur de sol (10) utilisé pour la compaction de la partie de sol (B) est sélecté parmi un groupe de compacteurs de sol différents en ce qui concerne les paramètres suivants:
    - largeur du cylindre du compacteur,
    - poids du compacteur,
    - mode de compaction,
    - possibilité de marche en crabe.
  4. Méthode selon une des revendications 1 à 3,
    caractérisée en ce qu'au moins une zone de largeur de bord (BR1, BR2) de la partie de sol à compacter (B) est déterminée par un finisseur de bitume déplacé le long de la partie de sol à compacter (B).
  5. Méthode selon une des revendications 1 à 4,
    caractérisée en ce que dans la mesure a) la partie de sol à compacter (B) est définie par rapport à une largeur de partie de sol (BB).
  6. Méthode selon la revendication 5,
    caractérisée en ce que dans la mesure b) le plan de compaction est défini avec au moins un groupe (G) de passages de compactage de sol (BVÜ), où au moins un groupe (G) de passages de compactage de sol (BVÜ) comprend une pluralité de passages de compactage de sol (BVÜ) l'un à côté de l'autre dans le sens de la largeur de la partie de sol (RB) et au moins deux, où de préférence tous les passages de compactage de sol (BVÜ) directement adjacents comprennent des traces de passage (ÜS) chevauchants.
  7. Méthode selon la revendication 6,
    caractérisée en ce que dans au moins un groupe (G) de passages de compactage de sol (BVÜ) toutes les traces de passage (ÜS) directement adjacentes possèdent un degré de chevauchement (ÜA) essentiellement équivalent.
  8. Méthode selon la revendication 6 ou 7,
    caractérisée en ce que dans au moins un groupe (G) de passages de compactage de sol (BVÜ) les traces de passage (ÜS) directement adjacentes possèdent un degré de chevauchement (ÜA) différent par rapport à un autre groupe (G) de passages de compactage de sol (BVÜ).
  9. Méthode selon une des revendications 6 à 8,
    caractérisée en ce qu'au moins deux groupes (G1, G2, G3) de passages de compactage de sol (BVÜ1, BVÜ2, BVÜ3) sont définis avec un nombre différent de passages de compactage de sol (BVÜ1, BVÜ2, BVÜ3) ou/et un positionnement différent des traces de passage (ÜS1, ÜS2, ÜS3).
  10. Méthode selon une des revendications 6 à 9,
    caractérisée en ce que dans au moins un groupe (G) de passages de compactage de sol (BVÜ) au moins une trace de passage (ÜS) est essentiellement alignée le long d'une zone de largeur de bord (BR) de la partie de sol à compacter (B).
  11. Méthode selon la revendication 10,
    caractérisée en ce que dans au moins un groupe (G1) de passages de compactage de sol (BVÜ1) une trace de passage (ÜS1a) est essentiellement alignée le long d'une première zone de largeur de bord (BR1) et qu'une autre trace de passage (ÜS1d) est essentiellement alignée le long d'une deuxième zone de largeur de bord (BR2) de la partie de sol à compacter (B) et que dans au moins un groupe (G2) de passages de compactage de sol (BVÜ2, BVÜ3) une trace de passage (ÜS2a) est essentiellement alignée le long de la première zone de largeur de bord (RB1) ou/et que dans au moins un groupe (G3) de passages de compactage de sol (BVÜ3) une trace de passage (ÜS3c) est essentiellement alignée le long de la deuxième zone de largeur de bord (BR2).
  12. Méthode selon une des revendications 6 à 11,
    caractérisée en ce que dans au moins un groupe (G) de passages de compactage de sol (BVÜ), de préférence essentiellement dans tous les groupes (G) de passages de compactage de sol (BVÜ) au moins une partie, de préférence toutes les traces de passage (ÜS), sont essentiellement orientées dans un sens longitudinal de la partie du sol (RL).
  13. Méthode selon la revendication 3 et la revendication 5 ou une des revendications 6 à 12, si elles se réfèrent sur la revendication 3 et la revendication 5,
    caractérisée en ce que dans la mesure b) un nombre minimum de passages de compactage de sol (n) est déterminé sur la base de la largeur de la partie de sol (BB), la largeur du cylindre de compactage (VWB) et un degré minimum de chevauchement (MÜA) de traces de passage (ÜS) directement adjacentes.
  14. Méthode selon la revendication 13,
    caractérisée en ce que le nombre minimum de passages de compactage de sol (n) est déterminé de sorte que la relation suivante est essentiellement valable: BB VWB M U ¨ A n × VWB n 1 × M U ¨ A G U ¨ ST BB ,
    Figure imgb0013
    avec:
    n étant le nombre minimum de passages de compactage de sol et un nombre entier,
    BB étant la largeur de la partie du sol,
    VWB étant la largeur du cylindre de compactage,
    MÜA étant le degré minimum de chevauchement,
    GÜST étant le débord total.
  15. Méthode selon la revendication 3 et la revendication 5 ou une des revendications 6 à 14, si elles se réfèrent sur la revendication 3 et la revendication 5,
    caractérisée en ce que dans la mesure b) un nombre maximum de passages de compactage de sol (N) est déterminé sur la base de la largeur de la partie de sol (BB), la largeur du cylindre de compactage (VWB) et un degré minimum de chevauchement (MÜA) de traces de passage (ÜS) directement adjacentes.
  16. Méthode selon la revendication 15,
    caractérisée en ce que le nombre maximum de passages de compactage de sol (N) est déterminé de sorte que la relation suivante est essentiellement valable: BB N × VWB N 1 × M U ¨ A G U ¨ ST BB + VWB ,
    Figure imgb0014
    avec:
    N étant le nombre maximum de passages de compactage de sol et un nombre entier,
    BB étant la largeur de la partie du sol,
    VWB étant la largeur du cylindre de compactage,
    MÜA étant le degré minimum de chevauchement,
    GÜST étant le débord total.
  17. Méthode selon la revendication 14 et la revendication 16,
    caractérisée en ce que la relation suivante est valable: N = n + 1.
    Figure imgb0015
  18. Méthode selon la revendication 16 ou 17,
    caractérisée en ce que dans un groupe (G1) de passages de compactage de sol (BVÜ1) avec un nombre maximum de passages de compactage de sol (N) une trace de passage (ÜS1a) respective est essentiellement alignée le long d'une première zone de largeur de bord (BR1) et une autre trace de passage (ÜS1d) est essentiellement alignée le long d'une deuxième zone de largeur de bord (BR2) de la partie de sol à compacter (B) et que le degré de chevauchement (ÜA) de traces de passages directement adjacentes (ÜS1a, ÜS1b, ÜS1c, ÜS1d) de ce groupe (G1) de passages de compactage de sol (BVÜ1) est déterminé de sorte que la relation suivante est essentiellement valable: BB + G U ¨ ST = N × VWB N 1 × U ¨ A ,
    Figure imgb0016
    avec:
    ÜA étant le degré de chevauchement,
    GÜST étant le débord total.
  19. Méthode selon une des revendications 1 à 18,
    caractérisée en ce qu'au moins un passage de compactage de sol (BVÜ), de préférence toutes les passages de compactage de sol, comprennent un mouvement d'au moins un compacteur de sol utilisé pour compacter la partie du sol (B) dans un premier sens de mouvement (R1) pour le mouvement en aller et dans un deuxième sens de mouvement (R2) opposé au premier sens de mouvement (R1) pour le mouvement en retour.
EP12810150.8A 2012-05-22 2012-12-11 Procédé de planification et de mise en oeuvre de procédures de compactage du sol, en particulier de compactage d'asphalte Active EP2852707B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012208554A DE102012208554A1 (de) 2012-05-22 2012-05-22 Verfahren zur Planung und Durchführung von Bodenverdichtungsvorgängen, insbesondere zurAsphaltverdichtung
PCT/EP2012/075041 WO2013174458A1 (fr) 2012-05-22 2012-12-11 Procédé de planification et de mise en œuvre de procédures de compactage du sol, en particulier de compactage d'asphalte

Publications (2)

Publication Number Publication Date
EP2852707A1 EP2852707A1 (fr) 2015-04-01
EP2852707B1 true EP2852707B1 (fr) 2016-10-12

Family

ID=47504862

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12810150.8A Active EP2852707B1 (fr) 2012-05-22 2012-12-11 Procédé de planification et de mise en oeuvre de procédures de compactage du sol, en particulier de compactage d'asphalte

Country Status (5)

Country Link
US (1) US9982397B2 (fr)
EP (1) EP2852707B1 (fr)
CN (1) CN104302839B (fr)
DE (1) DE102012208554A1 (fr)
WO (1) WO2013174458A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4249678A1 (fr) * 2022-03-22 2023-09-27 Hamm AG Procédé de fonctionnement d'un compacteur de sol et compacteur de sol

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9423332B2 (en) * 2014-10-14 2016-08-23 Caterpillar Inc. System and method for validating compaction of a work site
DE102015122149A1 (de) 2015-12-17 2017-06-22 Ammann Schweiz Ag Verfahren zum autonomen Betrieb einer Verdichtungsvorrichtung
DE102017008602A1 (de) * 2017-09-13 2019-03-14 Bomag Gmbh Verfahren zur Überwachung des Verdichtungsprozesses im Straßenbau und Straßenwalze
US10640943B2 (en) 2017-12-14 2020-05-05 Caterpillar Paving Products Inc. System and method for compacting a worksite surface
JP7022659B2 (ja) * 2018-06-22 2022-02-18 株式会社安藤・間 進路変更経路決定システム、自動走行式建設機械、及び進路変更経路決定プログラム
US11054831B2 (en) 2018-09-27 2021-07-06 Caterpillar Paving Products Inc. Automatic site planning for autonomous construction vehicles
US10787198B2 (en) * 2018-10-15 2020-09-29 Caterpillar Paving Products Inc. Controlling compactor turning radius
CN109443360B (zh) * 2018-10-18 2022-04-05 南京天辰礼达电子科技有限公司 一种基于多边形的车辆行驶轨迹生成及拼接方法
US11641800B2 (en) 2020-02-06 2023-05-09 Deere & Company Agricultural harvesting machine with pre-emergence weed detection and mitigation system
US11240961B2 (en) 2018-10-26 2022-02-08 Deere & Company Controlling a harvesting machine based on a geo-spatial representation indicating where the harvesting machine is likely to reach capacity
US11653588B2 (en) 2018-10-26 2023-05-23 Deere & Company Yield map generation and control system
US11672203B2 (en) 2018-10-26 2023-06-13 Deere & Company Predictive map generation and control
US11178818B2 (en) 2018-10-26 2021-11-23 Deere & Company Harvesting machine control system with fill level processing based on yield data
US11467605B2 (en) 2019-04-10 2022-10-11 Deere & Company Zonal machine control
US11589509B2 (en) 2018-10-26 2023-02-28 Deere & Company Predictive machine characteristic map generation and control system
US11957072B2 (en) 2020-02-06 2024-04-16 Deere & Company Pre-emergence weed detection and mitigation system
US11079725B2 (en) 2019-04-10 2021-08-03 Deere & Company Machine control using real-time model
US11778945B2 (en) 2019-04-10 2023-10-10 Deere & Company Machine control using real-time model
US11234366B2 (en) 2019-04-10 2022-02-01 Deere & Company Image selection for machine control
CN110593064B (zh) * 2019-09-19 2021-07-30 长沙理工大学 一种施工压实过程中沥青混合料压实剪切特性检测装置
US11477940B2 (en) 2020-03-26 2022-10-25 Deere & Company Mobile work machine control based on zone parameter modification
US11874669B2 (en) 2020-10-09 2024-01-16 Deere & Company Map generation and control system
US11825768B2 (en) 2020-10-09 2023-11-28 Deere & Company Machine control using a predictive map
US11844311B2 (en) 2020-10-09 2023-12-19 Deere & Company Machine control using a predictive map
US11871697B2 (en) 2020-10-09 2024-01-16 Deere & Company Crop moisture map generation and control system
US11727680B2 (en) 2020-10-09 2023-08-15 Deere & Company Predictive map generation based on seeding characteristics and control
US11845449B2 (en) 2020-10-09 2023-12-19 Deere & Company Map generation and control system
US11675354B2 (en) 2020-10-09 2023-06-13 Deere & Company Machine control using a predictive map
US11849671B2 (en) 2020-10-09 2023-12-26 Deere & Company Crop state map generation and control system
US11711995B2 (en) 2020-10-09 2023-08-01 Deere & Company Machine control using a predictive map
US11889788B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive biomass map generation and control
US11592822B2 (en) 2020-10-09 2023-02-28 Deere & Company Machine control using a predictive map
US11927459B2 (en) 2020-10-09 2024-03-12 Deere & Company Machine control using a predictive map
US11895948B2 (en) 2020-10-09 2024-02-13 Deere & Company Predictive map generation and control based on soil properties
US11849672B2 (en) 2020-10-09 2023-12-26 Deere & Company Machine control using a predictive map
US11946747B2 (en) 2020-10-09 2024-04-02 Deere & Company Crop constituent map generation and control system
US11635765B2 (en) 2020-10-09 2023-04-25 Deere & Company Crop state map generation and control system
US11474523B2 (en) 2020-10-09 2022-10-18 Deere & Company Machine control using a predictive speed map
US11650587B2 (en) 2020-10-09 2023-05-16 Deere & Company Predictive power map generation and control system
US11864483B2 (en) 2020-10-09 2024-01-09 Deere & Company Predictive map generation and control system
US11889787B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive speed map generation and control system
US20230160152A1 (en) 2021-11-24 2023-05-25 Caterpillar Paving Products Inc. Control system and method for defining and generating compactor work area
US20230323612A1 (en) 2022-04-08 2023-10-12 Caterpillar Paving Products Inc. Active path monitoring for vibratory soil compactors

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0761886A1 (fr) 1995-08-21 1997-03-12 Etat Francais Represente Par Le Laboratoire Central Des Ponts Et Chaussees Procédé et matériel d'aide à la conduite d'une machine de compactage
DE69501401T2 (de) 1994-04-18 1998-08-06 Caterpillar Inc Verfahren und vorrichtung zur überwachung und koordination von mehreren bodenbearbeitenden maschinen auf einer baustelle
DE69416006T2 (de) * 1993-12-08 1999-08-19 Caterpillar Inc Methode und vorrichtung zum arbeitsfeldbezogenen betrieb eines verdichtungsgerätes
US6088644A (en) 1998-08-12 2000-07-11 Caterpillar Inc. Method and apparatus for determining a path to be traversed by a mobile machine
DE19983437T1 (de) 1998-08-06 2001-08-02 Caterpillar Inc Verfahren und Vorrichtung zum Einrichten eines Umfangs, der ein von einer mobilen Maschine zu überfahrendes Gebiet definiert
US20060193693A1 (en) 2005-02-28 2006-08-31 Caterpillar Inc. Self-propelled plate compactor having linear excitation
US20070239338A1 (en) 2006-04-06 2007-10-11 Dean Potts Worksite preparation method using compaction response and mapping information
US20080063473A1 (en) 2006-09-07 2008-03-13 Congdon Thomas M Method of operating a compactor machine via path planning based on compaction state data and mapping information
EP1985761A2 (fr) 2007-04-23 2008-10-29 Hamm AG Procédé pour la détermination du degré de compaction d'asphalte et dispositif compacteur ainsi que système de détermination d'un degré de compaction
US20090126953A1 (en) 2005-03-23 2009-05-21 Roland Anderegg System for Co-Ordinated Ground Processing
DE102008058481A1 (de) 2007-11-30 2009-07-30 Caterpillar Inc., Peoria Asphaltierungssystem und Asphaltierungsverfahren
US20100087992A1 (en) * 2008-10-07 2010-04-08 Glee Katherine C Machine system and operating method for compacting a work area
US20120107045A1 (en) 2010-11-02 2012-05-03 Caterpillar, Inc. Compactor System And Methods

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09124643A (ja) 1995-08-14 1997-05-13 Bristol Myers Squibb Co 抗うつ作用を有する1−アリールアルキル−4−(アルコキシピリジニル)−又は4−(アルコキシピリミジニル)ピペラジン誘導体
US5719338A (en) * 1995-10-24 1998-02-17 Ingersoll-Rand Company Method and apparatus for providing an indication of compaction in a vibration compaction vehicle
AUPO241496A0 (en) * 1996-09-18 1996-10-10 Pioneer Road Services Pty. Ltd. Method and apparatus for asphalt compaction
DE10317160A1 (de) * 2003-04-14 2004-11-18 Wacker Construction Equipment Ag System und Verfahren zur automatisierten Bodenverdichtung
US7551234B2 (en) 2005-07-28 2009-06-23 Seiko Epson Corporation Method and apparatus for estimating shot boundaries in a digital video sequence
DE102009059106A1 (de) * 2009-12-18 2011-06-22 Wirtgen GmbH, 53578 Selbstfahrende Baumaschine und Verfahren zur Steuerung einer selbstfahrenden Baumaschine
CN101962928B (zh) * 2010-08-12 2013-03-27 中铁二十二局集团第一工程有限公司 冲击碾压处理风积沙路基基底的施工方法
US20130136539A1 (en) * 2011-11-30 2013-05-30 James Alvin Aardema Paving system utilizing embedded measuring devices

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69416006T2 (de) * 1993-12-08 1999-08-19 Caterpillar Inc Methode und vorrichtung zum arbeitsfeldbezogenen betrieb eines verdichtungsgerätes
DE69501401T2 (de) 1994-04-18 1998-08-06 Caterpillar Inc Verfahren und vorrichtung zur überwachung und koordination von mehreren bodenbearbeitenden maschinen auf einer baustelle
EP0761886A1 (fr) 1995-08-21 1997-03-12 Etat Francais Represente Par Le Laboratoire Central Des Ponts Et Chaussees Procédé et matériel d'aide à la conduite d'une machine de compactage
DE19983437T1 (de) 1998-08-06 2001-08-02 Caterpillar Inc Verfahren und Vorrichtung zum Einrichten eines Umfangs, der ein von einer mobilen Maschine zu überfahrendes Gebiet definiert
US6088644A (en) 1998-08-12 2000-07-11 Caterpillar Inc. Method and apparatus for determining a path to be traversed by a mobile machine
US20060193693A1 (en) 2005-02-28 2006-08-31 Caterpillar Inc. Self-propelled plate compactor having linear excitation
US20090126953A1 (en) 2005-03-23 2009-05-21 Roland Anderegg System for Co-Ordinated Ground Processing
US20070239338A1 (en) 2006-04-06 2007-10-11 Dean Potts Worksite preparation method using compaction response and mapping information
US20080063473A1 (en) 2006-09-07 2008-03-13 Congdon Thomas M Method of operating a compactor machine via path planning based on compaction state data and mapping information
EP1985761A2 (fr) 2007-04-23 2008-10-29 Hamm AG Procédé pour la détermination du degré de compaction d'asphalte et dispositif compacteur ainsi que système de détermination d'un degré de compaction
DE102008058481A1 (de) 2007-11-30 2009-07-30 Caterpillar Inc., Peoria Asphaltierungssystem und Asphaltierungsverfahren
US20100087992A1 (en) * 2008-10-07 2010-04-08 Glee Katherine C Machine system and operating method for compacting a work area
US20120107045A1 (en) 2010-11-02 2012-05-03 Caterpillar, Inc. Compactor System And Methods

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
"BOMAG FAYAT GROUP", 2009, article KLOUBERT H.-J: "Grundlagen der Asphaltverdichtung", XP055402351
"Richtlinien für die Anlage von Straßen - Querschnitt", AUSDRUCK DES WIKIPEDIA-ARTIKELS, 10 July 2017 (2017-07-10), XP055402345
CON- STRUCTION MIT INHALTSVERZEICHNIS DER PROCEEDINGS OF THE 13TH ISARC, 1996, Tokyo, Japan, XP055402341
DIPL.-ING . KARL LUDWIG KLEY: "Positionierungslösung für Straßenwalzen - Grundlage für eine kontinuierliche Qualitätskon- trolle und Dokumentation der Verdichtungsarbeit im Asphaltbau", DISSERTATION VON DIPL.-ING. KARL LUDWIG KLEY, 2004, TH) , Karlsruhe, XP055402327
FIRMA JOSEPH VÖGELE AG: "Tracked Paver Super 1800-2", BROSCHÜRE, April 2010 (2010-04-01), XP055402372
KLOUBERT , WALLRATH: "Intelligente Asphaltverdichtung", GESTRATA JOURNAL, October 2010 (2010-10-01), XP055402355
KRISHNAMURTHY ET AL.: "AutoPave: towards an automated paving system for asphalt pavement compaction operations", AUTOMATION IN CONSTRUCTION, vol. 8, 1998, pages 165 - 180, XP055402334
TSERNG ET AL.: "An Operations Planning System for Asphalt Pavement Compaction", PROCEEDINGS OF THE 13TH ISARC, 1996, Tokyo, Japan, XP0055355275
VEERAMANI ET AL.: "Computer-integrated collaborative design and operation in the construction industry", AUTOMATION IN CONSTRUCTION, vol. 7, no. 6, 1998, pages 485 - 492, XP004149395

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4249678A1 (fr) * 2022-03-22 2023-09-27 Hamm AG Procédé de fonctionnement d'un compacteur de sol et compacteur de sol
DE102022106657A1 (de) 2022-03-22 2023-09-28 Hamm Ag Verfahren zum Betreiben eines Bodenverdichters und Bodenverdichter

Also Published As

Publication number Publication date
US9982397B2 (en) 2018-05-29
CN104302839B (zh) 2016-10-05
EP2852707A1 (fr) 2015-04-01
US20150167257A1 (en) 2015-06-18
DE102012208554A1 (de) 2013-11-28
WO2013174458A1 (fr) 2013-11-28
CN104302839A (zh) 2015-01-21

Similar Documents

Publication Publication Date Title
EP2852707B1 (fr) Procédé de planification et de mise en oeuvre de procédures de compactage du sol, en particulier de compactage d'asphalte
EP3456878B1 (fr) Procédé de surveillance du processus de compactage lors de la construction de route et rouleau compresseur
EP2920366B1 (fr) Système de transport sur rail pour un engin de pose de voie
EP2514871B1 (fr) Procédé pour la pose et le compactage d'une couche d'asphalte
EP1861546B1 (fr) Systeme permettant de traiter un sol de maniere coordonnee
DE102018132113A1 (de) System und Verfahren zum Verdichten einer Oberfläche einer Arbeitsstelle
EP3611303B1 (fr) Engin de construction autonome et procédé de commande d'un engin de construction autonome
DE102019125045A1 (de) Baustellenplanung für autonome baufahrzeuge
DE102019125702A1 (de) Automatische baustellenplanung für autonome baufahrzeuge
DE102019121492A1 (de) System und verfahren zum steuern von autonomen baufahrzeugen
EP2735650A1 (fr) Procédé de traitement de couches et son engin auxiliaire de construction
EP3480362B1 (fr) Rouleau dameur et procédé de détermination de l'épaisseur de couche
DE102014212853A1 (de) Nachbehandlungsmaschine, sowie Verfahren zum nachträglichen Bearbeiten einer frisch gefertigten Betonschicht
DE112019004694T5 (de) Fahrtsteuersysteme und -verfahren für rotationsschneidmaschinen
DE112020001713T5 (de) System zur Steuerung der Position eines Arbeitsgeräts
DE2833490A1 (de) Verfahren zur steuerung einer bodenverdichtungsmaschine und einrichtung zur durchfuehrung des verfahrens
DE102021102008A1 (de) Hydraulisches schwingungsschutzsystem für eine arbeitsmaschine
EP1876297A2 (fr) Dispositif et procédé destinés à la détermination de la position d'un rouleau compresseur par rapport à un finisseur
EP3536857B1 (fr) Machine à coffrages glissants et procédé de fonctionnement d'une machine à coffrages glissants
DE2811743A1 (de) Verfahren und vorrichtung zum instandhalten des schotterbetts eines gleises und zum korrigieren der lage eines gleises
DE102018201077B3 (de) Vorrichtung für ein profilgesteuertes Einsanden und Verfüllen von Rohrleitungs- und Kabelgräben
DE60002830T2 (de) Verfahren zur herstellung mit hilfe eines satellitenpositionierungssystems
DE3101216C2 (de) Verfahren zum Herstellen oder Erneuern eines Bankettes einer Fahrbahn sowie Bankettfertiger zur Durchführung des Verfahrens
DE10038943A1 (de) Strassenfertiger und Einbauverfahren
DE3032495C2 (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140918

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20151208

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160622

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 836629

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012008547

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20161012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170112

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161231

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170213

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170212

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502012008547

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: BOMAG GMBH

Effective date: 20170712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170112

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170831

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161231

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161211

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170102

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161211

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170112

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20161231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20121211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502012008547

Country of ref document: DE

Representative=s name: RUTTENSPERGER LACHNIT TROSSIN GOMOLL PATENT- U, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502012008547

Country of ref document: DE

Representative=s name: RUTTENSPERGER LACHNIT TROSSIN GOMOLL, PATENT- , DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 836629

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171211

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171211

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 502012008547

Country of ref document: DE

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20210224

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20231220

Year of fee payment: 12

Ref country code: DE

Payment date: 20231214

Year of fee payment: 12

Ref country code: CZ

Payment date: 20231204

Year of fee payment: 12