EP2850346A1 - Structure d'étanchéité d'arbre - Google Patents
Structure d'étanchéité d'arbreInfo
- Publication number
- EP2850346A1 EP2850346A1 EP13745024.3A EP13745024A EP2850346A1 EP 2850346 A1 EP2850346 A1 EP 2850346A1 EP 13745024 A EP13745024 A EP 13745024A EP 2850346 A1 EP2850346 A1 EP 2850346A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- sealing
- shaft seal
- ssm
- boundary line
- sealing surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16J—PISTONS; CYLINDERS; SEALINGS
- F16J15/00—Sealings
- F16J15/44—Free-space packings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D11/00—Preventing or minimising internal leakage of working-fluid, e.g. between stages
- F01D11/02—Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16J—PISTONS; CYLINDERS; SEALINGS
- F16J15/00—Sealings
- F16J15/16—Sealings between relatively-moving surfaces
- F16J15/164—Sealings between relatively-moving surfaces the sealing action depending on movements; pressure difference, temperature or presence of leaking fluid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16J—PISTONS; CYLINDERS; SEALINGS
- F16J15/00—Sealings
- F16J15/16—Sealings between relatively-moving surfaces
- F16J15/34—Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
- F16J15/3404—Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal
- F16J15/3408—Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface
- F16J15/3412—Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface with cavities
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16J—PISTONS; CYLINDERS; SEALINGS
- F16J15/00—Sealings
- F16J15/16—Sealings between relatively-moving surfaces
- F16J15/40—Sealings between relatively-moving surfaces by means of fluid
Definitions
- the invention relates to a shaft seal arrangement having a shaft extending along an axis and a stator, wherein a rotating sealing ring is arranged on the shaft and a static sealing ring is arranged on the stator, the rotating sealing ring a rotating sealing surface and the static sealing ring a standing sealing surface, wherein these sealing surfaces are arranged such that they face each other sealingly in a substantially radial plane, wherein the shaft seal assembly is formed as non-contact gas seal, wherein at least one of the sealing surfaces has a non-rotationally symmetrical surface contouring.
- Gas seals are for turbomachines, in particular compressors, which are designed as turbomachinery, at higher pressures due to the relatively low leakage, the preferred sealing form. For example. Compared to conventional labyrinth seals, the order of magnitude lower leakage of the dry gas seal allows a significant increase in the efficiency of the corresponding turbomachine.
- Labyrinth seals are the modern dry gas seals comparatively demanding in terms of operating conditions. Safe operation of dry gas seals is only possible if a sliding film of dry gas between the two sealing rings is constantly supplied with gas of correspondingly high quality of preparation.
- the gas for supplying the gas film between the sealing rings on the one hand must be sufficiently dried and on the other hand also relatively free of foreign bodies.
- the auxiliary systems required for the gas treatment for example, a process gas compressor, may well be of the order of magnitude of the actual compressor in terms of their space requirements and the investment costs.
- EP 1 275 864 A 1 which also deals with shaft seals. Those who discuss gas seals are dependent on a high quality of the gasification of the gas and regularly bound by direction of rotation.
- the invention has set itself the task of creating a shaft seal arrangement of a gas seal, which requires comparatively less treatment effort with respect to the sealing gas.
- a shaft seal arrangement according to the invention means an arrangement comprising a shaft seal which is also suitable for higher rotational speeds of the rotor.
- These include, for example, dry gas seals for high-speed turbo compressors. Unsuitable for this purpose are, for example, stuffing boxes.
- the dry gas seal is particularly suitable for the high-speed rotation due to the contactlessness of the two opposing sealing surfaces. The contactlessness is usually present only when a gas sliding film between the two opposite sealing surfaces from a certain
- Boundary speed has formed. While the claim form stipulates that one sealing ring is standing and the other Sealing ring is provided for rotation, it is only relevant for the shaft seal assembly according to the invention that a relative rotation between the stationary and the rotating sealing ring takes place. In this respect, no absolute state of motion or rest is claimed. Of particular importance is the surface contouring at least one of the two opposite sealing surfaces. This surface contouring is inventively introduced by a targeted manufacturing in the sealing surface and not the result of lying in the manufacturing tolerance ripple of the sealing surface. The surface contouring according to the invention is also non-rotationally symmetrical, wherein a rotationally symmetric surface contouring is not excluded by the invention as an additional feature.
- an advantageous development of the invention provides that at least one of the two opposing sealing surfaces, preferably both opposing sealing surfaces, have a specific rotationally symmetrical convex shape.
- the convex shape is preferably so pronounced that a targeted gaping of the radial edge regions in the case of central radial abutment of the two sealing surfaces against one another is present from approximately 1 ⁇ m to 10 ⁇ m.
- the gap is 1.5 to 3 ⁇ .
- the advantage of the surface contouring according to the invention lies in the fact that-unlike in the prior art-no dirt can accumulate in the surface contour, which in particular could influence the lift-off properties of the shaft seal arrangement In operation, it can be kept free of the dirt of the sealing gas because it can only badly adhere to the geometry according to the invention.
- the relatively sharp edges or discontinuities of the surface contouring or sealing surface which are usual in the prior art lead to small eddies or "dead water”. Flows that favor the deposition of particles in the contouring or their contamination. Accordingly, in conventional surface contouring geometry a particular effort in the preparation of the sealing gas to be invested, which effort can be significantly lower in the geometry of the invention, since the new shaft seal assembly is more tolerant to contamination due to their self-cleaning.
- a continuous course means that the corresponding course line or course contour is continuously differentiable in the indicated direction. Accordingly, there is a discrete - ie finite - derivative value at the locations of the required continuity. In other words, the course has no corners or edges with respect to the indicated course direction in the corresponding area.
- a further advantageous development provides that the defined bottom surface of the surface contouring or depression in the radial direction is twice continuously differentiable.
- a further advantageous embodiment provides that the bottom surface of the recess in the radial direction and in the tangential direction is twice continuously differentiable.
- the sealing surface in the radial and / or tangential direction in the region of the boundary line is simply continuously differentiable.
- a further advantageous development provides that the sealing surface in the region of the boundary line and especially on the boundary line is twice continuously differentiable.
- All directional information refer to a coordinate system from the axis in the direction of the shaft axis, a radial direction perpendicular thereto and a direction tangential to these two directions.
- All directional information refer to a coordinate system from the axis in the direction of the shaft axis, a radial direction perpendicular thereto and a direction tangential to these two directions.
- a further advantageous embodiment provides that the depression attaches steadily to the boundary line on the other sealing surface. This training additionally favors a minimization of the tendency to fouling. If, instead, a reduction in the "lift-off" speed is to be effected, it may be expedient if the recess in the region of the boundary line adjoins the remaining sealing surface discontinuously.
- the depressions are symmetrical in relation to a radial plane, so that a rotation direction-independent
- Boundary line in the respective sealing surface forms a closed line.
- the boundary line may begin and end at a boundary edge of the respective sealing surface, thereby decreasing the lift-off speed.
- the boundary line of the depression starts and ends at a boundary edge of the sealing surface or has a first end there and has a second end (in fact the boundary line is not directed) - ie forms an open geometry - it is expedient the boundary line (in the plan view of the sealing surface) has a parable shape. Also from the point of view of the production of the surface contouring, it is expedient if the depression has the geometry of a conic section (ie circle or ellipse or parabola or triangle).
- these contours can be used to achieve good "lift-off" properties and, on the other hand, they can cause good contamination tolerances, since the boundary edge of the sealing geometry is basically a circle with a relative degree is a large radius and not a straight line, the recesses are only under the proviso that the outer contour or the boundary edge is to be regarded with its large radius as a straight line and the section of a cone or a Kustrstump- fes.
- the bottom surface of the depression defined by means of the boundary line has a continuous course, in particular rising radially.
- the continuous radial course means that a function of the depth of the depression as a function of the radius for each circumferential position fulfills the requirements of continuity to a real-valued function. These requirements are defined, for example, with the epsilon-delta criterion. Preferably and according to the invention, this requirement applies to all circumferential positions of the depression, including the boundary line, the boundary line lying in the sealing plane.
- the recess attaches obliquely to the other sealing surface on the entire boundary line (LL), which attaches the depression with a depth of 0 to the other sealing surface along the entire boundary line.
- An advantageous development of the invention provides that the bottom surface of the recesses has uneven sections. This makes it possible to improve the sliding properties.
- the bottom surface of the recesses may have flat sections.
- the sealing surface outside the recesses only on planar portions.
- the sealing surface is completely flat outside the recesses - in the frame the usual at this point manufacturing tolerances. In this way, the sliding properties are further improved.
- a further advantageous embodiment of the invention provides that for the depth T of the depression to the other bottom surface is 3 * (10 ⁇ -6) m ⁇ T ⁇ 5 * (10 ⁇ -6) m.
- a further advantageous embodiment of the invention provides that a maximum extent of the recess in the circumferential direction is between 10-40 mm.
- a further advantageous development of the invention provides that at least one boundary line, preferably all boundary lines in the sealing surface itself do not form a closed line.
- a further advantageous development of the invention provides that, in the case of a non-closed boundary line which adjoins the outer diameter of the sealing surface, an extension of the depression in the circumferential direction is between 10-40 mm at the outer diameter of the sealing surface.
- a further advantageous embodiment of the invention provides that in a parabolic boundary line of the depression, the bottom surface has parabolic height height lines or lines of equal depths.
- boundary lines identify straight sections, which run at least partially obliquely to a radial beam or a radial.
- FIG. 1 shows a perspective view of a
- FIGS. 2.6 each show a perspective and schematic illustration of a sealing surface according to the invention with a depression
- FIGS. 3, 7, 12, 13 in each case a section in the circumferential direction of a plan view of a sealing ring with indentations according to the invention
- FIG. 1 shows a shaft seal arrangement SSM according to the invention with a shaft SH extending along an axis X.
- directional data - such as axial, radial, tangential or circumferential direction - in this document refers to this axis X.
- a plane for example a sealing plane of a shaft seal is usually characterized in its extension by means of the surface normals or equivalently, at least two spatial directions are specified which are suitable for defining a plane.
- an axial plane extends perpendicular to the axis (eg, shaft axis X) so that this plane extends radially and circumferentially.
- the shaft seal assembly SSM further includes a shaft sleeve SSL fixedly attached to the shaft SH. Together with the shaft sleeve SSL and the shaft SSH, a rotating sealing ring RSR also rotates. The rotating one
- Sealing ring RSR opposite is a static seal SSR, which is rotatably connected to the stator ST.
- the static sealing ring SSR has a standing sealing surface SSS, which is located in a substantially radial sealing plane SPL of a rotating sealing surface RSS of the rotating sealing ring RSR opposite.
- An elastic spring ESP biases the standing sealing surface SSS against the rotating sealing surface RSS.
- the rotating sealing surface RSS and the standing sealing surface SSS if it does not depend on their distinction, also simply referred to as the sealing surface 2SS.
- At least one of the sealing surfaces 2SS is provided with a non-rotationally symmetric surface contouring SC introduced by targeted production.
- the surface contouring SC has depressions DP, with the depressions DP having a boundary line LL to the other sealing surface 02SS.
- the depression DP within the boundary line LL is defined by a bottom surface FS. wrote, as shown in perspective in the figures 2, 6.
- FIGS. 2 to 5 essentially show an embodiment of the recess DP according to the invention. Neglecting the curvature of the radially outer boundary edge on the side of the sealing surface 2SS of the sealing ring and considers this due to the large radius as a straight line so describes the recess DP of Figure 2, in particular in the projection of Figure 3, a triangle. In particular, in the projection of Figure 3 it is clear that this triangle is divided into two equal halves through the section IV, so that a symmetry of the depression DP is formed with respect to a radial section. This means, as in the other embodiments, an independence of the sealing ring 2SS, or obtained
- the depression DP sets with the boundary line LL on the other sealing surface 02SS with a depth of 0, so it is continuous in approach.
- This grounding applies in particular to the course of the depression DP with regard to the radial section IV or in accordance with the illustration of FIG. 4.
- the bottom surface FS of the depressions DP itself is continuous in the region of the radial section IV as well as with regard to all other possible radial cuts. This consistency promotes minimization of the tendency to deposit contaminants.
- FIGS. 6 to 11 show an arrangement whose geometry of the depression DP in the bottom surface FS is continuous not only with respect to all radial progressions but also with respect to the tangential progressions. Furthermore, this geometry - in the sense of a preferred embodiment of the invention - as evidenced by Figure 10 and Figure 8 in the radial and tangential direction continuously derivable.
- a particular embodiment is shown in FIG. 11, according to which the depression DP is also continuous in the region of the boundary line LL or the transition of the bottom surface FS to the other sealing surface 02SS not only in the approach of the course is.
- the bottom surface FS preferably comprises in radial section at least one point of inflection WP.
- Such a continuous and derived continuous geometry can be provided to minimize the tendency to foul the entire boundary line LL.
- the boundary line LL in the above simplified geometric view (large radius of the boundary edge of the sealing ring is approximately a straight line) in relation to the other dimensions of the depression be designed triangular or as two half-lines, the angle at the radially innermost point of the recess DP be educated.
- Another preferred embodiment of the invention provides that the boundary line LL is designed as the geometry of a conic section or truncated cone section.
- the boundary line LL can be formed as a closed circle (FIG. 12) or as an ellipse (FIG. 13) or as a parabola (FIG. 6, FIG. 7) or as a triangle (FIG. 3, 2).
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Sealing Devices (AREA)
- Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102012214276.2A DE102012214276A1 (de) | 2012-08-10 | 2012-08-10 | Wellendichtungsanordnung |
PCT/EP2013/065735 WO2014023581A1 (fr) | 2012-08-10 | 2013-07-25 | Structure d'étanchéité d'arbre |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2850346A1 true EP2850346A1 (fr) | 2015-03-25 |
Family
ID=48916020
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13745024.3A Withdrawn EP2850346A1 (fr) | 2012-08-10 | 2013-07-25 | Structure d'étanchéité d'arbre |
Country Status (5)
Country | Link |
---|---|
US (1) | US9657842B2 (fr) |
EP (1) | EP2850346A1 (fr) |
CN (1) | CN104520618B (fr) |
DE (1) | DE102012214276A1 (fr) |
WO (1) | WO2014023581A1 (fr) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012214276A1 (de) | 2012-08-10 | 2014-02-13 | Siemens Aktiengesellschaft | Wellendichtungsanordnung |
DE112013007082T5 (de) * | 2013-05-16 | 2016-02-04 | Dresser Rand S.A. | Bidirektionale Wellendichtung |
JP6386814B2 (ja) * | 2013-07-03 | 2018-09-05 | Ntn株式会社 | シールリング |
CN105683632B (zh) * | 2013-11-22 | 2017-07-07 | 伊格尔工业股份有限公司 | 滑动部件 |
JP6773649B2 (ja) * | 2014-10-06 | 2020-10-21 | ジョン クレーン インコーポレーテッド | ハイドロパッド面プロファイルを有するメカニカルシール |
DE102015013659A1 (de) * | 2015-10-22 | 2017-04-27 | Man Diesel & Turbo Se | Trockengasdichtungssystem und Strömungsmaschine mit einem Trockengasdichtungssystem |
EP3293425A1 (fr) | 2016-09-13 | 2018-03-14 | Siemens Aktiengesellschaft | Joint etanche aux gaz |
EP3293426A1 (fr) | 2016-09-13 | 2018-03-14 | Siemens Aktiengesellschaft | Joint etanche aux gaz |
EP3543552B1 (fr) * | 2016-11-18 | 2021-11-10 | Eagle Industry Co., Ltd. | Éléments de glissement |
EP3514396A1 (fr) | 2018-01-22 | 2019-07-24 | Siemens Aktiengesellschaft | Dispositif pourvu d'un rotor et de deux paliers |
Family Cites Families (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1775596A1 (de) * | 1968-08-30 | 1972-03-16 | Kupfer Asbest Co | Gleitringe fuer axial wirkende Wellendichtringe |
FR1599308A (fr) * | 1968-06-08 | 1970-07-15 | ||
FR1597609A (fr) | 1968-11-14 | 1970-06-29 | ||
CA919210A (en) * | 1968-12-30 | 1973-01-16 | Westinghouse Electric Corporation | Controlled leakage face type shaft seal |
DE1913397B2 (de) * | 1969-03-17 | 1974-06-20 | Feodor Burgmann Jun. Asbest- Und Packungswerk, 8190 Wolfratshausen | Gleitringdichtung mit Schraubengangpumpe |
US3970320A (en) * | 1975-04-28 | 1976-07-20 | Borg-Warner Corporation | Mechanical seal with thermo-cooling |
US4407513A (en) * | 1977-04-12 | 1983-10-04 | Taiho Kogyo Co., Ltd. | Mechanical seal |
DE2928504C2 (de) * | 1979-07-14 | 1982-05-19 | Pacific Wietz Gmbh + Co Kg, 4600 Dortmund | Dichtungsanordnung für Pumpenwellen u.dgl. |
CH677266A5 (fr) * | 1986-10-28 | 1991-04-30 | Pacific Wietz Gmbh & Co Kg | |
US5368314A (en) * | 1986-10-28 | 1994-11-29 | Pacific Wietz Gmbh & Co. Kg | Contactless pressurizing-gas shaft seal |
DE3722303A1 (de) | 1987-07-06 | 1989-01-19 | Burgmann Dichtungswerk Feodor | Gleitringdichtung zur abdichtung eines gasfoermigen mediums |
US4884945A (en) * | 1988-07-21 | 1989-12-05 | John Crane, Inc. | Dynamic seal arrangement for impeller pump |
DE3839106A1 (de) * | 1988-11-18 | 1990-05-23 | Burgmann Dichtungswerk Feodor | Gleitringdichtung |
DE8814442U1 (de) | 1988-11-18 | 1990-03-29 | Feodor Burgmann Dichtungswerke Gmbh & Co, 8190 Wolfratshausen | Gleitringdichtung |
US5217233A (en) | 1989-10-30 | 1993-06-08 | John Crane Inc. | Spiral groove seal system for sealing a high pressure gas |
GB9103217D0 (en) | 1991-02-15 | 1991-04-03 | Crane John Uk Ltd | Mechanical face seals |
US5201531A (en) | 1992-04-02 | 1993-04-13 | John Crane Inc. | Face seal with double spiral grooves |
US6152452A (en) | 1997-10-17 | 2000-11-28 | Wang; Yuming | Face seal with spiral grooves |
PL187630B1 (pl) * | 1998-12-10 | 2004-08-31 | Anga Uszczelnienia Mechaniczne | Pierścień ślizgowy uszczelnienia mechanicznego czołowego bezstykowego |
US6341782B1 (en) * | 2000-03-03 | 2002-01-29 | Surface Technologies Ltd | Lubricated seals having micropores |
EP1402671A2 (fr) | 2001-02-16 | 2004-03-31 | Axe, Inc. | Recepteur de signaux optiques a grande vitesse |
US7194803B2 (en) * | 2001-07-05 | 2007-03-27 | Flowserve Management Company | Seal ring and method of forming micro-topography ring surfaces with a laser |
ES2225361T5 (es) | 2001-07-09 | 2011-03-23 | Gehring Technologies Gmbh | Pieza de trabajo con una superficie solicitable tribológicamente y procedimiento para la formación de una superficie de este tipo. |
DE20216587U1 (de) * | 2002-10-28 | 2003-01-02 | CHETRA GmbH Dichtungstechnik, 85748 Garching | Gasgeschmierte Gleitringdichtung |
WO2008013147A1 (fr) * | 2006-07-25 | 2008-01-31 | Eagle Industry Co., Ltd. | Dispositif d'etanchéité mécanique |
CN100564962C (zh) * | 2007-02-15 | 2009-12-02 | 浙江工业大学 | 变分布多孔端面机械密封结构 |
CN101749429B (zh) | 2009-12-25 | 2011-09-14 | 中国燃气涡轮研究院 | 一种指尖密封结构及其后挡板 |
CN201851656U (zh) | 2010-10-18 | 2011-06-01 | 清华大学 | 一种动静压结合机械密封结构 |
CN103635728B (zh) * | 2011-07-01 | 2017-07-07 | 伊顿公司 | 勺形流体动力密封装置 |
CN102359596A (zh) | 2011-09-26 | 2012-02-22 | 清华大学 | 一种单向旋转三维l形槽端面密封结构 |
DE102012214276A1 (de) | 2012-08-10 | 2014-02-13 | Siemens Aktiengesellschaft | Wellendichtungsanordnung |
DE112013007082T5 (de) * | 2013-05-16 | 2016-02-04 | Dresser Rand S.A. | Bidirektionale Wellendichtung |
-
2012
- 2012-08-10 DE DE102012214276.2A patent/DE102012214276A1/de not_active Ceased
-
2013
- 2013-07-25 EP EP13745024.3A patent/EP2850346A1/fr not_active Withdrawn
- 2013-07-25 WO PCT/EP2013/065735 patent/WO2014023581A1/fr active Application Filing
- 2013-07-25 US US14/419,263 patent/US9657842B2/en active Active
- 2013-07-25 CN CN201380042519.XA patent/CN104520618B/zh active Active
Non-Patent Citations (2)
Title |
---|
None * |
See also references of WO2014023581A1 * |
Also Published As
Publication number | Publication date |
---|---|
CN104520618A (zh) | 2015-04-15 |
US20150226336A1 (en) | 2015-08-13 |
CN104520618B (zh) | 2017-09-29 |
DE102012214276A1 (de) | 2014-02-13 |
WO2014023581A1 (fr) | 2014-02-13 |
US9657842B2 (en) | 2017-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014023581A1 (fr) | Structure d'étanchéité d'arbre | |
DE3201860C2 (de) | Berührungsfrei arbeitende Dichtung zwischen relativ zueinander umlaufenden Maschinenteilen | |
DE3201862C2 (de) | Berührungsfreie Dichtung | |
EP1143175B1 (fr) | Joint dans une réalisation non-hermétique | |
EP2505783B1 (fr) | Rotor d'un étage de compresseur axial d'une turbomachine | |
DE102013226554B4 (de) | Wälzlager mit Dichtungseinheit | |
EP2505851B1 (fr) | Aubage de stator pour un compresseur axial dans une turbomachine | |
DE102008025249A1 (de) | Sammelraum und Verfahren zur Fertigung | |
DE112013007082T5 (de) | Bidirektionale Wellendichtung | |
DE102008023326A1 (de) | Deckband für Laufschaufeln einer Strömungsmaschine und Strömungsmaschine | |
DE102019202356A1 (de) | Laufschaufelseitige Dichtungsvorrichtung, stationäre schaufelseitige Dichtungsvorrichtung und Rotationsmaschine | |
DE102012104240B4 (de) | Hybridströmungs-Schaufeldesigns | |
EP2410131B1 (fr) | Rotor d'une turbomachine | |
EP3203035A1 (fr) | Système d'aube directrice d'une turbomachine | |
DE10122732C2 (de) | Anordnung für eine nicht-hermetisch abdichtende Dichtung | |
EP2019188A1 (fr) | Etage de rotor comprenant un dispositif d'amortissement | |
WO2012017094A2 (fr) | Agencement pour étanchéifier une liaison rotative | |
EP3208426A1 (fr) | Segment d'aube directrice pour turbomachine | |
DE112016005645T5 (de) | Dichtungsrippe, Dichtungsstruktur, Turbomaschine und Verfahren zum Herstellen einer Dichtungsrippe | |
DE102013225713A1 (de) | schwimmende Ölabdichtungsanordnung und maschinelle Vorrichtung mit der Ölabdichtungsanordnung | |
EP3899295B1 (fr) | Palier lisse hydrodynamique | |
DE102010008924A1 (de) | Verfahren zur Herstellung von Kolbenringen | |
WO2018206306A1 (fr) | Procédé d'entretien d'une turbomachine | |
DE102014226689A1 (de) | Rotor-Schaufelblatt einer Axialströmungsmaschine | |
DE102013112410A1 (de) | Drehdichtungsanordnung und Verfahren zur Abdichtung eines drehenden Bauteils in einem Gehäuse |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20141215 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SIEMENS AKTIENGESELLSCHAFT |
|
17Q | First examination report despatched |
Effective date: 20181016 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20190227 |